False Discovery Control: Exact and Large-sample Approaches

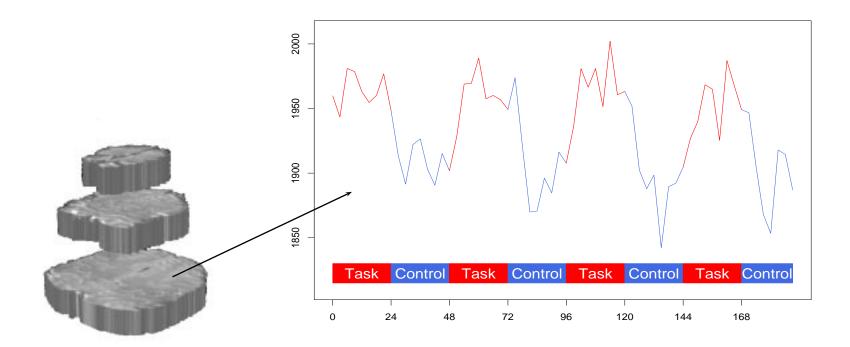
Christopher R. Genovese Department of Statistics Carnegie Mellon University http://www.stat.cmu.edu/~genovese/

> Larry Wasserman Department of Statistics Carnegie Mellon University

This work partially supported by NSF Grant SES 9866147.

Motivating Example #1: fMRI

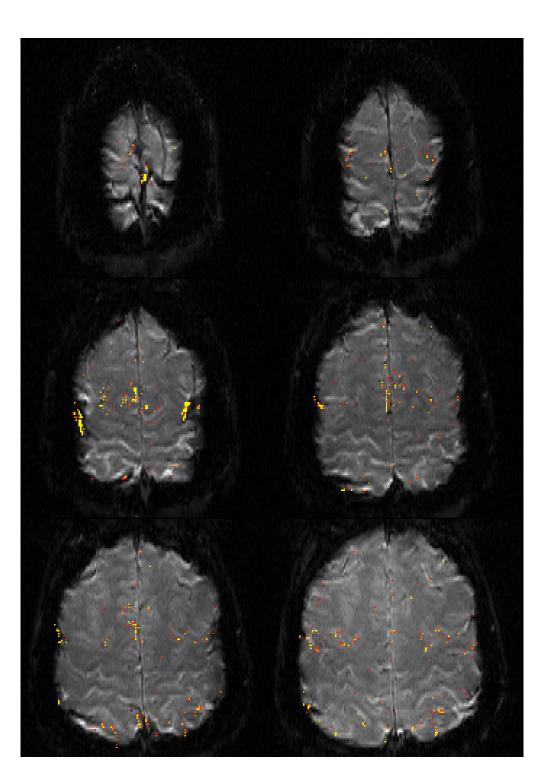
• fMRI Data: Time series of 3-d images acquired while subject performs specified tasks.



• Goal: Characterize task-related signal changes caused (indirectly) by neural activity. [See, for example, Genovese (2000), JASA 95, 691.]

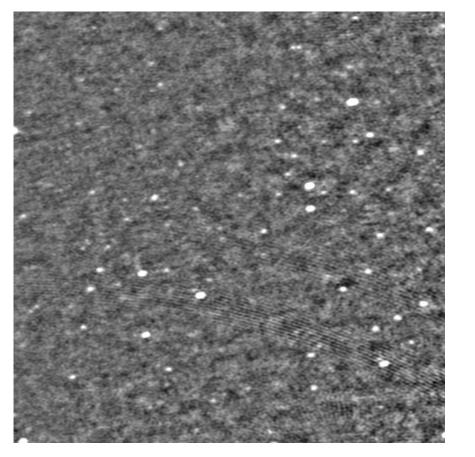
fMRI (cont'd)

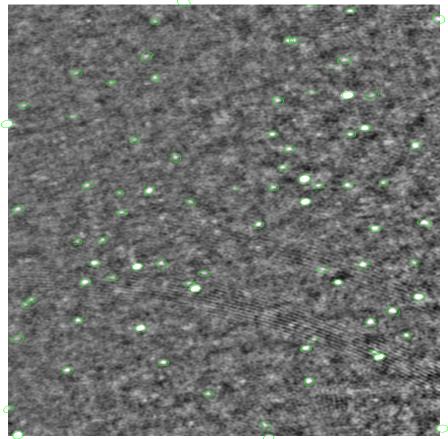
Perform hypothesis tests at many thousands of volume elements to identify loci of activation.



