Confidence Thresholds and False Discovery Control

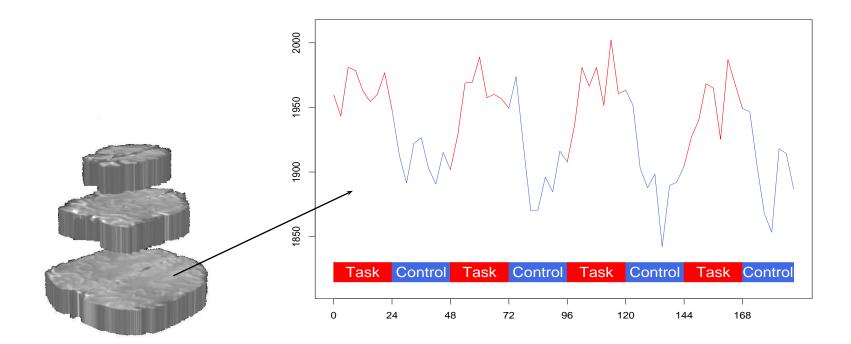
Christopher R. Genovese Department of Statistics Carnegie Mellon University http://www.stat.cmu.edu/~genovese/

> Larry Wasserman Department of Statistics Carnegie Mellon University

This work partially supported by NSF Grants SES 9866147 and NIH Grant 1 R01 NS047493-01.

Motivating Example #1: fMRI

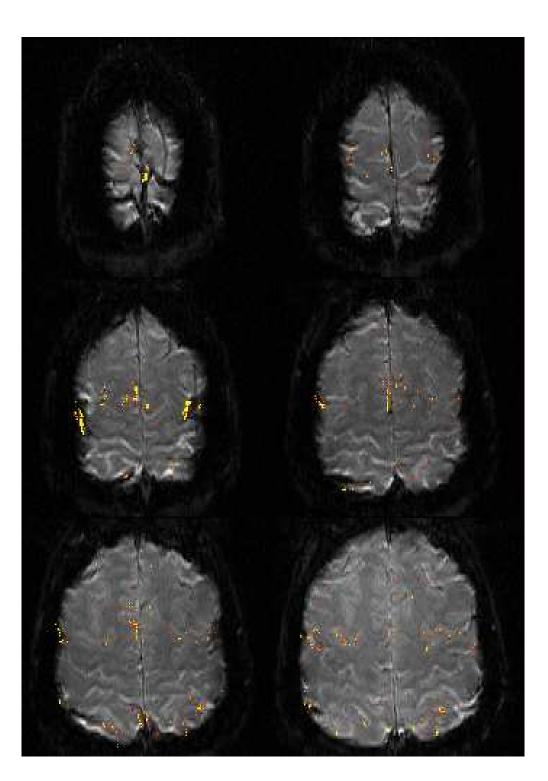
• fMRI Data: Time series of 3-d images acquired while subject performs specified tasks.



• Goal: Characterize task-related signal changes caused (indirectly) by neural activity. [See, for example, Genovese (2000), *JASA* 95, 691.]

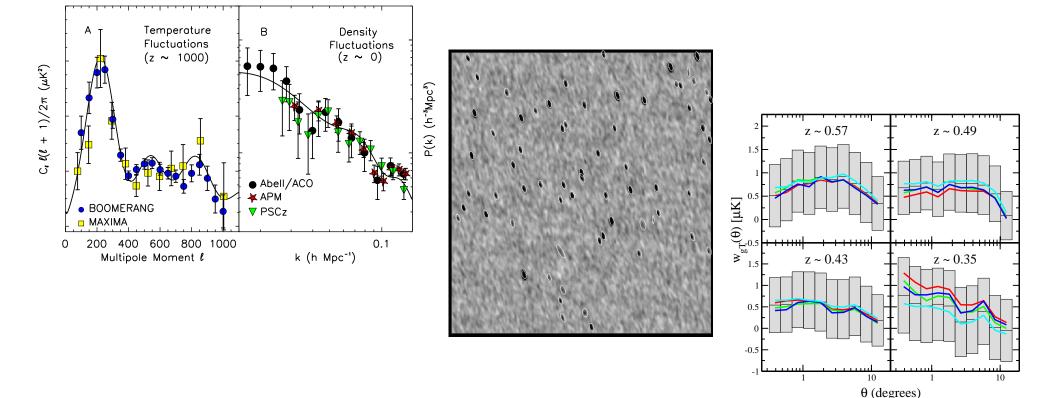
fMRI (cont'd)

Perform hypothesis tests at many thousands of volume elements to identify loci of activation.



