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Motivating Example #1: fMRI

• fMRI Data: Time series of 3-d images acquired while subject

performs specified tasks.
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• Goal: Characterize task-related signal changes caused (indirectly)

by neural activity. [See, for example, Genovese (2000), JASA 95, 691.]



fMRI (cont’d)

Perform hypothesis tests at

many thousands of volume

elements to identify loci of

activation.



Motivating Example #2: Source Detection

• Interferometric radio telescope observations processed into digital

image of the sky in radio frequencies.

• Signal at each pixel is a mixture of source and background signals.



Motivating Example #3: DNA Microarrays

•New technologies allow measurement of gene expression for

thousands of genes simultaneously.
Subject Subject

1 2 3 . . . 1 2 3 . . .

1 X111 X121 X131 . . . X112 X122 X132 . . .

2 X211 X221 X231 . . . X212 X222 X232 . . .

3 ... ... ... . . . ... ... ... . . .

Gene 4

5

6
...

Condition 1 Condition 2

• Goal: Identify genes associated with differences among conditions.

•Typical analysis: hypothesis test at each gene.



The Multiple Testing Problem

• Perform m simultaneous hypothesis tests.

• Classify results as follows:

H0 Retained H0 Rejected Total

H0 True M0|0 M1|0 M0
H0 False M0|1 M1|1 M1

Total m − R R m

Here, Mi|j is the number of Hi chosen when Hj true.

•Only R and m are observed.

•Traditional methods seek strong control of type I error.

Typical guarantee: P
{
M1|0 > 0

}
≤ α.



False Discovery and Nondiscovery Proportions

•Define the False Discovery Proportion (FDP) and the

False Nondiscovery Proportion (FNP) as follows:

FDP =


M1|0
R

if R > 0,

0, if R = 0.

FNP =


M0|1

m − R
if R < m,

0, if R = m.

•Then, the False Discovery Rate (FDR) and the

False Nondiscovery Rate (FNR) are given by

FDR = E(FDP) FNR = E(FNP).

• Benjamini and Hochberg (1995) introduced FDR and

produced a procedure to guarantee that FDR ≤ α.



m = 50, α = 0.1
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Basic Models

• Let Pm = (P1, . . . , Pm) be the p-values for the m tests.

• Let Hm = (H1, . . . , Hm) where Hi = 0 (or 1) if

the ith null hypothesis is true (or false).

•We assume the following model:

H1, . . . , Hm iid Bernoulli〈a〉
Ξ1, . . . ,Ξm iid LF

Pi | Hi = 0,Ξi = ξi ∼ Uniform〈0, 1〉
Pi | Hi = 1,Ξi = ξi ∼ ξi.

where LF denotes a probability distribution on a

class F of distributions on [0, 1].



Basic Models (cont’d)

•Marginally, P1, . . . , Pm are drawn iid from

G = (1 − a)U + aF,

where U is the Uniform〈0, 1〉 cdf and

F =
∫

ξ dLF(ξ).

•Typical examples:

– Parametric family: FΘ = {Fθ: θ ∈ Θ}
– Concave, continuous distributions

FC = {F : F concave, continuous cdf with F ≥ U}.
• Can also work under what we call the conditional model where

H1, . . . , Hm are fixed, unknown.



Multiple Testing Procedures

• A multiple testing procedure T is a map [0, 1]m → [0, 1], where

the null hypotheses are rejected in all those tests for which

Pi ≤ T (Pm). We call T a threshold.

• Examples:
Uncorrected testing TU(Pm) = α

Bonferroni TB(Pm) = α/m

Fixed threshold at t Tt(P
m) = t

First r T(r)(P
m) = P(r)

Benjamini-Hochberg TBH(Pm) = sup{t: Ĝ(t) = t/α}
Oracle TO(Pm) = sup{t:G(t) = (1 − a)t/α}
Plug In TPI(P

m) = sup{t: Ĝ(t) = (1 − â)t/α}
Regression Classifier TReg(P

m) = sup{t: P̂{H1=1|P1=t}>1/2}



FDP and FNP as Stochastic Processes

• Inherent difficulty: FDP, FNP, and a general threshold all depend

on the same data.

