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1. Fundamentals

A measure is a mathematical object that quantifies the size of sets. Each

distinct measure embodies a different way to assess how big a set is. At

first thought, it would seem that there is only one natural measure of a

set’s size—its cardinality. Indeed, the cardinality is a measure as we will

define it below; given a set A, #A is a non-negative, possibly infinite,

number. But if we examine the issue carefully, we realize that there are

other reasonable ways to measure the size of a set. Consider the two sets

[1, 10] and [10, 100]. Both have the same cardinality (= #R), but our

physical intuition suggests that the latter is “bigger” somehow. Indeed,

we can compute the length of the two intervals, 9 and 90 respectively,

which confirms our intuition. So, the length of a set provides a different

measure of its size. We can also think about the lengths of the two

intervals on a logarithmic scale (base 10): [1,10] spans the exponents

0 through 1 and [10,100] spans the exponents 1 through 2. Measured

this way, the two sets have the same size, 1, which is finite.

Measures are based on a familiar idea—size. However, they may seem

a bit abstract because mathematicians like to take a concept, whittle

it down to its barest properties, and then explore the implications of

those properties in contexts that are very different from the original

idea. While this often turns out to be a profitable enterprise, it can

seem daunting at first. Even though measures are likely unfamiliar to

you as mathematics, try to keep in mind the strong intuition about

size on which they rest as you proceed through the material. To build

on this, we begin our exploration of measures with three examples that

are familiar from everyday life: length, area, and volume.
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1 1.1. Length, Area, and Volume

We can measure the length of a curve, the area of a surface, the volume

of some object. (Eureka!) From a mathematical perspective, the curve,

surface, and object are just sets of points in space, so length, area,

and volume give us a way to measure the extent of one, two, and

three-dimensional sets respectively. This is the fundamental idea of a

measure: a rule that associates to sets a number that quantifies the

size of the set. To get an intuitive grasp of what a measure is, we will

use length, area, and volume as our models. We will find the properties

that these satisfy, and then ask which of these properties are essential

for thinking about the size of sets. This will lead us to the general idea

of a measure.

Property #1. Non-negativity. Length, area, and volume can in prin-

ciple be any positive value; we just need to find a long enough curve, a

big enough area, or a large enough object. They can be zero as well: a

point is a curve that goes nowhere, a line is a rectangle with no width,

a plane is a solid with no depth. If one is willing to posit an infinite

space to the universe, we can imagine curves, surfaces, and volumes

that are infinite as well. But negative length, negative area, negative

volume have no meaning.

Property #2. Additivity. We can measure the length of a path on a

map along roads from Pittsburgh, through Philadelphia and Trenton,

New Jersey, to Newark, New Jersey. If we cut that path into three non-

overlapping pieces – say from Pittsburgh to Philadelphia, Philadelphia

to Trenton, and Trenton to Newark – then the lengths of the three

pieces combined must be the same as the length of the original path. If

I divide a rectangular region into non-overlapping pieces,1 the total area

of the pieces must equal the total area of the original region. Moreover,

this same fact is true no matter how I partition the region. The same

is true for volume as well.

We call this property additivity. To divide a set A – the points on a

curve, in the rectangular region, or in the object – into non-overlapping

pieces is to find a collection of pairwise disjoint sets A1,A2, . . . such that

A = ∪
i
Ai. The Ai’s here represent the pieces into which we divide the

original set. To say that the union of the pieces equals the original set is

to say that we have included all the pieces that we made. To say that the
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sets are disjoint is to say that the pieces do not overlap. The additivity

property states that the length (or area or volume, as appropriate) of

A must equal the sum of the lengths (or areas or volumes) of the Ai’s.

In our physical reality, we can imagine dividing a curve or surface or

object into a finite (though perhaps large) number of pieces. If the addi-

tivity property holds for any finite number of pieces, we call it finite ad-

ditivity. Mathematically it will be more convenient to require a stronger

property: we require that additivity hold for any countable2number of

pieces. We call this countable additivity.

Any measure of size for which the additivity property holds must

have another important property – monotonicity. To understand mono-

tonicity, consider the path from Pittsburgh to Newark above. If we go

along that path until Philadelphia and then stop, the length of the sub-

path cannot be bigger than the entire path. More generally, if A ⊂ B,

then the size of A must be no greater than the size of B because of

additivity: B can be divided into two disjoint pieces, one of which is A,

B = A∪ compl (A).

Property #3. Empty Set. In daily life, we rarely try to compute the

length, area, or volume of the empty set. But to take these ideas into

the mathematical realm, we need to come up with a sensible assignment

that is consistent with our physical intuition. Since the magnitude of

length, area, and volume derives from the extent of the curve, surface,

or object, and since the empty set by definition has no points and thus

no extent, it makes sense to take the length, area, and volume of the

empty set as zero.

Property #4. Other Null Sets. The length of a point is 0. The area

of a line, or indeed any curve, is 0. The volume of a plane, or any

surface, is 0. The existence of these “null sets” tells us a lot about the

nature of length, area, and volume. In particular, length is inherently

one-dimensional, area two-dimensional, and volume three-dimensional;

if we compute the size of a set of too low a dimension, we et 0.

Property #5. Translation Invariance. If I take a curve and shift it in

space without changing its shape, its length does not change. Similarly

for a region or object. Length, area, and volume are unchanging (in-

variant) under shifts in space (translations). If this weren’t true, then

walking around town could change your size.

2 Recall that countable means
finite or countably infinite.
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3 An interval is a one-
dimensional hyper-rectangle.
Remember that a < b is
implicit in this notation.