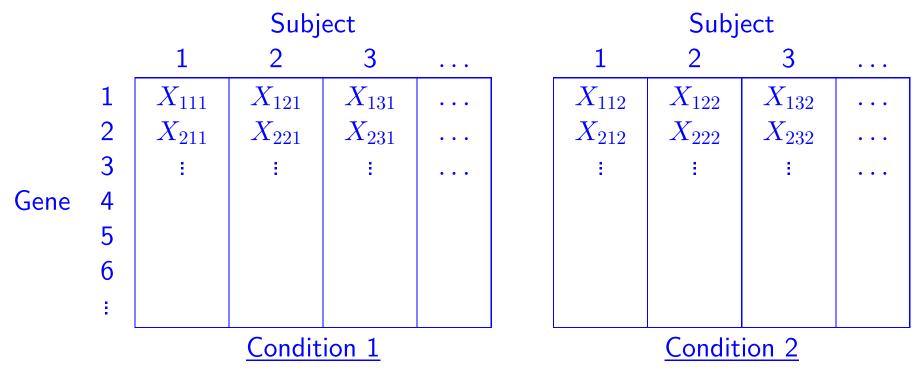
Motivating Example #2: Cosmology

- Baryon wiggles (Miller, Nichol, Batuski 2001)
- Radio Source Detection (Hopkins et al. 2002)
- Dark Energy (Scranton et al. 2003)



Motivating Example #3: DNA Microarrays

• New technologies allow measurement of gene expression for thousands of genes simultaneously.



- Goal: Identify genes associated with differences among conditions.
- Typical analysis: hypothesis test at each gene.

Objective

Develop methods for exceedance control of the False Discovery Proportion (FDP):

$$\mathbb{P} \bigg\{ \frac{\text{False Discoveries}}{\text{Discoveries}} > \gamma \bigg\} \leq \alpha \qquad \text{ for } \mathbf{0} < \alpha, \gamma < \mathbf{1},$$

as an alternative to mean (FDR) control.

Useful in applications as the basis for a secondary inference about the pattern of false discoveries.

Also useful as an FDR diagnostic.

Plan

1. Set Up

- Testing Framework
- FDR and FDP

2. Exceedance Control for FDP

- Inversion and the $P_{(k)}$ test
- Power and Optimality
- Combining $P_{(k)}$ tests
- Augmentation

3. False Discovery Control for Random Fields

- Confidence Supersets and Thresholds
- Controlling the Proportion of False Clusters
- Scan Statistics

Plan

1. Set Up

- Testing Framework
- FDR and FDP

2. Exceedance Control for FDP

- Inversion and the $P_{(k)}$ test
- Power and Optimality
- Combining $P_{(k)}$ tests
- Augmentation

3. False Discovery Control for Random Fields

- Confidence Supersets and Thresholds
- Controlling the Proportion of False Clusters
- Scan Statistics

The Multiple Testing Problem

- \bullet Perform m simultaneous hypothesis tests with a common procedure.
- For any given procedure, classify the results as follows:

	H_0 Retained	H_0 Rejected	Total
H_0 True	TN	FD	T_0
H_0 False	FN	TD	T_1
Total	N	D	m

Mnemonics: T/F = True/False, D/N = Discovery/Nondiscovery

All quantities except m, D, and N are unobserved.

• The problem is to choose a procedure that balances the competing demands of sensitivity and specificity.

Testing Framework: Hypotheses

Let random vectors X_1, \ldots, X_n be drawn IID from distribution \mathbb{P} . Consider m hypotheses (typically m >> n) of the form

 $H_{0j}: \mathbb{P} \in \mathcal{M}_j$ versus $H_{1j}: \mathbb{P} \notin \mathcal{M}_j$ $j = 1, \dots, m$, for sets of probability distributions $\mathcal{M}_1, \dots, \mathcal{M}_m$.

Common case:

 $X_i = (X_{i1}, \ldots, X_{im})$ comprises m measurements on subject i. Here, we might take $\mathcal{M}_j = \{\mathbb{P}: \mathsf{E}_{\mathbb{P}}(X_{ij}) = \mu_j\}$ for some constant μ_j .

