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ABSTRACT

Functional Magnetic Resonance Imaging (fMRI) is a new technique for studying the workings
of the active human brain. During an fMRI experiment, a sequence of Magnetic Resonanc images
is acquired while a subject performs specific behavioral tasks. Changes in the measured signal can
be used to identify and characterize the brain activity resulting from task performance and thus
help to understand how higher cognition emerges from the brain’s architecture.

The data obtained from an fMRI experiment are a realization of a complex spatio-temporal
process with many sources of variation, both biological and technological. The noise is complicated,
and the task-related signal changes are small in amplitude. Here, we describe a new and detailed
statistical model for fMRI data and present inferential methods that enable investigators to directly
target their scientific questions of interest, many of which are inaccessible to current methods. Our
model allows for the complexity of the noise process, flexibly parameterizes the task-related signal

changes, and allows for non-linearity and non-additivity in the system response.



1. Introduction

Functional Magnetic Resonance Imaging (fMRI) is a rapidly developing tool that enables cognitive
psychologists and neuroscientists to study the human brain in action. During an fMRI experiment,
a subject performs a sequence of behavioral tasks while Magnetic Resonance (MR) images of the
subject’s brain are acquired. The tasks are designed to exercise specific motor, sensory, or cognitive
processes, and the measured MR signal contains information about the nature and location of the
neural activity that results when those processes are engaged. Psychologists hope to use MR data
to build and test theoretical models of human cognition, but accomplishing this is a quintessentially

statistical problem.

Counsider a very simple experiment with two task conditions. While MR images are obtained
at regular intervals, the participant alternates between periods of rest (condition 1) and periods
of tapping her index finger against her thumb at a steady rate (condition 2), focusing throughout
on a marked point on a projection screen. Each MR image is three-dimensional and consists of
measurements over a grid of small volume elements. Figure 1 shows the series of measurements
taken from two such volume elements with vertical lines dividing the conditions; the pattern of
task performance during the experiment is given in Figure 2a. The rest periods here serve as
a control for the motor task being studied; brain activity in response to finger tapping but not
to rest is attributed to neural processing that is unique to the motor task. The effects of brain
activity appear as slight but systematic changes in the signal over time. For example, in Figure
1, small signal changes that coincide with the experimental design are evident in the first time
series but not in the second. Current methods for analyzing fMRI data are based on detecting
such patterns; each location is classified as active or inactive, usually by a statistical hypothesis
test. One common method is to compare the level of the signal between the two conditions for each
volume element by a two-sample t-test. The result is a classification map which shows how each
volume element is classified; one slice of such a map is shown in Figure 3. The white locations, here
overlaid on a mean image, show the volume elements in which the average signal during the tapping
condition is “significantly” larger than that during the rest condition. These locations correspond
reasonably well to the motor areas on the cortex. This example demonstrates only the simplest
application of the technology; fMRI can be used to address more important scientific questions as

well. However, there are many statistical issues that must be considered when analyzing such data.
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Perhaps the most salient is the problem of multiple comparisons because the classification map
requires performing thousands of hypothesis tests; other more serious issues involve the complexity
of the noise and the underlying structure of the signal. In this paper, we will argue that a new
framework for statistical analysis is needed to face the many challenges, scientific and statistical,
that arise in making inferences from fMRI data.

The data obtained from an fMRI experiment are a realization of a very complex spatio-temporal
process with many sources of variation, both biological and technological. The noise in the data is
complicated: there are nonlinear trends, non-homogenous (and often non-local) correlations across
space and time, heavy tails, and a variety of phenomena caused by subject movement, physiological
effects, and instrument artifacts. Neural activity manifests itself in these data as a perturbation in
the measured signal whose magnitude is typically smaller than the noise level. This perturbation
is the result of a blood-flow response in the brain with both non-linear and non-additive features.
Moreover, the spatial structure of the problem is complicated by highly irregular tissue boundaries
and the presence of confounding factors such as large blood vessels.

We take a new approach to inference from fMRI data that can address this inherent complexity.
Whereas current methods use classification procedures based on simplistic statistical models, we
develop a detailed, nonlinear hierarchical model for the data that represents the structure of the
underlying processes as accurately as possible. If Y, (¢) is the measured signal at location v and

time ¢, we take

Yy (t) = po + dy(t) + au(t; oo, Yo, Ov) + €u(2), (1)

where each term captures a distinct component of variation in the process, as explained in section
4. The model parameters are then related across deeper levels of the hierarchy. Since the model
accounts for the detailed structure of the signal and can incorporate a wide range of noise processes,
estimates under the model are more sensitive discriminators between artifact and activity than
are the hypothesis tests used for classification. The model also provides an accurate assessment
of uncertainty that is essential to making well-supported inferences, and it makes new types of
questions accessible to direct analysis.

Although fMRI data are collected in images, the essential content here centers on inference—
inference about spatio-temporal fluctuations in the measured signal and about fundamental motor,

sensory, and cognitive processes. Thus one of the key statistical challenges is to develop procedures
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that enable scientists to make rigorous inferences regarding the questions they want to answer.
This requires an appreciation of the breadth and variety of questions being asked. However, the
classification procedures currently used in fMRI target only a single question: where did the activity
take place? Strong scientific claims must then be based on classification maps, even though many of
the scientific questions require more than just the location of activity to be answered. In contrast,
our model provides an inferential framework that can be used to directly address a broad class of

scientific questions that cannot be addressed by classification alone.

Beyond its implications for clinical and basic neuroscientific research, fMRI holds a great deal
that is of interest to statisticians. It is a prototype for a class of statistical problems that is arising
with increasing frequency in applications—namely, large data sets realized from a complex process
with both spatial and temporal structure. The goal here is not prediction, as in many conventional
spatial applications, but the elucidation of subtle structure over space and time amidst many inter-
twined sources of variation, all of which are subject to strong substantive constraints. The methods
we develop to handle these data—from data management to visualization to spatio-temporal model
fitting—carry over to diverse applications. Finally, fMRI is a highly inter-disciplinary field, and it
offers a great opportunity for statisticians to have a critical impact on neuroscience and diagnostic
radiology for many years to come. There is a tremendous supply of statistical problems that need
solution and a tremendous demand for statistical guidance and methodology. Indeed, over the past
few years, we have worked closely with scientists from many disciplines involved with fMRI, includ-
ing psychologists, neuroscientists, neurologists, radiologists, physicists, engineers, and statisticians.
The whole enterprise rests on the successful sharing of perspectives from all of these disciplines,
and it is important here to acknowledge the influence of our many collaborators on our view of the
field. Their time and effort spent communicating the scientific background of their field, the issues
that are central to their research, and the questions that they are trying to answer is reflected in

all of this work.

Our goal in this paper is to put forward a new standard for inference from fMRI data. As
a foundation for our approach, in section 2 we describe the basics of fMRI and illustrate some of
the scientific issues that need to be addressed if fMRI is to achieve its full potential. In section
3, we introduce what we call the localization paradigm on which current methods are based and

discuss the limitations of this strategy. We describe the basic structure of our modeling framework
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in section 4 and show how we incorporporate the available prior information into the model in
section 5. While the model improves the accuracy of inferences made from the data, what is more
important is the range of questions that can be addressed directly under the model. In section 6,
we illustrate some of the possibilities in light of a specific data example. A full case-study using
our approach is given in [36]. In section 7, we describe the computational techniques that we use
to fit the model and implement our inferential procedures. Finally, in section 8, we discuss some

more general extensions to the model and some directions for future research.

2. fMRI and Cognitive Neuroscience
2.1. Overview of fMRI

Magnetic Resonance (MR) is a consequence of the characteristic behavior of certain atomic nuclei
(e.g., hydrogen) in a magnetic field. In particular, a precise modulation of the ambient magnetic
field excites these nuclei so that they precess in phase with each other for a short period of time. The
motion in phase of so many nuclei causes a macroscopic oscillation in the magnetic field, which in
turn induces a detectable current in any nearby coil of wire. This is the MR signal, and the greater
the density of the selected nucleus in the scanning volume, the greater the measured signal. The
key to applications of the MR phenomenon (and the source of the word resonance) is the selectivity
of this excitation—even though an entire volume is exposed to the magnetic manipulations, only
nuclei of a selected species will be excited.

An MR scanner is thus a machine for measuring the density of a chosen nuclear species within
a given volume of space. It consists of (i) a large, super-cooled magnet to produce a strong,
uniform field throughout the scanning volume, (ii) electronic components to modulate the magnetic
field in a controlled way very quickly, and (iii) a receiver coil to convert changes in the field
generated by the nuclei to detectable currents. The MR scanner can be used in several ways.
By spectral decomposition of the received signal, the chemical composition of a substance can be
determined; this is Magnetic Resonance Spectroscopy. By encoding spatial information in the phase
and frequency of nuclear precession during scanning, high-resolution images of living tissue can be
obtained non-invasively; this is Magnetic Resonance Imaging (MRI).

In MRI, each image shows the density of the chosen nuclear species (usually hydrogen) over
the given volume. Although two-dimensional slices are usually presented, MR images are actually

three-dimensional. The scanning volume is divided into a grid of small volume elements, or vozels,
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and an average nuclear density is recorded for each voxel in each image. We will call this the
measured MR signal for the given voxel. It is worth noting that through the complicated spatial
encoding, the MR scanner actually records the Fourier transform of the entire image first, and the
MR signal values associated with individual voxels are subsequently reconstructed. There are many
image acquisition schemes, each with a different sampling path through Fourier space.

Functional MRI uses a sequence of MR images to glean information about neural activity. This
information is not obtained directly from the MR signal but rather from perturbations to the signal
caused by a local magnetic anomaly that is a by-product of neural metabolism. Specifically, as the
firing frequency for a group of neurons increases, the neurons’ metabolism also rises. Through a
mechanism that is not fully understood, the metabolic increases cause the local blood vessels to
dilate; an inflow of oxygenated blood into the area results. Since oxygenated and de-oxygenated
blood have different magnetic properties [68], the MR signal changes slightly as the balance of
oxygenated and de-oxygenated blood in a region changes. This Blood Oxygenation Level Dependent
(BOLD) effect is detectable in the MR signal and makes it possible to localize neural activity via
the MR phenomenon, albeit indirectly.

Functional MRI developed from this observation [54, 6, 49] and is now the premier technique
for studying brain function. While other functional neuroimaging modalities, such as Positron
Emmission Tomography (PET) [71], were developed earlier, fMRI offers superb sensitivity and an
unprecedented combination of good spatial and temporal resolution, without any of the limitations
that result from exposing subjects to radioactivity. While there are several other potential mech-
anisms for functional imaging with MR, the BOLD effect has the most promising signal-to-noise
characteristics and is the most commonly used. The BOLD perturbations are nonetheless small
relative to the noise level, which is a non-trivial part of the statistical challenge here. Moreover,
since the BOLD effect results from a hemodynamic response (i.e., changes in the local blood flow),
it is also slower and broader than the neural activity for which it is a proxy. There is an inherent
trade-off between spatial and temporal resolution in fMRI data: as images are acquired faster,
the minimum voxel size increases, and as voxels are made smaller, the maximum acquisition rate

decreases. The resolution of a typical fMRI study is on the order of 1-3 s by 30-50 mm?3.



2.2. Neuroscientific Questions

To appreciate the potential of fMRI for clarifying how the brain works, it helps to understand the
nature and scope of the questions being asked by neuroscientists. Here, we present an array of
representative scientific issues that illustrate the questions neuroscientists face and point to the
ways in which fMRI can shed light on the workings of the brain. The analyses presented in section

6 and [36] draw from experiments related to these questions.

2.2.1. Maintaining Information During Processing: Working Memory

Why are some sentences more difficult to understand than others? Why is it harder to multiply
two large numbers together than to add them? Why is the video game Pac-Man more challenging
than the game Pong? Omne answer is that more difficult tasks require that a greater amount of
information be maintained in memory while the task is being performed. For instance, when
parsing complex sentences, any nested clauses, modifiers, or unresolved ambiguities must be held
in memory until they can be assigned a role in the meaning of the sentence. In the multiplication
of large numbers, many intermediate products need to be computed and stored until they can all
be combined into a final answer. In Pac-Man, the player must attend to the locations of numerous
threats and opportunities while planning a path through a maze. The brain has a set of general
mechanisms, known as working memory [3], for maintaining such information and intermediate
results during processing.

Working memory plays a vital role in essentially every cognitive task. The amount of available
working memory dictates how much information can be maintained, what associations can be made,
and to how many aspects of the environment attention can be given. A useful way to think about
working memory is as a cognitive resource available to the system; it can be allocated in many
ways at any level of a computation. The goal of research into working memory is to understand
how the brain implements working memory—how this resource is allocated and used—in order to
elucidate the dynamics of human cognition.

In the past, the only empirical tools available to address this question were comparisons based
on behavioral data. Psychologists studied people’s performance across tasks that differentially
exercised working memory. Commonly used behavioral measures include the time to perform the
task, the rate of making errors, and a space-time trace of eye-movements during the task. These

types of data help to clarify the nature and degree of working memory’s impact on performance.
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As an example, consider the “n-back” experiment of [14]: A sequence of letters is presented, one
at a time, and the subject is instructed to read each aloud and push a button whenever the letter
that appears also appeared exactly n letters previously. Working memory is engaged in this task
because the identity and relative position of the most recent n letters must be maintained for
potential matching while new letters are being processed. Results show that subjects’ times and

error rates both increase with n, until subjects can no longer perform the task adequately.

To account for this kind of data, psychologists have developed cognitive theories based on
computational models. These theories provide an abstract representation of the processes that
underlie a given set of tasks and make specific predictions about performance, e.g., what component
processes will be used and when, the order and timing of processing in each component, the actions
to be initiated, and the distribution of responses that result. For example, current cognitive theories
explain the results of “n-back” experiments by attributing to each individual a limited supply of
the working memory resource [14, 46]. The utilization of this resource by a cognitive task is
considered a good measure of how “hard” that task is [46]. As working memory is engaged in a
sequence of increasingly difficult tasks, the individual must work harder, until the limit is reached,
when there is a serious degradation in performance. But there is more to the structure of working
memory than a single limited resource. Current theories [12] also posit that working memory
allocation is hierarchically arranged with different pools of resources specialized to particular types
of computations. For instance, experiments in [59, 62, 9] suggest distinct working memory pools for
symbolic and spatial information. Similarly, the model of [46, 13] posits several distinct resource
pools for sentence comprehension [47] and others for mental rotation of objects [45]. The size and
degree of specialization of these pools can vary, and if the capacity of a particular resource pool

has been used, it can draw support from another unrelated but untapped pool.