Property #6. Hyper-Rectangles. An interval of the form [a, b] ⊂ R
3

has length b−a. This is consistent with the fact that a point has length

zero, because the point {a} can be written as [a, a]. The additivity of

length implies that the intervals of the form ]a, b[ , ]a, b] , and [a, b[ all

have the same length b − a. To see why, notice that the interval [a, b]

can be written as a union of pairwise disjoint intervals in three ways:

[a, b] = [a, a] ∪ ]a, b[ ∪ [b, b]

= [a, a] ∪ ]a, b]

= [a, b[ ∪ [b, b] ,

Additivity tells us that for any such disjoint partition of [a, b] , the sum

of the lengths of the pieces must be b − a. Since the boundaries [a, a]

and [b, b] have length 0 (they are zero-dimensional sets), all four types

of intervals have the same length. This still holds if a or b are infinite;

]a,∞[ , ]−∞, b[ , and ]−∞,∞[ all have length ∞.

Similarly, the area of a rectangle [a1, b1] × [a2, b2] is (b1 − a1)(b2 −
a2), and the volume of a rectangular solid [a1, b1] × [a2, b2] × [a3, b3] ,

(b1 − a1)(b2 − a2)(b3 − a3). These hold for rectangles and rectangular

solids with any part of the boundary missing because the boundary is

a lower dimensional set.

These six properties determine length, area, and volume. In other

words, any measure of set size that satisfies these properties must be

length (if it is defined for one-dimensional sets), area (if it is defined for

two-dimensional sets), or volume (if it is defined for three-dimensional

sets). Our next task is to decide which of these six properties are

quintessential properties for a measure of the size of a set and which

are specific to length, area, and volume. Well, we only know one other

candidate for a measure – cardinality – so finding which of these prop-

erties cardinality shares will help us determine the general features we

wish a measure to satisfy.

For cardinality, only properties #1, #2, #3, and #5 hold. While

these all seem quite general, it turns out that #5, translation invari-

ance, is a bit too specialized. Here’s a quick argument. If # is a measure

of the size of sets, then the following should be as well: assign A ⊂ R

to be size #A∩[0, 1]. This computes the cardinality of the part of A
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that lies in [0, 1] and so has all of the features of cardinality except

translation invariance. So we judge properties #1, #2, and #3 to be

essential for measuring size.

This gives us a provisional definition of a measure: any function that

maps a set to a non-negative (and possibly infinite) number, such that

∅ maps to 0 and the (countable) additivity property is satisfied. It turns

out that there is nothing provisional here, as we will see below.

Before beginning with measures in the abstract, let’s look a little

more formally at the measures that correspond to length, area, and

volume.

We begin in R and, since this is one-dimensional, with length. Sup-

pose we have a subset A ⊂ ]0, 1[; how do we compute the length of

A? To make things interesting we will assume that A is a strict subset;

we already know the length of ]0, 1[.4 What we are looking for is a

mathematical algorithm that is guaranteed to produce the length of A,

although it may not be implementable in practice.

To start with, since A ⊂ ]0, 1[ , we know that length
(

A
)

≤ 1 by

the monotonicity property of length mentioned above. Our approach

will be to see how tight we can make this upper bound. Think about

measuring the length of A by covering A with pieces of string. The

subset ]0, 1[ corresponds to a single piece of string of length 1; it covers

A but if A has some gaps, our string is a bit too long. So, we can try

to cover A by several pieces of string of total length < 1. Because A
may have some very short parts, these pieces of string may be a little

too long or may overlap each other a bit. That’s ok for now. When we

add up the length of all our pieces, we find that length
(

A
)

≤ the sum

of the lengths of the pieces, which in turn is < 1. If we keep trying –

cutting the pieces more and more carefully to get a tighter fit to A while

still covering A, then our upper bound on length
(

A
)

will get tighter

and tighter. Thus, length
(

A
)

must be ≤ the total string length for

every such covering of A by pieces of string, and we can get arbitrarily

close to length
(

A
)

with some such covering.5 It follows that length
(

A
)

must be the greatest lower bound of the lengths of all coverings of A
by pieces of string.

Ok, enough with string. The pieces of string in the above argument

are just analogies for intervals. Consider a countable collection of in-

4 Nonetheless, we need our
algorithm to work for ]0, 1[ , so
we will have to revisit this case.

5 In other words, there can be
no number ` such that such

that length

(

A
)

< ` and

` < the string length of every
covering of A.
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6 If the intervals were disjoint,
then the sum of their lengths
would equal the length of A by
countable additivity. The point
of the algorithm is that it is
harder to find disjoint intervals
that cover A than it is to find
intervals that cover A without
this constraint.

7 Lebesgue is pronounced
Leb-ache.

tervals ]ai, bi[ that “cover” A, that is

A ⊂
⋃

i

]ai, bi[ .

We do not require the intervals to be disjoint.6 We call such a collection

of intervals a covering of A. Since any overlaps will be counted multi-

ple times when adding up the lengths of the intervals, the additivity

property of length implies that

length
(

A
)

≤
∑

i

length
(

]ai, bi[
)

=
∑

i

(bi − ai).

The
∑

i (bi − ai) is the “length of the covering”.

We can then consider a series of tighter and tighter coverings, trim-

ming a little overlap here, cutting a little excess there, making the

length of the covering closer and closer to the length
(

A
)

. We know

two facts:

1. length
(

A
)

≤ the length of every covering,

2. We can find some covering whose length is arbitrarily close to

length
(

A
)

.

It follows that length
(

A
)

is the greatest lower bound of all the lengths

of coverings of A. We are done.

This algorithm defines a measure length
()

which satisfies all the

properties alluded to above. We can check that it makes sense with

two simple examples, ]0, 1[ and a point {1/2}. In the former case,

the simple covering ]0, 1[ is perfect and gives us a length of 1. In the

latter case, the intervals ]1/2 − 1/n, 1/2 + 1/n[ for positive integer n

each cover {1/2}, but since their length goes to 0 as n goes to ∞,

length
(

{1/2}
)

must be 0, as we expect.