Motivating Example #2: Source Detection

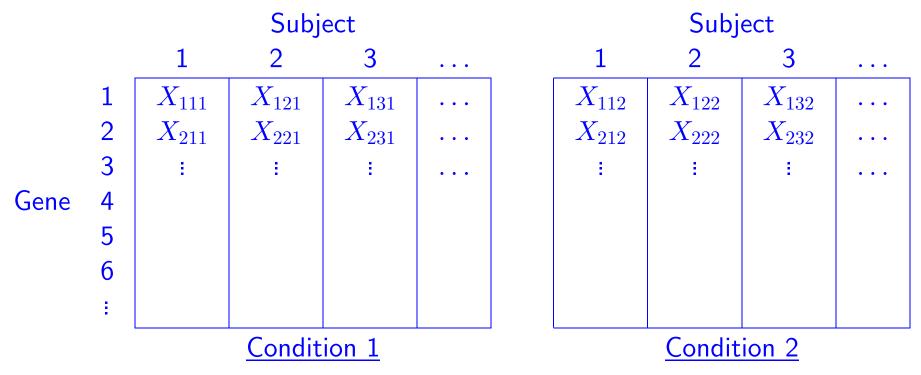
- Interferometric radio telescope observations processed into digital image of the sky in radio frequencies.
- Signal at each pixel is a mixture of source and background signals.





Motivating Example #3: DNA Microarrays

• New technologies allow measurement of gene expression for thousands of genes simultaneously.



- Goal: Identify genes associated with differences among conditions.
- Typical analysis: hypothesis test at each gene.

The Multiple Testing Problem

- \bullet Perform m simultaneous hypothesis tests.
- Classify results as follows:

	H_0 Retained	H_0 Rejected	Total
H_0 True	$M_{0 0}$	$M_{1 0}$	M_0
H_0 False	$M_{0 1}$	$M_1 _1$	M_1
Total	m-R	R	m

Here, $M_{i|j}$ is the number of H_i chosen when H_j true.

- Only R and m are observed.
- Traditional methods seek strong control of type I error. Typical guarantee: $P\{M_{1|0} > 0\} \le \alpha$.

False Discovery and Nondiscovery Proportions

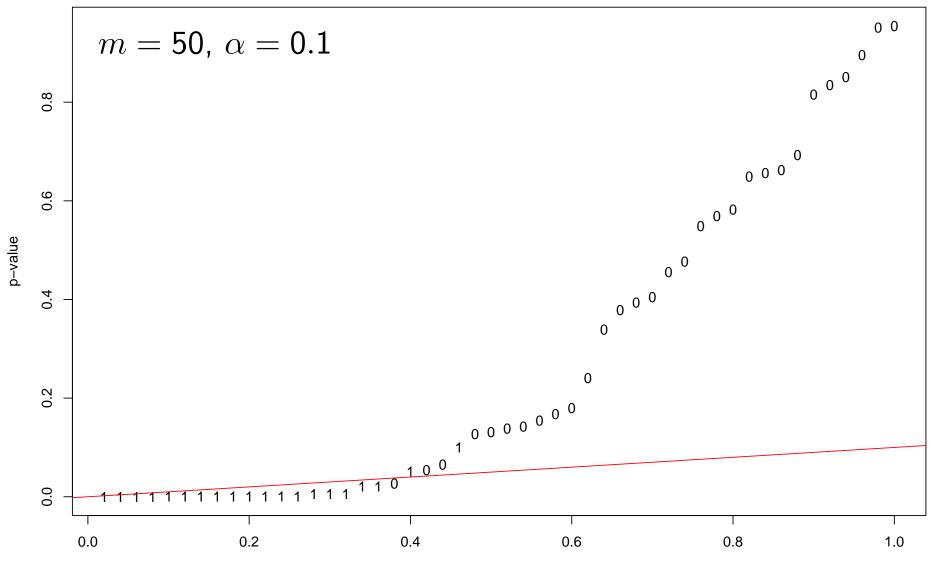
• Define the False Discovery Proportion (FDP) and the False Nondiscovery Proportion (FNP) as follows:

$$\mathsf{FDP} = \begin{cases} \frac{M_{1|0}}{R} & \text{if } R > 0, \\ 0, & \text{if } R = 0. \end{cases} \qquad \mathsf{FNP} = \begin{cases} \frac{M_{0|1}}{m - R} & \text{if } R < m, \\ 0, & \text{if } R = m. \end{cases}$$

• Then, the False Discovery Rate (FDR) and the False Nondiscovery Rate (FNR) are given by

FDR = E(FDP) FNR = E(FNP).

• Benjamini and Hochberg (1995) introduced FDR and produced a procedure to guarantee that $FDR \le \alpha$.



Index/m

Selected Recent Work on FDR

Abromovich, Benjamini, Donoho, and Johnstone. (2000)

```
Benjamini & Hochberg (1995, 2000)
```

Benjamini & Liu (1999)

Benjamini & Hochberg (2000)

Benjamini & Yekutieli (2001)

Efron, et al. (2001)

Finner and Roters (2001, 2002)

Hochberg & Benjamini (1999)

Genovese & Wasserman (2001,2002,2003)

Pacifico, Genovese, Verdinelli & Wasserman (2003)

Sarkar (2002)

Storey (2001,2002)

Storey & Tibshirani (2001)

Seigmund, Taylor, and Storey (2003)

Tusher, Tibshirani, Chu (2001)

Road Map

1. Preliminaries

- Models for FDP and FNP
- FDP and FNP as stochastic processes

2. Plug-in Procedures

- Asymptotic behavior of BH procedure
- Optimal Thresholds

3. Confidence Envelopes and Thresholds

- Exact Confidence Envelopes for FDP
- Controlling exceedance probabilities for FDP

