Appendix: “Envelopes”




Appendix




The Benjamini-Hochberg Procedure (cont'd)

e Let Gy, be the empirical cdf of P™ under the mixture model.
lgnoring ties, ém(P(@')) = 1/m, so BH equivalent to
t

Teu(P™) = max {t: Gm(t) = a} .

as Storey (2002) first noted.

e One can think of this as a plug-in procedure for estimating

w*(a,G) = max {1 G(1) = 3} |
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e Genovese and Wasserman (2002) showed that Ty converges
to a fixed-threshold at u*.



Optimal Thresholds

e In the continuous case, Benjamini and Hochberg's argument
shows that

E|FDP(Tu(P™))| = (1 - a)a.

e T he BH procedure overcontrols FDR and thus will not
in general minimize FNR.

e This suggests using Tpj, the plug-in estimator for

(a, Q) = max{t: Gy = L= a)t} |

84

e Note that t* > u*. If we knew a, this would correspond to using
the BH procedure with /(1 — a) in place of a.



Optimal Thresholds (cont'd)

eForeach 0 <t <1,

E(FDP(t)) = (1(;(;‘;)75 + O ((1—t))
E(FNP(t)) = a 1 — ggg + O ((a+(1-a))™).

e Ignoring O() terms and choosing t to minimize E(FNP(¢)) subject
to E(FDP(%)) < «, yields t*(a, G) as the optimal threshold.

e Tp; considered in some form by Benjamini & Hochberg (2000),
Storey (2003), and Genovese and Wasserman (2003).



FDP

Results: Py 90% Confidence Envelopes

For £ = 1,10, 25,50,100, with 0.05 FDP level marked.
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FDP

Results: P,y 90% Modified Envelopes

For £ = 1,10, 25,50,100, with 0.05 FDP level marked.
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Results: (0.05,0.9) Threshold versus BH

Sample Slice




Computing P,y Envelopes

o Let ¢,,;; denote the a quantile of the Beta(k,m — j + 1) for
k<j<m.

e Let J. be the index of the smallest Pjy which'is 2> g1

e The confidence envelope for the P;-test is achieved by the
configuration of nulls (0) and alternatives (1) in the ordered

p-values. T—k
0.--0T---T0---0
k—1
1 if ¢ < k=1
FOPL(t) = méis i <t<it

\



FDP

Computing P, Envelopes (cont'd)
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Choice Among P, Tests

e For any k, let V. = J,. — k.

e In any pairwise comparison of Py and P tests with k < K
there are only three possible orderings:

A. P}, dominates everwhere if Vi, > V}/,

F-1] k-1
C. Otherwise, the two profiles cross at Jis with value (k' —1)/J,..

K —k K —k
B. Py dominates everywhere if Vi» >V} [1 + ]

e The result for any k£ can be put in terms of Uniform hitting times
for a boundary of the form G(gy,15) =~ G(Gmp/(m — 7+ 1)).

The distribution of these hitting times can be computed exactly
(with difficulty) via Steck's equality.



False Discovery Control for Random Fields

e Multiple testing methods based on the excursions of random
fields are widely used, especially in functional neuroimaging (e.g.,
Cao and Worsley, 1999) and scan clustering (Glaz, Naus, and
Wallenstein, 2001).

e False Discovery Control extends to this setting as well.

e For a set S and a random field X = {X(s):s € S} with mean

function u(s), use the realized value of X to test the collection of
one-sided hypotheses

Hy s : p(s) =0 versus Hy 5 : p(s) > 0.
Let S ={s€S: u(s) =0}



False Discovery Control for Random Fields

e Define a spatial version of FDP by

AMSopN{seS:X(s)>t})
AM{se S:X(s)>t}) ’

where \ is usually Lebesgue measure.

FDP(t) =

e As in the cases discussed earlier, we can control FDR or
quantiles of FDP.

e Our approach is again based on constructing a confidence envelope
for FDP by finding a confidence superset U of 5.



Confidence Supersets and Envelopes

1. For every A C S, test Hy: A C Sy versus Hy : A Z Sy
at level y using the test statistic X(A) = supgc4 X (s).

The tail area for this statistic is p(z, A) = P{X(A) > z}
2. Llet C={A CS: p(x(A),A) > ~}.

3. Then, U = | ] A satisfies P{U D SO} >1—7.
AeC

4. And, —— . MUN{seS:X(s)>1})
FOP(t) = AN{seS:X(s)>t}) '

Is a confidence envelope for FDP.