The same algorithm works to define area in R
2, except we use two-

dimensional intervals (i.e., rectangles), and to define volume in R
3, ex-

cept we use three-dimensional intervals (i.e., rectangular solids). In fact,

we can use the same argument in any R
k using k-dimensional hyper-

rectangles. This means that length, area, and volume are intimately

related (as we knew from the start) and differ only in dimensionality.

We call this family of measures on R
k Lebesgue measures7 after the

French mathematician Henri Lebesgue.
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Lebesgue measure on R is length. Lebesgue measure on R
2 is area.

Lebesgue measure on R
2 is volume. Lebesgue measure on R

k for k >

2 is a “hyper-volume”, a direct generalization of length, area, and

volume which satisfies properties #1–#6 above (assigning measure

(b1 − a1) · · · (bk − ak) to the hyper-rectangle [a1, b1] × · · · × [ak, bk]).

Because these measures have all the same properties except dimen-

sionality, we use the same symbol, µLeb, to refer to all of them, and let

the domain (R, R
2, etc.) be clear from context.

1.2. Measures Defined

Let X be any set. A measure on X is a function µ that maps the set of

subsets of X to [0,∞] that satisfies (i) µ(∅) = 0 and (ii) the following

countable additivity property:

Definition. For any countable and pairwise disjoint collection

of subsets of X A1,A2, . . .,

µ

(

⋃

i

Ai

)

=
∑

i

µ(Ai).

Remember that µ is just a function,9 albeit on a strange domain, so if

A ⊂ X , µ(A) is the image of the “point” A in 2X under the function

µ, which is just a number. We call µ(A) the “measure of the set A” or

“measure of A” for short. Notice that according to the definition, the

measure of A may be ∞.

The countable additivity property seems rather abstract as it is

stated above, but it comes with a definite physical intuitition that you

should keep in mind: If we take a set and divide it into non-overlapping

pieces, in any way, then the measure (think “size”) of all the pieces adds

up to the total measure (think “size”) of the original set. See figure 1.

We have seen that the familiar ideas of length, area, and volume are

measures, corresponding to Lebesgue measure on R, R
2, and R

3, but

these are so familiar that they can obscure some of the power of the

idea. So, let’s look at some very different examples of measures.

Example 1. How many elements? A natural measure associates to

each set its cardinality. But this is exactly #(A) as we defined it earlier.

Let us check that this actually defines a measure. First, #(∅) = 0 by

definition. Second, if we take a collection of disjoint sets, then the

cardinality of the union of these sets is the sum of the cardinalities

8 In a completely rigorous
definition of a measure, we
would have to be careful about
specifying the set of subsets on
which the measure is defined
(i.e., the domain of µ). The
reason is that if countable
additivity holds it is possible
in some cases to construct
anomalous sets that cannot
be measured at all. Thus, the
domain of µ would sometimes
need to be a strict subset of
2X that itself satisfies certain
requirements. This is an
important but very technical
point that is largely irrelevant
to our efforts here, so we ignore
it in favor of the “practical”
definition given.

9 As we have defined it, µ:
2X → [0,∞]
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because the sets do not overlap. Cardinality gives one way to quantify

the size of a set; notice how it differs from length for subsets. For

example, all intervals in R have the same cardinality.

Example 2. A point mass at 0. Consider a measure δ{0} on R defined

to give measure 1 to any set that contains 0 and measure 0 to any set

that does not. Mathematically, we write the definition

δ{0}(A) = #(A∩{0}) =
{

1 if 0 ∈ A
0 otherwise,

for A ⊂ R. We can similarly define a point mass at any point x by

δ{x}(A) = #(A∩{x}).
Example 3. Counting measure on the integers. Consider a measure

δZ that assigns to each set A the number of integers contained in A.

We define this by

δZ(A) = #(A∩Z).

Counting measure can be defined for sets other than Z in an analogous

way.

Example 4. A Geometric Measure. Suppose that 0 < r < 1. Define

a measure on R that assigns to a set A a geometrically weighted sum

over non-negative integers in A. Specifically,

µ(A) =
∑

i∈A∩Z⊕

ri.

For example, it follows that µ(R) = µ(Z) = µ(Z⊕) = 1/(1 − r) and

that µ({0}) = 1.

Example 5. A Binomial Measure. Let n be a positive integer and

let 0 < p < 1. Define µ as follows:

µ(A) =
∑

k∈A∩{0,1,...,n}

n!

k!(n − k)!
pk (1 − p)n−k,

where ! denotes the factorial function, j! = j(j − 1) · · ·1.

Example 6. Bivariate Gaussian. Define a measure on R
2 by

µ(A) =
∫

A

1

2π
e−

1

2
(x2+y2) dx dy.

Example 7. Uniform on a Ball in R
3. Let B be the set of points in

R
3 that are within a distance 1 from the origin; this is called the unit
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ball in R
3. (It looks like a ball centered on (0, 0, 0).) Define a measure

on R
3 as follows:

µ(A) =
3

4π
µLeb(A∩B).

This measure yields µ(R3) = µ(B) = 1. It looks like Lebesgue measure

inside the unit ball but assigns measure 0 to any part of a set outside

the ball.

Example 8. Not a measure. Suppose we define a set function that

maps a set A to the smallest number (including ∞) that is ≥ every

element of A.10 This arguably gives one way to quantify the size of the

set but it is not a measure.

The definition of a measure implies two useful properties that it is

worthwhile to see. Suppose that µ is a measure. Then the following

hold:

1. Monotonicity. If A ⊂ B, then µ(A) ≤ µ(B).

2. Subadditivity. If A1,A2, . . . is a countable collection of sets – not

necessarily disjoint – then

µ

(

⋃

i

Ai

)

≤
∑

i

µ(Ai).

The monotonicity property was discussed in Section 1.1. It follows from

additivity because B = A∪ compl (A) and the two pieces are disjoint.