Questions regarding the mechanism of working memory abound: Is the resource limitation
view a valid one? How does capacity utilization increase with the difficulty of the task? How are
the resource pools arranged? How can two distinct pools be distinguished from a single, more
general pool? How can the interactions among different resource pools be determined? These are
critical questions for understanding working memory and evaluating current cognitive theories. An
obstacle to answering these questions is that the current theories provide a richer set of predictions

than standard behavioral data alone can test. However, with the emergence of fMRI, more refined
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data are available that can provide new and more detailed tests of these theories.

2.2.2. Fine Control of Sensory Input: Eye Movements

It is easy to take for granted the precision and speed with which our eyes can move and focus onto
any target in the field of view, but the eye movement system is a complex nework of distributed
neural processes that is only beginning to be understood. The eyes move continually during visual
processing, usually without explicit control or awareness, to scan the key features of a scene. This
is essential to our ability to attend to multiple features of our environment and to extract useful
information from complex visual stimuli. Eye movement abnormalities are a common neurobehav-
ioral associate of schizophrenia, neurodevelopmental disorders and many neurologic diseases, so the
study of how the brain controls eye movements also promises to yield deeper insights into the brain
abnormalities at the root of these conditions.

Eye movements have been studied extensively in both humans and monkeys. Two basic pro-
cesses of interest are specific to the occulomotor system: (i) saccades, the rapid repositioning of the
eye, and (ii) pursuit, the visual tracking of a moving object. In experiments, subjects perform a
task that exercises a particular mixture of the component processes that subserve eye movements.
A simple example is called the memory guided saccade task [65]. A subject visually fixates on a
cross in the center of the visual field while a flash of light appears and disappears in the periphery,
at a random time and location. After a delay period, the subject must make a saccade to the loca-
tion of the flash. This task involves processing of visual stimuli (the cross and flash), motor control
of the eye suppress and then make the saccade, spatial working memory to hold the position of the
flash “on-line” during the delay, and other processes that regulate what the subject is attending to
at any time. In monkey studies, data are obtained from direct electrical recordings of changes in
the firing rate of neurons in a well-localized region of interest. The monkey is trained to perform an
eye movement task on cue, and an electrode is inserted into the monkey’s brain to record activity
from single neurons in a specific area. The task is repeated many times with the electrode placed
across a range of locations; in this way, a detailed map of the brain areas involved in the task can be
constructed. These data provide good spatial and temporal resolution for a single brain region, but
because of the difficulty in placing electrodes and maintaining recording, it is infeasible to target
and record several separated brain regions simultaneously. Since direct recording is too invasive

for use in humans, human eye movements have previously been studied only by monitoring eye
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position and movement and by studying patients after stroke or invasive surgery.

A general picture has emerged from these data regarding what areas of the brain subserve eye-
movement processes. Although there is a strong homology between humans and monkeys, there are
also notable differences, and a detailed delineation of the system in the human brain is still needed.
To develop and test a complete theory of how eye movements are implemented requires study of
the component sub-processes of the human system, of the interactions among these sub-processes,
and of their functional connectivity. Specifically, neuroscientists are interested in the sequence and
relative timing of each processing step. They would like to determine if pursuit and saccade are
implemented separately and to characterize the pathways linking these sub-systems. Addressing
these issues requires detailed spatial and temporal information across widely separated regions of
the brain. The advent of neuroimaging has opened the door to exciting new advances in this area,
not only because of the possibility of studying the human system but because of the capability of

studying the entire brain simultaneously.

2.3. The Potential of f/MRI

The brain is a computational system built on a hierarchy of simple functions that interact and
cascade to produce complex behaviors. The fundamental goal of cognitive neuroscience is to un-
derstand how the building blocks of cognition (e.g., working memory, visual processing, attention)
emerge from the brain’s basic architecture. The potential of fMRI to address this goal-and neuro-
scientific questions like those above—Tlies in its ability to measure the brain’s responses at a fine level
of spatial and temporal detail during cognitive processing. Functional MRI data offer a unique,
global view of the system dynamics, a view that bridges the divide between the micro-level infor-
mation obtained by recording single neurons and the macro-level information obtained by studying
behavior.

During an fMRI experiment, the subject is placed in the scanner and performs a carefully
designed sequence of tasks while MR brain images are acquired at regular intervals. Through
the particular sequence of tasks performed, the experiment manipulates the input to the system
in terms of the mixture of basic cognitive processes that is required at each point in time. By
studying the relationship between input and response, we learn how the basic processes involved
act and interact to produce more complex brain functions. Cognitive theories predict specific

aspects of this relationship and can often be tested by an appropriately designed experiment.
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Hence, neuroscientific questions translate into questions about the pattern of responses produced
by an experiment. Below we describe several questions about the nature of the response that arise
again and again in the context of neuroscientific research. In each case, the key challenge is to
develop statistical methods with which relevant inferences about the pattern of response can be
made. As we will show, current statistical techniques can deal effectively with only the simplest of

these; in contrast, the methods we present in this paper can handle all of them.

Localization. The most basic question to ask about a neural process is where in the brain that
process is implemented. That question may not always have an easy answer because computation
in the brain may be widely distributed. Nonetheless, fMRI can be useful for localizing a process.
Since the BOLD effect is a perturbation to the MR signal that is associated with neural activity, the
involvement of a particular region of the brain can be gauged by comparing the measured response
when the process is engaged to the response when the process is not engaged. This leads to the
simplest fMRI experiment: the subject alternates between two tasks, where each is performed
repeatedly for a certain length of time before the next task begins. One of these tasks invokes
the process under study, and the other task, which serves as a control, does not. (See Figure 2a.)
A commonly used control is visual fixation, where the subject holds his or her gaze on a marked
location in the center of the visual field. In contrast, a pure rest condition is not necessarily a good
control because it does not constrain the subject to a consistent behavior. The logic of localization
is that the voxels whose MR signals show a response to the task of interest but not the control are
involved in the process under study [22]. There are, however, several assumptions behind this logic

that can complicate the interpretation of localization results; see [?].

Graded Responses. Many theoretical predictions revolve around how the system response
changes as the input is varied along a single dimension. For example, as sentence difficulty in-
creases, we expect a greater proportion of the available working memory resources to be allocated
to comprehending the sentence. A theory that specifies a particular arrangement and dependence
among resource pools predicts a specific functional relationship between sentence difficulty and
working memory utilization. With fMRI, this relationship can be estimated and the theory tested.
An experiment designed to accomplish this requires several different conditions, including at least
one control. The conditions correspond to versions of a task that are graded with respect to

the degree of involvement they require from the process under study [64]. The subject performs
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each version of the task repeatedly for a certain length of time, with the conditions in suitably

randomized order. (See Figure 2b.)

Dissociations. Cognitive theories often make a fundamental distinction between different types
of processing (e.g., spatial and symbolic working memory) to the point of predicting a separate
neural implementation. One piece of evidence in support of such a theory would be a dissociation,
a situation in which one type of processing is present while the other is absent and vice versa.
Historically, neurological patients whose brain damage impaired one process but not another provide
evidence of dissociations, although these are infrequent and rarely clean-cut. Functional MRI data
can provide other types of dissociations, that can be used to distinguish two cognitive processes
in unimpaired subjects. For example, fMRI experiments can identify what we will call location,
pattern, and manipulation dissociations. Location dissociations, which are the weakest of the three,
occur when two types of processing activate distinct brain regions. This provides some evidence,
although it is not definitive, that the processes are implemented in distinct sub-networks. Pattern
dissociations occur when two processes lead to temporal responses of different shapes. The memory
guided saccade task described above invokes several distinct processes, including an “executive”
process that initiate eye movements and other behaviors and a working memory process that
maintains the destination of the eventual saccade. The executive process is expected to give rise
to short bursts of activity whereas the working memory process should exhibit activity throughout
the delay period. This distinction in the temporal pattern of activity can be detected and used
to distinguish the two types of processing. Finally, manipulation dissociations occur when the
two processes are differentially sensitive to a particular manipulation of the task (e.g., increasing
its difficulty). In all of these cases, the experimental design can be tailored to maximize the

discriminability of the responses.

Inferences across Subjects. In order to generalize the results of an experiment to a broader pop-
ulation, it is necessary for investigators to relate their results across multiple subjects. If all brains
looked alike, it would be a simple matter to compare the results from many fMRI experiments.
Unfortunately, this is not the case: while the functional organization of the brain is topologically
similar across individuals, the physical geometry of the cerebral cortex can vary substantially from
person to person. The approach most commonly used to circumvent this difficulty in functional

neuroimaging is to map subjects’ brains onto a common coordinate system, the Talairach atlas [66],
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and then average over subjects. The Talairach atlas was generated from a detailed study of six hu-
man brains, and the mapping for a given subject is computed using only a few gross measurements
of that subject’s brain. Averaging in Talairach coordinates is far from satisfactory, however; it adds
a critical source of variation to the inferences (see [52] for a demonstration) and lends an illusory
aura of anatomic certainty to the results. In sections 6 and 8, we will present an alternative that

can, in some cases, yield inferences across subjects that do not suffer from these difficulties.

3. Current Methods and The Localization Paradigm
3.1. Development of the Paradigm

The goal of the earliest fMRI studies [6, 49, 54] was to demonstrate that the BOLD effect could
reliably detect and locate activation. To obtain as large an effect as possible, these studies used
fundamental tasks such as viewing visual stimuli (e.g., flashing checkerboard patterns or LED’s)
or making simple motor operations (e.g., finger tapping) that tend to yield robust responses. The
experimental designs were simple, with one task and one control condition. PET studies and neural
recordings in animals served as a standard for where the activity should be during performance of
these tasks. The success of these early efforts caused tremendous excitement in the neuroimaging
community, and in response, there was a wave of research on new acquisition techniques to improve
the quality of fMRI data. The introduction of statistical methods to the field paralleled this
development. Because of the need to detect and locate activity, the focus was on the localization
problem: How can data from an fMRI experiment be used to identify which parts of the brain
activate during performance of a given task?

Localization is viewed in fMRI as a problem of classification, where each voxel is classified as
active or inactive with respect to the task of interest. The assumption is that in an active voxel a
significant proportion of neurons respond to the task whereas in an inactive voxel few if any do. For
each voxel, the sequence of MR signals across the images form a time-series, and an active voxel
may be distinguished by the presence of the BOLD perturbation at times during which the task is
being performed. Hence, a natural approach is to compare the mean signal in the task and control
conditions using a statistical hypothesis test, applied voxel by voxel. Although other classification
procedures have been considered [74, 56], this testing-based approach is the statistical analysis used
by the majority of fMRI researchers.

A variety of testing procedures has been employed in fMRI, and although most of these have
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a statistical heritage, few if any were introduced to the field by statisticians. The most commonly
used is the two sample t-test in which the MR signal values from images associated with any two
experimental conditions are compared. Nonparameteric tests, such as the Kolmogorov-Smirnov test
[4, 51], also appear frequently in the fMRI literature. A variant of the t-test that is sometimes used,
called the split sample t-test [27], classifies a voxel as active only if t-tests carried out separately
for data from the first and second halves of the experiment both indicate significance. Another
common test statistic is the correlation coefficient of the voxel time-series with a fixed reference
curve designed to approximate the shape of the BOLD signal perturbation [5]. Whereas the t-test
implicitly uses an ideal square wave as the pattern of signal change, the correlation allows a more
realistic shape for this curve. Another generalization of the t-test is based on an Analysis of Variance
(ANOVA) model that blocks on time to account for uncontrolled changes over the course of the
experiment [14, 15]. Here, F-statistics are used to test if specified contrasts among the conditions
are non-zero. Similar but more recent methods use a general linear model to capture temporal
variation, possibly after spatial and temporal smoothing [29, 77]. Finally, if the experimental
design alternates periodically between task and control, spectral methods (e.g., F-tests based on

periodogram ordinates [10]) can be used to test for large power in any frequency band [75, 28|.

3.2. Failures of the Paradigm: Model Assumptions

While the various hypothesis tests often give reasonable results and can reliably detect large signal
changes, there are several inherent complexities in fMRI that undermine the effectiveness of these
procedures. First, the noise in fMRI data is complicated, and the testing procedures are based on
simplistic statistical models. For example, signal drift over time is pervasive, and as demonstrated
in Figure 4, these often highly nonlinear trends can vary in shape even across neighboring voxels.
The properties of the noise also depend on the image acquisition scheme that is used; Figure 5 shows
a striking and nonlocal correlation function induced by one such scheme. Such features of the noise
can wreak havoc on the classifying tests. Second, the structure of the system’s hemodynamic
response is far from simple. For example, the temporal shape of the activity-induced perturbation
varies across the brain and is very sensitive to the local vasculature. Nor is it an ideal box car.
Rather, the signal changes lag the task, both at beginning and end, rise and fall in distinct ways,
and can dip below baseline for extended periods. Figure 6 shows a typical signal profile for the

hemodynamic response; Third, applying a set of hypothesis tests to characterize a spatio-temporal
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response gives rise to a number of technical difficulties. For example, an fMRI classification map
usually requires performing 10,000 to 100,000 tests for each contrast among conditions. Since the
signal changes are small relative to the noise level, common adjustments for multiple comparisons
(e.g., Bonferroni or Tukey) often (conservatively) eliminate signs of activity. An equally serious
problem is the lack of consensus in the fMRI community on how to choose significance thresholds
for the tests. Because of unaccounted features of the noise, theoretical significance levels tend to
be inappropriate for fMRI data. While systematic approaches have been proposed [35], thresholds
are usually set to arbitrary values, often “by eye”. This practice raises the clear danger that the
expectations of the investigator will influence the threshold choice, explicitly or implicitly, and
thus distort the conclusions. Another issue is that the voxels classified as active are often used for

downstream analysis with potentially serious selection biases as a consequence.

These problems have evoked two responses in the fMRI literature: (1) the search for new test-
ing procedures for classification and (2) the development of pre-processing algorithms to “correct”
the data for artifacts prior to analysis, e.g., linear detrending to correct for signal drifts. Neither
approach addresses the basic problems mentioned above, and both leave many unaccounted sources
of variation. While it is true that the results obtained thus far are often “reasonable” and that a
good deal has been learned, reasonable is not enough to support the strong claims for which the
classifications are being presented as evidence. Moreover, interpreting the results of the classifi-
cations usually requires a good amount of ad hoc reasoning without support from the data, for
instance to argue that certain apparently active voxels are truly active while others are spuriously

S0.

