
Estimating Manifolds
Rates, Methods, and Surrogates

Christopher R. Genovese

Department of Statistics
Carnegie Mellon University

30 Apr 2012
Yale University

1 / 40



Collaborators

Larry Wasserman Carnegie Mellon University

Isabella Verdinelli Carnegie Mellon University and
University of Rome

Marco Perone-Pacifico University of Rome

Recent papers on this problem:
1 Genovese, Perone-Pacifico, Verdinelli, Wasserman 2009. [Ann. Stat., 37]
2 Genovese, Perone-Pacifico, Verdinelli, Wasserman 2010a. [arXiv:1003.5536 JASA]
3 Genovese, Perone-Pacifico, Verdinelli, Wasserman 2010b. [arXiv:1007.0549 Annals]
4 Genovese, Perone-Pacifico, Verdinelli, Wasserman 2011. [arXiv:1109.4540 JMLR]

2 / 40



Motivating Example: the “Cosmic Web”

Gnedin (2005)

Matter is concentrated
around lower dimensional
features:

0-dimensional clusters
1-dimensional filaments
2-dimensional sheets

with intervening
3-dimensional voids.

The distribution of these
features has cosmological
significance.
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Low-Dimensional Structure in Point Cloud Data

Many datasets exhibit complex, low-dimensional structure.

More Examples:

• Networks of blood vessels in medical imaging.
• River and road systems in remote sensing.
• Fault lines in seismology.
• Landmark paths for moving objects in computer vision.

In addition, high-dimensional datasets often have hidden structure
that we would like to identify.

Several distinct problems here, including:
Dimension Reduction, Clustering, and Estimation.

4 / 40



Low-Dimensional Structure in Point Cloud Data

Many datasets exhibit complex, low-dimensional structure.

More Examples:

• Networks of blood vessels in medical imaging.
• River and road systems in remote sensing.
• Fault lines in seismology.
• Landmark paths for moving objects in computer vision.

In addition, high-dimensional datasets often have hidden structure
that we would like to identify.

Several distinct problems here, including:
Dimension Reduction, Clustering, and Estimation.

4 / 40



Low-Dimensional Structure in Point Cloud Data

Many datasets exhibit complex, low-dimensional structure.

More Examples:

• Networks of blood vessels in medical imaging.
• River and road systems in remote sensing.
• Fault lines in seismology.
• Landmark paths for moving objects in computer vision.

In addition, high-dimensional datasets often have hidden structure
that we would like to identify.

Several distinct problems here, including:
Dimension Reduction, Clustering, and Estimation.

4 / 40



Low-Dimensional Structure in Point Cloud Data

Many datasets exhibit complex, low-dimensional structure.

More Examples:

• Networks of blood vessels in medical imaging.
• River and road systems in remote sensing.
• Fault lines in seismology.
• Landmark paths for moving objects in computer vision.

In addition, high-dimensional datasets often have hidden structure
that we would like to identify.

Several distinct problems here, including:
Dimension Reduction, Clustering, and Estimation.

4 / 40



Manifolds and Manifold Complexes

Manifolds give a useful representation of low dimensional structure.

A manifold is a space that looks locally like a Euclidean space of some
dimension (called the dimension of the manifold).

Examples: point (0-dim), filaments (1-dim), surface of the sphere or torus
(2-dim), three-dimensional sphere, space-time (4-dim).

To allow for intersections and other complexities, consider a union of
manifolds embedded in RD with maximal dimensions d < D.

I will call this a d-dimensional manifold complex.
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Example

Challenge: Given a point cloud sampled from a manifold complex and
then perturbed by noise, accurately estimate the manifold complex.
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Manifold Estimation

Minimax Rates under Various Noise Models

Methods and Surrogates
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Models for Manifold Estimation

Suppose M belongs to a class M (to be defined shortly) of
d-dimensional “smooth” manifolds embedded in RD for D > d .

G is a distribution on M, with density bounded away from 0 and ∞.

Draw X1, . . . ,Xn from G and then draw Y1, . . . ,Yn according to
one of four noise models:

1 noiseless: Yi = Xi .
2 clutter: Yi = Xi with probability π, otherwise Yi ∼ Uniform.
3 perpendicular: Yi = Xi + Zi where Zi is normal to M.

(See also Niyogi, Smale, Weinberger 2008.)
4 additive: Yi = Xi + Zi and εi ∼ Φ.

Want to estimate M from Y1, . . . ,Yn.