The subadditivity property can be understood intuitively: if we divide

up a set into overlapping pieces, then the sum of the measure of the

pieces must be greater than if we made the pieces disjoint since any

overlap is counted more than once.

1.3. A Brief Digression on Infinitesimals

Although the calculus was developed independently by Newton and

Leibniz, much of the notation we use today comes from Leibniz. Of

particular relevance for our purposes are the “infinitesimals” like dx

and dy that appear in the expressions for derivatives and integrals:

df/dx and
∫

f(x) dx. They act as semantic placeholders that tell us

which variables we are operating with respect to, but they also have a

deeper meaning that can be quite enlightening.

Let’s start with f(x) dx. The definition of the integral that you used

in calculus approximates the area under the curve f(x) by successively

10 This is called the least
upper bound, or supremum, of
A and is denoted supA. If A
is finite, then supA = max
A, but some infinite sets like
]0, 1[ have no maximum.
What is sup [0, 1] ? sup ]0, 1[ ?
sup R?
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11 Actually, the integral with
respect to Lebesgue measure is
somewhat more general in that
one can integrate a wider class
of functions.

smaller rectangles. The expresion f(x) dx is the area of a rectangle

with height f(x) and “infinitesimal” width dx that extends from x to

x + dx. Thus, f(x) dx is an infinitesimal area under the curve which

we sum up during the integration. In a multivariate integral, the term

f(x, y) dx dy is the infinitesimal volume of a rectangular solid of height

f(x, y), horizontal width dx from x to x + dx, and vertical width dy

from y to y +dy. The integral again adds up these infinitesimal values,

yielding the volume under the two dimensional surface f(x, y).

An infinitesimal quantity is one that is not zero but is arbitrarily –

infinitely – small. From a rigorous mathematical viewpoint, this is non-

sensical. A real number is either small but non-zero or is zero; there is

nothing in between. What is actually meant is a more complicated lim-

iting process that defines the shrinking of the rectangles. However, the

idea of the infinitesimal is conceptually powerful. It explains an integral

as a sum of quantities in the right units (areas for a one-dimensional

integral, volumes for a two-dimensional integral, and so forth). It pro-

vides mnemonics for changes of variables and other transformations. It

allows us to treat curves that change on arbitrarily small scales as a

sequence of instantaneous values.

So what does something like dx mean? It is the length of an infinitesi-

mal interval starting at x. When we see dx, it tells us three things: which

variable we are dealing with, what value of that variable we are consid-

ering, and the length of an infinitesimal at that value. When we inte-

grate with respect to measures in the subsections below, you will see an

expression of the form µ(dx) where µ is a measure and dx is an infinites-

imal. This is a short-hand notation for µ
(

[x, x + dx[
)

, that is, the mea-

sure of an infinitesimal interval starting at x. While more precise, the

longer version is rather cumbersome, especially when repeated many

many times. The beauty of infinitesimals is that this shorthand holds

together nicely. For example, for Lebesgue measure, µLeb

(

[x, x + dx[
)

=

dx, so we write Lebesgue(dx) = dx, and the integral with respect to

Lebesgue measure, defined below, reduces to the ordinary integral.11 In

two and three dimensions, we use expressions of the form µ(dx dy) and

µ(dx dy dz), which mean respectively µ
(

[x, x + dx[ × [y, y + dy[
)

and

µ
(

[x, x + dx[× [y, y + dy[× [z, z + dz[
)

. You can see why we prefer the

shorthand. But again things work out because for Lebesgue measure
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on R
2 and R

3 we have µLeb(dx dy) ≡ µLeb

(

[x, x + dx[ × [y, y + dy[
)

=

dx dy and µLeb(dx dy dz) ≡ µLeb

(

[x, x + dx[× [y, y + dy[× [z, z + dz[
)

=

dx dy dz.

1.4. Integration with respect to a Measure I: The Idea

In calculus, you learned that for a real-valued function f defined on

a subset of R, the integral of f ,
∫

f(x) dx, is the (signed) 12 area be-

tween the curve f(x) and the x-axis. Using measures, we can define a

more powerful integral that reduces exactly to the Reimann integral

where appropriate. Here, we give a conceptual overview of the integral

with examples that show you what it means and how to compute it.

In section 1.5, we describe the properties of the integral These two

subsections should be sufficient for a strong working understanding

of how to integrate. Section 1.6 gives the details of how this integral

is constructed, which can help one understand exactly what is being

computed.

We will consider functions f :X → R where X is any set and a mea-

sure µ on X and compute the integral of f with respect to µ, denoted
∫

f(x) µ(dx). This is a real number associated with the function. The

“x” in
∫

f(x) µ(dx) is just a dummy variable and can be replaced by

anything else. One way to think about the integral is as a sum of in-

finitesimal areas f(x) µ(dx) over all x. Here, f(x) is a height and µ(dx)

is a corresponding width; the measure enters only in the latter.

We begin with four examples which show that there is little new

here.

1. For any function f ,

∫

g(x) µLeb(dx) =
∫

g(x) dx.

In other words, integrals with respect to Lebesgue measure are

computed exactly the same way that you learned in calculus. In

terms of infinitesimals, µLeb(dx) = dx, so the “sum of infinitesimals”

we get is the same as you are used to.

2. For any function f ,

∫

g(x) δ{α}(dx) = g(α).

12 I say signed area because,
as you may recall, when
f dips below the x-axis
the corresponding area counts
negatively towards the
integral.
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Consider the infinitesimal δ{α}(dx) as x ranges over R. If x 6= α,

then the infinitesimal interval [x, x + dx[ does not contain α, so

δ{α}(dx) ≡ δ{α}
(

[x, x + dx[
)

= 0.

If x = α, δ{α}(dx) ≡ δ{α}
(

[x, x + dx[
)

= 1. Thus, when we add up

all of the infinitesimals, we get g(α) · 1.