More recent efforts with the involvement of statisticians have attempted to deal with some of
these problems. Forman et al. [26] developed an adjustment to voxelwise tests, called the cluster
size threshold. Here, a voxel is classified active only if its test statistic is above threshold and if the
voxel is contained in a contiguous cluster of at least a specified size whose voxelwise statistics are
also above threshold. The idea is to increase the sensitivity of classification by using the fact that
real activation tends to be more clustered than the artifactual activation caused by noise. While
it is often more robust than voxelwise tests, this cluster-size threshold also depends on simplistic
assumptions, tends to be highly conservative, and is very sensitive to the specified minimal cluster

size.
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Worsley [80, 81, 78] constructs a hypothesis test for detecting activation using distributional
properties of the extremes of Gaussian random fields. Under the null model of no differences
between the task and control conditions, the method assumes that the difference of the average
images is a homogeneous, mean zero, Gaussian random field. It derives the distribution of the
Euler characteristic of the level sets of the field (roughly, the number of connected components)
under this assumption. The test statistic is the Euler characteristic (with correction for boundary
effects) of the observed level set of the random field at a specified threshold. Worsley [79] extends
these results to ¢, ', and x? random fields that arise from commonly used test statistics. While
the mathematical results here are very elegant, the method suffers from several practical problems:
(i) the parametric assumptions underlying the calculations are generally violated in practice, (ii) the
test is extremely sensitive to the tails of the noise distribution, and (iii) the method does not take
advantage of the fact that the interesting alternatives have a specific form, namely localized shifts
in the mean.

Holmes et al. [41] has proposed the use of randomization tests to protect against violations of
the assumptions. By considering the maximal voxelwise test statistic in a given region, they test
the omnibus alternative of no differences in activation in that region with a nearly specified Type
I error. A serious difficulty with this method, especially in an fMRI context, is the computational
burden, for the number of relabelings grows quickly with the length of the experiment and number
of experimental conditions. Moreover, trends in the signal render the notion of overall significance
less useful.

A very different and more comprehensive approach has been put forward by Lange and Zeger
[50]. They model the voxel time series in the spectral domain using a regression framework in which
the shape of the hemodynamic response function is allowed to vary. As the first published work to
explicitly model the voxel time series in fMRI data, this method makes an important contribution
to the field. By fitting in the spectral domain, the Lange and Zeger method reduces the impact of
autocorrelation and drift on the results. The primary limitations of the method are limitations of
scope. It applies most effectively to periodic experimental designs, where two conditions alternate
in even blocks; this limits its range of application and its ability to address more complex questions.
Furthermore, the model for the shape of the hemodynamic response is quite simple and does not

account for several important features of the system. See also [34, 23] for further discussion.
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3.3. Failures of the Paradigm: Inferential Relevance

A more critical failure is that the localization paradigm limits the range of scientific questions that
can be addressed with fMRI data. This problem persists no matter how refined the classification
methods become because they only use part of the information in the data, namely the average
signal change across conditions. Localization remains an important step, but the key point is that
it is only the first step. It allows an investigator to validate the effectiveness of an experimental
manipulation and to check its consistency across studies. While localization can help neurosurgeons
decide where to cut, it is often of only indirect interest for cognitive psychologists whose primary
interest centers on theories that describe the integrated function of the brain as a computational
system. These scientists need to answer questions like those in section 2, which deal with changes
in the response and more complex spatial relationships. Classification provides useful information
only about a subset of these questions. To move the science forward, the statistical methodology

must advance to enable well-supported inferences regarding more general questions.

To better understand the scope of questions that localization can address, consider the problem
from a more abstract perspective. Suppose we have data realized from a general spatio-temporal
process Y = (Y3 ;) that can be decomposed as Y = H + N. Here, H represents the structure
of interest (e.g., the hemodynamic response in fMRI) and may itself be stochastic; N represents
the noise or nuisance processes. For any scientific question that can be addressed with these data,
we can define a function f on the range of H such that the scientific question can be expressed
mathematically in terms of f(H). Inferences (or predictions if H is stochastic) from the data Y
about f(H) thus provide evidence to help answer the question; to be useful, any such inference
must provide an assessment of its uncertainty. A given statistical method supports inferences
about a particular set @ of such functions. Any number of questions from Q may be addressed
with the data, but making inferences about multiple functions with the same data requires some

consideration of dependence and multiple comparisons.

Now, let Q. denote the set of questions addressable from fMRI data using classification meth-
ods. By the nature of the classification procedures, these are binary, coordinate-wise, condition
contrasts: FEach function f € Q. is binary-valued and indicates whether there is a particular dif-
ference in the response among selected conditions at a single location. A test at voxel v provides

an estimate of one such f,, and the error rate and power function of the test give some sense of
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the uncertainty in this inference. However, these separate inferences cannot be easily combined
in practice. Consider for example the question of whether the total area of activity is greater in
response to one condition than to another. This is usually addressed in fMRI by counting the num-
ber of voxels classified as active (with respect to a control) in each condition and then comparing
the counts across conditions. But the counts alone provide no baseline for comparison against the
likelihood of chance fluctations (What is a large difference? What is a small difference?) and hence
do not provide a complete inference. If we try to construct a hypothesis test for the difference
in the counts, we encounter a number of problems. The null hypothesis of equal extent does not
constrain which voxels are active, and hence the null is highly composite. Even if we were to take
the null as extremely restrictive—that the active sets are identical—the voxels within the region
being tested would have different response properties, so the count difference would not have a
tractable null distribution. While it is possible to use the error rates and power functions of the
classification hypothesis tests to compute various probabilities under different alternatives, there
is an overwhelming array of possible alternatives so that these probabilities are not useful in prac-
tice. (The overly-simplistic models underlying the tests imply that the error rates are inaccurate
in any case.) The classification maps thus serve as estimates of a set-valued parameter, namely,
the regions of activity with respect to a particular contrast among conditions. But these estimates
are not accompanied by useful uncertainties that are needed to construct more general inferential
statements. All of these problems can be circumvented by using the information in the data directly

rather than after classification.

What is often of interest instead of Q. is a set of coordinate-free spatio-temporal questions,
i.e., real-valued functions that relate to more detailed changes in the response across space and
time. These questions include spatial distinctions (Are the responses to pursuit and saccadic eye
movements separated?), characterizations of system behavior (What is the rate of increase in signal
change with sentence difficulty?), and distributed comparisons (To what degree is working memory
involved in the different areas that subserve eye movements?). The classification approach, while
providing generally comforting and often reasonable results, offers no way to quantify answers
to these questions. Investigators are left interpreting the classification results to answer more
detailed questions, without true statistical support. By moving to a more detailed representation

of the underlying processes, we can use more of the information in the data and improve both the
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accuracy of our statistical inferences and their scientific relevance.

3.4. Other Methodological Issues

There are other limitations to current statistical practice in fMRI. Current approaches cast the
sources of variation in the data as “artifacts” to be “corrected” serially through several data pro-
cessing stages prior to analysis. But treating the different effects separately reduces the inferential
efficiency of the methods. Moreover, as new research improves our understanding of the processes
that generate fMRI data and reveals the details that need to be accounted for, the classification
procedures will not readily adapt. For instance, voxelwise hypothesis tests cannot easily incorpo-
rate complex spatial structure in the active set or large-scale spatial dependence in the data. Nor
do the classification procedures help diagnose or identify sources of variation in the data.

A first step to improvement is to move away from classification and hypothesis testing based
on simplistic models towards estimation of interpretable parameters within a detailed model of the
data. A second step is to move beyond the localization paradigm by isolating the scientific questions
underlying a study and devising inferential procedures that directly address these questions. This

is the framework we propose.

4. Modeling fMRI Data

It is tempting to begin an assault on the statistical problems of fMRI by trying to improve the
testing procedures used for classification. However, this strategy is not sufficient to handle the
the complexity of the data and the richness of the underlying scientific questions. We began at a
lower level, studying the processes that generate the data and characterizing the critical sources of
variation. We integrate these findings into a family of detailed models for fMRI data on which can
be based more accurate and general inferences.

In particular, we develop an inferential framework that can achieve three key objectives:

e Account for as many important features of the data as possible
e Address directly the scientific questions of interest with rigorous statistical procedures
e Extend naturally to encompass new research about the fundamental physical processes behind

the measurements.

This framework is built on a nonlinear, hierarchical, spatio-temporal model. The data from an fMRI

experiment arise from the interaction of several component processes, many of which correspond to
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identifiable biological and technological phenomena. We construct our model to explicitly represent
as many of these components as possible so that the model parameters are meaningful with respect
to the underlying processes. Many other sources of variation in the data (e.g., physiological noise)
are accounted for through an appropriate noise distribution.

In this paper, we present a relatively simple version of this framework in which we focus on the
temporal (voxelwise) structure in the process and do not fully account for some features of the noise.
A number of challenges nonetheless arise here, and even at this level, our methods lead to improved
sensitivity and a broader scientific scope. In section 8, we describe several extensions that account
for more complicated noise distributions and for spatial structure. Modeling the spatial structure
requires new levels in the hierarchy that relate the temporal responses across the convoluted folds
of the tissue; we are exploring a detailed spatial extension of the model for a future paper.

Let Y (t) be the observed MR signal for time ¢ = 0, A,...,TA at a specific voxel, where A is

the sampling interval. Our basic voxelwise model assumes that this time series takes the form
Y(t) = p+d(t) +alt; p,7,0) +€(d), (2)

where pu, 7, 8, and the function d() are model parameters and e is a parameterized noise process. The
four additive components in equation (2) will be called the baseline signal, drift profile, activation
profile, and noise, respectively. This equation shows the likelihood level in the hierarchy; section 5
describes the priors used at the deeper levels. Below, we clarify the role and parameterization of

each component in the model.

4.1. Baseline Signal

The MR signal associated with a particular voxel is, to first order, a measurement of the density of a
particular nuclear species (e.g., hydrogen) within the voxel, averaged over some small time interval.
(See section 3.1.) The measured signal can vary by an order of magnitude across the imaged volume.
While some of this variation reflects differences in nuclear density across the highly structured brain
tissue, much of it arises from other sources. For example, with certain receiver coils, the signal
strength measured from a particular location diminishes as the distance between the source (e.g.,
“spinning” nucleus) and receiver increases. It also depends on the relative orientation of the receiver
(essentially a coil of wire) and the magnetization at the given location. A more important source of

variation in the measured signal is caused by local magnetic anomalies in the tissue (e.g., chemical
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substances with magnetic properties). These anomalies alter the precession of the nuclei, causing
a non-uniform loss of phase coherence that distorts the signal. Other distortions result from flaws
and inhomogeneities in the receiver electronics that make the receiver differentially sensitive across
the coil surface.

The real-valued parameter y in equation (2) represents the magnitude of the baseline signal
at the given voxel, that is the mean signal over time in the absence of activation and noise. The
amplitude of the BOLD perturbation and, to some extent, the variance of the noise are both
dependent on the baseline signal, although for fMRI y is a nuisance parameter. Notice that in
general y # E[Y (¢)] since the drift and activation terms can have non-zero values. The baseline p
is typically well-determined from the data; experimental designs that incorporate rest periods at

the beginning and end of the experiment (during imaging) make estimates of u particularly precise.

4.2. Drift Profile

The measured MR signal at a voxel tends to drift over the course of an fMRI experiment. Since the
magnitude of these changes often far exceeds both the ambient noise level and the amplitude of the
task-related BOLD perturbation, signal drift represents a significant source of variation in fMRI
data. The drift likely has a number of causes, but these have not yet been conclusively identified.
Changes in instrument calibration, equilibration of the tissue and scanner, subject movement, and
physiological deformation of the brain are known to play a role. Much of the variation seems to be
of biological origin since the largest changes and most interesting features of the drift arise when
imaging living tissue.

Our empirical study of many fMRI data sets suggests that the drift has the following basic
properties. While the drift tends to be smooth, it can undergo occasional rapid, localized changes.
The drift profile also exhibits a diverse range of shapes, often highly nonlinear and heterogeneous
over time. See Figure 4. Moreover, the drift has interesting spatial structure; its shape and mag-
nitude can vary greatly across voxels. Even neighboring voxels can display completely different
behavior. While there are groups of voxels with similar drift properties, there is a convoluted net-
work of boundaries across which these properties may change suddenly. Another notable although
anecdotal effect is that the severity of the drift tends to increase with the field strength of the MR
scanner’s main magnet, even though the overall signal-to-noise improves for higher fields.

It is this diversity in shape that poses the main challenge to modeling the drift. We want a
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flexible parameterization that allows a range of functional forms consistent with the data, but we
also must discourage spurious structure, particularly structure that might be confounded with the
activation-induced changes to the signal. The drift profile d(¢) in equation (2) represents signal
drift as a function of time. We treat the function itself as the model parameter here, within a
potentially complicated space of smooth functions. We balance the conflicting goals of diversity
and parsimony by appropriate regularization over this space; see section 5. Although a natural
starting point for modeling d(t) would be to use low degree polynomials, we have found that these
generally lead to a poor fit to the data because the drift frequently changes its character over the
course of the experiment. Since we want d to represent a smooth but temporally heterogeneous
function, we need a more flexible model for the drift profile. A more effective choice is to take d

from an appropriate spline space of some degree D. (Typically, we take D = 3.)

A spline of degree D is determined by the number and position of its knots and coefficients
in an associated basis of functions [19]. Let 0 < K < K,,,, denote the number of knots and &
denote the vector of knot locations, where 0 < k1 < --- < kg < 1. We consider two strategies
for constructing the splines: (i) use a small number (e.g., up to 4) of adaptively placed knots and
(ii) use a moderate number (e.g, 6 to 12) of fixed knots with regularization to eliminate spurious
structure. In the former case, both the number of knots and the knot positions are parameters in
the model, and d thus varies across a union of standard spline spaces. With a small number of
knots relative to the number of time points and with the potential to reduce the complexity of the
function (e.g., when K = 0, d(t) is a pure polynomial), spurious structure is discouraged and the
drift profile cannot become confounded with the activation profile. At the same time, the adaptive
placement of the knots provides a great deal of flexibility in the shapes that can be attained. In
the latter case, d varies over a fixed spline space, but the regularization bears much more of the

burden of maintaining a reasonable shape for the curve.