4. False Discovery Control for Random Fields

- Confidence Supersets and Thresholds
- Fast Algorithm

5. Estimating the p-value distribution

Road Map

1. Preliminaries

- Models for FDP and FNP
- FDP and FNP as stochastic processes

2. Plug-in Procedures

- Asymptotic behavior of BH procedure
- Optimal Thresholds

3. Confidence Envelopes and Thresholds

- Exact Confidence Envelopes for FDP
- Controlling exceedance probabilities for FDP

4. False Discovery Control for Random Fields

- Confidence Supersets and Thresholds
- Fast Algorithm

5. Estimating the p-value distribution

Basic Models

- Let $P^m = (P_1, \ldots, P_m)$ be the p-values for the m tests.
- Let $H^m = (H_1, \ldots, H_m)$ where $H_i = 0$ (or 1) if the i^{th} null hypothesis is true (or false).
- We assume the following model:

 $\begin{array}{l} H_1, \dots, H_m \text{ iid Bernoulli} \langle a \rangle \\ \Xi_1, \dots, \Xi_m \text{ iid } \mathcal{L}_{\mathcal{F}} \\ P_i \mid H_i = \mathbf{0}, \Xi_i = \xi_i \sim \mathsf{Uniform} \langle \mathbf{0}, \mathbf{1} \rangle \\ P_i \mid H_i = \mathbf{1}, \Xi_i = \xi_i \sim \xi_i. \end{array}$

where $\mathcal{L}_{\mathcal{F}}$ denotes a probability distribution on a class \mathcal{F} of distributions on [0, 1].

Basic Models (cont'd)

• Marginally, P_1, \ldots, P_m are drawn iid from

G = (1-a)U + aF,

where U is the Uniform $\langle 0,1 \rangle$ cdf and

$$F = \int \xi \, d\mathcal{L}_{\mathcal{F}}(\xi).$$

- Typical examples:
 - Parametric family: $\mathcal{F}_{\Theta} = \{F_{\theta}: \theta \in \Theta\}$
 - Concave, continuous distributions

 $\mathcal{F}_C = \{F: F \text{ concave, continuous cdf with } F \geq U\}.$

• Can also work under what we call the *conditional model* where H_1, \ldots, H_m are fixed, unknown.

Multiple Testing Procedures

- A multiple testing procedure T is a map $[0,1]^m \rightarrow [0,1]$, where the null hypotheses are rejected in all those tests for which $P_i \leq T(P^m)$. We call T a *threshold*.
- Examples:
 - $\begin{array}{lll} \mbox{Uncorrected testing} & T_{\rm U}(P^m) = \alpha \\ \mbox{Bonferroni} & T_{\rm B}(P^m) = \alpha/m \\ \mbox{Fixed threshold at } t & T_t(P^m) = t \\ \mbox{First } r & T_{(r)}(P^m) = P_{(r)} \\ \mbox{Benjamini-Hochberg} & T_{\rm BH}(P^m) = \sup\{t: \hat{G}(t) = t/\alpha\} \\ \mbox{Oracle} & T_{\rm O}(P^m) = \sup\{t: G(t) = (1-a)t/\alpha\} \\ \mbox{Plug In} & T_{\rm PI}(P^m) = \sup\{t: \hat{G}(t) = (1-\hat{a})t/\alpha\} \\ \mbox{Regression Classifier} & T_{\rm Reg}(P^m) = \sup\{t: \hat{P}\{H_1=1|P_1=t\}>1/2\} \end{array}$

FDP and FNP as Stochastic Processes

- Inherent difficulty: FDP, FNP, and a general threshold all depend on the same data.
- Define the FDP and FNP processes, respectively, by

$$\mathsf{FDP}(t) \equiv \mathsf{FDP}(t; P^m, H^m) = \frac{\sum_{i} 1\{P_i \le t\} (1 - H_i)}{\sum_{i} 1\{P_i \le t\} + 1\{\mathsf{all} \ P_i > t\}}$$
$$\mathsf{FNP}(t) \equiv \mathsf{FNP}(t; P^m, H^m) = \frac{\sum_{i} 1\{P_i > t\} H_i}{\sum_{i} 1\{P_i > t\} + 1\{\mathsf{all} \ P_i \le t\}}.$$

• For procedure T, the FDP and FNP are obtained by evaluating these processes at $T(P^m)$.

FDP and FNP as Stochastic Processes (cont'd)

- Both these processes converge to Gaussian processes outside a neighborhood of 0 and 1 respectively.
- For example, define

$$Z_m(t) = \sqrt{m} \left(\mathsf{FDP}(t) - Q(t) \right), \quad \delta \le t \le 1,$$

where $0 < \delta < 1$ and Q(t) = (1 - a)U/G.

 \bullet Let Z be a mean 0 Gaussian process on $[\delta,1]$ with covariance kernel

$$K(s,t) = a(1-a)\frac{(1-a)stF(s\wedge t) + aF(s)F(t)(s\wedge t)}{G^2(s)G^2(t)}$$

• Then, $Z_m \rightsquigarrow Z$.