The noise model strongly affects the difficulty of this problem.
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A Synthetic Example

An smooth manifold with d = 2,D = 3
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A Synthetic Example

An smooth manifold with d = 2,D = 3 plus data drawn from the
additive model
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A Synthetic Example

The data drawn from the additive model
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Minimax Manifold Estimation

Define M≡Mκ = {M : reach(M) ≥ κ} and Q = {QM : M ∈M},
where

QM(A) =

∫
M

Φ(Y ∈ A | X = x) dG(x)

is the induced distribution on Y .

Draw Y1,Y2, . . . ,Yn iid from QM and estimate M̂ ≡ M̂n.

Goal: determine the minimax risk

Rn = inf
M̂n

sup
Q∈Q

EQ Haus(M̂n,M),

at least up to rates, with Hausdorff loss.
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The Reach of a Manifold

Define the reach of a manifold M as follows:

reach(M) is the largest r such that d(x ,M) ≤ r implies that
x has a unique projection onto M.

This is also called the thickness or condition number of the manifold;
see Niyoki, Smale, and Weinberger (2009).

Intuitively, a manifold M with reach(M) = κ has two constraints:

1 Curvature. A ball or radius r ≤ κ can roll freely and smoothly over
M, but a ball or radius r > κ cannot.

2 Separation. M is at least 2κ from self-intersecting.
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Reach in One Dimension

circles have radius r

κ > r

κ > 2r

κ < r

κ < 2r
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Reach Visualized

Normals of size < reach(M) do not cross.
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Reach Visualized

A large value of reach(M) implies that the manifold M is
smooth and not too tightly looped around itselfApplied Mathematics, Biophysics: Gonzalez and Maddocks Proc. Natl. Acad. Sci. USA 96 (1999) 4771

Fig. 2. Interpretation of the minimum global radius of curvature
for a numerically computed ideal 31#31 knot. (a) The tube inter-
pretation. The minimal value of ρG is the radius of the tube shown
here. The dark bands on the tube indicate regions of near-zero curva-
ture (straight portions). (b) The sphere interpretation. Any spherical
shell of radius less than the minimum value of ρG cannot intersect
the curve at three or more points (counting tangencies twice). The
spheres shown here have a radius equal to the minimum value of ρG.
(c) Global radius of curvature plot for shape in a. Curve 2 corre-
sponds to raw data from Katritch et al. (4) and curve 1 corresponds
to a corrected shape. Curves 1 and 2 are nearly identical except for
the two downward spikes in curve 2. (d) Comparison of global radius
of curvature (curve 1) and local radius of curvature (curve 2) for the
corrected shape.

x != y and the vector x− y is orthogonal to the tangent vectors
to ! at both x and y.
As a real-valued function on the vector space of twice con-

tinuously differentiable curves q#s$, "%!& has various continu-
ity properties with respect to the norm

''!'' = max
0!s!L

('q#s$'# 'q′#s$'# 'q′′#s$'*$

In particular, "%!& is continuous at any simple curve ! which
is not a straight line, while for straight lines "%!& is infinite.
Moreover, "%!k& tends to zero for any sequence !k of smooth,
simple curves that tends to a self-intersecting curve.

3. Thickness of a Curve

The thickness of a simple, smooth space curve ! may be de-
fined as follows (1, 2). Given a point x on ! and a real number
η , 0, let "#x# η$ denote the circular disk of radius η cen-
tered at x and contained in the normal plane to ! at x. For
sufficiently small η, the disks "#x# η$ are pairwise disjoint and
their union forms a smooth solid tube # %!# η& around !. If !
is a straight line, there is no upper bound on the tube radius η,
but if ! is curved, there is a critical radius η∗%!& above which
the tube either ceases to be smooth or exhibits self-contact.
This critical radius is called the thickness or normal injectivity
radius of !. Simple geometrical considerations show that

η∗%!& = min
{
min
x"!

ρ#x$#d∗%!&/2
}
# [9]

where d∗%!& is a minimum distance of closest approach de-
fined as

d∗%!& ,= min
x#y"&

'x − y'$ [10]

Here & is the set of all pairs of points x# y on ! such that
x != y, and such that the vector x − y is orthogonal to the
tangent vectors to ! at both x and y.
It can now be seen that the minimum global radius of curva-

ture "%!& is precisely the thickness η∗%!&. That is to say, "%!&
is either the minimum local radius of curvature or half of the
minimum distance of closest approach, whichever is smaller.
However, in contrast to the characterization in 9, the quan-
tity "%!& given in 8 simultaneously captures the possibility that
curve thickness may be controlled by local curvature effects,
or by the distance of closest approach of non-adjacent points
on !. Thus, in addition to the interpretation of "%!& in terms
of circumspheres tangent to the curve as illustrated in Fig. 2b,
we see that "%!& is also the radius of the thickest smooth tube
that can be centered on !, as illustrated in Fig. 2a.