Testing Framework: P-values

Define the following:

- Hypothesis indicators $H^m = (H_1, \ldots, H_m)$ with $H_j = 1 \{ \mathbb{P} \notin \mathcal{M}_j \}$.
- Set of true nulls $S_0 \equiv S_0(\mathbb{P}) = \{j \in S: H_j = 0\}$ where $S = \{1, \ldots, m\}.$
- Test statistics $Z_j = Z_j(X_1, \ldots, X_n)$ for H_{0j} , for each $j \in S$.
- P-values $P^m = (P_1, \ldots, P_m)$. Let $P_W = (P_i: i \in W \subset S)$.
- Ordered p-values $P_{(1)} < \cdots < P_{(m)}$.

Assume $P_j \mid H_j = 0 \sim \text{Unif}(0, 1)$.

Initially assume that the P_j s are independent, but will weaken this later.

Testing Framework: Rejection Sets

We call a *rejection set* any $R = R(P^m) \subset S$ that indexes the rejected null hypotheses H_{0j} .

In practice, R will usually be of the form $\{j \in S: P_j \leq T\}$ for a random *threshold* $T = T(P^m)$.

Want to define rejection sets that control specified error criteria. Example: say that R controls k-familywise error at level α if

 $\mathbb{P}\left\{\#(R \cap S_0(\mathbb{P})) > k\right\} \le \alpha,$

where #(B) denotes the number of points in a set B.

The False Discovery Proportion

Define the false discovery proportion (FDP) for each rejection set R by

$$\Gamma(R) \equiv \mathsf{FDP}(R) = \frac{\mathsf{false rejections}}{\mathsf{rejections}} = \frac{\sum_{j=1}^{m} (1 - H_j) \mathbb{1}\{R \ni j\}}{\sum_{j=1}^{m} \mathbb{1}\{R \ni j\}}$$

where the ratio is defined to be zero if the denominator is zero. The false discovery rate FDR(R) is defined by

 $FDR(R) = E(\Gamma(R)).$

If R is defined by a threshold T, write $\Gamma(T)$ interchangeably, with $\Gamma(t)$ corresponding to a fixed threshold t.

Specifying the function $t \mapsto \overline{\Gamma}(t)$ is sufficient to determine the entire envelope for rejection sets defined by a threshold.

Plan

1. Set Up

- Testing Framework
- FDR and FDP

2. Exceedance Control for FDP

- Inversion and the $P_{(k)}$ test
- Power and Optimality
- Combining $P_{(k)}$ tests
- Augmentation

3. False Discovery Control for Random Fields

- Confidence Supersets and Thresholds
- Controlling the Proportion of False Clusters
- Scan Statistics

Confidence Envelopes and Exceedance Control

Goal: find a rejection set R such that

$$\mathbb{P}\big\{\mathsf{\Gamma}(R) > \gamma\big\} \le \alpha$$

for specified $0 < \alpha, \gamma < 1$. We call such an R a (γ, α) rejection set.

Our main tool for finding these are *confidence envelopes*.

A $1 - \alpha$ confidence envelope for FDP is a random function $\overline{\Gamma}(C) = \overline{\Gamma}(C; P_1, \dots, P_m)$ such that

 $\mathbb{P}\left\{\overline{\Gamma}(C) \geq \Gamma(C), \text{ for all } C\right\} \geq 1 - \alpha.$

Confidence Envelopes and Thresholds

It's easiest to visualize a $1 - \alpha$ confidence envelope for FDP as a random function $\overline{\text{FDP}}(t)$ on [0, 1] such that

$$\mathbb{P}\big\{\mathsf{FDP}(t) \leq \overline{\mathsf{FDP}}(t) \text{ for all } t\big\} \geq 1 - lpha$$

Given such an envelope, we can construct "confidence thresholds." Two special cases have proven useful:

- Fixed-ceiling: $T = \sup\{t: \overline{\mathsf{FDP}}(t) \le \alpha\}.$
- Minimum-envelope: $T = \sup\{t: \overline{FDP}(t) = \min_t \overline{FDP}(t)\}.$



Inversion Construction: Main Idea

Construct confidence envelope by inverting a set of uniformity tests.

