
Appendix: “Envelopes”



Appendix



The Benjamini-Hochberg Procedure (cont’d)

• Let Ĝm be the empirical cdf of Pm under the mixture model.

Ignoring ties, Ĝm(P(i)) = i/m, so BH equivalent to

TBH(Pm) = max
{
t: Ĝm(t) =

t

α

}
.

as Storey (2002) first noted.

•One can think of this as a plug-in procedure for estimating

u∗(a, G) = max
{
t: G(t) =

t

α

}
.

• Genovese and Wasserman (2002) showed that TBH converges

to a fixed-threshold at u∗.



Optimal Thresholds

• In the continuous case, Benjamini and Hochberg’s argument

shows that

E
[
FDP(TBH(Pm))

]
= (1− a)α.

•The BH procedure overcontrols FDR and thus will not

in general minimize FNR.

•This suggests using TPI, the plug-in estimator for

t∗(a, G) = max

{
t: G(t) =

(1− a)t

α

}
.

•Note that t∗ ≥ u∗. If we knew a, this would correspond to using

the BH procedure with α/(1− a) in place of α.



Optimal Thresholds (cont’d)

• For each 0 ≤ t ≤ 1,

E(FDP(t)) =
(1− a) t

G(t)
+ O

(
(1− t)m

)
E(FNP(t)) = a

1− F (t)

1−G(t)
+ O

(
(a + (1− a)t)m

)
.

• Ignoring O() terms and choosing t to minimize E(FNP(t)) subject

to E(FDP(t)) ≤ α, yields t∗(a, G) as the optimal threshold.

• TPI considered in some form by Benjamini & Hochberg (2000),

Storey (2003), and Genovese and Wasserman (2003).



Results: P(k) 90% Confidence Envelopes

For k = 1, 10, 25, 50, 100, with 0.05 FDP level marked.
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Results: P(k) 90% Modified Envelopes

For k = 1, 10, 25, 50, 100, with 0.05 FDP level marked.
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Results: (0.05,0.9) Threshold versus BH

Sample Slice



Computing P(k) Envelopes

• Let qmkj denote the α quantile of the Beta(k,m − j + 1) for

k ≤ j ≤ m.

• Let Jk be the index of the smallest P(j) which is ≥ qmkj.

•The confidence envelope for the P(k)-test is achieved by the

configuration of nulls (0) and alternatives (1) in the ordered

p-values.

0 · · · 0︸ ︷︷ ︸
k−1

Jk−k︷ ︸︸ ︷
1 · · · 1 0 · · · 0

FDPk(t) =



1 if t ≤ k−1
m

k−1
mĜ(t)

if k−1
m < t ≤ Jk

m

1− Jk−k+1
mĜ(t)

if t > Jk
m



Computing P(k) Envelopes (cont’d)
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Choice Among P(k) Tests

• For any k, let Vk = Jk − k.

• In any pairwise comparison of P(k) and P(k′) tests with k < k′,
there are only three possible orderings:

A. P(k) dominates everwhere if Vk ≥ Vk′,

B. P(k′) dominates everywhere if Vk′ > Vk

[
1 +

k′ − k

k − 1

]
+

k′ − k

k − 1
,

C. Otherwise, the two profiles cross at Jk′ with value (k′ − 1)/Jk′.

•The result for any k can be put in terms of Uniform hitting times

for a boundary of the form G(qmkj) ≈ G(q̃mk/(m− j + 1)).

The distribution of these hitting times can be computed exactly

(with difficulty) via Steck’s equality.



False Discovery Control for Random Fields

•Multiple testing methods based on the excursions of random

fields are widely used, especially in functional neuroimaging (e.g.,

Cao and Worsley, 1999) and scan clustering (Glaz, Naus, and

Wallenstein, 2001).

• False Discovery Control extends to this setting as well.

• For a set S and a random field X = {X(s): s ∈ S} with mean

function µ(s), use the realized value of X to test the collection of

one-sided hypotheses

H0,s : µ(s) = 0 versus H1,s : µ(s) > 0.

Let S0 = {s ∈ S : µ(s) = 0}.



False Discovery Control for Random Fields

•Define a spatial version of FDP by

FDP(t) =
λ(S0 ∩ {s ∈ S : X(s) ≥ t})

λ({s ∈ S : X(s) ≥ t}) ,

where λ is usually Lebesgue measure.

• As in the cases discussed earlier, we can control FDR or

quantiles of FDP.

•Our approach is again based on constructing a confidence envelope

for FDP by finding a confidence superset U of S0.



Confidence Supersets and Envelopes

1. For every A ⊂ S, test H0 : A ⊂ S0 versus H1 : A 6⊂ S0
at level γ using the test statistic X(A) = sups∈A X(s).

The tail area for this statistic is p(z,A) = P
{
X(A) ≥ z

}
.

2. Let C = {A ⊂ S: p(x(A), A) ≥ γ}.

3. Then, U =
⋃

A∈C
A satisfies P

{
U ⊃ S0

}
≥ 1− γ.