4. Ideal Shapes of Knots

Using the global radius of curvature function ρG and the thick-
ness ", we can formulate a concise mathematical definition of
an ideal shape of a knotted curve. In particular, let $ denote
the set of all simple, smooth curves ! of a specified knot type
with fixed length L , 0, and consider the problem of finding
those curves !∗ in $ satisfying

"%!∗& = sup
!"$

"%!&$ [11]

We call any curve !∗ in $ an ideal shape if it achieves the
supremum in 11. As illustrated in Fig. 2a, this definition cor-
responds precisely to the intuitive notion of the thickest tube
of fixed length that can be tied into a given knot (3, 4).
We are not aware of any result guaranteeing the existence

of a smooth ideal shape for an arbitrary knot type (in partic-
ular, curves that maximize "%!& may or may not be smooth).
Nevertheless, we can derive a necessary condition, implied by
11, that any smooth ideal shape must satisfy. Given any curve
! in $, let %! denote the set of all points x on ! for which
ρ#x$ is infinite, that is, %! is the set of straight segments of !.
Then a curve ! can be ideal only if there is a constant a , 0
such that ρG#x$ = a for all points on !\%!, and ρG#x$ # a
for all points on %!. That is to say, a smooth knotted curve !
can be ideal only if its global radius of curvature function is
constant and minimal on every curved segment of !.
The above conclusion may be reached by a contradiction

argument as follows. Let !∗ be an ideal shape in $ with ar-
clength parametrization q∗#s$, 0 ! s ! L, and assume ρG is
not constant on a curved segment of !∗. Let a and d be the
minimum and maximum of ρG on !∗, and note that, by conti-
nuity, there is a number c , a for which the set

F∗ = (x " !∗\%!∗ ' ρG#x$ # c*

is non-empty. Next, consider any number b in the open inter-
val #a# c$ and let

E∗ = (x " !∗ ' ρG#x$ + b*$

For any x in the set E∗ recall that the lower interaction prop-
erty of ρG implies the minimum in 6 is only achieved by points
y and z that are also in the set E∗.

Let F∗
q and E∗

q be those subsets of %0#L& corresponding to
F∗ and E∗ under the parametrization q∗#s$, and consider a
second curve !∗∗ with parametrization q∗∗#s$, 0 ! s ! L. For
s " %0#L&\F∗

q let q∗∗#s$ = q∗#s$, and for s " F∗
q let

q∗∗#s$ = q∗#s$+ εφ#s$q∗′′#s$#

where ε , 0 is a parameter and φ#s$ is a smooth, bounded
function with compact support in F∗

q . Then !∗∗ differs from !∗

only in the interior of F∗
q and, for all ε , 0 sufficiently small,

!∗∗ is strictly shorter than !∗. Moreover, since c , b, the lower

from Gonzalez and Maddocks (1999)

Reach of case (a) � Reach of case (b)
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Hausdorff Distance

Given two subsets of RD, A and B:

Haus(A,B) = inf {ε : A ⊂ B ⊕ ε and B ⊂ A⊕ ε}

where A⊕ ε =
⋃

x∈A B(x , ε) and B(x , ε) = {y : ‖x − y‖ ≤ ε}.

Example:

A B

ε = 2.5 ε = 1.5

Haus(A,B) = max {2.5, 1.5} = 2.5
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Minimax Manifold Estimation

Define M≡Mκ = {M : reach(M) ≥ κ} and Q = {QM : M ∈M},
where

QM(A) =

∫
M

Φ(Y ∈ A | X = x) dG(x)

is the induced distribution on Y .

Draw Y1,Y2, . . . ,Yn iid from QM and estimate M̂ ≡ M̂n.

Goal: determine the minimax risk

Rn = inf
M̂n

sup
Q∈Q

EQ Haus(M̂n,M),

at least up to rates, with Hausdorff loss.
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Existing Literature

Computational geometry (e.g., Cheng et al. 2005, Dey 2006)
Here, “noise” does not have the statistical meaning of points drawn randomly
from a distribution; instead, data must be close to M but not too close to each
other. (There are a few notable exceptions.)