Road Map

1. Preliminaries

- Models for FDP and FNP
- FDP and FNP as stochastic processes

2. Plug-in Procedures

- Asymptotic behavior of BH procedure
- Optimal Thresholds

3. Confidence Envelopes and Thresholds

- Exact Confidence Envelopes for FDP
- Controlling exceedance probabilities for FDP

4. False Discovery Control for Random Fields

- Confidence Supersets and Thresholds
- Fast Algorithm
- 5. Estimating the p-value distribution

Plug-in Procedures

• Let \widehat{G}_m be the empirical cdf of P^m under the mixture model. Ignoring ties, $\widehat{G}_m(P_{(i)}) = i/m$, so BH equivalent to

$$T_{
m BH}(P^m) = \max\left\{t: \ \widehat{G}_m(t) = rac{t}{lpha}
ight\}.$$

as Storey (2002) first noted.

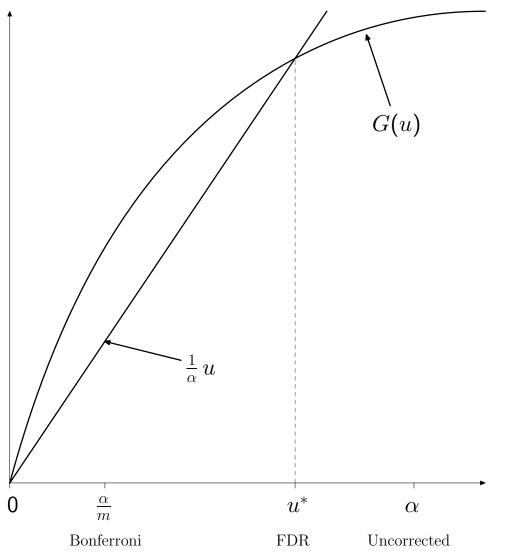
• One can think of this as a plug-in procedure for estimating

$$u^*(a,G) = \max\left\{t: G(t) = \frac{t}{\alpha}\right\}$$

• Genovese and Wasserman (2002) showed that BH converges to a fixed-threshold at u^* .

Asymptotic Behavior of BH Procedure

This yields the following picture:



Optimal Thresholds

 In the continuous case, Benjamini and Hochberg's argument shows that

 $\mathsf{E}\big[\mathsf{FDP}(T_{\mathrm{BH}}(P^m))\big] = (1-a)\alpha.$

- The BH procedure overcontrols FDR and thus will not in general minimize FNR.
- ullet This suggests using $T_{\rm PI}$, the plug-in estimator for

$$t^*(a,G) = \max\left\{t: \ G(t) = \frac{(1-a)t}{\alpha}\right\}$$

• Note that $t^* \ge u^*$. If we knew a, this would correspond to using the BH procedure with $\alpha/(1-a)$ in place of α .

Optimal Thresholds (cont'd)

• For each $0 \le t \le 1$,

$$E(FDP(t)) = \frac{(1-a)t}{G(t)} + O\left((1-t)^{m}\right)$$
$$E(FNP(t)) = a\frac{1-F(t)}{1-G(t)} + O\left((a+(1-a)t)^{m}\right).$$

- Ignoring O() terms and choosing t to minimize E(FNP(t)) subject to $E(FDP(t)) \le \alpha$, yields $t^*(a, G)$ as the optimal threshold.
- \bullet GW (2002) show that

$$\mathsf{E}(\mathsf{FDP}(t^*(\widehat{a},\widehat{G}))) \le \alpha + O(m^{-1/2}).$$

Road Map

1. Preliminaries

- Models for FDP and FNP
- FDP and FNP as stochastic processes

2. Plug-in Procedures

- Asymptotic behavior of BH procedure
- Optimal Thresholds

3. Confidence Envelopes and Thresholds

- Exact Confidence Envelopes for FDP
- Controlling exceedance probabilities for FDP

4. False Discovery Control for Random Fields

- Confidence Supersets and Thresholds
- Fast Algorithm

5. Estimating the p-value distribution

Confidence Envelopes and Thresholds

- In practice, it would be useful to be able to control quantiles of the FDP process.
- \bullet We want a procedure T_C that, for some specified C and $\alpha,$ guarantees

 $\mathsf{P}_G\{\mathsf{FDP}(T_C) > C\} \leq \alpha.$

We call this a $(1 - \alpha, C)$ confidence-threshold procedure.

- Three methods: (i) asymptotic closed-form threshold, (ii) asymptotic confidence envelope, and (iii) exact small-sample confidence envelope.
 - I'll focus here on the latter.

