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The distribution of these
features has cosmological
significance.
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Low-Dimensional Structure in Point Cloud Data

Many datasets exhibit complex, low-dimensional structure.
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Manifolds and Manifold Complexes

Manifolds give a useful representation of low dimensional structure.
A manifold is a space that looks locally like a Euclidean space of some
dimension (called the dimension of the manifold).

Examples: point (0-dim), filaments (1-dim), surface of the sphere or torus
(2-dim), three-dimensional sphere, space-time (4-dim).

To allow for intersections and other complexities, consider a union of
manifolds embedded in R? with maximal dimensions d < D.

| will call this a d-dimensional manifold complex.
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Example
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Example

Challenge: Given a point cloud sampled from a manifold complex and
then perturbed by noise, accurately estimate the manifold complex.
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Models for Manifold Estimation

Suppose M belongs to a class M (to be defined shortly) of
d-dimensional “smooth” manifolds embedded in RP for D > d.

G is a distribution on M, with density bounded away from 0 and cc.

Draw Xi, ..., X, from G and then draw Y3,..., Y, according to
one of four noise models:

@ noiseless: Y; = X;.
@ clutter: Y; = X; with probability w, otherwise Y; ~ Uniform.

© perpendicular: Y; = X; + Z; where Z; is normal to M.
(See also Niyogi, Smale, Weinberger 2008.)

O additive: Y; = X; + Z; and Z; ~ ® (e.g., spherical Normal).

Want to estimate M from Y1,...,Y,.
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O additive: Y; = X; + Z; and Z; ~ ® (e.g., spherical Normal).

Want to estimate M from Y1,...,Y,.

The noise model strongly affects the difficulty of this problem.
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A Synthetic Example

An smooth manifold with d =2,D =3
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A Synthetic Example

An smooth manifold with d =2, D = 3 plus data drawn from the
additive model
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A Synthetic Example

The data drawn from the additive model
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Minimax Manifold Estimation

Define M = M,, = {M : reach(M) > k} and Q = {Qu :

where
Qu(A) = /M O(Y € A| X = x)dG(x)

is the induced distribution on Y.

—

Draw Y1, Y5, ..., Y, IID from Qs and estimate M= M.

Goal: determine the minimax risk

R, = inf sup Eq Haus(M\,,, M),
M, QeQ

at least up to rates, with Hausdorff loss.

M e M},
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The Reach of a Manifold

Define the reach of a manifold M as follows:

reach(M) is the largest (sup) r such that d(x, M) < r implies
that x has a unique projection onto M.

This is also called the thickness or condition number of the manifold;
see Niyoki, Smale, and Weinberger (2009).

Intuitively, a manifold M with reach(M) = k has two constraints:

@ Curvature. A ball or radius r < k can roll freely and smoothly over
M., but a ball or radius r > x cannot.

@ Separation. M is at least 2k from self-intersecting.
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Reach in One Dimension

circles have radius r

K> r s
K < 2r
K> 2r
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Reach Visualized

Normals of size < reach(M) do not cross.
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Reach Visualized

A large value of reach(M) implies that the manifold M is
smooth and not too tightly looped around itself

from Gonzalez and Maddocks (1999)

Reach of case (a) < Reach of case (b)
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Hausdorff Distance

Given two subsets of RP, A and B:
Haus(A,B) =inf{e: ACB®ecand BC Ad ¢}

where A® € = J,ca B(x,€) and B(x,e) ={y : [|[x —y| <€}

Example:

r=Q s -O -O

e=25 e=15

Haus(A, B) = max {2.5,1.5} = 2.5
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Existing Literature

Computational geometry (e.g., Cheng et al. 2005, Dey 2006)

Here, “noise” does not have the statistical meaning of points drawn randomly
from a distribution; instead, data must be close to M but not too close to each
other. (There are a few notable exceptions.)