We parameterize the drift profile as a function on [0, 1] and rescale it onto the time interval
of the experiment. It is also convenient to constrain d(t) to be orthogonal to constants (and thus
the baseline) with respect to the empirical inner product, i.e., Z?:o d(t) = 0. This maintains the
conceptual separation between the baseline and drift. Given K and k, the splines with those knots
form a vector space, and a drift profile d(¢) uniquely determines a set of coefficients § in any basis

for this space. Note that the choice of basis is arbitrary, for the true parameter here is the drift
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profile d(t) itself. If we change the basis, the coefficients change but the profile remains the same.
One possible choice is the power basis, defined by the set of functions 1,¢,...,t?, (t—x1)?,..., (t—
K K)f. The power basis is neither numerically well-conditioned nor structurally convenient, so we
reparameterize. A common remedy for the problems of the power basis is to use a B-spline basis
[19] because these functions provide a stable and localized representation. B-splines allow greater
computational efficiency when the number of knots is large, but in the few knot case (see section
5), we use the basis functions generated by orthonormalizing the power basis with respect to the
empirical inner product. In particular, this makes changing the knots and updating the basis more
computationally efficient. When we wish to emphasize the specific parameterization, we will denote
the drift profile by d(t; K, k, 8).

Figure 4 displays fits under our model to two adjacent voxel time series. These data show
very different drift profiles and highlight the need for both complex and simple drift structure
under the same model. In Figure 4a, when the drift is complicated, the model chooses a larger
number of knots and places them to account for the principle features of the curve. On the other
hand, in Figure 4b where the drift shows little structure, the model reduces to a essentially pure
polynomial and thereby achieves a good fit without introducing too much complexity. The need to

vary structure along this continuum guides our treatment of drift in the model.

4.3. Activation Profile

The hemodynamic response to neural activity manifests itself as a perturbation in the MR signal.
Figure 6 illustrates the basic shape of this signal change as a function of time for a response to a
single period of activity. The measured signal begins at baseline and remains there for some time
(on the order of 1/2 to 3 seconds) after the beginning of task performance. It is currently unknown
whether this delay represents a genuine system lag or a undetectable signal change. Eventually,
through a metabolic process, the increased neural activity causes dilation of the local blood vessels.
The MR signal then begins to rise as the balance of oxygenated to deoxygenated blood shifts within
the voxel, which takes place over 3 to 8 seconds. If task performance continues, the signal levels off,
where the height of the plateau is usually in the range of 1-3% of the baseline signal and rarely more
than 5%. The plateau height is associated with the intensity of the hemodynamic response, and by
inference the degree of neural activity, within the voxel. While task performance is maintained, the

signal holds at the plateau, although in some cases, there may be important fine structure in the
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signal during this period. When the task ends, the signal remains elevated for a time then begins a
slow decay back to baseline. This decay is typically longer than the corresponding rise [20] (on the
order of 10 seconds), and more significantly, the signal often dips below the baseline for an extended
period before returning [18]. This dip is typically dealt with by dropping data at the beginnings
of task epochs. See [82, 1, 11] for more systematic approaches to incorporporating the dip. The
importance of the dip is two-fold: (i) a large signal dip during one task epoch distorts the signal in
adjacent epoch, complicating analysis; and (ii) the dip may serve as a sensitive discriminator for
evaluating local activity. The latter possiblity results from the fact that the BOLD perturbation
is a blood-flow response and only a proxy for neural activity. Large blood vessels draining from
an active area can lead to apparent activation in distant voxels. Of greater interest is a response
from the microvasculature (e.g., capillaries) that serves the active neurons locally. BOLD responses
in the microvasculature would provide a much sharper picture of the distribution of activity but
may also tend to produce a weaker signal. It has been conjectured that several available image
acquisition techniques put different weights on the signal contribution from different sized blood
vessels. There has been recent speculation, as yet unproved, that the signal dip appears using all of
these techniques, suggesting that the dip reflects changes at the microvasculure level [67]. Further

research on the source and meaning of the dip is currently underway.

The activation profile, a(t) in equation (2), is the combined pattern of signal changes over
the course of the experiment. The profile at a given voxel depends on the responses in that
voxel to the different experimental conditions and to the shape of the response function there; the
amplitude of the response also scales with the baseline signal. The shape of the response curve
can also vary from voxel to voxel since it depends on the nature of the tissue and the distribution
of local vasculature. Suppose that there are C' experimental conditions being evaluated in the
experiment. We make no assumptions about the order or duration of the time periods associated
with these conditions. For each condition ¢ = 1,...,C, we define a responsiveness parameter,
Y. > 0, that measures the degree to which the given voxel activates in response to the stimulus
or task associated with condition c¢. The responsiveness is expressed as the proportional change;
specifically, the amplitude of the perturbation for the ¢! task condition is taken to be 7., where p
is the baseline signal. Parameterizing the responsiveness as a proportion is natural in this context

because the absolute magnitude of the signal change scales with the magnitude of the baseline.
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By assigning a single parameter to each condition, the model treats every instance of a particular
condition (i.e., every epoch of the task repeated at any point during the experiment) identically.
This is not a bad assumption since the responses are generally consistent, but in general, there may
be some variations in the level of response across an experiment. This includes random variations
from epoch to epoch and systematic changes such as a downward trend caused by practice with the

task. Such extensions can be incorporated by adding another layer to the hierarchy; see section 8.

To model the shape of the activation profile, we specify a family of smooth functions that
captures the form illustrated by Figure 6. There are a number of ways to parameterize such
a family, but a simple and flexible approach is to use what we call bell functions. The basic
bell function is of the form bystack(t) X bdecay (t) Where byprack and bgecay both have at least two
continuous derivatives, byiiack Tises from 0 to 1 over a finite interval, and bgecay falls from 1 to 0
over a finite interval. We currently use polynomial bells, where bagtack and bgecay are piecewise
polynomial functions; other choices (e.g., exponential, sinusoidal) are possible but somewhat less
convenient. We can deal with the dip during decay by parameterizing a dip directly into bgecay, but
it is more computationally convenient to separate the dip into a separate term. Hence, we define
the response curve to be of the form bygack X (bdecay — bdip), Where bgip, is a non-negative, compactly
supported, bell-shaped function shifted relative to bgecay. The specific form of the response curve
is determined by a vector of shape parameters, denoted 8. There are eight possible components
defined as follows: (A) lag between task beginning and the signal rise (lag-on), (B) time for signal
attack to plateau (attack), (C) acceleration of the attack (rise) (D) lag between task end and the
signal decay (lag-off), (E) time of first return to baseline (decay), (F) acceleration of the decay
(fall) (G) relative height of the dip to the plateau (dip), and (H) skewness of the dip (skew). The
correspondence between these parameters and the shape of the curve is illustrated in Figure 6.
Here, the rise and fall parameters determine the sharpness of the attack and decay; the dip and
skew parameters determine the shape and duration of the dip. Not all of the shape parameters need
be varied; a basic configuration allows only four parameters: lag-on, attack, lag-off, decay, with
no dip and rise and fall fixed. Our parameterization of the response curve is intended to capture
the effects of the underlying biological mechanisms while maintaining flexibility and computational
efficiency. The bell formulation is useful because it decouples different features of the curve. For

example, when the stimulus length is shorter than the time for the curve to reach plateau, the
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corresponding bell is shortened and rounded, which is consistent with empirical observations of
responses to short stimuli. Another advantage is the ease of extending this parameterization as
new features of the response come to light.

A critical aspect our model for the response is that the height and shape of the response are
decoupled, i.e., the final response curve is the bell function scaled by uy. The advantage of this is
simplicity and a reduced computational load in fitting the model. However, there is some evidence
for a relationship between height and shape; we take this up in section 8. Another issue is that
our parameterization specifies times for signal attack and decay, which implies that the attack and
decay will be steeper for a larger response. This is consistent with a biological model in which
the change in blood volume increases with the intensity of the response thus yielding a more rapid
change in the signal; it also fits the data well. However, this assumption needs to be tested.

The above description specifies how the model captures an isolated response, but there is more
to the story. Specifically, there is evidence [72] that the profiles from two responses closely spaced in
time, combine sub-additively. This corresponds to a marginally decreasing response in the presence
of substantial vasal dilation. Nonetheless, we do expect signal from two combined responses to be at
least as large as either of the two alone. This suggests a sub-additive function that lies somewhere
between a pointwise maximum and an additive combination. The model specifies a one-parameter
family of operators that combine the profiles from overlapping respones. One choice for this family
is a convex combination of addition and a smooth approximation to pointwise maximum. The
additive case corresponds to a physiological model in which activation leads to an increased blood
flow independently of recent changes; the maximal case corresponds to a physiological model in
which further increase in blood-flow is damped when the vessels are already sufficiently dilated.
The reality likely lies somewhere between these two extremes but has not yet been established in

empirical work.

4.4. Noise Distribution

The noise in fMRI data is not simple. Important features of the noise distribution include subject
movement, signal drifts, spatial and temporal correlations, frequent outliers, physiological effects,
instrument artifacts, and changes in noise variance with signal magnitude. All of these sources of
variations affect the data in different ways and make it more difficult to isolate the hemodynamic

response. The noise distribution is also sensitive to the specific scheme used to acquire the im-
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ages. The results in this paper use a simple white-noise model, which serves as a useful initial

approximation. Extension to account for many of these noise features is straightforward.

Perhaps the most serious source of variation in the data is subject movement. Any such
movement blurs the mapping between voxels in the image and anatomical locations in the brain.
Movements as small as 2mm can appear as sudden, drastic signal changes in some voxels, and
several large movements can render a data set unusable. As an example, Figure 7 shows an MR
time-series a voxels in a data set apparently corrupted by large movement. Keeping the subject
still (while performing difficult or timed tasks) is thus very important. While restraint systems
have been devised, these can be quite uncomfortable and even disturbing for subjects. There
is consequently a need for numerical techniques to register, or align, a sequence of images after
acquisition (see in particular [25] but also [76]). These methods are demonstrably quite effective at
adjusting for rigid movements within the slice plane, although full three-dimensional registration
still needs development. Ideally, we could incorporate subject movement directly into the model,
but since this currently presents a major computational obstacle, we must carry out statistical

analysis after movement correction.

The physiological cycles of the subjects, including respiration, heartbeat, and peristalsis intro-
duce temporal variations that may be confounded with the activation response to the experimental
tasks. Although much is still being learned about these fluctuations, the primary effect seems to
be a non-rigid motion of the brain resulting from changes in blood pressure. As such, boundaries
between tissue and cerebro-spinal fluid (CSF) are most severely affected. The respiratory effects
are, perhaps surprisingly, dominant over the cardiac except near the brain stem. We record physio-
logical data—respiratory traces from a flexible band around the chest and cardiac traces by a pulse
oximeter at the finger—at a high sampling rate during every experiment, which makes it possible

to account for these effects.

Other features of the noise have been studied but remain to be dealt with during analysis.
For certain acquisition schemes, spatial correlations can be significant. As Figure 5 shows, these
correlations need not be isotropic or local. There has been little research into the impact of this
dependence. Temporal autocorrelation in the voxel time series, while present even after drift and
physiological fluctuations are accounted for, seems somewhat less severe. Shot-noise and other

heavy-tailed transients are quite common, and instabilities in the magnets and electronic compo-
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nents of the scanner can distort the measured signal. Large blood vessels also contaminate the

signal of surrounding voxels but are difficult to classify automatically.

5. Prior Information

The use of prior information is a critical aspect of inference, particularly in complex or high-
dimensional problems, since it enforces substantive constraints and restricts the parameter space
to a reasonable form. Note that this is not the exclusive domain of Bayesian statistics [37, 63].
In fMRI, there is considerable information regarding the various processes generating the data.
Each component of our model has itself been the object of research in the MR literature, and
our experience working with these data has yielded further insights. The goal of this section is to
describe some of the prior information avalable for each model component and to illustrate how we
use it.

We take a Bayesian approach here and incorporate the available information as prior distribu-
tions within a hierarchical model. Philosophy aside, we believe this approach is both natural and
advantageous in this problem for several reasons. First, a hierarchical model makes it possible to
include variation in the very structure of the model while still accounting for the uncertainty in
that structure. We use this property for instance to allow distinct forms for both the drift and acti-
vation components of the model (see below). Second, under this formulation, it is a simple matter
to compute an estimate of any functional on the parameter space with an assessment of its uncer-
tainty, thus broadening the effective scope of inference. Third, the approach offers a mechanism
for feedback so that, as we analyze more data, we have a direct way to incorporate what has been
learned into future studies and thus refine the specification of the model components. Fourth, the
spatial variations in the parameters are complicated and nonhomogeneous over the brain, making
them difficult to capture with a simple parameterization. An extension of our model to include
spatial structure requires adding new levels to the hierarchy that connect the behavior across voxels
in specific ways. This provides the flexibility to constrain the allowed spatial variations and gives us
more local control over them. Note that a reasonable non-Bayesian interpretation takes our method
as using a likelihood penalized by soft constraints on the parameters to regularize the fit. Poste-
rior means and maximizers can then be viewed as particular shrinkage estimators, and posterior

probabilities can be viewed as a measure of the strength of evidence for specific propositions.
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5.1. Baseline Signal

Uncertainty about the baseline signal y arises primarily from five sources: variation in the spin
density across the tissue, signal fluctuation as a function of voxel position, magnetic anomalies in
the tissue other than activation (cf., T2*), signal leakage from surrounding voxels (called “partial
voluming”), and differential coil sensitivity across the imaged volume. Each image is also scaled by a
known but arbitrary factor determined by gains in the amplifiers and pre-amplifiers, by corrections
during reconstruction, and by various acquisition decisions (e.g., voxel volume).

With some effort, the effects of these fluctuations can be mapped out prior to the experiment
and a fairly accurate prior estimate of the baselines can be constructed. However, y is usually very
well determined from the data, so inferences about p are not very sensitive to the choice of prior.
We thus use by default a simple symmetric distribution centered on a fixed value pg. In this paper,
we use a t; distribution, which provides a conservative assessment of our prior uncertainty. The
value of g is set separately for each voxel, using scout images obtained prior to the experiment

when available. While it may also be reasonable to use a flat (improper) prior on u, we avoid this.

5.2. Drift Profile

Although the sources of the signal drift have not been fully identified, some persistent features of
the drift have become clear, as described in section 4.2. The drift can take a wide range of possible
forms, and there is substantial variability in its magnitude across voxels. The prior for d must give
weight to particular properties—general smoothness with several potential change points, some of
which may be sharp—within a broad class of functions while discouraging spurious structure (e.g.,
oscillatory behavior) that may confound with activation. We take the support of this prior to be
an appropriate space of splines because of the flexiblity these functions offer.