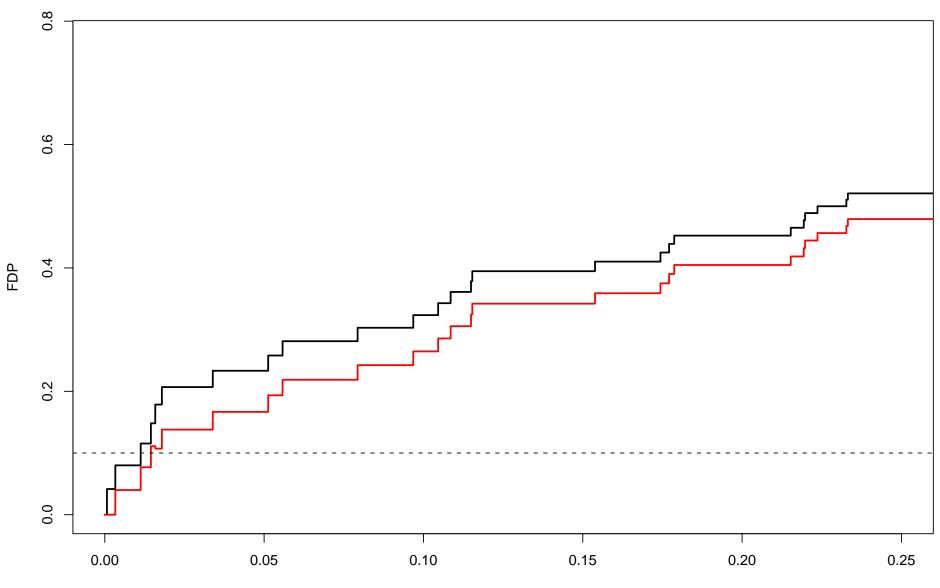
Confidence Envelopes and Thresholds (cont'd)

• A $1 - \alpha$ confidence envelope for FDP is a random function $\overline{FDP}(t)$ on [0, 1] such that

$$\mathsf{P}\big\{\mathsf{FDP}(t) \leq \overline{\mathsf{FDP}}(t) \text{ for all } t\big\} \geq 1 - lpha.$$

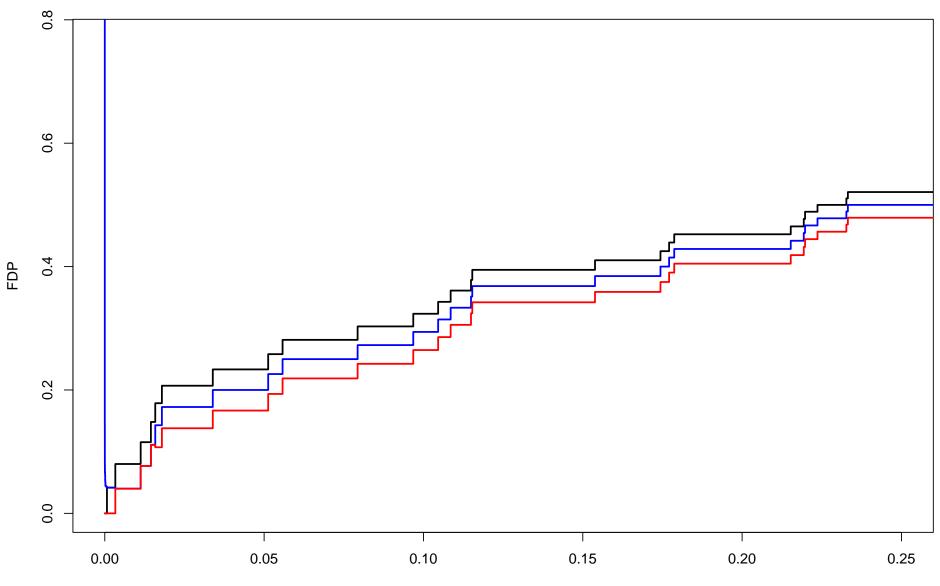
- Given such an envelope, we can construct confidence thresholds. Two special cases have proved useful:
 - Fixed-ceiling thresholds define C to be a pre-determined constant (the ceiling) and take T_C to be the maximum t for which $\overline{FDP}(t) \leq C$.
 - Minimum-envelope thresholds define C to be the min_t $\overline{\text{FDP}}(t)$ and take T_C to be the maximum t for which this minimum is achieved.

Exact Confidence Envelopes



Threshold

Exact Confidence Envelopes (cont'd)



Threshold

Exact Confidence Envelopes (cont'd)

• Given V_1, \ldots, V_k , let $\varphi_k(v_1, \ldots, v_k)$ be a level α test of the null that V_1, \ldots, V_k are IID Uniform(0, 1).

• Define
$$p_0^m(h^m) = (p_i: h_i = 0, \ 1 \le i \le m)$$

 $m_0(h^m) = \sum_{i=1}^m (1 - h_i)$
and $\mathcal{U}_{\alpha}(p^m) = \left\{ h^m \in \{0, 1\}^m : \varphi_{m_0(h^m)}(p_0^m(h^m)) = 0 \right\}.$

Note that as defined, \mathcal{U}_{α} always contains the vector $(1, 1, \ldots, 1)$.