•Define the FDP and FNP processes, respectively, by

FDP(t) ≡ FDP(t;Pm, Hm) =

∑
i

1
{
Pi ≤ t

}
(1 − Hi)∑

i

1
{
Pi ≤ t

}
+ 1

{
all Pi > t

}

FNP(t) ≡ FNP(t;Pm, Hm) =

∑
i

1
{
Pi > t

}
Hi∑

i

1
{
Pi > t

}
+ 1

{
all Pi ≤ t

}.

• For procedure T , the FDP and FNP are obtained by evaluating

these processes at T (Pm).



FDP and FNP as Stochastic Processes (cont’d)

• Both these processes converge to Gaussian processes outside a

neighborhood of 0 and 1 respectively.

• For example, define

Zm(t) =
√

m (FDP(t) − Q(t)) , δ ≤ t ≤ 1,

where 0 < δ < 1 and Q(t) = (1 − a)U/G.

• Let Z be a mean 0 Gaussian process on [δ, 1] with covariance

kernel

K(s, t) = a(1 − a)
(1 − a)stF (s ∧ t) + aF (s)F (t)(s ∧ t)

G2(s)G2(t)
.

•Then, Zm Ã Z.



Road Map

1. Preliminaries

– Models for FDP and FNP

– FDP and FNP as stochastic processes

2. Plug-in Procedures

– Asymptotic behavior of BH procedure

– Optimal Thresholds

3. Confidence Envelopes and Thresholds

– Exact Confidence Envelopes for FDP

– Controlling exceedance probabilities for FDP

4. False Discovery Control for Random Fields

– Confidence Supersets and Thresholds

– Fast Algorithm

5. Estimating the p-value distribution



Plug-in Procedures

• Let Ĝm be the empirical cdf of Pm under the mixture model.

Ignoring ties, Ĝm(P(i)) = i/m, so BH equivalent to

TBH(Pm) = max
{
t: Ĝm(t) =

t

α

}
.

as Storey (2002) first noted.

•One can think of this as a plug-in procedure for estimating

u∗(a, G) = max
{
t: G(t) =

t

α

}
.

• Genovese and Wasserman (2002) showed that BH converges

to a fixed-threshold at u∗.



Asymptotic Behavior of BH Procedure

This yields the following picture:

G(u)

1
α u

Bonferroni FDR Uncorrected

0 α
m u∗ α



Optimal Thresholds

• In the continuous case, Benjamini and Hochberg’s argument

shows that

E
[
FDP(TBH(Pm))

]
= (1 − a)α.

•The BH procedure overcontrols FDR and thus will not

in general minimize FNR.

•This suggests using TPI, the plug-in estimator for

t∗(a, G) = max

{
t: G(t) =

(1 − a)t

α

}
.

•Note that t∗ ≥ u∗. If we knew a, this would correspond to using

the BH procedure with α/(1 − a) in place of α.



Optimal Thresholds (cont’d)

• For each 0 ≤ t ≤ 1,

E(FDP(t)) =
(1 − a) t

G(t)
+ O

(
(1 − t)m

)
E(FNP(t)) = a

1 − F (t)

1 − G(t)
+ O

(
(a + (1 − a)t)m

)
.

• Ignoring O() terms and choosing t to minimize E(FNP(t)) subject

to E(FDP(t)) ≤ α, yields t∗(a, G) as the optimal threshold.

• GW (2002) show that

E(FDP(t∗(â, Ĝ))) ≤ α + O(m−1/2).



Road Map

1. Preliminaries

– Models for FDP and FNP

– FDP and FNP as stochastic processes

2. Plug-in Procedures

– Asymptotic behavior of BH procedure

– Optimal Thresholds

3. Confidence Envelopes and Thresholds

– Exact Confidence Envelopes for FDP

– Controlling exceedance probabilities for FDP

4. False Discovery Control for Random Fields

– Confidence Supersets and Thresholds

– Fast Algorithm

5. Estimating the p-value distribution



Confidence Envelopes and Thresholds

• In practice, it would be useful to be able to control quantiles of

the FDP process.

•We want a procedure TC that, for some specified C and α,

guarantees

PG

{
FDP(TC) > C

}
≤ α.

We call this a (1 − α, C) confidence-threshold procedure.

•Three methods: (i) asymptotic closed-form threshold, (ii) asymptotic

confidence envelope, and (iii) exact small-sample confidence

envelope.