Specifically, consider all subsets of the p-values that cannot be distinguished from a sample of Uniforms by a suitable level α test.

Allow each of these subsets as one configuration of true nulls.

Maximize FDP pointwise over these configurations.

Inversion Construction: Step 1

For every $W \subset S$, test at level α the hypothesis that

$$P_W = (P_i: i \in W)$$

is a sample from a Uniform(0, 1) distribution:

 $H_0: W \subset S_0$ versus $H_1: W \not\subset S_0$.

Formally, let $\Psi=\{\psi_W:\ W\subset S\}$ be a set of non-randomized tests such that

$$\mathbb{P}ig\{\psi_W(U_1,\ldots,U_{\#(W)})=1ig\}\leqlpha$$
 whenever $U_1,\ldots,U_{\#(W)}\leftarrow {\sf Uniform}(0,1).$

Inversion Construction: Step 2

Let \mathcal{U} denote the collection of all subsets W not rejected in the previous step:

$$\mathcal{U} = \{ W: \psi_W(P_W) = \mathbf{0} \}.$$

Now define

$$\overline{\Gamma}(C) = \begin{cases} \max_{B \in \mathcal{U}} \frac{\#(B \cap C)}{\#(C)} & \text{if } C \neq \emptyset, \\ 0 & \text{otherwise.} \end{cases}$$

If $\ensuremath{\mathcal{U}}$ is closed under unions, then

$$\overline{\Gamma}(C) = \frac{\#(U \cap C)}{\#(C)}$$

where $U = \bigcup \{V: V \in \mathcal{U}\}$. This is a *confidence superset* for S_0 :

$$\mathbb{P}\left\{S_0 \subset U\right\} \ge 1 - \alpha.$$

Inversion Construction: Step 3

Choose $R = R(P_1, \ldots, P_m)$ as large as possible such that $\overline{\Gamma}(R) \leq \gamma$.

(Typically, take R of the form $R = \{j: P_j \leq T\}$ where the confidence threshold $T = \sup\{t: \overline{\Gamma}(t) \leq c\}$.)

It follows that

1. $\overline{\Gamma}$ is a $1 - \alpha$ confidence envelope for FDP, and 2. R is a (γ, α) rejection set.

Note: Can also calibrate this procedure to control FDR.

Choice of Tests

- The confidence envelopes depend strongly on choice of tests.
- Two desiderata for selecting uniformity tests:
 - A. (Power). The envelope $\overline{\Gamma}$ should be close to Γ and thus result in rejection sets with high power.
 - B. (Computational Tractability). The envelope $\overline{\Gamma}$ should be easy to compute.
- We want an automatic way to choose a good test
- Traditional uniformity tests, such as the (one-sided) Kolmogorov-Smirnov (KS) test, do not usually meet both conditions.
 For example, the KS test is sensitive to deviations from uniformity

equally though all the p-values.

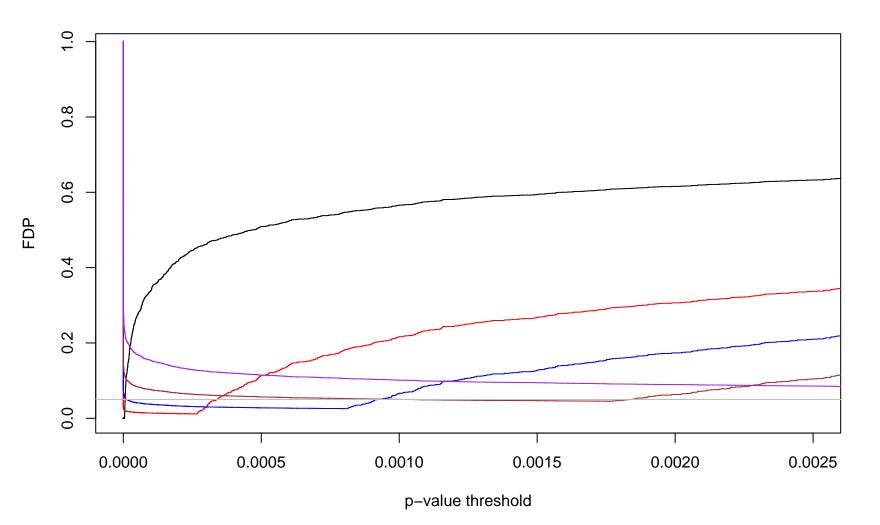
The $P_{(k)}$ Tests

- In contrast, using the *k*th order statistic as a one-sided test statistic meets both desiderata.
 - For small k, these are sensitive to departures that have a large impact on FDP. Good "power."
 - Computing the confidence envelopes is linear in m.
- We call these the $P_{(k)}$ tests.