• Let

$$\mathcal{G}_{\alpha}(p^{m}) = \left\{ \mathsf{FDP}(\cdot, h^{m}, p^{m}) \colon h^{m} \in \mathcal{U}_{\alpha}(p^{m}) \right\}$$

$$\mathcal{M}_{\alpha}(p^{m}) = \left\{ m_{0}(h^{m}) \colon h^{m} \in \mathcal{U}_{\alpha}(p^{m}) \right\}.$$

Exact Confidence Envelopes (cont'd)

• THEOREM. For all 0 < a < 1, F, and positive integers m,

$$\mathsf{P}\left\{H^{m} \in \mathcal{U}_{\alpha}(P^{m})\right\} \geq 1 - \alpha$$
$$\mathsf{P}\left\{M_{0} \in \mathcal{M}_{\alpha}(P^{m})\right\} \geq 1 - \alpha$$
$$\mathsf{P}\left\{\mathsf{FDP}(\cdot, H^{m}, P^{m}) \in \mathcal{G}_{\alpha}\right\} \geq 1 - \alpha.$$

- Define $\overline{\text{FDP}}$ to be pointwise supremum over \mathcal{G}_{α} . Then, $\overline{\text{FDP}}$ is a 1α confidence envelope for FDP.
- Confidence thresholds are then easy to construct. For example

$$T_c = \sup \{t : \ \mathsf{\Gamma}(t) \le c \text{ and } \mathsf{\Gamma} \in \mathcal{G}_{\alpha}(P^m)\}$$

is a $1 - \alpha$ fixed-ceiling confidence threshold with ceiling c.

Choice of Tests

- The choice of uniformity tests has a big impact on performance of the confidence envelopes.
- There are two desiderata:
 - A. "Power": FDP should be close to FDP, and
 - B. Computability: Need to to carry out all 2^m tests quickly.
- Both are met by using the kth order statistic of any subset as a test statistic, for some k. We call these the P_(k) tests.
 For small k, these are sensitive to departures that have a large impact on FDP. They can also be computed in m or few steps.
- In contrast, traditional uniformity tests, such as the (one-sided) Kolmogorov-Smirnov test do not fare as well.

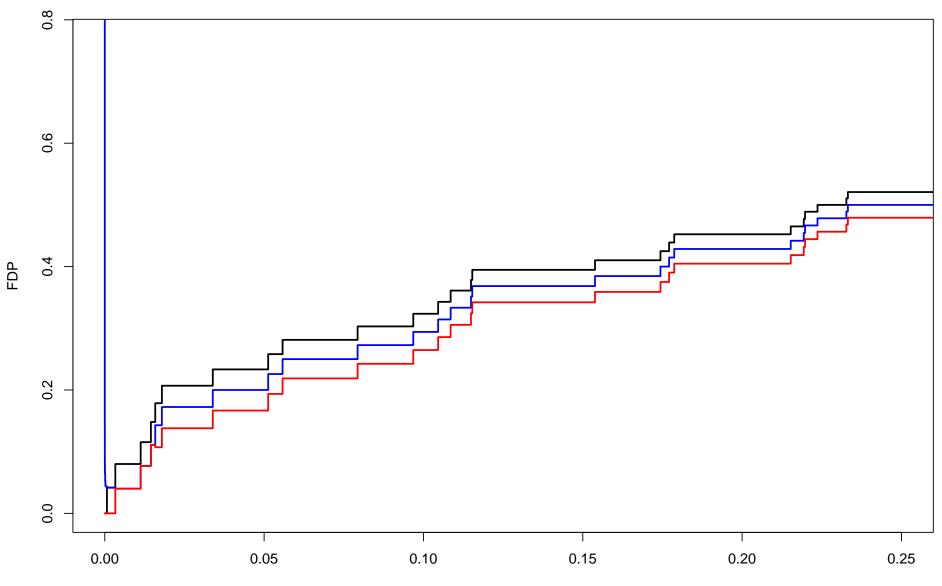
The Kolmogorov-Smnirov test looks for deviations from uniformity equally though all the p-values.

Computing $P_{(k)}$ Envelopes

- Let q_{mkj} denote the α quantile of the Beta(k, m j + 1) for $k \leq j \leq m$.
- Let J_k be the index of the smallest $P_{(j)}$ which is $\geq q_{mkj}$.
- The confidence envelope for the $P_{(k)}$ -test is achieved by the configuration of nulls (0) and alternatives (1) in the ordered p-values. J_k-k

$$\overline{\mathsf{FDP}}_{k}(t) = \begin{cases} 1 & \text{if } t \leq \frac{k-1}{m} \\ \frac{k-1}{m\widehat{G}(t)} & \text{if } \frac{k-1}{m} < t \leq \frac{J_{k}}{m} \\ 1 - \frac{J_{k}-k+1}{m\widehat{G}(t)} & \text{if } t > \frac{J_{k}}{m} \end{cases}$$

Computing $P_{(k)}$ Envelopes (cont'd)



Threshold

Choice Among $P_{(k)}$ Tests

- For any k, let $V_k = J_k k$.
- In any pairwise comparison of $P_{(k)}$ and $P_{(k')}$ tests with k < k', there are only three possible orderings:

A. $P_{(k)}$ dominates everwhere if $V_k \ge V_{k'}$,

B. $P_{(k')}$ dominates everywhere if $V_{k'} > V_k \left[1 + \frac{k'-k}{k-1}\right] + \frac{k'-k}{k-1}$,

C. Otherwise, the two profiles cross at $J_{k'}$ with value $(k'-1)/J_{k'}$.

• The result for any k can be put in terms of Uniform hitting times for a boundary of the form $G(q_{mkj}) \approx G(\tilde{q}_{mk}/(m-j+1))$.