I’ll focus here on the latter.



Confidence Envelopes and Thresholds (cont’d)

• A 1−α confidence envelope for FDP is a random function FDP(t)

on [0, 1] such that

P
{
FDP(t) ≤ FDP(t) for all t

}
≥ 1 − α.

• Given such an envelope, we can construct confidence thresholds.

Two special cases have proved useful:

– Fixed-ceiling thresholds define C to be a pre-determined

constant (the ceiling) and take TC to be the maximum t

for which FDP(t) ≤ C.

– Minimum-envelope thresholds define C to be the mint FDP(t)

and take TC to be the maximum t for which this minimum is

achieved.



Exact Confidence Envelopes
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Exact Confidence Envelopes (cont’d)
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Exact Confidence Envelopes (cont’d)

• Given V1, . . . , Vk, let ϕk(v1, . . . , vk) be a level α test of the null

that V1, . . . , Vk are iid Uniform(0, 1).

•Define pm
0 (hm) = (pi:hi = 0, 1 ≤ i ≤ m)

m0(h
m) =

m∑
i=1

(1 − hi)

and Uα(pm) =
{
hm ∈ {0, 1}m:ϕm0(hm) (p

m
0 (hm)) = 0

}
.

Note that as defined, Uα always contains the vector (1, 1, . . . , 1).

• Let Gα(pm) =
{

FDP(·, hm, pm): hm ∈ Uα(pm)
}

Mα(pm) =
{

m0(h
m): hm ∈ Uα(pm)

}
.



Exact Confidence Envelopes (cont’d)

•Theorem. For all 0 < a < 1, F , and positive integers m,

P
{
Hm ∈ Uα(Pm)

}
≥ 1 − α

P
{
M0 ∈ Mα(Pm)

}
≥ 1 − α

P
{
FDP(·, Hm, Pm) ∈ Gα

}
≥ 1 − α.

•Define FDP to be pointwise supremum over Gα. Then, FDP is a

1 − α confidence envelope for FDP.

• Confidence thresholds are then easy to construct. For example

Tc = sup {t : Γ(t) ≤ c and Γ ∈ Gα(Pm)}
is a 1 − α fixed-ceiling confidence threshold with ceiling c.



Choice of Tests

•The choice of uniformity tests has a big impact on performance of

the confidence envelopes.

•There are two desiderata:

A. “Power”: FDP should be close to FDP, and

B. Computability: Need to to carry out all 2m tests quickly.

• Both are met by using the kth order statistic of any subset as a

test statistic, for some k. We call these the P(k) tests.

For small k, these are sensitive to departures that have a large

impact on FDP. They can also be computed in m or few steps.

• In contrast, traditional uniformity tests, such as the (one-sided)

Kolmogorov-Smirnov test do not fare as well.

The Kolmogorov-Smnirov test looks for deviations from uniformity

equally though all the p-values.



Computing P(k) Envelopes

• Let qmkj denote the α quantile of the Beta(k,m − j + 1) for

k ≤ j ≤ m.

• Let Jk be the index of the smallest P(j) which is ≥ qmkj.

•The confidence envelope for the P(k)-test is achieved by the

configuration of nulls (0) and alternatives (1) in the ordered

p-values.

0 · · · 0︸ ︷︷ ︸
k−1

Jk−k︷ ︸︸ ︷
1 · · · 1 0 · · · 0

FDPk(t) =



1 if t ≤ k−1
m

k−1
mĜ(t)

if k−1
m < t ≤ Jk

m

1 − Jk−k+1
mĜ(t)

if t > Jk
m



Computing P(k) Envelopes (cont’d)
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Choice Among P(k) Tests

• For any k, let Vk = Jk − k.

• In any pairwise comparison of P(k) and P(k′) tests with k < k′,
there are only three possible orderings:

A. P(k) dominates everwhere if Vk ≥ Vk′,

B. P(k′) dominates everywhere if Vk′ > Vk

[
1 +

k′ − k

k − 1

]
+

k′ − k

k − 1
,

C. Otherwise, the two profiles cross at Jk′ with value (k′ − 1)/Jk′.

•The result for any k can be put in terms of Uniform hitting times

for a boundary of the form G(qmkj) ≈ G(q̃mk/(m − j + 1)).