Manifold learning (e.g., Ozertem and Erdogmus 2011)

The primary focus here is on dimension reduction

Homology estimation (e.g., Niyoki, Smale, and Weinberer 2009)

Focus on topological rather than geometric information

Filaments, principle curves, support estimation, ...
e.g., Hastie and Stuetzle (1989), Tibshirani (1992), Arias-Castro et al. (2006)
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Minimax Rates under Various Noise Models

inf sup Eq Haus(M,, M) =< Ct, (up to log terms)

M, QeQ
Noise Model Pn
Clutter/Noiseless (wn)*g
Perpendicular Compact e
Additive Compact/Polynomial in progress
Additive sub-Gaussian (logn)~!

Note that these rates do not depend on the ambient dimension D.

There are strong connections between the additive noise model and
errors-in-variables regression but also some notable differences.
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Proof Sketch: Lower Bound, Perpendicular Noise

Start with My . ..
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Proof Sketch: Lower Bound, Perpendicular Noise

Push up x-ball, through the plane to height . But reach still 0 ...

—
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Proof Sketch: Lower Bound, Perpendicular Noise

But reach still 0, so smooth the corners.

(2N
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Proof Sketch: Lower Bound, Perpendicular Noise
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Surrogates for Rate-Hard Problems

Problems with rates like 1/ log n seem to offer little practical hope for
good performance.

But it is sometimes possible to define a surrogate for the true object that

e captures essential features of the true object, and

e can be estimated with a good rate of convergence.

Example: Uniform confidence bands (Genovese and Wasserman 2008).
Strategy: Define a surrogate M, called the hyper-ridge set, for the
manifold complex M. Focus on estimating M accurately.

M is, roughly speaking, a smoother, slightly biased version of M.

Once we accept some bias, the curse of dimensionality becomes less
daunting.
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Hyper-Ridge Sets

Y1,..., Yn sampled 11D from Q = (1 — m)U + 7(G % ®,), the additive
model with clutter.

Let
e g, g, and h be the density of @ and its gradient and Hessian,

e A(x)
e V(x) to matrix whose columns are the eigenvectors of h(x) for
A1(x), -+ Ap—d(X).

Define the hyper-ridge set R = R(q) as follows:

be the jth eigenvalue of h(x) in increasing order,

x € R(q) iff Ap_a4(x) <0 and V(x)Tg(x)=0.

If Haus(M, R) = O(o) and if R and M have a common topology, then R
will be an effective surrogate.
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Example Hyper-Ridge Set
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Modified Mean-Shift Methods

Our hyper-ridge estimator uses a modification the mean-shift algorithm,
which carries arbitrary points on trajectories towards (local) modes of a
density.

Genovese, Perone-Pacifico, Verdinelli and Wasserman (2009) use the
mean-shift trajectories to trace out ridges of the density and find
filaments.

Ozertem and Erdogmus (2011) take this further, projecting each
mean-shift point onto the space spanned by the smallest (most-negative)
D — d eigenvectors of Hessian(q).

The latter is called the subspace-constrained mean-shift algorithm
(SCMS).
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A Hyper-Ridge Set Estimator

Steps:

@ Estimation: estimate the density g, its gradient g, and its Hessian h.

® Denoising: remove background clutter and low-probability regions,
restricting attention to a set where g is not too small;

© Mean-Shift: apply the SCMS algorithm within the restriction set.
We can show that: H(R, R) = Op (n_fl%D).

However, if we can live with bias, then we can set h = O(o) and then
H(Rh, /A?h) = Op (n_%).

We are currently developing more of the theory. Here are two examples.
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Example 1
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Example 2
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Example 2

But we need to denoise first or else ...
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Take-Home Points
@ Manifold complexes arise in many problems.

® Manifold estimation is a special case; more generally, we want to
find structure in data.

® Minimax rates can be obtained for a variety of noise models.
They do not depend on the dimension of the embedding space but
are highly sensitive to the noise model.

O Surrogates provide a useful (and computationally efficient)
alternative even in very high dimensions.
We accept some bias to capture some features accurately.
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