The distribution of these hitting times can be computed exactly (with difficulty) via Steck's equality.

Choice Among $P_{(k)}$ Tests (cont'd)

- Alternatively, using a family of alternative distributions, such as Uniform $(0, 1/\theta)$ or Normal $(\theta, 1)$, we can compute $k^*(\theta)$, the optimal k for each θ .
- So far, this is consistent with our simulation results across a wide variety of families.
- \bullet The $P_{(1)}$ and $P_{(2)}$ tests appear to perform well under a wide range of alternatives.
- Next steps: data dependent choice of k, adjusted test procedures.
 Plug-in estimation into k*(θ) for approximate family is a simple but effective data-dependent choice.

Road Map

1. Preliminaries

- Models for FDP and FNP
- FDP and FNP as stochastic processes

2. Plug-in Procedures

- Asymptotic behavior of BH procedure
- Optimal Thresholds

3. Confidence Envelopes and Thresholds

- Exact Confidence Envelopes for FDP
- Controlling exceedance probabilities for FDP

4. False Discovery Control for Random Fields

- Confidence Supersets and Thresholds
- Fast Algorithm

5. Estimating the p-value distribution

False Discovery Control for Random Fields

- Multiple testing methods based on the excursions of random fields are widely used, especially in functional neuroimaging (e.g., Cao and Worsley, 1998) and scan clustering (Glaz, Naus, and Wallenstein, 2001).
- False Discovery Control extends to this setting as well.
- For a set S and a random field $X = \{X(s): s \in S\}$ with mean function $\mu(s)$, use the realized value of X to test the collection of one-sided hypotheses

$$H_{0,s}: \mu(s) = 0$$
 versus $H_{1,s}: \mu(s) > 0$.
Let $S_0 = \{s \in S: \ \mu(s) = 0\}.$

False Discovery Control for Random Fields

• Define a spatial version of FDP by

$$\mathsf{FDP}(t) = \frac{\lambda(S_0 \cap \{s \in S : X(s) \ge t\})}{\lambda(\{s \in S : X(s) \ge t\})},$$

where λ is usually Lebesgue measure.

- As in the cases discussed earlier, we can control FDR or quantiles of FDP.
- Our approach is again based on finding a confidence envelope for FDP by finding a confidence superset U of S_0 .

Confidence Supersets and Envelopes

1. For every $A \subset S$, test $H_0 : A \subset S_0$ versus $H_1 : A \not\subset S_0$ at level α using the test statistic $X(A) = \sup_{s \in A} X(s)$. The tail area for this statistic is $p(z, A) = P\{X(A) \ge z\}$. 2. Let $C = \{A \subset S: p(x(A), A) \ge \alpha\}$. 3. Then, $U = \bigcup_{A \in C} A$ satisfies $P\{U \supset S_0\} \ge 1 - \alpha$.

4. And,

$$\overline{\mathsf{FDP}}(t) = \frac{\lambda(U \cap \{s \in S : X(s) > t\})}{\lambda(\{s \in S : X(s) > t\})},$$

is a confidence envelope for FDP.

Confidence Supersets and Envelopes (cont'd)

- The challenge of this strategy is to find U without computing the tests for every subset.
- In general, define a sequence of nested partitions that separates points

$$\mathcal{S}_n = \{S_{n1}, \ldots, S_{nN_n}\}.$$

Example: unions of cubes.

Our algorithm (below) applied to S_n produces a set U_n . The set $U = \overline{\lim_n U_n}$ is a confidence superset for S_0 .

For a given partition S₁,..., S_N of S, our algorithm requires at most N steps though in effect computing 2^N tests.
 We assume the null distribution of sup_{j∈I} X(S_j) can be computed for any I ⊂ {1,...,N}

Confidence Supersets and Envelopes (cont'd)

Algorithm

- 1. Compute all realized values of the test statistics $x(S_j)$
- Sort these in decreasing order x₍₁₎ ≥ ··· ≥ x_(N). Let S_(j) be the partition element corresponding to x_(j).
 For k = 1,..., N do the following:
 - a. Set $V_k = \bigcup_{j=k}^N S_{(j)}$. b. Compute $p(x_{(k)}, V_k)$. c. If $p(x_{(k)}, V_k) \ge \alpha$: STOP and set $V^* = V_k$. d. If $p(x_{(k)}, V_k) < \alpha$: increase k by 1 and GOTO 3a.