The distribution of these hitting times can be computed exactly

(with difficulty) via Steck’s equality.



Choice Among P(k) Tests (cont’d)

• Alternatively, using a family of alternative distributions, such

as Uniform(0, 1/θ) or Normal(θ, 1), we can compute k∗(θ), the

optimal k for each θ.

• So far, this is consistent with our simulation results across

a wide variety of families.

•The P(1) and P(2) tests appear to perform well under

a wide range of alternatives.

•Next steps: data dependent choice of k, adjusted test procedures.

Plug-in estimation into k∗(θ) for approximate family is a simple

but effective data-dependent choice.
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False Discovery Control for Random Fields

•Multiple testing methods based on the excursions of random

fields are widely used, especially in functional neuroimaging (e.g.,

Cao and Worsley, 1998) and scan clustering (Glaz, Naus, and

Wallenstein, 2001).

• False Discovery Control extends to this setting as well.

• For a set S and a random field X = {X(s): s ∈ S} with mean

function µ(s), use the realized value of X to test the collection of

one-sided hypotheses

H0,s : µ(s) = 0 versus H1,s : µ(s) > 0.

Let S0 = {s ∈ S : µ(s) = 0}.



False Discovery Control for Random Fields

•Define a spatial version of FDP by

FDP(t) =
λ(S0 ∩ {s ∈ S : X(s) ≥ t})

λ({s ∈ S : X(s) ≥ t}) ,

where λ is usually Lebesgue measure.

• As in the cases discussed earlier, we can control FDR or

quantiles of FDP.

•Our approach is again based on finding a confidence envelope

for FDP by finding a confidence superset U of S0.



Confidence Supersets and Envelopes

1. For every A ⊂ S, test H0 : A ⊂ S0 versus H1 : A 6⊂ S0
at level α using the test statistic X(A) = sups∈A X(s).

The tail area for this statistic is p(z,A) = P
{
X(A) ≥ z

}
.

2. Let C = {A ⊂ S: p(x(A), A) ≥ α}.

3. Then, U =
⋃

A∈C
A satisfies P

{
U ⊃ S0

}
≥ 1 − α.

4. And,
FDP(t) =

λ(U ∩ {s ∈ S : X(s) > t})
λ({s ∈ S : X(s) > t}) ,

is a confidence envelope for FDP.



Confidence Supersets and Envelopes (cont’d)

•The challenge of this strategy is to find U without computing

the tests for every subset.

• In general, define a sequence of nested partitions that

separates points

Sn = {Sn1, . . . , SnNn
}.

Example: unions of cubes.

Our algorithm (below) applied to Sn produces a set Un.

The set U = limn Un is a confidence superset for S0.

• For a given partition S1, . . . , SN of S, our algorithm requires

at most N steps though in effect computing 2N tests.

We assume the null distribution of supj∈I X(Sj) can be

computed for any I ⊂ {1, . . . , N}



Confidence Supersets and Envelopes (cont’d)

Algorithm

1. Compute all realized values of the test statistics x(Sj)

2. Sort these in decreasing order x(1) ≥ · · · ≥ x(N).

Let S(j) be the partition element corresponding to x(j).

3. For k = 1, . . . , N do the following:

a. Set Vk =
⋃N

j=k S(j).

b. Compute p(x(k), Vk).

c. If p(x(k), Vk) ≥ α: stop and set V ∗ = Vk.

d. If p(x(k), Vk) < α: increase k by 1 and goto 3a.



Extracting Thresholds

•Using U , we can define FDR-controlling thresholds, confidence

thresholds, and thresholds that control the number of false clusters

to some tolerance.

• For the latter, decompse the t-level set of X into its connected

components Ct1, . . . , Ctkt
.

• Say a cluster C is false at tolerance ε if
λ(C ∩ S0)

λ(C)
≥ ε.

• For level t, let ξ(t) denote the proportion of false clusters (at tol

ε) out of kt clusters.

•Then,

ξ(t) =
#

{
1 ≤ i ≤ kt :

λ(Cti∩U)
λ(Cti)

≥ ε
}

kt
gives a 1 − α confidence envelope for ξ.



Gaussian Fields

• Assume S = [0, 1]d and that X is a zero-mean, homogeneous

Gaussian field with covariance

Cov(X(r), X(s)) = ρ(r − s),

where we assume that ρ gives X almost surely continuous sample

paths.