4. And,
FDP(t) =

λ(U ∩ {s ∈ S : X(s) > t})
λ({s ∈ S : X(s) > t}) ,

is a confidence envelope for FDP.

Note: We need not carry out the tests for all subsets.



Gaussian Fields

•With Gaussian Fields, our procedure works under similar smoothness

assumptions as familywise random-field methods.

• For our purposes, approximation based on the expected Euler

characteristic of the field’s level sets will not work because the

Euler characteristic is non-monotone for non-convex sets.

(Note also that for non-convex sets, not all terms in the Euler

approximation are accurate.)

• Instead we use a result of Piterbarg (1996) to approximate the

p-values p(z, A).

• Simulations over a wide variety of S0s and covariance structures

show that coverage of U rapidly converges to the target level.



Results: (0.05,0.9) Confidence Threshold
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Controlling the Proportion of False Regions

• Say a region R is false at tolerance ε if more than an ε proportion

of its area is in S0:
λ(R ∩ S0)

λ(R)
≥ ε.

•Decompose the t-level set of X into its connected components

Ct1, . . . , Ctkt
.

• For each level t, let ξ(t) denote the proportion of false regions (at

tolerance ε) out of kt regions.

•Then,

ξ(t) =
#

{
1 ≤ i ≤ kt :

λ(Cti∩U)
λ(Cti)

≥ ε
}

kt
gives a 1− γ confidence envelope for ξ.



Algorithm for Confidence Superset

1. Compute all realized values of the test statistics x(Sj)

2. Sort these in decreasing order x(1) ≥ · · · ≥ x(N).

Let S(j) be the partition element corresponding to x(j).

3. For k = 1, . . . , N do the following:

a. Set Vk =
⋃N

j=k S(j).

b. Compute p(x(k), Vk).

c. If p(x(k), Vk) ≥ α: stop and set V ∗ = Vk.

d. If p(x(k), Vk) < α: increase k by 1 and goto 3a.



Gaussian Fields

• Assume S = [0, 1]d and that X is a zero-mean, homogeneous

Gaussian field with covariance

Cov(X(r), X(s)) = σ2ρ(r − s),

that gives X almost surely continuous sample paths.

Example: ρ(u) = 1− uTC−2u + o(‖u‖2) for some matrix C.

•The key challenge here is to approximate the p-values p(z,A).

One approximation is based on the expected Euler characteristic

of the field’s level sets.



Gaussian Fields (cont’d)

• For our purposes, this will not work because the Euler characteristic

approximation is non-monotone for non-convex sets.

Note also that for non-convex sets, not all terms in the Euler

approximation are accurate.

• Instead we use a result of Piterbarg (1996) to obtain

p(z,A) = P

{
sup
s∈A

X(s)

σ
≥ z

σ

}
' π−

d
2

| det C|λ(A)
(z

σ

)d [
1− Φ

(z

σ

)]
,

for C as in the quadratic form above.

• Simulations over a wide variety of S0s and covariance structures

show that coverage of U rapidly converges to the target level.



Gaussian Fields: Example

Bubbles



Gaussian Fields: Example (cont’d)

Bubbles + noise



Gaussian Fields: Example (cont’d)

Bubbles: confidence bound



Gaussian Fields: Example (cont’d)
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Appendix: “Balls”



Stein-Beran-Dümbgen Pivot Method

• Convert function space problem Y = f + ε into sequence space

problem.

Let φ1, φ2, . . . be an orthonormal basis for [0, 1] and let µj =
∫

fφj.

Define

Zj =
1

n

n∑
i=1

Yiφj(xi) ≈ µj +
1√
n

εj.

• Estimate µ by µ̂(λ) for some possibly vector-valued tuning

parameter.

• Let Ln(λ) be the (unobserved) loss as a function of λ. For

example, Ln(λ) =
∑

j(µ̂j(λ)− µj)
2.

• Let Sn(λ) be an (asymptotically) unbiased estimate of risk.



Pivot Method (cont’d)

1. Show that the pivot process Bn(λ) =
√

n(Ln(λ) − Sn(λ)) has a

Gaussian limit process.

2. For λ̂n minimizing Sn(λ), show Bn(λ̂n) has a Gaussian limit.

3. Find a consistent estimator τ̂2
n for variance of latter limit.

4. Conclude that

Dn =

µ:
Ln(λ̂n)− Sn(λ̂n)

τ̂n/
√

n
≤ zα


=

µ:
n∑

`=1
(µ̂`(λ̂n)− µ`)

2 ≤ τ̂n zα√
n

+ Sn(λ̂n)


is an asymptotic 1− α confidence set for µ.



Pivot Method (cont’d)

5. It follows that

An =


n∑

`=1
µ`φ`(·) : µ ∈ Dn


is an asymptotic 1− α confidence set for fn =

∑n
`=1 µ`φ`.

6. With appropriate function-space assumptions, can dilate An to a

set Cn that is a uniform confidence set for f .



Pivot Method: Extension

• extend to invariant loss...