3. For any function f ,

∫

g(x) δZ(dx) =
∑

i∈Z

g(i).

Again, consider the infinitesimal δZ(dx) as x ranges over R. If

x 6∈ Z, then the infinitesimal interval [x, x + dx) does not in-

tersect Z so δZ(dx) ≡ δZ

(

[x, x + dx[
)

= 0. If x ∈ Z, δZ(dx) ≡
δZ

(

[x, x + dx[
)

= 1. (It is not more than one because an infinitesi-

mal interval can contain at most one integer.) The term g(x) δZ(dx)

is thus g(x) if x ∈ Z and 0 otherwise. When we add up all of the

infinitesimals over x, we get the sum above.

4. Suppose C is a countable set. We can define counting measure on

C to map A to #A∩C. For any function f ,

∫

g(x) δC(dx) =
∑

v∈C
g(v),

using the same basic argument as in the above example.

What we have just learned is that integrals with respect to Lebesgue

measure are just ordinary integrals and that integrals with respect to

Counting measure is just ordinary summation. So, in essence, we have

a syntactic device for unifying sums and integrals to the same notation.

The next step is to consider measures built from Lebesgue and Count-

ing measure.

1. Suppose µ is a measure that satisfies µ(dx) = f(x) µLeb(dx), then

for any function g,

∫

g(x) µ(dx) =
∫

g(x) f(x) µLeb(dx) =
∫

g(x) f(x) dx.

As described in section 3, we say that f is the density of µ with

respect to Lebesgue measure in this case.
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2. Suppose µ is a measure that satisfies µ(dx) = p(x) δC(dx) for a

countable set C, then for any function g,

∫

g(x) µ(dx) =
∫

g(x) p(x) δC(dx) =
∑

v∈C
g(v) f(v).

Here, we say that p is the density of µ with respect to Counting

measure on C.

Except for #, all of the measures we will use in this course will have a

density with respect to Lebesgue measure or with respect to Counting

measure on some set. Therefore, integration with respect to measures

is nothing new except for a nicely unified way to express summation.

1.5. Properties of the Integral

A function is said to be integrable with respect to µ if
∫ |f(x)|µ(dx) <

∞. An integrable function has a well-defined and finite integral. If

f ≥ 0, the integral is always well-defined but may be ∞. (Consider 1

integrated with respect to Lebesgue measure on R.)

As in calculus, we sometimes wish to integrate over a subset of the

domain. Suppose µ is a measure on X , A ⊂ X , and g is a real-valued

function on X . We define the integral of g over the set A, denoted by
∫

A g(x) µ(dx), to be simply the integral of g using only those x that are

elements of A. This is given by

∫

A
g(x) µ(dx) =

∫

g(x) 1A(x) µ(dx).

Notice that the points outside of A contribute nothing to the integral.

Because 1X = 1, we have that
∫

X f(x) µ(dx) =
∫

f(x) µ(dx). Again,

this is syntactic only; there is nothing new here.

For a practical working mastery of the integral, what you really need

to know is how to manipulate it. Integrals of any kind are just sums,

and they satisfy all the properties that a sum does. For example, |2−3+

4−5| ≤ |2|+ |−3|+ |4|+ |−5| because the absolute values in the latter

prevent the negatives from reducing the total sum. This same idea

translates to the property |∫ f(x) µ(dx)| ≤ ∫ |f(x)|µ(dx); again, the

absolute values inside the integral prevent any cancelation that would

reduce the magnitude of the result. Similarly, 1+4+7+9 ≤ 2+6+8+12

because each term on the left is ≤ the corresponding term on the
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right. This translates to the property f ≤ g implies
∫

f(x) µ(dx) ≤
∫

g(x) µ(dx).

When the integral is defined as in the next subsection, the following

properties hold for every measure µ. In the list below, µ is a measure

on X , A,B ⊂ X , c ∈ R and f and g are integrable functions.

1. Constant Functions.
∫

A c µ(dx) = c · µ(A).

2. Linearity.

∫

A
cf(x) µ(dx) = c

∫

A
f(x) µ(dx)

∫

A
(f(x) + g(x)) µ(dx) =

∫

A
f(x) µ(dx) +

∫

A
g(x) µ(dx).

3. Monotonicity. If f ≤ g, then
∫

A f(x) µ(dx) ≤ ∫

A g(x) µ(dx) for

every set A. This implies the following common special cases.

– If f ≥ 0,
∫

f(x) µ(dx) ≥ 0.

– If f ≥ 0 and A ⊂ B,
∫

A f(x) µ(dx) ≤ ∫

B f(x) µ(dx).

4. Null Sets. If µ(A) = 0, then
∫

A f(x) µ(dx) = 0.

5. Absolute Values. |∫ f(x) µ(dx)| ≤ ∫ |f(x)|µ(dx).

6. Monotone Convergence. If 0 ≤ f1 ≤ f2 ≤ · · · is an increasing

sequence of integrable functions that converge to f , then

lim
k→∞

∫

fk(x) µ(dx) =
∫

f(x) µ(dx).

7. Linearity in region of integration. If A∩B = ∅,
∫

A∪B
f(x) µ(dx) =

∫

A
f(x) µ(dx) +

∫

B
f(x) µ(dx).

To keep all of the above properties straight in your mind, it may help

to think about the signed area under a curve. Each property translates

into a physical statement about areas. For example, Monotonicity says

that if one area contains another, it is bigger. The Absolute Values

property results from the fact that any negative values subtract from

the total area; the absolute values eliminate this. The Monotone Con-

vergence property says that if we fill up the area under a curve f ,

building up in a series of steps, then this area gets closer and closer to

the total area under f .
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1.6. Integration with respect to a Measure II: The Details

To define an integral means to create a consistent and specific algorithm

for computing the integral of any appropriate function.13 As you know

from experience, some functions are easier to integrate than others. For

example, to integrate a multiple of the indicator function 1[0,1] requires

nothing special—we simply multiply height by width to get the area

under the curve. For functions like this, we can define the integral

to our complete satisfaction, so we start out defining the integral of

simple functions like this. The next trick is to extend the definition of

the integral to more complicated functions in a way that the integral

behaves like we expect it to. Below, we define the integral with respect

to a measure in three steps.