Example: ρ(u) = 1 − uTC−1u + o(‖u‖2) for some matrix C.

•The key challenge here is to approximate p(z, A).

A common method uses the expected Euler characteristic of the

level sets.



Gaussian Fields (cont’d)

• For our purposes, this will not work because the Euler characteristic

approximation is monotone for non-convex sets.

Note also that for non-convex sets, not all terms in the Euler

approximation are accurate.

• Instead we use a result of Piterbarg (1996) to obtain

p(z,A) = P

{
sup
s∈A

X(s)

σ
≥ z

σ

}
' π−d

2

| det C|λ(A)
(z

σ

)d [
1 − Φ

(z

σ

)]
,

for C as in the quadratic form above.

• Simulations over a wide variety of S0s and covariance structures

show that coverage of U rapidly converges to the target level.



Gaussian Fields: Example

Bubbles



Gaussian Fields: Example (cont’d)

Bubbles + noise



Gaussian Fields: Example (cont’d)

Bubbles: confidence bound



Gaussian Fields: Example (cont’d)
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Bubbles: True FDP and upper envelope
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Estimating a and F

• Recall that the p-value distribution G = (1 − a)U + aF

where a and F are unknown.

•We need a good estimate of a for plug-in estimates,

TPI(P
m) = max

{
t: Ĝ(t) =

(1 − â)t

α

}
,

that approximate the optimal threshold.

• Good estimates of a and F can be useful for some

types of confidence thresholds.



Estimating a and F (cont’d)

• Identifiability and Purity

f

b

If min f = b > 0, can write F = (1−b)U+bF0,

OG = {(ã, F̃ ) : F̃ ∈ F , G = (1 − ã)U + ãF̃}
may contain more than one element.

If f = F ′ is decreasing with f(1) = 0, then

(a, F ) is identifiable.

• In general, let a ≤ a be the smallest mixing weight in the orbit:

a = 1 − mint g(t). This is identifiable.

Storey (2002) notes that 0 ≤ sup
0<t<1

G(t) − t

1 − t
≤ a ≤ a ≤ 1.

• a − a is typically small: a − a = ae−nθ2/2 in the two-sided test

of θ = 0 versus θ 6= 0 in the Normal〈θ, 1〉 model.



Estimating a and F (cont’d)

• Parametric Case

– Derived a 1 − β one-sided conf. int. for a and thus a.

(a, θ) typically identifiable even if a > a; use MLE.

•Non-parametric case:

– Derived a 1 − β one-sided conf. int. for a and thus a.

– When F concave, get âHS = a + OP (m−1/3(log m)1/3).

– When F smooth enough, get âS = a + OP (m−2/5).

– Consistent estimate for F0 if â consistent for a:

F̂m = argmin
H∈F

‖Ĝ − (1 − â)U − âH‖∞.



Estimating a and F (cont’d)

• âS uses “spacings” estimator (Swanepoel, 1999) to estimate

min g(t). This yields

m2/5

(log m)δ
(â − a)Ã Normal〈0, (1 − a)2〉

• âHS = 1 − min{h(1): γ− ≤ h ≤ γ+}, where [γ−, γ+] is the 1 − α

finite-sample confidence envelope for g derived in Hentgartner and

Stark (1995).

A 1 − α confidence interval for a is [1 − γ+(1), 1].

• Storey’s estimator for fixed 0 ≤ t0 ≤ 1

â0 =

Ĝ(t0) − t0
1 − t0


+

,

though asymptotically biased can also be useful.



Estimating a and F (cont’d)

• Confidence interval for a given by

Am =

max
t

Ĝm(t) − t − εm(α)

1 − t
, 1

 ,

where Ĝm is edf and εm(α) =
√

log(2/α)/2m.

Then,

1 − α ≤ inf
a,F

P
{
a ∈ Am

}
≤ 1 − α + Rm

where

Rm =
∑
j

(−1)j
αj2

2j2−1
+ O

(log m)2√
m


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Take-Home Points

• It’s helpful to think of FDP (FNP, FDR, ...) as stochastic processes.

Dependence between threshold and FDP can have a big effect.

• Asymptotic approach motivated by particular applications, but

asymptotics appear to kick in rather quickly.