Let S(D, K) denote the orthogonal complement to the constant (with respect to the empirical
inner product) in the space of splines of degree D with K knots on [0,1]. Let S(D, K, k) denote
the subset of this space whose knots are fixed at positions 0 < k1 < -+ < kg < 1, and let S(D)
denote the union of the S(D, K) for K =0,..., K,.... We denote the prior for the function-valued
parameter d by mas. If the number or position of knots is fixed, we condition on K and/or k.
The degree D is fixed throughout. We consider two basic strategies for modeling the drift profile

on these spaces:
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(i) Fix K to be on the order of the number of observations over time, and fix the positions K to
a regularly spaced grid. Then define 7, as the corresponding standard Sobolev prior over
S(D, K, k), see equation (3);

(ii) Restrict K, to a small number, put a decreasing prior on K over {0, ..., K,...}, let maue (K | K)
be a diffuse prior on the appropriate simplex, and set ma¢(- | K, k) to a standard Sobolev prior

over (D, K, k);

The first strategy corresponds to a modified smoothing spline [73]. The knots for a smoothing
spline are usually placed at every data point, but sufficient flexibility is often gained with 1/2 to

1/4 as many depending on the length of the time series. The Sobolev prior for d is given by

2
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where a,,,a., A > 0 are constants,
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are the weighted £2 norm and weighted £2 semi-norm, respectively, with a non-negative, non-zero
weighting function w. The constants a, and a. determine the relative penalty ascribed to norm
and curvature of the profile, and A mediates the overall level of smoothness given this weighting,
with smaller A indicating a smoother profile. The standard smoothing spline does not include the
norm term, but for fMRI data, we have a good idea of the range of magnitudes exhibited by the
drift
This form for the prior does not depend on the basis we use to represent the drift profile. Given
K and k, there corresponds to any profile d € S a unique vector of coefficients § with respect to a
basis for S(D, K, k), and the quadratic form in d induces a quadratic form in § whose kernel is a
symmetric, non-negative definite matrix. We take & to have the corresponding normal distribution,
which has mean 0. If a,, = 0, this distribution allows complete uncertainty in the linear part of
the drift. When K is large, there is a computational advantage to using the B-spline basis because
the quadratic forms above are expressed in terms of banded matrices. Since a B-splines basis
forms a partition of unity over the corresponding interval, the redundancy caused by our constraint
> d(t) = 0 requires that the coefficients themselves sum to zero, which is easily enforced.
We select the smoothing parameter in one of two ways. The first is to fix A to yield a specified

effective degrees of freedom. We define the degrees of freedom as the trace of the effective smoothing
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matrix [40] because this form is the most efficient to compute. One distinction between using
the smoothing spline as a general smoother and as a component in a model like this is that the
relative size of X\ and o2 determines the degree of smoothing. This requires an extra iterative
step in the optimization. The second method is to allow A to vary as a model hyper-parameter
with a distribution (e.g., Exponential) that is weighted towards zero. This requires a substantial
improvement in fit to add complexity to the drift profile. We choose the mean of this prior on A to
achieve approximately a specified effective degrees of freedom for the profile.

The second strategy for modeling drift allows a variable (but limited) number of adaptively
placed knots. This is intended to achieve a greater flexibilty for dealing with localized changes
in the profile, which are reasonably common. The Sobolev prior underlying the smoothing spline
is homogenous and has some difficulty fitting sharp, sudden changes in the way we desire. If the
smoothing parameter is set to allow for a sharp change of a particular magnitude, then the fit
must trade off capturing that change accurately with allowing greater flexibility in the rest of the
profile (over which there is more data contributing to the likelihood). Typically, the fit can then
be improved by only roughly approximating the sharp change while allowing wilder fluctuations
elsewhere, but the latter are not consistent with our specification of the drift. Indeed, we want
T4z 10 place more mass on functions with sparser structure. By limiting the maximum number
of knots Kax but placing them carefully, the model can fit the change points accurately while
achieving a more appropriate level of flexibility for the rest of the curve. This adaptive prior more
closely captures the desired behavior. Conditional on K and &, we use a Sobolev prior defined
as above, although with potentially different constants a, and b, for each number of knots. We
specify a rapidly decreasing prior for K on {0,..., K,...} to penalize structure when none is needed.
Typically, we would like between 0 and 3 knots, but to improve mixing in posterior simulation (see
section 7) we set K., larger (e.g., 5—7). We specify a prior for k given K through the distribution
of the separations between adjacent knots (and the ends of the interval). In particular, if Ko = 0
and kKx41 = 1, we take the distances between the knots k; — k;—1 for ¢ = 1,..., K + 1 to be
Dirichlet(a, ...,ax+1). For convenience, we usually set all o;’s equal to a common value (by
default @ = 2). Note that when « is a positive integer, the knot positions are distributed as
selected uniform order statistics. This version of 74 can be effectively implemented for posterior

simulation, but it does introduce a hefty computational cost. See section 7 for details.

32



5.3. Responsiveness

The responsiveness parameters vy describe the magnitude of the activation-induced signal change
in each experimental condition as a proportion of baseline. These changes are small relative to the
noise level, with responsiveness rarely exceeding 5%. Even though the magnitude of signal changes
vary somewhat across tasks, brain regions, and subjects, the observed distributions from previous
studies still yield useful information for constraining «y. For instance, to constrain the upper range
of responsiveness values, we can use a robust performance standard—the human visual system.
The primary visual area, called V1, handles the initial cortical processing of visual stimuli in the
brain. V1 tends to exhibit the strongest BOLD response of any area of cortex yet studied with
fMRI. The cellular and vascular structure here have been studied in detail and the characteristics of
visual stimuli that evoke the strongest response have been isolated empirically. Similarly, the study
of signal changes across other areas and tasks clarifies the shape of the upper part of the response
distribution and shows how the distribution scales with imaging configuration (e.g., magnetic field

strength).

The lower range of responsiveness values is more difficult to specify empirically since small
responses will often go undetected. To deal with this, we consider two models for the distribution
of neural activity in the brain. In the isolated activation model, activity is concentrated in several
distinct regions, and other areas are not responsive to the given task. In the distributed activation
model, the activity is distributed over a large portion of cortex, although certain regions may bear a
greater part of the load. It is currently an open question as to which of these views is more accurate,
but the isolated activation model is implicitly assumed in most discussions regarding fMRI. Under
the isolated activation model, we would expect many voxels with zero responsiveness and relatively
few with a very small response. Under the distributed activation model, we would expect many

voxels with a small to moderate response. We use the isolated activation model by default.

We choose a prior 7., for v to match the available information, under either the isolated or
distributed model. We base our default priors on data from a particular suite of studies, but more
specialized information (e.g., about a specific task or imaging configuration) can be incorporated
with ease. Because the BOLD mechanism leads to a positive overall signal change (of course, the
activation profile can extend below baseline as discussed earlier), .., has support on {vy > 0}.

There is an open question about whether “de-activation” in the sense of a negative BOLD response
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can occur; if so, the positivity constraint can be lifted without loss of generality when it is warranted.
Under the isolated activation model, 7., puts non-zero mass at 0 (no response) in each condition.

Specifically,

Teess(Y) = . 5 [ f(w) [ d0(n) (5)

jc{1,...C} kej 15
where the 7’s are non-negative constants that sum to 1, §p is a point mass at 0, and f is a
continuous density on (0,00). The density f decays towards both 0 and oo, with its range and
upper tail behavior calibrated to the available prior information. We have experimented with a
variety of forms for f, but our results show sensitivity primarily to the tail behavior. A suitable
Gamma density allows a reasonable fit to our prior constraints and is more convenient than some of
the more complex forms we have tried. The inclusion of different sub-models in the prior is a critical
part of the model since it accounts for the substantial uncertainty concerning whether or not there
is a response. We usually choose 7 so that 7y is large and the components of v are independent. A
convenient alternative is to put mass only on the null and saturated models. A value of 1 — 7y in
the range 1/500 to 1/100 yields, for typical image sizes, about 50 to 100 voxels expected to show a
response. Under the distributed activation model, all components of « are positive, although most
will be quite small. In this case, we take each component to be independent with a density given as
a step function with an exponential upper tail. We use two or three steps with decreasing weights,
which correspond to populations of voxels with different degrees of involvement in the task. Note
that in both models particular components of v can be fixed to 0 a priori if desired, which is most

relevant to pure rest conditions.

5.4. Shape

Although the mechanism behind the hemodynamic response is not yet fully understood, a body of
empirical work aimed at understanding how the response manifests itself in the MR signal provides
constraints that we use to construct the prior 7y, for the shape parameters 8. We take the
parameters to be non-negative although allowing the lag-off parameter to take some negative values
may be useful for broadening the range of shapes fit by the bell functions. We also define m,,,. to
make the components independent of each other and . This is likely optimistic since the shape
might depend on response intensity (see section 8), but currently the relationship between the two

is not well understood. The lag-on and lag-off parameters are likely to be similar, on the order of
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1/2 second. Attack seems to be generally shorter than decay, the former ranging from 3-8 seconds
and the latter from 5-15 seconds. The rise and fall parameters describe the shape of the attack
and decay; as we have parameterized these, they lie between -1 and 1 inherently. The height of the
undershoot below baseline is parameterized as a proportion of the plateau height; 1/3 seems to be
a representative value, although more study will clarify this further. We have little information to
constrain dip skew but it is a naturally bounded parameter. We define 7., by giving rise, fall,
and skew uniform distributions over their natural range and the other shape parameters suitably
calibrated Gamma distributions. In practice, the specific values of the hyperparameters defining
Tamape depend on the image acquisition scheme and the task lengths in the experiment, since these

can affect the response characteristics.

5.5. Noise Parameters

Many of the statistical challenges surrounding the analysis of fMRI data arise from the complexity
of the noise distribution. We have studied the noise with data from a large number of studies, for
a variety of acquisition methods, and imaging different types of objects, from air to “phantoms” to
human subjects. In this paper, we use a simple white noise model to capture the basic fluctuations,
but there is much room for extension to more complicated spatio-temporal distributions. We put a
Gamma prior on the noise precision 1/0? (e.g., parameters 1.6 and 200 by default for echo-planar
images on a 1.5T scanner), where the mean is selected to match the measured overall signal to

noise ratio for the scanner and the variance chosen to make the distribution reasonably diffuse.

6. Making Inferences from fMRI Data

Our model for fMRI data provides a flexible inferential framework that is consistent with current
research on the processes generating the data. However, a good model is only the first step. We
also need a way to use the model that makes it possible to address the full range of relevant
scientific questions, to test the predictions of competing theories, and to generalize inferences to a
broader population. Our approach here is to relate the questions of interest to particular functions
on the model’s parameter space and to derive inferences under the model through the posterior
distributions of these functions.

The posterior distribution offers several practical advantages as a basis for deriving such infer-

ences. First, probabilities provide a readily interpretable scale for evaluating results. In contrast,
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arbitrarily thresholded test statistics make it difficult to evaluate the strength of evidence behind
the inference. Second, the distributions of both simple and complex quantities can be computed
directly even when the distributions allow for several qualitatively different types of structure (e.g.,
discrete components or disjoint submodels). Thus, for instance, there is no conceptual difference
between computing a distribution related to a single voxel and a distribution describing many
voxels. Third, because posterior quantities are conditioned on the observed data, they are not
vulnerable to the spatial selection biases that arise when choosing voxels for analysis based on the
results of earlier classifications.

To illustrate the broad range of questions that can be addressed with our approach, we describe
several possible analyses in light of a specific example. Throughout, we target the analysis to specific
scientific questions (translated into statistical terms). Nonetheless, we do not focus here on the
results per se. Rather, our goal in this paper is to demonstrate the power and flexibility that this

approach offers investigators, whatever their scientific questions may be.

6.1. An Example Experiment

We consider an fMRI experiment designed to study how the usage of cognitive resources (e.g.,
working memory) changes with the difficulty of processing (e.g., comprehending different types of
sentences). The hope is that these changes are quantifiable through fMRI at a finer level of detail
than is possible with behavioral data alone. This experiment and the data are based on a study
presented in [47]. Although we only show data from a single participant, our analyses support the
original conclusions of the investigators. The key point here is that our method provides a more
rigorous basis for statistical inference and at the same time broadens the range of questions that
investigators can directly address with fMRI data.

The experimental design specifies six task conditions; see Figure 2b for an illustration. We
will discuss these conditions in order of increasing complexity. The first condition is simple rest,
which serves as a buffer between every pair of tasks and as a baseline control. The second condition
requires that the participant fixate on a marked point in the center of the visual field. This is the
primary control condition. The third condition is a trivial version of the task with no semantic
content—reading strings of consonants. This task involves all the same stages of processing as do
meaningful sentences (e.g., visual encoding, eye movements, button pushing to answer questions)

except for the high-level functions underlying comprehension. Hence, differences between the trivial
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condition and the other sentence conditions can serve to isolate the processes under study. The
remaining three conditions involve reading and comprehending increasingly difficult sentences. For
each sentence, the participant reads a sentence and then answers a question about that sentence
with the push of a button. Each task epoch involves processing several sentences, and each condition
consists of several epochs replicated at different times throughout the experiment. The sentences
at different levels of difficulty are distinguished by different syntactic and semantic structures that
increase the cognitive load required to understand them. We will label the conditions, in order, as
Rest (R), Fixation (F), Trivial (Tr), Task Level 1 (77), Task Level 2 (T3), and Task Level 3 (T3).

Each of these tasks is performed repeatedly for a period of time, and these task epochs occur
several times over the course of the experiment. The order of task performance is randomized
so that the epochs are balanced in time. It is worth noting that both the tasks being performed
here and the experimental design itself are more complex than is now typical in fMRI, which has
several implications for the analysis. Since this study has several experimental conditions with
more than one useful control, it is possible to examine a variety of contrasts and relationships
among the responses. Since non-control conditions may be separated by at most a short period
of rest, the responses from different conditions may overlap, which necessitates deconfounding the
contribution to the net response at any time. Our model does this since it fits the entire response,
but simple averages of the signal within an epoch cannot. Moreover, the sentence processing
tasks are complicated enough so that the experimenters do not have control over when the subject
completes the processing. Task performance thus need not be aligned in time with image acquisition,
and so we need to account for the timing differences in fitting the response curves. The design also
includes periods of fixation and rest at the beginning and end of the experiment, which improves the
precision of the baseline and drift estimates. As fMRI gets applied to more subtle and sophisticated
questions, experimental designs like this one will become increasingly common, and the statistical
methods used will need to deal with these complexities, as ours does.