The integral introduced in calculus is called the Reimann integral.

It is defined by approximating the area under the curve f(x) with

smaller and smaller rectangles. To define
∫

f(x) µ(x), we will do almost

the same thing, but our method for approximating a function f is a bit

different than filling in under the curve with rectangles. 14 On your first

reading, you may want to skip this subsection. Come back to it later

for deeper insights when you feel more comfortable with the integrals.

Step 1. Define the integral for simple functions.

A simple function, is any function that takes only a finite number of

different values. All constant functions are simple functions because

they take only one value. The indicator function of a set A ⊂ X is a

simple function because 1A takes only two values: 0 and 1. Any constant

c times an indicator function, that is c · 1A, is also a simple function

because it takes at most the values 0 and c. Similarly, given disjoint sets

A1 and A2, the linear combination c1 ·1A1
+c2 ·1A2

is a simple function

which can take the values 0, c1, c2.
15 In fact, any simple function f can

be expressed as a linear combination of a finite number of indicator

functions. That is, if f is any simple function on X , then there is some

finite integer n, there are non-zero constants c1, . . . , cn, and there are

disjoint sets A1, . . . ,An ⊂ X such that

f = c1 · 1A1
+ c2 · 1A2

+ · · · + cn · 1An
.

Because the sets are disjoint, this function takes the n + 1 values

0, c1, . . . , cn.

13 For mathematicians to be
satisfied, the algorithm need
only work in principle; we may
not be able to implement it in
practice.

14 The construction of the
Reimann integral is usually
rushed in calculus courses, and
it is hardly the most exciting
part of the material in any
case. If you do not remember
how it goes, do not worry. The
method we will use is actually
much simpler.

15 If A1 and A2 were not
disjoint, we could define B1

= A1 − A2, B2 = A2 − A1,
and B3 = A1 ∩A2 and then
the function is equal to c1 ·
1B1

+c2 ·1B2
+(c1 +c2) ·1B3

.
Make sure you understand why
this is true. (Draw a picture in
one example.)
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16 ATTN Metapost figure
with simple function and areas
illustrated.

17 Remember: The variable
of integration is a dummy
variable.

So, if f :X → R is a simple function as just defined, what is the

integral of f? Keeping in mind that the integral represents the (signed)

area under the curve, all we have to do for each segment is to multiply

the height c by the width µ(A) and add them all up. Specifically, if

f = c1 · 1A1
+ c2 · 1A2

+ · · · + cn · 1An
. (M.1)

then
∫

f µ(dx) = c1 · µ(A1) + c2 · µ(A2) + · · · + cn · µ(1An
). (M.2)

This integral can be a real number, ∞, or −∞ depending on the sets

and the constants defining f . Take a look at the figure 16 and the

following examples to get a feel for the argument,

Example 1. Suppose that µ is Lebesgue measure and that f is

defined as follows:

f(x) =



































1 if −1 < x < 1
3 if 1 ≤ x < 4
5 if 4 ≤ x < 10
2 if −4 < x ≤ −1
4 if −10 < x ≤ −4
0 otherwise.

Find
∫

f(t) µ(dt).17

The definition of f above makes clear that it is a simple function

because it takes only 6 possible values. Let’s express it in the form of

equation (M.1):

f = 1 ]−1,1[ + 3 · 1 [1,4[ + 5 · 1 [4,10[ + 2 · 1 ]−4,−1] + 4 · 1 ]−10,4] . (M.3)

Because µ is Lebesgue measure on R, µ(dx) = dx; so,
∫

f µ(dx) =
∫

f dx, the familiar integral from calculus. The area under f can now be

computed (draw a picture) by calculating the area under each separate

piece and adding all the areas together. As above, we have

∫

f µ(dx) = µ
(

]−1, 1[
)

+ 3 · µ
(

[1, 4[
)

+ 5 · µ
(

[4, 10[
)

+

2 · µ
(

]−4,−1]
)

+ 4 · µ
(

]−10, 4]
)

= 2 + 3 · 3 + 5 · 6 + 2 · 3 + 4 · 6

= 71.
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Example 2. Suppose f is defined as above and that µ = δZ, counting

measure on Z. Find
∫

f(x) µ(dx).

The representation of f in terms of indicators is given in equation

(M.3), and we need only compute the measures of the sets as in equation

(M.2); see also the first line of the previous display. Since µ(A) is the

number of integers in A, we have that µ
(

]−1, 1[
)

= 1, µ
(

[1, 4[
)

= 3,

µ
(

[4, 10[
)

= 6, and so forth. Hence,
∫

f µ(dx) = 1 · 1 + 3 · 3 + 5 · 6 + 2 ·
3 + 4 · 6 = 70.

Example 3. Suppose that f is any simple function and that µ = δ{0},

a point mass at 0. Find
∫

f(y) µ(dy).

Here, µ of any set is 0 unless that set contains 0. So in the represen-

tation of f of equation (M.1), only one of the sets Ai will contain 0.

The measure of this set will be 1, and the constant multiplying the cor-

resonding indicator is just f(0). It follows that
∫

f(y) δ{0}(dy) = f(0)

for any f .

Step 2. Define the integral for general non-negative functions, approx-

imating the general function by simple functions.

Having learned how to compute the integral of any simple function,

we turn next to a general non-negative function f :X → [0,∞[ . The

idea is that we can approximate18 such an f arbitrarily well by some

non-negative simple function that is ≤ f , as illustrated in the marginal

figure. The argument19 that this claim is true is enlightening, but you

can skip it without worry on the first reading.