They form a sub-family of weighted, one-sided KS tests.

Results: $P_{(k)}$ 90% Confidence Envelopes

For k = 1, 10, 25, 50, 100, with 0.05 FDP level marked.



Power and Optimality

The ${\cal P}_{(1)}$ test corresponds to using the maximum test statistic on each subset.

Heuristic suggests this is sub-optimal: Andy-Warhol-ize.

Consider simple mixture distribution for the p-values:

G = (1 - a)U + aF,

where F is a Uniform $(0, 1/\beta)$ distribution.

Then we can construct the optimal threshold T_* (and corresponding rejection set R_*).

For any fixed k, the $P_{(k)}$ threshold satisfies

$$T_k = o_P(1)$$

 $\frac{T_*}{T_k} \xrightarrow{P} \infty.$

Combining $P_{(k)}$ tests

• Fixed k.

Can be effective if based on information about the alternatives, but can yield poor power.

• Estimate optimal k

Often performs well, but two concerns: (i) if $\hat{k} > k_{\text{opt}}$, rejection set can be empty; (ii) dependence between \hat{k} and $\overline{\Gamma}$ complicates analysis.

• Combine $P_{(k)}$ tests

Let $Q_m \subset \{1, \ldots, m\}$ with cardinality q_m . Define $\overline{\Gamma} = \min_{k \in Q_m} \overline{\Gamma}_k$, where $\overline{\Gamma}_k$ is a $P_{(k)}$ envelope with level α/q_m . Generally performs well and appears to be robust.

Dependence

Extending the inversion method to handle dependence is straightforward.

Still assume each P_j is marginally Uniform(0, 1) under null, but allow arbitrary joint distribution.

One formula changes: replace beta quantiles in uniformity tests with a simpler threshold.

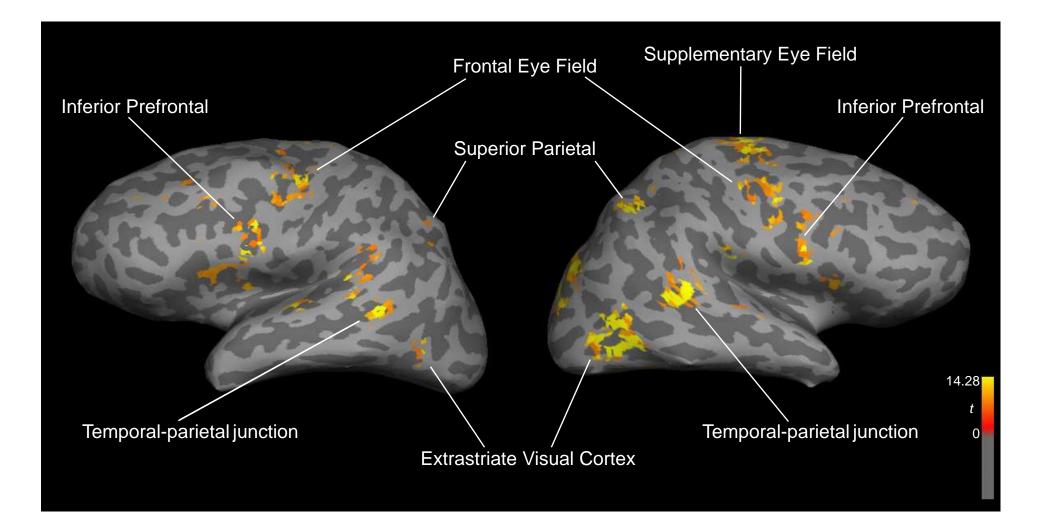
$$J_k = \min\{j: P_{(j)} \ge rac{klpha}{m-j}\}.$$