One goal for this experiment is to clarify the relationship between intensity of response and

sentence difficulty. Two of the specific questions being asked are

1. Do responses to the three task levels increase monotonically?
2. What is the functional relationship between difficulty and response and how does this relation-
ship vary spatially?
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A third question asks how this relationship depends on behavioral covariates (e.g., an individual’s
working memory capacity); we take this up in section 8 where we discuss inference across subjects.
Note that changes in the intensity of response can manifest themselves in the data in two ways:
through changes in the responsiveness within voxels and changes in the extent of the region showing
a significant response. These may be physiologically related; as new neurons within a voxel are
recruited by a process, the local intensity of the hemodynamic response may increase, and as more
distant neurons are recruited, hemodynamic changes may then extend to neighboring voxels. Of
course, new active regions that emerge with increasing task intensity may instead represent distinct
cognitive processes that are only required (or detectable) at higher task difficulty. Which of these
views applies is a scientific issue, but from a statistical perspective, we can use both types of
effects (or some combination of the two) to measure response changes. Both types of changes are
commonly used in fMRI for comparisons across conditions, the within-voxel responses to classify
active voxels and the changes in extent to compare conditions.

We now turn to analyses of some data from this experiment. We begin with the simplest
methods, those closest to what is currently standard in fMRI, then exemplify methods for making

more sophisticated inferences.

6.2. Estimation

The simplest method for making inferences under our model is to estimate the model parameters
and their associated uncertainties. Maximum posterior estimates can be computed by numerical
optimization, and the standard errors of the estimates can be derived through a normal approxi-
mation to the posterior at the mode. These estimates and their uncertainties provide a convenient
alternative to a testing approach and can be used to compute analogues of the statistical classifica-
tion maps that are standard in fMRI. Almost all of the results obtained this way can be improved
through full posterior inference (see section 6.3 below), but the maximization approach is of inter-
est as a fast and convenient approximation. Even if full posterior inferences are desired instead,
the estimates from maximization provide a good starting point for MCMC simulations, and the
approximate covariance matrix is useful for tuning Metropolis steps [53, 69].

Differences Between Conditions. The greatest interest typically centers on the responsiveness
parameters (v) as well as contrasts among them. For simple comparisons, the estimates and

standard errors can be used directly to assess the strength of evidence for responsiveness in a
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particular condition. Since researchers in the fMRI community commonly use images to summarize
voxelwise results of these comparison, we construct a simple analogue of these test-statistic maps

that can be used to similar effect. Our maps are built from normalized contrasts such as

T op oo (6)
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where ¢ and ¢’ represent different experimental conditions. One advantage of these contrast statis-
tics is that they offer a familiar measure on which to base an analysis and will thus be readily used
in the fMRI community. However, the real benefit is the improved sensitivity due to the statistical
efficiency of our model. For example, Figure 8b presents one slice of a normalized contrast map
for the T3 versus Tr comparison. Figure 8c shows a corresponding “traditional” t-map for the
same slice after linear detrending and thresholding at 4, an arbitrary but often used value. The
corresponding slice of the mean image is given in Figure 8a for reference. Comparing these figures,
we note that the normalized contrast map is cleaner, with fewer scattered peaks than the t-map.
We generally see this improvement.

An important question is whether the crispness of our contrast maps results from improved
sensitivity or from a more conservative assessment. To answer this question, we considered indi-
vidually the time courses for those voxels showing activity in one of the maps but not the other.
In every case in which the t-statistic shows no activity but the normalized contrast does, either the
t-statistic failed to detect the differences because of an inflated variance estimate resulting from
lack of fit to the signal drift or the normalized contrast was able to identify a weak response because
it allows structural variations (e.g., lags, dips, attack/decay) that the t-test does not. In the cases
in which the t-statistic shows activity but not the normalized contrast, the average signal changes
are large relative to the noise because of nuisance variation (e.g., movement, drift, physiological
noise) that does not have the shape of an activation response. The distinction between the two
statistics, in both directions, is that the constraints embodied in our model more effectively isolate
activity from other sources of variation.

Domination Probabilities. An alternative way to evaluate pairwise changes (e.g., T3 versus
Tr) depends on posterior probabilities. We use a normal approximation to the joint posterior of
~ (with some correction for parameters at the boundary [55]) to evaluate posterior probabilities
that the response to one condition is greater than to another. For example, Figure 8d shows a

map of domination probabilities P{~yz, > vy, | Y }. While the revealed structure is similar to
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that displayed by the normalized contrasts, the domination probabilities give a more interpretable
measure of the strength of evidence for a particular ordering. More sophisticated applications of

this technique are illustrated in the next subsection.

Model Selection and Averaging. A practical difficulty arises in computing the maximum poste-
rior estimates in that discrete components in the model (e.g., different drift bases or responsiveness
models) are not easy to deal with during optimization. To make the optimization efficient, it is ideal
for the posterior to be smooth on a simple domain. While it is possible to implement a non-smooth
multivariate optimization, the result is very slow and inconvenient. Hence, for the maximization
phase of the analysis, we deal with the different possible structures as different possible models. For
the full model, we fix a drift basis to a reasonable spline space and include all of the responsiveness
terms. However, this model no longer reflects uncertainty about whether or not there is a response
to individual conditions, and the estimated responsiveness parameters will be more likely to take
small but non-trivial values for lack of a better option. Therefore, we define sub-models M;,...;.
such that v;, = 0 a priori for integers 1 < j; < jo < -+ < j < C. The posterior can be maximized
separately over every such sub-model and the results suitably combined. One option is model se-
lection, where a specific model is chosen using a criterion like BIC [2, 58]. Since the number of
conditions is moderate (e.g., 2-7) in most fMRI experiments, this is generally a practical strategy.
An alternative is to average the results across the different models. This makes sense because
the parameters are all interpretable in every sub-model. The posterior becomes a mixture of the
restricted posteriors over the individual sub-models, where the mixture weights are the posterior
mass attributed to each Mj,..; .. Using the results of the maximization within each sub-model,
we approximate the mixture weights by first approximating Bayes factors [48] using a Laplace ap-
proximation [70] (or optionally a localized form of Laplace’s method [21]) and then combining the
Bayes factors with the prior weights to derive posterior probabilities. The standard errors derived
from the mixture distribution are larger than those under the individual models, more accurately
reflecting the underlying uncertainties. These standard errors are then incorporated into the maps
and probabilities described above. In practice and in the analyses presented here, we consider two

models, the full model with all the terms and the null model which contains no activation profile.

Characterizing the Functional Form. Finally, a useful diagnostic for evaluating the nature of

the change in response across conditions is to fit a simple weighted regression to the estimated
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responsiveness parameters. Figure 8e shows the binned slope coefficients from a linear fit to the
parameter vector (yr,,yr,,77;). with weights derived from the standard errors of the estimates.
Only voxels for which P{ max(yr,,vr,,v15) > Y= | Y } > 0.01 were fit; the rest are left blank in
the figure. The slopes are binned according to the t-statistic for the coefficient in order to make the
image visually interpretable. The goal of this diagnostic is to identify clusters with similar types
of response. The results in the map are somewhat unclear, but the map does suggest two notable
clusters, over which the unbinned slopes are similar. A more formal approach to this question is

developed below.

6.3. Posterior Inferences

The maximum posterior estimates and asymptotic uncertainties provide a good approximation
to the posterior that can be used to address a variety of questions, including but not limited to
localization. By using Markov Chain Monte Carlo (MCMC) simulation techiques [69, 61, 8, 30], we
can compute posterior probabilities more accurately and can account for more complex features in
the model. The result of an MCMC simulation is a sample from the full posterior distribution of the
parameters, including varying sub-models and atomic components, from which any functional of
this distribution can be easily estimated. All of the methods described in the previous sub-section
can be based on posterior samples without loss of generality and with some gain in flexibility
(because there is no restriction to a smooth posterior). For example, we can estimate both the
domination probabilities such as P{yr, > vr. | Y } and the variant P{y:, > 0,7y, = 0| Y }, which
uses the atomic component in the responsiveness distribution. If the latter is large, it suggests that
the voxel is responsive to the study task but not the trivial task and in principle, can distinguish
areas recruited specifically for semantic processing. (See section 7 for details on the sampling
procedures.) Our goal here is to show how a posterior sample can also be used to address new
kinds of questions with fMRI data. Genovese et al. [36] provides further examples from the study

of eye movements.

Assessing Monotonicity: Responsiveness. With respect to the responsiveness parameters, the
monotonicity question centers on whether yr, > vyr, > v, > 1. for a given voxel. This would imply

that the size of the hemodynamic perturbation increases with task difficulty whenever semantic
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processing is required. The posterior monotonicity probabilities

P{’YT3 Z ’YTQ Z ')’Tl > Ve | Y} (7)

quantify the support in the data for monotonicity in each voxel. Figure 8f shows a map of these
probabilities computed from the data. The picture reveals that the structure in the main cluster
(lower right), which has been a persistent feature through most of the images displayed here, is
consistent with the monotonicity hypothesis. On the other hand, the small cluster at the middle
right shows little indication of monotonicity. There are several possible reasons why monotonicity
is not apparent for the latter cluster, but we leave the interpretation of this result to scientific
argument. The key point here is that our approach makes the question accessible quantitatively
and provides a measure of uncertainty with respect to the question. Note that several variants
of the monotonicity probabilities above that add more stringent conditions can just as easily be
computed.

Although it is possible to construct a classification procedure for monotonicity, it is neither
as natural nor as effective. A hypothesis test for classifying monotonicity could be constructed by
combining the results of one-sided, pairwise tests between successive conditions. However, since
equality does not preclude monotonicity (e.g., yp, > Y, = yr, > 7Yz still counts as monotonic),
the null hypothesis in this case is composite. The error rates of the combined test are also difficult
to compute, providing an unsatisfying assessment of uncertainty. This is a particular problem
because the the BOLD signal changes have a limited dynamic range, possibly leading to a ceiling
effect when the response is large. In such a case, the monotonicity probabilities may be reduced
somewhat when the uncertainties are large, but the hypothesis test will have a drastically inflated
tendency to erroneously classify such voxels as non-monotonic.

Assessing Monotonicity: FExtent. To study the extent of activity, we must consider many
voxels simultaneously. The standard approach to this question is to count the number of voxels
that are classified active in each condition and compare the resulting counts. One problem with
this approach, however, is that it provides no measure of uncertainty for the estimated difference
in counts. Our approach solves this problem. For each voxel v, let N;, be the indicator of the event
{7r,v > Yo}, fori =1,2,3, and let N; = 37, N, for each i. We will use the posterior distribution
of (N1, N9, N3) to address the monotonicity question, getting either estimated differences with

associated uncertainties or the probability P{ N3 > Ny > N; | Y } which embodies both. In general,
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the (Niy, Noy, N3,) all have different distributions, but using the Fast Fourier Transform (FFT),
the convolution can be computed efficiently. The joint probability mass function of each vector
(N14, Noy, N3,) is supported on the lattice {0,1}® and can be extended by zeros to a larger lattice
containing {0,1,...,V}?, where V is the total number of voxels being considered. If we assume
the voxels to be independent, the distribution of (N1, N2, N3) can be obtained by multiplying the
individual Fourier transforms over the larger lattice and inverting the transform. In practice, we
can take V to be much smaller than the total number of voxels because, for the vast majority of
voxels, there is only negligible mass away from 0 for any of the N;,’s. V' will also be small if we are
focusing on local changes. This makes the computation feasible since the lattice scales as V3. With
these data, only 147 voxels have posterior probability bigger than 0.001 away from (0,0,0); we thus
use a lattice of edge length 256 to compute the Fourier transform. An alternative strategy is to
simulate draws from the distribution of (N7, No, N3) by generating and adding (Ni,, Noy, N3,)’s.
This is computationally efficient for both small and large V but does add some uncertainty to the
estimated probability. In our example, P{ N3 > Ny > N; | Y } ~ 0.67, which appears consistent
with monotonicity in extent. As mentioned earlier, there is no good way to address this question

by combining voxelwise classifications.

There are several variations of this idea: it is possible to look for strict ordering of the sets
of active voxels across conditions and to study the changes in extent local to a given cluster of
activity. Note that in making such posterior inferences, we can restrict our attention to apparently
responsive voxels (e.g., as measured by a domination probability above some threshold) without
selection bias. In other words, if F(Y) is a functional of the joint posterior over the parameter
space, then P(A | F(Y),Y) = P(A|Y) for any subset A of the parameter space, since F(Y) is

trivially Y-measurable.

Assessing Monotonicity: Integrated Response. An alternative to looking for changes in extent
or magnitude individually is to combine the two measures. One useful way to do this is to integrate
the responsiveness over a specified region of interest; that is, examine the posterior of the functionals
I'c(R) = [z 7c(v) dv for condition ¢ and for a fixed set of voxels R. A new technique that some fMRI
researchers are developing will soon allow them to demarcate anatomical regions of interest, subject
by subject, by mapping between functional and high-resolution structural images. Although the

precise location and shape of these regions may vary across individuals, the regions can be taken
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as comparable from a functional point of view. Hence, many comparisons of interest will focus on
changes in the response within such regions. As we will discuss in section 8, this provides a tool

for making inferences across subjects.

To illustrate how our method facilitates region-of-interest analysis, we compute the distribution
of T'.(R) for ¢ = Tr, T1, Ty, T3 for an arbitrary region of 21 contiguous voxels in the language area
(surrounding the most notable cluster of activity in the other maps). Figure 9 shows P{T'.(R) > u }
as a function of u > 0 for each of these conditions. These curves can be computed directly from
the posterior sample, or we can use the sample to construct the distribution of of the sum I'.(R).
Either the empirical distribution or a normal kernel density estimate provides an approximation
that is easy to work with; we used the latter here. The curves are not all 1 at u = 0 because there is
some posterior probability of zero responsiveness in each condition. The curves shown in the figure
strongly suggest monotonicity. These plots allow scientists to compare the integrated response over

the region across conditions or subjects. This technique is explored in more detail in [36].