• Confidence thresholds have practical advantages over FDR control.

•Dependence complicates the analysis greatly; confidence envelopes

appear to be valid under positive dependence.

• For spatial applications, adjacency can be highly informative but

is ignored by standard multiple testing methods.

Cluster-based false discovery control (work in progress) offers an

advantage in these cases.
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Recurring Notation

m, M0, M1|0 # of tests, true nulls, false discoveries

a Mixture weight on alternative

Hm = (H1, . . . , Hm) Unobserved true classifications

Pm = (P1, . . . , Pm) Observed p-values

U CDF of Uniform〈0, 1〉
F, f Alternative CDF and density

G = (1 − a)U + aF Marginal CDF of Pi

g = G′ Marginal density of Pi

Ĝm Estimate of G (e.g., empirical CDF of Pm)

εk(β) =

√√√√ 1

2k
log

(
2

β

)
DKW bound 1 − β quantile of ‖Ĝk − G‖∞



m = 50, α = 0.1
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Closed-Form Asymptotic Confidence Thresholds

• Let

t0 = Q−1(c) t̂0 = Q̂−1(c).

•Then define

TC = t̂0 +
∆̂m,α√

m
,

where ∆̂m,α is depends on a density estimate of g = G′.
•Then,

PG

{
FDP(TC) ≤ c

}
≥ 1 − α + o(1).



Closed-Form Asymptotic Confidence Thresholds

•Details:

∆̂m,α =

zα/2

(√
K̂Q−1(t̂0, t̂0) + ĝ(t̂0)

)
+ 2

√
log m

1 − â − cĝ(t̂0)

K̂Q−1(s, t) =
K̂Q(Q̂−1(s), Q̂−1(t))

Q̂′(Q̂−1(s))Q̂′(Q̂−1(t))

K̂Q(s, t) =
(1 − â)2st

Ĝ2(s)Ĝ2(t)

[
Ĝ(s ∧ t) − Ĝ(s)Ĝ(t)

]
.

•This requires no bootstrapping but does require density estimation.

This is analogous to the situation faced when estimating the

standard error of a median.



Bayesian Thresholds

• Bayesian Threshold bounds posterior FDR:

TBayes = sup{t : E(FDP(t) | Pm) ≤ α}

• Similarly, can construct a posterior (c, α) confidence threshold

TBayes,c by

TBayes,c = sup{t : P
{
FDP(t) ≤ c | Pm

}
≤ α}



EBT (Empirical Bayes Testing)

• Efron et al (2001) note that

P
{
Hi = 0 | Pm

}
=

(1 − a)

g(Pi)
≡ q(Pi)

• Reject whenever q(p) ≤ α?

• For a, f unknown, f ≥ 0 implies that

a ≥ 1 − min
p

g(p) =⇒ â = 1 − min
p

ĝ(p).

•Then, q̂(p) =
1 − â

ĝ(p)
=

mins ĝ(s)

ĝ(p)



EBT versus FDR

• If we reject when P
{
Hi = 0 | Pm

}
≤ α,

how many errors are we making?

•Under weak conditions, can show that

q(t) ≤ α implies Q(t) < α

So EBT is conservative.



Behavior of q̂

•Theorem. Let q̂(t) =
(1−a)
ĝ(t) . Suppose that

mα(ĝ(t) − g(t))ÃW

for some α > 0, where W is a mean 0 Gaussian process with

covariance kernel τ(v, w). Then

mα (q̂(t) − q(t))Ã Z

where Z is a Gaussian process with mean 0 and covariance kernel

Kq(v, w) =
(1 − a)2τ(v, w)

g(v)4g(w)4
.



Behavior of q̂ (cont’d)

• Parametric Case: g ≡ gθ = (1 − a) + afθ(v) Then,

rel(v) =
ŝe(q̂(v))

q(v)
≈ O

(
1√
m

) ∣∣∣∣∂ log gθ

∂dθ

∣∣∣∣ = O

(
1√
m

)
|v − θ| Normal case

•Nonparametric Case

ĝ(t) =
1

m

m∑
i=1

1

hm
K

(
t − Pi

hm

)

hm = cm−β where β > 1/5 (undersmooth). Then

relv =
c

m(1−β)/2
√

g(v)
.