If f and g are non-negative functions on the same domain then the

integrals of f and g include no “negative areas”; hence, if g ≤ f , we

should have
∫

g(x) µ(dx) ≤ ∫

f(x) µ(dx). Indeed, this is true as can

be seen from the definition above if f and g are both simple func-

tions. We define the integral to make this true statement true. Thus,

if f :X → [0,∞[ is a general functions and 0 ≤ s ≤ f is a simple

function, we require that
∫

s(x) µ(dx) ≤ ∫

f(x) µ(dx). The closer that

s approximates f , the closer we expect
∫

s(x) µ(dx) and
∫

f(x) µ(dx)

to be.

This is how we compute the integral of f . Loosely speaking, we define
∫

f(x) µ(dx) to be the largest value
∫

s(x) µ(dx) for a simple function

0 ≤ s ≤ f . To be more precise, we define the integral
∫

f(x) µ(dx) to be

the smallest value I such that
∫

s(x) µ(dx) ≤ I for all simple functions

18 ATTN: Metapost figure of
successive approximations.

19 To see this, choose some
large integers k, and define Ai

= f−1

(

[i/2k, (i + 1[ /2k)

)

for 0 ≤ i < k2k and A
k2k =

f−1

(

[k,∞[

)

, where as usual

f−1(B) refers to the inverse
image of the set B. Define a
simple function sk by

sk(x) =

k2
k

∑

i=0

(

i

2k

)

1Ai
.

Since s(x) = i/2k ≤ f(x)
for all x ∈ Ai, we have s
≤ f . Also, |sk(x) − f(x)| ≤
2−k except possibly when
x ∈ A

k2k . and as k gets larger
and larger, each x is eventually
outside A

k2k .
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20 This is the least upper
bound (supremum) as defined
in note 10. In other words,
∫

f(x) µ(dx) is the least upper
bound of the set of numbers
∫

s(x) µ(dx) such that s is
simple and 0 ≤ s ≤ f . We
need the least upper bound
because there might not be a
largest

∫

s(x) µ(dx).

21 ATTN: Metapost Figure.
Function with positive and
negative parts

0 ≤ s ≤ f .20

Step 3. Define the integral for general real-valued functions by sepa-

rately integrating the positive and negative parts of the function.

Finally, if f :X → R is a general function, we can define its positive

part f+ and its negative part f− by21

f+(x) = max(f(x), 0)

f−(x) = max(−f(x), 0).

Notice that both f+ and f− are non-negative functions (so we know

how to integrate them) and that f = f+−f−. Consequently, we define
∫

f(x) µ(dx) =
∫

f+(x) µ(dx) −
∫

f−(x) µ(dx).

This is a well-defined number (possibly infinite) if and only if at least

one of f+ and f− has a finite integral.

This defines the integral of a function f with respect to a measure µ.

The advantage of seeing the construction is that we understand exactly

what the integral means, but we can operate just fine using only the

examples and properties described in the previous two subsections.

Fortunately, one can show that this construction implies that all of

those properties are true.

2. Some Important Examples

We saw a variety of examples of measures above. However, every mea-

sure that we will encounter in this course will be built from one of the

three most important examples, which we summarize in the following:

1. Cardinality. This is denoted by #(A) for any set A and can be

defined as a measure on any domain.

2. Counting measure.

Suppose C is a countable set. Then, the counting measure with

respect to C, δC, is defined by δC(A) = #A∩C. Counting measure

on the integers, δZ, and the point mass at a point x, δ{x}, are

special cases.

Integrals with respect to counting measure are just sums. That is,
∫

f(x) δC(dx) =
∑

z∈C
f(z).
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Or, put another way, sums and ordinary integrals are both just

integrals, but with respect to different measures.

3. Lebesgue measure. This can be defined on any R
k. Lebesgue mea-

sure on R gives length, Lebesgue measure on R
2 gives area, and

Lebesgue measure on R
3 gives volume, all three very familiar. We

always denote Lebesgue measure by µLeb and let context indicate

the appropriate domain, but it will be rare that we have to refer

to it explicitly.

Lebesgue measure on any R
k satisfies the following properties:

A. A hyper-rectangle22 ]a1, b1[ ×· · ·× ]ak, bk[ in R
k has Lebesgue

measure (b1 − a1) · · · (bk − ak).

B. If C is any countable set, µLeb(C) = 0.

C. If B is the result of shifting the set A by some amount (e.g.,

[4, 5] is obtained by shifting [0, 1] by 4 in R), then µLeb(B) =

µLeb(A).

Integrals with respect to Lebesge measure are just the ordinary in-

tegrals you are familiar with from calculus. In particular, µLeb(dx) =

dx on R , µLeb(dx dy) = dx dy on R
2 , µLeb(dx dy dz) = dx dy dz on

R
3, and µLeb(dx1 · · · dxk) = dx1 · · · dxk on R

k.

3. How to make new measures from old ones

Sums and Multiples. Consider the point mass measures at 0 and 1, δ{0}

and δ{1}, and construct a two new measures on R µ = δ{0}+δ{1} defined

by

µ(A) = δ{0}(A) + δ{1}(A),

and ν = 4δ{0} defined by

ν(A) = 4 · δ{0}(A),

for all A ⊂ X . We say that µ is the sum of δ{0} and δ{1} and that

ν is a multiple of δ{0} by a factor or 4. The measure µ counts how

many elements of {0, 1} are in its argument. (We will denote counting

measures like this by a common convention; specifically, µ = δ{0,1} in

this case.) Notice that δZ, the counting measure of the integers can be

re-expressed as a sum of all pointmasses δ{i} for integers i:

δZ =
∞
∑

i=−∞
δ{i}.

22 A hyper-rectangle in R

is just an interval; in R2 it is
a rectangle; and in R3 it is a
rectangular solid.
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Similarly, we can also write ν as a sum

ν = δ{0} + δ{0} + δ{0} + δ{0}.