Manifold learning (e.g., Ozertem and Erdogmus 2011)
The primary focus here is on dimension reduction

Homology estimation (e.g., Niyoki, Smale, and Weinberer 2009)
Focus on topological rather than geometric information

Filaments, principle curves, support estimation, . . .
e.g., Hastie and Stuetzle (1989), Tibshirani (1992), Arias-Castro et al. (2006)
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Road Map

Motivation

Manifold Estimation

Minimax Rates under Various Noise Models

Results

Lower Bound under Perpendicular Noise

Upper Bound under Perpendicular Noise

Clutter

Additive Model

Methods and Surrogates
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Minimax Rates under Various Noise Models

inf
M̂n

sup
Q∈Q

EQ Haus(M̂n,M) � Cψn

Noise Model ψn

Clutter/Noiseless (πn)−
2
d

Perpendicular Compact n−
2

2+d

Additive Compact/Polynomial in progress

Additive sub-Gaussian (log n)−1

Note that these rates do not depend on the ambient dimension D.

There are strong connections between the additive noise model and
errors-in-variables regression but also some notable differences.
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Proof Sketch

The lower bound is established with Le Cam’s Lemma.

Suppose Y1, . . . ,Yn drawn iid from Q, an estimator θ̂ ≡ θ̂(Y1, . . . ,Yn),
and a (weak, semi-) metric ρ.

Then for any pair Q0,Q1 ∈ Q

sup
Q∈Q

EQnρ(θ̂, θ(Q)) ≥ Cρ(θ(Q0), θ(Q1))(1− TV(Q0,Q1))2n,

where
TV (Q0(A),Q1(A)) = sup

A
|Q0(A)− Q1(A)| =

1
2

∫
|q0 − q1|.

Hence, for each given Hausdorff distance, we want to choose a least
favorable pair of manifolds whose distributions are as hard to distinguish
as possible.
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Perpendicular Noise: Sketch of Lower Bound

Construct M0 and M1 such that:

• Mi ∈Mκ

• Haus(M1,M0) = γ

• TV ≡
∫
|q1 − q0| = O(γ(d+2)/2), which is minimum possible.

Apply Le Cam’s Lemma: For any M̂:

sup
Q∈Q

EQn Haus(M, M̂) ≥ Haus(M1,M0)× (1− TV)2n

= γ(1− cγ(d+2)/2)2n.

Setting γ = n−2/(d+2) yields the result.

Least Favorable Pair M0 and M1: M0 = plane and M1 = “flying saucer”.
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Constructing M1

Start with M0 . . .
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Constructing M1

Push up κ-ball,
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Constructing M1

Push up κ-ball, through the plane to height γ. But reach still 0 . . .
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Constructing M1

But reach still 0, so smooth the corners.
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Constructing M1

Smooth the corners . . .
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Constructing M1

Flying Saucer M1
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Perpendicular Noise: Sketch of Upper Bound

Construct an “estimator” that achieves the bound:

1 Split the data into two halves.

2 Using the first half, construct a pilot esimator.
This is a (sieve) maximum likelihood estimator.

3 Cover the pilot estimator with thin, long, slabs.

4 Using the second half of the data, fit local linear
estimators M̂j in slab j

5 M̂ =
⋃

j M̂j .

The details are messy and the estimator is not practical, but
it suffices for establishing the bound.
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Clutter Model

Suppose
Y1, . . . ,Yn ∼ Q ≡ (1− π)U + πG

where 0 < π ≤ 1, U is uniform on the compact set K ⊂ RD, and
G supported on M as before.

Then,

inf
M̂

sup
Q∈Q

EQn Haus(M̂,M) �∗ C
( 1

nπ

) 2
d
.

(The �∗ means I am hiding log factors.)

Lower bound uses the same least favorable pair.
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Clutter Model: Upper Bound

Let

• εn = (log n/n)2/d .
• Q̂n be the empirical measure.
• SM(y) denotes a εd/2 × εD−d slab:

●

y

b1 εn

b2 εn

Define
s(M) = inf

y∈M
Q̂n[SM(y)] and M̂n = argmax

M
s(M).
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Additive Model

X1,X2, . . . ,Xn ∼ G where support(G) = M, and

Yi = Xi + Zi , i = 1, . . . , n,

where Zi ∼ Φ = Gaussian.

This is analogous to an errors-in-variables problem, except:

1 We want to estimate the support of G not G itself.
2 G is singular.
3 The underlying object is a manifold not a function.
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Additive Model

For technical reasons, we allow the manifolds to be noncompact. Define
a truncated loss function,

L(M, M̂) = H(M ∩ K, M̂ ∩ K).