Simulation Results

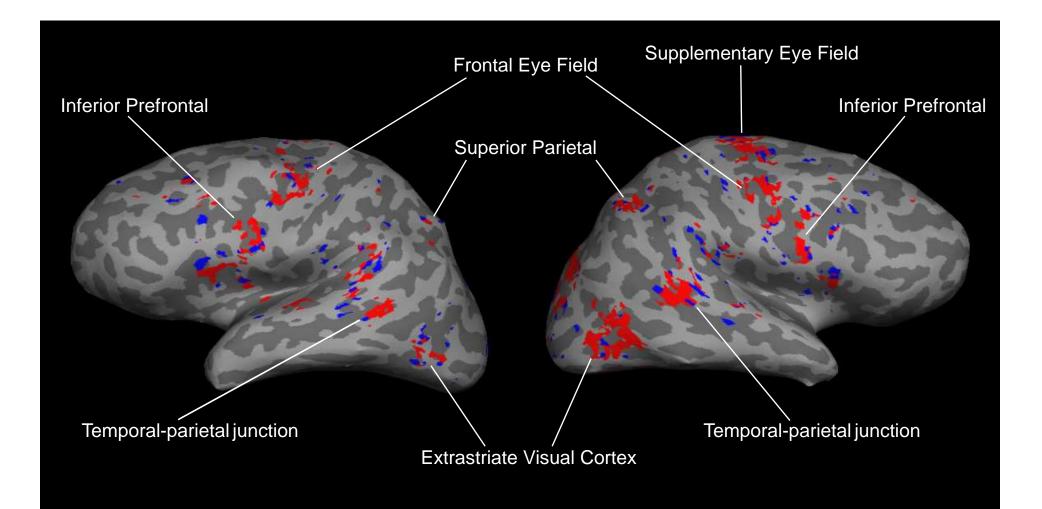
Excerpt under simple mixture model with proportion a alternatives with Normal(θ , 1) distribution. Here m = 10,000 tests, $\gamma = 0.2$, $\alpha = 0.05$.

a $ heta$	FDP Combined	Power Combined	$FDPP_{(1)}$	Power $P_{(1)}$	$FDPP_{(10)}$	Power $P_{(10)}$
0.01 5	0.102	0.980	0.000	0.889	0.118	0.980
0.05 5	0.179	0.994	0.004	0.917	0.172	0.994
0.10 5	0.178	0.998	0.001	0.905	0.162	0.997
0.01 4	0.080	0.741	0.022	0.407	0.109	0.759
0.05 4	0.125	0.950	0.000	0.424	0.045	0.887
0.10 4	0.164	0.974	0.002	0.436	0.044	0.915
0.01 3	0.000	0.265	0.000	0.098	0.000	0.000
0.05 3	0.127	0.623	0.000	0.106	0.005	0.463
0.10 3	0.137	0.790	0.000	0.087	0.018	0.472
0.01 2	0.000	0.000	0.000	0.010	0.000	0.000

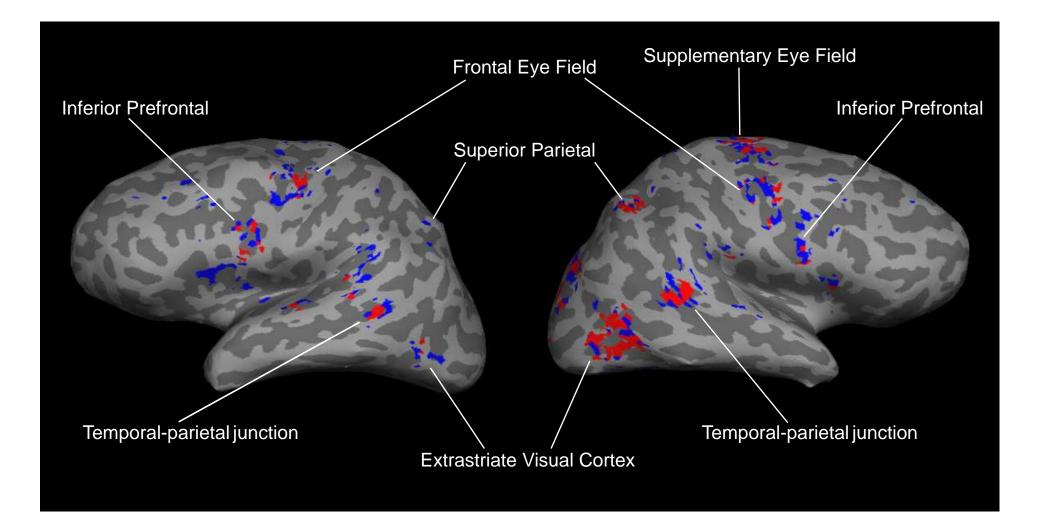
Results: (0.05,0.9) Confidence Threshold