Because we have defined measures to be non-negative, a multiple of a

measure is only a measure if the constant factor is non-negative.

By combining the operations of summation and multiplication, we

can construct measures like 4δ{0}+3δ{1} that are linear combinations of

other measures (with positive coefficients). For example, the geometric

measure in example ATTN above can be written as
∑∞

i=0 ri δ{i}.

Restriction to a Subset. Consider Lebesgue measure on R, µLeb. We

can define a new measure on ]0, 1[ which maps a set A ⊂ ]0, 1[ to

µLeb(A). This is effectively the same measure but it is restricted to

subsets of ]0, 1[ only. In general, suppose µ is a measure on X and

B ⊂ X . We can define a new measure on B which maps A ⊂ B to

µ(A). This is called the restriction of µ to the set B.

The Measure Induced by a Function. Consider Lebesgue measure on

R and the function g: Rto ]0,∞[ defined by g(x) = 10x. The function

g connects subsets of (0,∞) to subsets of R via the inverse image. For

example, the inverse image of ]1, 100[ ⊂ ]0,∞[ is ]0, 2[ ⊂ R because

these are the exponents of 10 that produce the values 1 through 100.

We can use this relationship to construct a new measure on (0,∞):

ν(A) = µLeb(g
−1(A)) for A ⊂ ]0,∞[ .

Thought Question Find ν
(

]1, 2[
)

, ν
(

]1, 100[
)

, ν
(

]1, 10000[
)

,

and ν
(

]100, 10000[
)

.

In general, suppose µ is a measure on X and g:X → Y is a function.

We can use µ and g to define a new measure ν on Y by

ν(A) = µ(g−1(A))

for A ⊂ Y. We call this the measure induced from µ by the function g.

Notice that we can think of the inverse image g−1 as mapping subsets

of Y to subsets of X , that is as a function 2Y → 2X . In that sense, the

measure induced from µ by g can be written as µ ◦ g−1. This technique

allows us to carry over a measure defined on one space to another space

with no extra work. It is very important in probability theory as we

will see in Chapter 3.
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Thought Question Suppose h(x) = x2. Describe µLeb ◦ h−1.

If ν = µ ◦ g−1 for some function, g, then we can make a useful

substitution in integrals that illuminates the relationship between µ

and ν. Specifically, f(y) ν(dy) = f(g(x)) µ(dx), for y ∈ Y and x ∈ X ,

so wherever we see one, we can substitute the other. In other words,

for any function f :Y → R,
∫

f(y) ν(dy) =
∫

f(g(x)) µ(dx).

Integrating a Density. Suppose µ is a measure on X and f :X → R.

We can define a new measure ν on X as follows:

ν(A) =
∫

A
f(x) µ(dx). (M.4)

(Recall the definition of the integral over a set above.) Because of the

linearity and convergence properties of the integral, ν satisfies all the

properties of a measure including countable additivity.

We say that f is the density of the measure ν with respect to the

measure µ. The name “density” seems an odd choice, but it does have

a strong physical intuition which we will explore fully in Chapter 3.

We often turn this phrase around. If ν and µ are two measures for

which the equation (M.4) holds for every A ⊂ X , we say that ν has a

density f with respect to µ. This implies two useful results:

• µ(A) = 0 implies ν(A) = 0.

• ν(dx) = f(x) µ(dx). In other words, we can substitute for ν(dx) in

integrals: for real-valued g on X ,
∫

g(x) ν(dx) =
∫

g(x) f(x) µ(dx).

Densities play an important role in probability theory.

Example 1. Suppose, given µ, we define ν by ν(A) = µ(A∩B) for

some fixed set B ⊂ X . Then, ν assigns 0 measure to anything outside

of B; for any subset of B, µ and ν are the same. We can rewrite ν as

follows

ν(A) =
∫

A
1B(x) µ(dx).

Thus, 1B(x) is the density of ν with respect to µ. That the density is 0

outside B reflects the fact that ν assigns 0 measure to anything outside

B. That the density is 1 inside B reflects that fact that µ and ν are the

same for any subset of B. We could write this relationship in terms of

infinitesimals as follows:

ν(dx) =
{

µ(dx) if x ∈ B
0 if x 6∈ B.
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Example 2. The geometric measure defined above ATTN(xref) has

a density with respect to δZ, and the density is the function p given by

p(x) =
{

rx if x ∈ Z

0 otherwise.

Example 3. The point mass δ{0} also has a density with respect to

δZ. To see this, notice that

∫

g(x) δZ(dx) =
∞
∑

i=−∞
g(i).

If p is the function given by

p(x) =
{

1 if x = 0
0 otherwise,

then
∫

g(x) p(x) δZ(dx) = g(0).

By taking g = 1A for a subset A of X , we get
∫

A
p(x) δZ(dx) = δ{0}(A).

Thus, p is the density of δ{0} with respect to δZ.

Example 4. Define a measure µG on R by

µG(A) =
∫

A

1√
2π

e−
1

2
x2

dx.

This is called standard Gaussian measure. It has a density f(x) =
1√
2π

e−
1

2
x2

with respect to Lebesgue measure on R. Notice that µG(R) =

1 because the density decays so rapidly for large values of |x|.

4. Other Types of Measures

Suppose that µ is a measure on X .

If µ(X ) = ∞, we say that µ is an infinite measure. If µ(X ) < ∞, we

say that µ is a finite measure. If µ(X ) = 1, we say that µ is a prob-

ability measure. We will talk much more about probability measures

throughout the course.

If there is a countable set S such that µ(X−S) = 0, we say that µ is a

discrete measure. Equivalently, µ has a density with respect to counting

measure on S. If µ has a density with respect to Lebesgue measure,

we say that µ is a continuous measure. If µ is neither continuous nor

discrete, we say that µ is a mixed measure.