Characterizing the Functional Form. Given monotonicity, the next step is to investigate the
specific form of the relationship between response and task difficulty and to compare it with the
predictions of cognitive theories. These theories make specific predictions about the functional form
of this relationship for each individual. For example, consider the following simplified predictions
of a resource-based theory: an individual with a large resource supply should only show an increase
in response intensity for the most difficult tasks, whereas an individual with a moderate supply

should show an increased response for somewhat easier tasks as well.

There are several approaches to characterizing this functional form; here we examine a graphical
technique that makes it easy to identify clusters where the response-difficulty relationship is similar.
Specifically, we derive the joint posterior distribution of successive responsiveness differences, (yr, —
Yrys Y3 — Yr,)- When monotonicity holds, most of the mass will be concentrated in the positive
quadrant. How the mass is distributed in this quadrant indicates the support for each the four
possible monotonic forms (e.g., the two segments of the curve being flat-flat, flat-up, up-flat, or
up-up). Each “pixel” in Figure 10 shows this joint distribution for a given voxel. Only the positive
quadrant is shown in each case, and voxels with less than 0.001 of the mass in that quadrant are left
blank. T'wo voxels in the Figure are marked with arrows. These distributions exemplify a difference

in response shape. The marked voxel on the right tends to show a large change in responsiveness
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between T; and T2 and a smaller but non-trivial change between T2 and Ts. The marked voxel
on the left, on the other hand, shows most of its responsiveness change between Ty and Ts; the
distribution of vy, — 1, is concentrated near zero. Note that this analysis treats the differences
among the conditions as ordinally related; more specific information about the differences in task
difficulty would be required to fit parametric forms to the responsiveness curves.

Summary. The inferential procedures described in this section show that it is possible to use
fMRI data to directly address complex scientific questions, many of which cannot be easily addressed
with currently available methods. Our approach allows scientists to design procedures that target
their specific questions and quantitatively assess the effectiveness of the data for answering them.
The inferences are built on the foundation of an accurate model for the data and account for the

full range of uncertainties involved.

7. Computational Techniques

Fitting our model to data and implementing the inferential procedures described above raises a
number of computational challenges. The images from fMRI experiments range from 10,000 to
100,000 voxels in the brain itself, and each of the time series must be processed automatically
despite great variation in structure among the voxels. The large number of voxels requires efficient
algorithms and the diversity among voxels requires robust methods that can adapt to structural
differences. In this section, we describe the computational techniques that we employ. The model
fitting and a wide range of inferential queries are implemented in the publicly available software

package Bayesian Response Analysis and Inference for Neuroimaging (BRAIN) [33].

7.1. Initial Data Processing

As described earlier, the raw data produced by an MR scanner is collected in the Fourier domain.
The raw data are subject to several sources of bias and mis-calibration and must be specially
processed to reconstruct good quality images. While it would be ideal if we could integrate these
sources of variation into the model, that is not computationally feasible at this time. Instead, we
use the FTASCO (Functional Image Analysis Software, Computational Olio) software package [24]
to carry out all of these pre-processing steps and take the resulting spatio-temporal data as input
to our procedures.

The FTASCO processing stream involves five core steps: mean correction, baseline correction,
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deghosting, image registration, and reconstruction. Mean correction involves a multiplicative nor-
malization of each image to a common global mean. Baseline correction is an adjustment for high
spatial-frequency bias. Deghosting reduces the intensity of aliasing artifacts (“ghosts”) in the im-
ages. Image registration refers to the alignment of successive images to account for and reduce the
impact of subject movement. In reconstruction, the raw data are transformed from the Fourier to

the image domain.

7.2. Posterior Maximization

Maximum posterior estimates are computed via direct numerical optimization; the objective func-
tion is the log un-normalized posterior. The procedure requires that the priors be at least C?, so
the non-standard priors used during posterior sampling must be approximated by a smooth distri-
bution. While it is possible to use a non-smooth objective function, the algorithms for optimization
in this case [57, 60] are very inefficient. The procedure can accept arbitrarily defined distributions
which are then interpolated to compute derivatives, but it is usually desirable for performance rea-
sons to obtain derivatives analytically. Numerical difference approximations, when necessary, are
computed by Richardson Extrapolation [17] to improve accuracy. We use the BFGS version of the
variable metric optimization algorithm [57] while enforcing bounds on the parameters through an
active set method. Upon arrival at the maximizer, the algorithm is restarted after a perturbation
to the parameters to validate and refine the result.

The standard errors of the estimates are derived from the inverse observed Fisher information
at the mode which is obtained from the computed Hessian at the optimum. When available, as
with the default priors, we use analytic second derivatives. Otherwise, if analytic first derivatives
are available, we use first differences of the gradient, refined with Richardson Extrapolation. When
no derivatives are available analytically, we approximate the Hessian components with second
differences, again refined with Richardson Extrapolation. We take care near the boundaries of
the parameter space to acquire a well-defined value when differencing is used. When the optimal
parameter values are sufficiently far from the boundary, we apply central differences, but near a
boundary we use forward or backward differences. Although this loses some precision in calculated
derivatives, it tends to avoid catastrophic failure of the procedure and give workable results.

When a number of sub-models are to be included in the analysis (e.g., various responsiveness

parameters are allowed to take the value 0), the posterior (and likelihood) are maximized for each
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such model at every voxel. We estimate Bayes Factors with a form of the Laplace approximation
[21] or with the Schwarz criterion [58]. When parameters are pushed to their bounds and thus a
smaller sub-model, the larger but equivalent model is penalized by the full difference in degrees
of freedom. We are still assessing more detailed corrections to the Schwarz criterion as in [55].
The Bayes Factors are used to compute posterior probabilities over the sub-models, and results are
averaged over the different models. All the parameters maintain a consistent interpretation across
all the models, although the hemodynamic shape parameters play no useful role in the null (no

response) sub-model.

7.3. MCMC Sampling

Most of the posterior inferences we would like to make require a more accurate expression of the
posterior distribution than is available through a simple normal approximation. By drawing a large
sample from the posterior, most functionals of the distribution can be computed quite accurately.
The sample is obtained by running a Markov Chain Monte Carlo (MCMC) simulation independently
for each voxel. As spatial structure is added to the model, the simulations for different voxels will

necessarily become linked.

7.3.1. Basic Sampling Strategy

For the voxelwise model, the sampling strategy is a mix of Metropolis and Gibbs steps, depending
on the priors used. We generally use a fixed scan order across the components for convenience,
although a random scan is not difficult to implement. Sampling occurs in three stages: an optional
pre-scan where the initial Metropolis jumping distributions are adjusted, a period of burn-in where
no output is recorded, and the final sampling. The maximum posterior estimates are used as the
starting point for the chain; if these were not computed, the parameters are initialized by several
iterations of a backfitting algorithm [40] where each component is estimated in succession using the
partial residuals with respect the other components.

The pre-scan stage is intended to automate the initialization of the Metropolis candidate dis-
tributions. With many thousands of voxels, it is not convenient to monitor and tune the individual
chains by hand. Although the BRAIN software produces diagnostics that expose problems with
the choice of candidate distributions, it is far preferable (and less time consuming) to start with

reasonable values. The approximate covariance matrix from the posterior maximization is dilated
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by a fixed factor and then decomposed into successive conditional distributions using the Cholesky
factorization [38]. These variances are used to derive the initial jumping widths. The pre-scan
phase consists of a brief sampling run during which the rejection rate and average length of moves
is recorded in blocks of samples for all of the parameters that require a Metropolis chain. After
each block, the jumping widths are adjusted by interpolating the recorded measures over previous
blocks to either bring the rejection rate closer to a fixed target (e.g., 50%) or to maximize the
average move length. Both of these are heuristic criteria, but they tend to lead to good jumping

widths with little effort.

The burn-in phase is a long sampling run during which the chain is allowed to equilibrate
towards its stationary distribution. No output is recorded during this phase. The length of the

burn-in is configurable, but by default, we burn-in for 5000 samples in each parameter.

The sampling phase begins at the end of burn-in and continues for a specified number of
samples. When possible, we sub-sample to reduce correlations in the sequence, although naturally
this adds quite a bit to the running time of the chains. Since there are so many chains running
over the data set, efficiency is critical in practice, and we generally run the chain as long as we can
tolerate for the analysis. With independent voxels, the algorithm is easily parallelizable, and we
can reduce the total number of voxels substantially by masking out those outside the head. The
voxels can also be ordered based on the preliminary asymptotic results (e.g., maximum posterior
estimates). In this way, all of the interesting structure can be explored in a fraction of the total
running time. Our default is 10,000 samples after burn-in for standard image sizes, but for very
high-resolution images this is often reduced. One area that needs development here is convergence
diagnosis since multiple chains and graphical monitoring are inconvenient in practice. We currently
use only rudimentary measures of chain performance during analysis, but we are working to improve
this. As part of a “quality control” effort, we examined the performance of the sampling scheme
on a sample of voxel time series (from several experiments) with different types of structure. With
graphical diagnostics, correlations among parameters, and various standard convergence diagnostics
[16] based on parallel chains with different starting points, we evaluated the effectiveness of sampling
with the configurations we use in practice. These results suggested that the chains are mixing quite

well and also that the normal approximation is quite reasonable in most cases.

Our sampling strategy varies among the model components; here we describe the strategy for
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each component assuming the default priors and an additive combination of overlapping responses.
There are variations on these strategies when the defaults are not used, but this gives a general
picture of our sampling algorithm. The baseline parameter mediates a number of the other pa-
rameters and so has a complicated complete conditional even with the default priors. We use a
symmetric random walk Metropolis chain for y, but as part of the move, we adjust the responsive-
ness parameters by the ratio of the candidate to the current baseline so that the activation profile
does not change as a result. The complete conditional for the drift and responsiveness parameters
can be sampled directly. We first sample v and then the drift profile conditional on « because
the non-negativity constraint on the responsiveness complicates its distribution. The conditional
distribution for « given everything but the drift is a multi-variate normal truncated to the positive
orthant. To sample from this distribution, we draw the components of v one at a time from succes-
sive univariate conditional distributions. The Cholesky factorizations of the covariance matrix and
its inverse allow us to derive the mean and variance of these conditional distributions iteratively. We
then draw from a univariate truncated normal using the inverse distribution function method when
the mean is large enough to ensure precision in computing the normal distribution function and a
rejection method (based on an exponential approximation to the normal tail) otherwise. The drift
profile can then be drawn as a whole from its complete conditional. The shape parameters capture
most of the nonlinearity in the model. We choose from among two different types of Metropolis
moves for these parameters: (i) a log normal random walk in the parameters individually, and
(ii) coupled jumps in related pairs (lag-on and attack, lag-off and decay, etc.). As an example of
the latter, we use two seperate Metropolis steps, one of which keeps lag-on + attack constant while
varying their relative size and the other which changes the sum while keeping the relative size the
same. These diverse moves provide an automatic reparameterization voxel to voxel that reduces
the correlation among the parameters and improves mixing of the shape. The smoothing hyper-
parameter for the drift is sampled using a log normal random walk and poses no complication.
Finally, the noise precision is drawn from its complete conditional which depends on the residuals
and the degree of drift smoothing. We take a great deal of effort to make all these computations
as efficient as possible and employ a number of low-level coding tricks to substantially reduce the

overhead.
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7.3.2. Model Jumping

For varying the structure of the model in discrete ways, we use the reversible jump framework
developed in [39]. This allows a single Markov chain to travel among distinct model spaces while
maintaining detailed balance; it consequently becomes feasible to work with posteriors that have
support in all of these spaces. The resulting inferences can be expressed within a particular model
or by averaging across models. We use this model jumping technology to allow for varied structure
in the responsivenss parameters and the drift profile (the latter only when using adaptive knots).
Since these components maintain their interpretation in every sub-model, we average over the

models to account for uncertainty in the structure.

As described in section 5, we allow the responsiveness parameters to take the value 0 (no
response) with non-zero prior probability. This is equivalent to including a family of sub-models
over which every subset of the experimental conditions is constrained to yield no response. At
each sampling iteration, v is updated by the Gibbs’ step as described above, and then with some
probability a model jumping move is attempted. There are two types of moves, inclusion of a zero
component or the removal of a non-zero component. The probabilities of the different move types
are constrained if detailed balance is to be maintained for transitions across the spaces; it is usually
simplest to keep the probabilities of moving in each direction equal. If a model jump is to be
made, we select a candidate condition (i.e., one of the responsiveness paramters) of the appropriate
type (zero or nonzero) at random for inclusion or removal. Our basic moves involve both the
responsiveness parameter and the baseline. The baseline is adjusted simultaneously as part of the
move since the inclusion or removal of a condition impacts which measurements provide information
about the baseline signal. Without this adjustment, there would be substantial lack of fit and few
such moves would be accepted. Let £; and > denote the lengths in the design corresponding to the
zeroed conditions not including the candidate and the candidate condition. The simplest move takes
(,77) to (€1 +22(147y))/ (€1 +£2) s, 0) for removal and (p,0) to ((£1+42)/ (61 +£L2(1+2))u, z), where
z is a random responsiveness candidate that is independent of y. This move follows the template
given in [39] and hence satisfies detailed balance. A generalization of this is to perturb p by an
independent random amount (i.e., (g,7) to ((€1 +£2(1+7))/(¢1 +£2)p+ w,0) for a Normal w with
small variance and similarly in the other direction). Although it adds variation to the transition,

it appears to increase the rate of flow across models as long as the variance of w is not too large.
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This satisfies Green’s dimension matching condition but with a higher order since we are generating
perturbations in both variables.