Results: (0.05,0.9) Threshold versus BH



Results: (0.05,0.9) Threshold versus Bonferroni



Augmentation

van der Laan, Dudoit and Pollard (2004) introduce an alternative method of exceeedance control, called augmentation

Suppose that R_0 is a rejection region that controls familywise error at level α . If $R_0 = \emptyset$ take $R = \emptyset$. Otherwise, let A be a set with $A \cap R = \emptyset$ and set $R = R_0 \cup A$. Then,

$$\mathbb{P}ig\{ \mathsf{\Gamma}(R) > \gamma ig\} \leq lpha \qquad ext{where} \qquad \gamma = rac{\#(A)}{\#(A) + \#(R_0)}.$$

The same logic extends to k-familywise error and also gives $1 - \alpha$ confidence envelopes.

For instance, if R_0 is defined by a threshold, then

$$\overline{\Gamma}(C) = \begin{cases} \frac{\#(C - R_0)}{\#(C)} & \text{if } C \neq \emptyset, \\ 0 & \text{otherwise.} \end{cases}$$

Augmentation and Inversion

Augmentation and Inversion lead to the same rejection sets.

That is, for any R_{aug} , we can find an inversion procedure with $R_{aug} = R_{inv}$.

Conversely under suitable conditions on the tests, for any R_{inv} , we can find an augmentation procedure with $R_{inv} = R_{aug}$.

When \mathcal{U} is not closed under unions, inversion produces rejection sets that are not augmentations of a familywise test.

Plan

1. Set Up

- Testing Framework
- FDR and FDP

2. Exceedance Control for FDP

- Inversion and the $P_{(k)}$ test
- Power and Optimality
- Combining $P_{(k)}$ tests
- Augmentation

3. False Discovery Control for Random Fields

- Confidence Supersets and Thresholds
- Controlling the Proportion of False Clusters
- Scan Statistics

False Discovery Control for Random Fields

- Multiple testing methods based on the excursions of random fields are widely used, especially in functional neuroimaging (e.g., Cao and Worsley, 1999) and scan clustering (Glaz, Naus, and Wallenstein, 2001).
- False Discovery Control extends to this setting as well.
- For a set S and a random field $X = \{X(s): s \in S\}$ with mean function $\mu(s)$, use the realized value of X to test the collection of one-sided hypotheses

 $H_{0,s}: \mu(s) = 0$ versus $H_{1,s}: \mu(s) > 0$.

Let $S_0 = \{s \in S : \mu(s) = 0\}.$

False Discovery Control for Random Fields

 \bullet Define a spatial version of FDP for threshold T by

$$\mathsf{FDP}(T) = \frac{\lambda(S_0 \cap \{s \in S : X(s) \ge t\})}{\lambda(\{s \in S : X(s) \ge t\})},$$

where λ is usually Lebesgue measure.

- As before, we can control FDR or FDP exceedance.
- Our approach is again based on the inversion method for constructing a confidence envelope for FDP.

Inversion for Random Fields: Details

 For every A ⊂ S, test H₀: A ⊂ S₀ versus H₁: A ⊄ S₀ at level γ using the test statistic X(A) = sup_{s∈A} X(s). The tail area for this statistic is p(z, A) = P{X(A) ≥ z}.
 Let U = {A ⊂ S: p(x(A), A) ≥ γ}.

3. Then,
$$U = \bigcup_{A \in \mathcal{U}} A$$
 satisfies $\mathbb{P} \{ U \supset S_0 \} \ge 1 - \gamma$.

4. And,

$$\overline{\mathsf{FDP}}(t) = \frac{\lambda(U \cap \{s \in S : X(s) > t\})}{\lambda(\{s \in S : X(s) > t\})},$$
is a confidence envelope for FDP.

Note: We need not carry out the tests for all subsets.

Gaussian Fields

- With Gaussian Fields, our procedure works under similar smoothness assumptions as familywise random-field methods.
- For our purposes, approximation based on the expected Euler characteristic of the field's level sets will not work because the Euler characteristic is non-monotone for non-convex sets.