Note: We need not carry out the tests for all subsets.



Gaussian Fields

e With Gaussian Fields, our procedure works under similar smoothness
assumptions as familywise random-field methods.

e For our purposes, approximation based on the expected Euler
characteristic of the field's level sets will not work because the
Euler characteristic is non-monotone for non-convex sets.

(Note also that for non-convex sets, not all terms in the Euler
approximation are accurate.)

e Instead we use a result of Piterbarg (1996) to approximate the
p-values p(z, A).

e Simulations over a wide variety of Sgs and covariance structures
show that coverage of U rapidly converges to the target level.



Results: (0.05,0.9) Confidence Threshold
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Controlling the Proportion of False Regions

e Say a region R is false at tolerance € if more than an € proportion

of its area is in Sp:
AR N Sp)
> €.

AMR)  ~
e Decompose the t-level set of X into its connected components

Ctla sy Ctkt'

e For each level ¢, let £(t) denote the proportion of false regions (at
tolerance €) out of k¢ regions.

e [ hen,

: . MCyNU)
E(t):#{lgzﬁkt. )\(tctz') 26}
ki

gives a 1 — v confidence envelope for &.




Algorithm for Confidence Superset

1. Compute all realized values of the test statistics x(.5)
2. 5ort these in decreasing order x (1) = -+ = ().

Let S(]—) be the partition element corresponding to Z(
3.For k=1,..., N do the following:

J)

a.Set V. = Ué-vzk S(j).

b. Compute p(z 1y, V).

c.If p(z(1), Vi) = a: sSTOP and set V* = V.

d. If p(z(}), Vi) < a: increase k by 1 and coTO 3a.



Gaussian Fields

e Assume S = [0,1]% and that X is a zero-mean, homogeneous
Gaussian field with covariance

Cov(X(r), X(s5)) = a?p(r — s),
that gives X almost surely continuous sample paths.

Example: p(u) = 1 — uf'C~2u + o(||u]|?) for some matrix C.

e The key challenge here is to approximate the p-values p(z, A).

One approximation is based on the expected Euler characteristic
of the field’s level sets.



Gaussian Fields (cont'd)

e For our purposes, this will not work because the Euler characteristic
approximation is non-monotone for non-convex sets.

Note also that for non-convex sets, not all terms in the Euler
approximation are accurate.

e Instead we use a result of Piterbarg (1996) to obtain

\jsH

Y

) =P (s ® 02 = e () e ()]

for C as in the quadratic form above.

e Simulations over a wide variety of Sgs and covariance structures
show that coverage of U rapidly converges to the target level.



Gaussian Fields: Example

Bubbles




Gaussian Fields: Example (cont'd)

Bubbles + noise




Gaussian Fields: Example (cont'd)

Bubbles: confidence bound




Gaussian Fields: Example (cont'd)

Bubbles: True FDP and upper envelope
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Appendix: “Balls"




Stein-Beran-Dumbgen Pivot Method

e Convert function space problem Y = f + ¢ into sequence space
problem.

Let ¢1, @2, ... be an orthonormal basis for [0, 1] and let ;= [ f¢;.

Define
1

%ej.

e Estimate u by fi()\) for some possibly vector-valued tuning
parameter.

elet L,()\) be the (unobserved) loss as a function of A. For
example, Ly(X) = 3(;(A) — pj)?

o Let 5,,(\) be an (asymptotically) unbiased estimate of risk.

1 n
Zj = 23@'%(%) R+
1=



Pivot Method (cont'd)

1. Show that the pivot process By () = /n(Ly(\) — Sp(A)) has a
Gaussian limit process.

2. For Ay, minimizing Sp()), show By (M) has a Gaussian limit.
3. Find a consistent estimator 7> for variance of latter limit.

4. Conclude that

y

Dy, =

I\

\
y

Ln(An) = S0(hn) _
_ N B 9 _ TnZa
M- ;::1(,“6()‘72,) :uﬁ) S \/ﬁ

Is an asymptotic 1 — « confidence set for p.

I\

+ Sn(Xn)}

\



Pivot Method (cont'd)

5. It follows that
mn
An = {Z pege(r) o p € Dn}
/=1

is an asymptotic 1 — a confidence set for f, = >/ | py@y.

6. With appropriate function-space assumptions, can dilate A,, to a
set Cy, that is a uniform confidence set for f.



Pivot Method: Extension

e extend to invariant loss...