Then,
inf
M̂

sup
Q∈Q

EQ[L(M, M̂)] ≥ C
log n .

Rate is similar to deconvolution but the proof is somewhat different
(since Q0 and Q1 have different supports). Least favorable pair:

M0

M1γ

γ
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Additive Model: Upper Bound

Let ĝ be a deconvolution density estimator (though G has no density),
and let M̂ = {ĝ > λ}.

Fix any 0 < δ < 1/2.

inf
M̂

sup
Q∈Q

EQ[L(M, M̂)] ≤ C
( 1

log n

) 1−δ
2
.

In some special cases, we can achieve 1
log n but, in general, not.
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Road Map

Motivation

Manifold Estimation

Minimax Rates under Various Noise Models

Methods and Surrogates

Rate-Hard Problems and Surrogates

The Mean Shift Algorithm and Modifications

A Hyper-Ridge Estimator
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Surrogates for Rate-Hard Problems

Problems with rates like 1/ log n seem to offer little practical hope for
good performance.

But it is sometimes possible to define a surrogate for the true object that

• captures essential features of the true object, and
• can be estimated with a good rate of convergence.

Example: Uniform confidence bands (Genovese and Wasserman 2008).

Strategy: Define a surrogate M̃, called the hyper-ridge set, for the
manifold complex M. Focus on estimating M̃ accurately.

M̃ is, roughly speaking, a smoother, slightly biased version of M.

Once we accept some bias, the curse of dimensionality becomes less
daunting.
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Hyper-Ridge Sets

Y1, . . . ,Yn sampled iid from Q = (1− π)U + π(G ? Φσ), the additive
model with clutter.

Let
• q, g , and h be the density of Q and its gradient and Hessian,
• λj(x) be the jth eigenvalue of h(x) in increasing order,
• V (x) to matrix whose columns are the eigenvectors of h(x) for
λ1(x), . . . , λD−d (x).

Define the hyper-ridge set R ≡ R(q) as follows:

x ∈ R(q) iff λD−d (x) < 0 and V (x)T g(x) = 0.

If Haus(M,R) = O(σ) and if R and M have a common topology, then R
will be an effective surrogate.
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Example Hyper-Ridge Set

M R

Rh
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Modified Mean-Shift Methods

Our hyper-ridge estimator uses a modification the mean-shift algorithm,
which carries arbitrary points on trajectories towards (local) modes of a
density.

Genovese, Perone-Pacifico, Verdinelli and Wasserman (2009) use the
mean-shift trajectories to trace out ridges of the density and find
filaments.

Ozertem and Erdogmus (2011) take this further, projecting each
mean-shift point onto the space spanned by the smallest (most-negative)
D − d eigenvectors of Hessian(q̂).

The latter is called the subspace-constrained mean-shift algorithm
(SCMS).
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The Mean-Shift Algorithm

Finds the modes of a kernel density estimator q̂.

Input: Kernel density estimator q̂h, tolerance τ ≥ 0
1. Choose initial mesh points v1,0, . . . , vm,0
2. t ← 0
3. repeat
4. for j = 1 to m do

5. vj,t+1 ←−
∑

i Yi Kh(‖vj,t − Yi‖)∑
i Kh(‖vj,t − Yi‖)

6. end for
7. t ← t + 1
8. until maxj |vj,t+1 − vj,t | ≤ τ
9. return v1,t , . . . , vm,t

The vj,t converge to (local) modes as t →∞.
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Mean Shift Paths
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A Hyper-Ridge Set Estimator

Steps:

1 Estimation: estimate the density q, its gradient g , and its Hessian h.
2 Denoising: remove background clutter and low-probability regions,

restricting attention to a set where q is not too small;
3 Mean-Shift: apply the SCMS algorithm within the restriction set.

We can show that: H(R, R̂) = OP
(
n−

2
4+D
)

.

However, if we can live with bias, then we can set h = O(σ) and then
H(Rh, R̂h) = OP

(
n− 1

2
)
.

We are currently developing more of the theory. Here are two examples.
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Example 1
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Example 2
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Example 2

But we need to denoise first or else ...
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Take-Home Points

1 Manifold complexes arise in many problems.

2 Manifold estimation is a special case; more generally, we want to
find structure in data.

3 Minimax rates can be obtained for a variety of noise models.
They do not depend on the dimension of the embedding space but
are highly sensitive to the noise model.

4 Surrogates provide a useful (and computationally efficient)
alternative even in very high dimensions.
We accept some bias to capture some features accurately.
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