(Note also that for non-convex sets, not all terms in the Euler approximation are accurate.)

- Instead we use a result of Piterbarg (1996) to approximate the p-values p(z, A).
- Simulations over a wide variety of S_0 s and covariance structures show that coverage of U rapidly converges to the target level.

Controlling the Proportion of False Regions

• Say a region R is false at tolerance ϵ if more than an ϵ proportion of its area is in S_0 :

$$\frac{\lambda(R\cap S_0)}{\lambda(R)} \ge \epsilon.$$

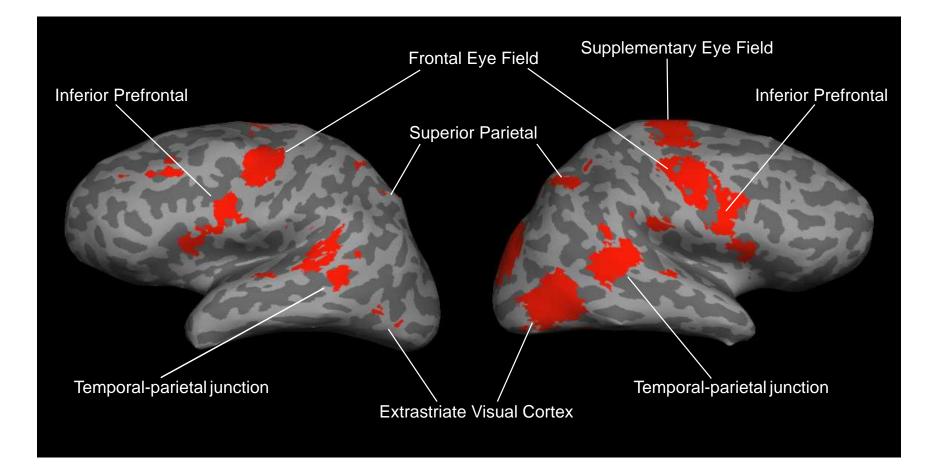
- Decompose the *t*-level set of X into its connected components C_{t1}, \ldots, C_{tk_t} .
- For each level t, let ξ(t) denote the proportion of false regions (at tolerance ε) out of kt regions.
- Then,

$$\overline{\xi}(t) = \frac{\#\left\{1 \le i \le k_t : \frac{\lambda(C_{ti} \cap U)}{\lambda(C_{ti})} \ge \epsilon\right\}}{k_t}$$

gives a $1 - \gamma$ confidence envelope for ξ .

Results: False Region Control Threshold

 $\mathbb{P}\{\mathsf{prop'n} \ \mathsf{false} \ \mathsf{regions} \le 0.1\} \ge 0.95$ where false means null overlap $\ge 10\%$



Scan Statistics

Let $X = (X_1, \ldots, X_N)$ be a realization of a point process with intensity function $\nu(s)$ defined on a compact set $S \subset \Re^d$. Assume that $\nu(s) = \nu_0$ on $S_0 \subset S$ and $\nu(s) > \nu_0$ otherwise.

Assume that conditional on ${\cal N}=n,\; X$ is an ${\scriptstyle\rm IID}$ sample from the density

$$f(s) = rac{
u(s)}{\int_S
u(u) \, du}.$$

Scan statistic test for "clusters" via the statistic $T = \sup_{s \in S} N_s$., Our procedure:

- 1. Kernel estimators \widehat{f}_H with a set of bandwidths \mathcal{H} .
- 2. Bias correction
- 3. False Discovery Control

Scan Statistics (cont'd)

Plan

1. Set Up

- Testing Framework
- FDR and FDP

2. Exceedance Control for FDP

- Inversion and the $P_{(k)}$ test
- Power and Optimality
- Combining $P_{(k)}$ tests
- Augmentation

3. False Discovery Control for Random Fields

- Confidence Supersets and Thresholds
- Controlling the Proportion of False Clusters
- Scan Statistics

Take-Home Points

• Confidence thresholds have practical advantages for False Discovery Control.

In particular, we gain a tunable inferential guarantee without too much loss of power.

- Works under general dependence, though there is potential gain in tailoring the procedure to the dependence structure.
- This helps with secondary inference about the structure of alternatives (e.g., controlling proportion of false regions), but a better next step is to handle that structure directly.