Our approach is similar for the drift when adaptive knots are used. Here, we take advantage
of the viewpoint that the drift profile is the parameter, that is, the posterior is invariant under
mappings that leave the profile unchanged. The orthogonalized splines work well for the adaptive
handling of drift because (i) updates to the knots are computationally efficient [38] and (ii) orthog-
onality of the basis functions allows the components to be treated independently. Both the number
K and positions k of the knots are allowed to vary, although we enforce an upper bound on the
number of knots. At every sampling iteration, we take a Gibbs’ step as described above to change
the structure of the drift profile. Then with some probability, we take a model jumping move, one
of three types: changing the position of a knot, adding a knot, and removing a knot. Again, the
probabilities of these move types are constrained; we typically take the probabilities to be equal for
every possible move. When there K = 0, then no knots can be removed, and when K = K,,,,, no
knots can be added, but this does not impact detailed balance. In the adaptive case, we wish to
have only a few knots (e.g., 2-5), but it facilitates mixing among the models to allow K,,,, to be
larger. Specifically, to move the knots across a large portion of the domain usually involves moving
through a low likelihood region which is unlikely to occur; it is thus easier to add knots in a new
location and remove unneeded knots elsewhere in order to substantially change the structure of the
profile. See [39] for a further discussion of this point. When adding, removing, or moving a knot,
the effected knot position is selected at random. The basis is then reformatted to make it easier
to update that component. Moving a knot involves randomly perturbing the selected knot within
the bounds of its neighbor; the dimension of the model is fixed but this is a jump between different
subspaces. The simplest way to add or remove a knot is to change a single coefficient, setting it to
zero when removing or drawing it from a distribution independent of the profile when adding. This
attains detailed balance but does not mix very well because only a small perturbation to a single
component leads to an acceptable change in the profile. We fix this problem by also updating the
other components of the profile as part of the move. The dimension matching requirement of [39]

is satisfied, mixing is improved, and detailed balance is maintained.
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8. Discussion

8.1. Assessment

Our model has several notable advantages over traditional methods for analyzing fMRI data. It
attempts to capture the structure of the time course directly, dealing with drift and allowing for
changes in the shape of the hemodynamic response. The fit to the data is thus more precise than the
implicit forms underlying most classification tests. Among the more recently developed methods,
only the model of [50] has similar advantages. Our model also handles complex experimental
designs and accounts for important features of the drift and response, such as the undershoot dip.
Moreover, it is modular, adaptable and is built on substantive information about the underlying
processes.

The inferences we can derive under our model subsume the traditional classifications. We can
address questions of localization but also a wide range of more general questions, including those
about changes and spatial relationships in the response. Our methods allow scientists to directly
target the questions they want to address. All of our inferences are accompanied by a measure of
uncertainty in contrast to the results of classifications. Moreover, many spatial selection biases are
avoided by using posterior probabilities, and our approach offers a direct treatment for multiple
comparisons in terms of the probability calculus.

The main weakness of our approach is the level of effort that is required to derive the inferences.
There are two aspects to this. First, fitting the model requires nontrivial computation, with an
entire data set taking on the order of a day to analyze. With parallelization and improvements in
computing technology, however, we expect this problem to become less severe over time. Second,
the specific form of the model depends strongly on the imaging configuration and the nature of the
design, so investigators must take some care in setting up the analysis. A related problem is that
using simulations to derive the results includes an extra source of uncertainty and introduces some
non-determinism. In practice, this is a small effect and can be reduced with longer simulation runs,
albeit at a cost of further computing time. The dependence of the results on the choice of priors
might also cause concern for some. We have found that specific shape of the priors does not have
a large impact on the results as long as the basic range of the parameters is suitably constrained.
Our goal has been to include generally accepted information about the processes into the model, so

the priors we use reflect reasonably uncontroversial constraints. Moreover, the shape of the priors
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can be changed with ease. Finally, our current implementation does not account for all of the
complexity in the data but can be easily extended to incorporate new features. We describe some

of these below.

8.2. Extensions

In this paper, we have presented a basic implementation of our modeling framework that accounts
for the main sources of variation in the data. However, there are several directions in which our
implementation can be extended to deal with more of the complexity.

Noise Model. Adding more general noise processes to the model poses no difficulty as long
as the likelihood can be reasonably approximated. For example, with ARMA models, we can
use a conditional likelihood or compute the likelihood in the spectral domain [10]. To incorporate
physiological noise, we can add particular spectral components to the noise autocorrelation function
whose intensities are included as parameters in the model.

Response Variations. Our parameterization of responsiveness assumes that the response for
a particular condition is constant across time, but in the data, there tends to be a component of
within-condition variation. It is straightforward to incorporate these variations into our model and
to estimate the corresponding variance components. We add a level to the hierarchy that includes
responsiveness parameters <y, .. for epoch e of task condition ¢ at voxel v. Those v, .. in the
same voxel and condition are then taken as being drawn from a single distribution that depends on
the overall responsiveness v, . and a variance component Tg,c, which is itself constrained. Beyond
extending the model, this formulation has further application to the problem of assessing reliability
for fMRI methods; see [35].

Dependence Between Shape and Responsiveness. Our parameterization of the shape of the
hemodynamic response curve does not depend explicitly on the intensity of the response; rather,
the shape is scaled appropriately by v in the activation profile. There is some recent evidence
[72], however, that the shape varies with amplitude in a non-additive way. For instance, large
responses appear to exhibit a broader plateau and later decay. As such relationships are clarified
by further research, we can adjust the model to include this dependence. The main cost of this is
computational, so we have thus far maintained the independent parameterization.

Spatial Structure. A common statistical approach for spatial modeling is to put a Markov Ran-

dom Field (MRF) prior on the underlying structure [7, 31, 44, 32]. Besides efficiency of sampling,
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an advantage of this approach is that the global relationships are specified only through local de-
pendence. Unfortunately, the isotropic neighborhoods typically chosen to define an MRF prior are
not sensitive to changes in the dependence relationships across boundaries, and thus MRF priors
tend to blur the boundaries in an image. Geman and Geman [31] show how adding another layer
to the model—a process that specifies connections between sites and thus determines regions—can
improve estimation of boundaries. Johnson et al. [42] generalize this “line process” to allow for
more efficient estimation. Johnson et al. [43] develop an effective approach for segmenting and
recovering images with large-scale boundaries that is based on a hierarchical model.

In fMRI, however, the role of the spatial model is not image reconstruction or segmentation per
se; rather, it is identifying localized regions with consistent physiologic properties. These regions
of dependence form the sets over which the model can justifiably combine information about the
parameters. A particular challenge here is that tissue boundaries in the brain are convoluted and
piecemeal. The cerebral cortex, a thin layer of cells where most of the interesting neural action takes
place, is an intricately folded surface which appears and disappears in the images as it meanders
through the slices. There are many cases in which tissue type, vasculature, and functional response
change on a millimeter scale. For all of these reasons, the regions of dependence are plausibly local,
and must be able to take on varied and often non-convex shapes.

A complete model for fMRI data needs to account for the spatial relationships among the
fundamental processes that generate the data. The shape of the hemodynamic response function,
the magnitude of the response, the impact of physiological variations, and other such features
vary in their structure across the brain. Modeling these relationships increases the precision of
inferences because multiple voxels contribute information about features they have in common. We
are currently exploring a new approach to spatial modeling that is adapted to fMRI. This involves
adding new layers to the hierarchy in our model to relate the model parameters across voxels. The
spatial model uses a mixture of MRF distributions in which the cliques and potentials defining the
MREF are allowed to vary locally. In this way, the parameters adapt to borrow strength across local

regions when there is sufficiently common structure.

54



8.3. Inferences Across Subjects.

As discussed in section 2.3, an important issue is the need to combine inferences across subjects.
One approach to this problem is to abstract away from the specifics of the anatomy and to find
a basis for comparison that internalizes anatomical differences. For example, the anatomically
specified regions of interest defined in section 6 provide reasonable functional units for comparison.
The integrated response measures I'.(R) over such regions can then be plausibly compared across
subjects; see [36]. More generally, let G be some functional on the parameter space that does
not depend on the explicit coordinate system of the image for a given subject. G might be the
integrated response over a pre-specified region of interest or the indicator that there is a location
dissociation between two tasks (c.f., section 2.3). Suppose for discussion purposes that G depends
only on <, and that the J subjects in the experiment contribute data Y7,...,Y . If we are willing
to assume that these data are drawn i.i.d. from some population distribution, we can combine the
posterior distribution of G across subjects to make inferences about that population. For example,
the population expectation of G can be estimated by the average of the posterior expectations:
E(G(v)) = (1/J) }']:1 E(G(v) | Yj). Variances can be estimated similarly using the standard
conditioning identity. Although this may represent an unorthodox use of the posterior distribution,
it is an intuitive way to combine information across subjects.

A similar problem involves relating the fMRI results from multiple subjects to behavioral
covariates. For example, one question of interest in the example of section 6 is how the relationship
between response and task difficulty depends on the individual subject’s working memory capacity.
Here, a variety of behavioral tests can be used to measure working memory capacity independently
of the fMRI data; the measured capacities serve as a covariate for exploring the impact of resource
limitations on the changes in response across sentence difficulty. A basic analysis here would be
to bin subjects according to the measured capacity and compare the shape of the (yr,,vr,,Vr,)

curves across and within groups.
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9. Conclusions

There is tremendous diversity in the range of questions to which fMRI is being applied. Scientists’
choices of how to address these questions with the data are influenced by two conflicting forces: the
desire for standardized procedures for statistical analysis and the desire for precise and scientifically
relevant inferences. The localization paradigm has been so widely embraced in large part because
the corresponding statistical analyses are automatic. But automaticity has a cost: as the questions
posed become more sophisticated, the chain of inference between data and conclusions is strained
and stretched, and scientists are forced to make interpretive leaps to connect the “where” to the

”. We have proposed a different approach, in which scientists pose a set of questions of

“why
interest and tune their inferential procedures to address these specific questions. The advantages
are improvements in both the precision and scientific relevance of the inferences; the cost is that
more careful thinking is required to relate the statistical and scientific aspects of the problem. We
use this inferential approach in the context of a detailed model for fMRI data that we designed
to accurately capture the critical sources of variation. The model is modular and extendable and
offers improved precision relative to current methods of fMRI analysis.

Beyond fMRI, every aspect of our framework is applicable in some way to more general spatio-
temporal problems, from the specification of the model as a sum of nonlinear functions with distinct
structure to the design of inferential procedures that target specific scientific questions to the
computational techniques for fitting the model with a vast supply of data. When analyzing large
and complex data sets, there is a natural tendency for scientists to search for simple and automatic
statistical procedures. But as computational resources continue to improve, a more substantive

approach like the one described here becomes more and more practical, and the more complex the

problem, the greater the potential gain.
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Figure Captions

Figure 1. Two voxelwise time series from the finger tapping experiment. The vertical lines show
the separation between the conditions, and the conditions are labelled on the horizontal axes along
with the image index (1-64). The vertical axes give the measured signal values. The time series in
the top panel shows an apparently active voxel; note the correspondence between tapping and the
pattern of signal change. The time series in the bottom panel shows little evidence of activity.

Figure 2. Illustration of two experimental designs, indicating the task being performed at every
time throughout the experiment. The horizontal axis shows the corresponding image index, and
the heights of the line segments serve only to separate the conditions. Panel (a) describes a simple,
alternating two-condition design, using the finger tapping experiment as an example. Panel (b)
shows a more complicated design with six conditions (A-F). The epochs here are shown at two
separate heights to make the divisions more salient.

Figure 3. A t-map from the finger tapping experiment for a single slice of the subject’s brain
overlaid on the corresponding mean image. The white pixels indicate the locations for which a
t-statistic comparing the signal in the tapping and rest conditions exceeded 4. This is an “axial”
slice, orthogonal to the long axis of the subject’s body. The image is shown according to radiological
convention, so the right side of the image is the left side of the subject’s brain. The bottom of the
image is the back of the subject’s head.

Figure 4. Two voxel time series from adjacent voxels. One (a) shows substantial signal drift and
the other (b) shows little. The superimposed curve in both cases shows the fitted value under our
model; neither exhibits a strong activation response. The vertical axis in each case is the signal
intensity, in arbitrary units, and the horizontal axis is the image index.

Figure 5. A correlation map showing the correlation coefficient of every voxel time series in the
image with one specific voxel time series. The grey scale ranges from -1 (white) to 1 (black). Note
the range and non-locality of the spatial correlations.

Figure 6. A typical shape for the hemodynamic response in fMRI data to a single period of task
performance. The time during which the task is performed is marked, and the curve shows the
pattern of signal change that results. This curve is a polynomial bell function, as described in the
text. The labels indicate the role of the various shape parameters in our model. The rise, fall, and
skew parameters here affect the shape of the corresponding part of the curve.

Figure 7. A voxel time series with an apparently large movement artifact near the 425th image.
In this case, the movement could be clearly detected visually by examining the sequence of images
in an animated loop.



Figure 8. Various results using the example data for a single slice of the subject’s brain. The solid
outline copied on each map encloses the brain to facilitate comparison across panels. The gray-scale
in each panel refers to a different quantity as described below.

(a) The mean over time of the functional images for a single slice of the example data set. The
gray-scale for this panel shows the signal intensities in the image. The fuzzy ring of voxels
surrounding the brain is the fat outside the subject’s skull.

(b) A normalized contrast map comparing conditions T3 and Tr. This map is not thresholded,
but since the normalized contrasts include a potential contribution from sub-models with no
responsiveness, as described in the text, the resulting shrinkage has much the same effect. The
gray-scale for this panel shows the values of the normalized contrast.

(c¢) A traditional t-map thresholded at the arbitrary but often used value of +4. The nominal
significance levels suggested by theory do not give the expected error rates, most likely because
of complexity in the noise distribution that is unaccounted for by the test. The gray-scale for
this panel shows the t values.

(d) Domination probabilities P{~yr, > vr. | Y }. The large number of nearly white voxels results
from a posterior mass for the corresponding responsiveness parameters concentrated at zero.

The gray-scale for this panel shows the probability values.

(e) Binned values of the regression slope coefficients for voxels with domination probabilities

P{ maX(VTuW’TyVTs) > Ve Y} > 0.01

as described in the text. To make the figure visually interpretable, the values were binned by the
t-statistic of the slope coefficient (used as benchmark only). The pixels are assigned values 1, 0,
and -1, where the sign indicates the direction of the slope and nonzero values were “significant”
and the 0’s were not. The gray-scale serves to distinguish these three values.

(f) Monotonicity probabilities P{ vz, > vyr, > ¥r, > 7r. | Y }. The gray-scale for this panel shows

the probability values.

Figure 9. Estimates of the marginal probabilities P{T'.(R) > u } as a function of u for four task
conditions Tr, T}, T, and T3. The selected region is a set of 21 contiguous voxels surrounding the
main cluster on the lower right in the previous maps.

Figure 10. Samples from joint posterior distributions for (yr, — ¥r,,¥r; — Yr,) restricted to the
positive quadrant. The figure shows the results for the 21 contiguous voxels surrounding the promi-
nent cluster in the lower right Figure 8f, with one icon per voxel. The axes for each icon range from
0 to 0.05 in each direction. The structure of the distributions gives an indication of the shape of the
response changes from T to 75 to T3. Two voxels are marked with arrows, one on the left and one
on the right. The marked voxel on the right tends to show a more pronounced change between T;
and Ts than between Ts and Ts. The marked voxel on the left tends to show a very small change
between T; and T, but a large change between Ts and Tj.
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