Extracting Thresholds

- Using U, we can define FDR-controlling thresholds, confidence thresholds, and thresholds that control the number of false clusters to some tolerance.
- For the latter, decompse the *t*-level set of X into its connected components C_{t1}, \ldots, C_{tk_t} .
- Say a cluster C is false at tolerance ϵ if $\frac{\lambda(C \cap S_0)}{\lambda(C)} \ge \epsilon.$
- For level t, let $\xi(t)$ denote the proportion of false clusters (at tol ϵ) out of k_t clusters.
- Then,

$$\overline{\xi}(t) = \frac{\#\left\{1 \le i \le k_t : \frac{\lambda(C_{ti} \cap U)}{\lambda(C_{ti})} \ge \epsilon\right\}}{k_t}$$

gives a $1 - \alpha$ confidence envelope for ξ .

Gaussian Fields

• Assume $S = [0, 1]^d$ and that X is a zero-mean, homogeneous Gaussian field with covariance

$$\mathsf{Cov}(X(r), X(s)) = \rho(r - s),$$

where we assume that ρ gives X almost surely continuous sample paths.

Example: $\rho(u) = 1 - u^T C^{-1} u + o(||u||^2)$ for some matrix C.

The key challenge here is to approximate p(z, A).
 A common method uses the expected Euler characteristic of the level sets.

Gaussian Fields (cont'd)

• For our purposes, this will not work because the Euler characteristic approximation is monotone for non-convex sets.

Note also that for non-convex sets, not all terms in the Euler approximation are accurate.

• Instead we use a result of Piterbarg (1996) to obtain

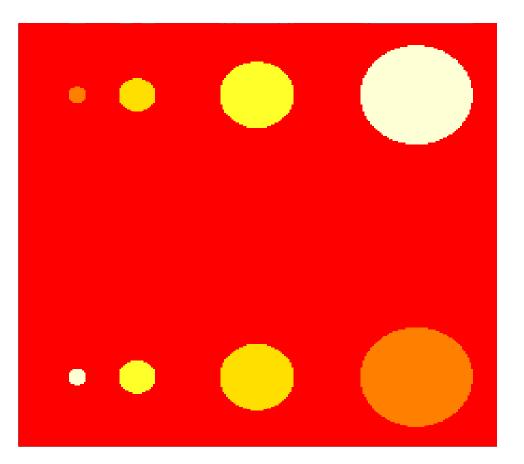
$$p(z,A) = \mathsf{P}\left\{\sup_{s \in A} \frac{X(s)}{\sigma} \ge \frac{z}{\sigma}\right\} \simeq \frac{\pi^{-\frac{d}{2}}}{|\det C|} \lambda(A) \left(\frac{z}{\sigma}\right)^d \left[1 - \Phi\left(\frac{z}{\sigma}\right)\right],$$

for C as in the quadratic form above.

• Simulations over a wide variety of S_0 s and covariance structures show that coverage of U rapidly converges to the target level.

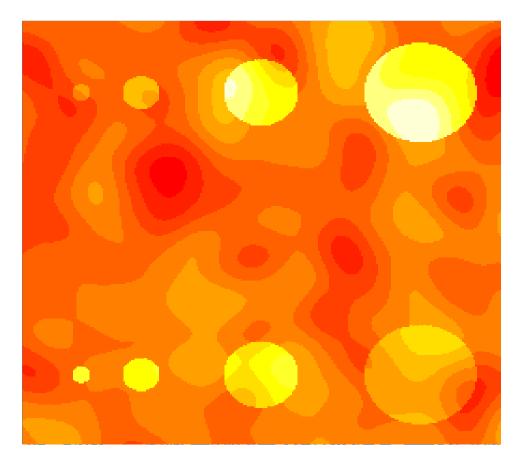
Gaussian Fields: Example

Bubbles



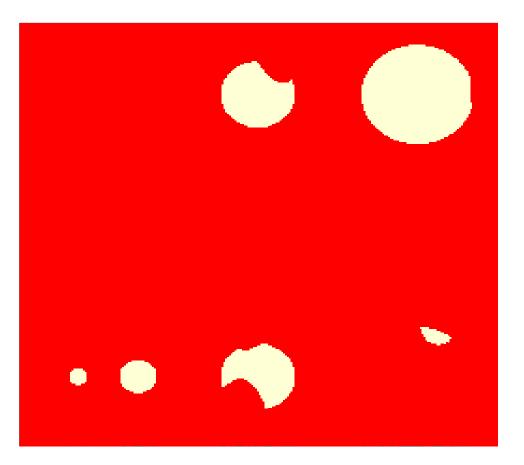
Gaussian Fields: Example (cont'd)

Bubbles + noise



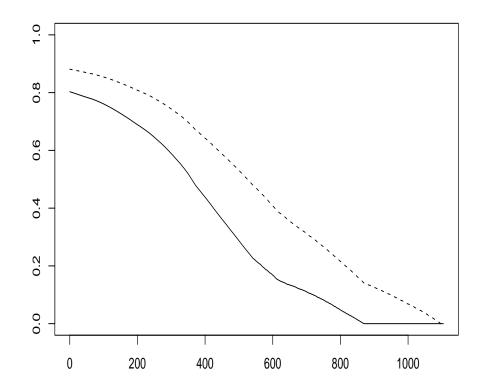
Gaussian Fields: Example (cont'd)

Bubbles: confidence bound



Gaussian Fields: Example (cont'd)

Bubbles: True FDP and upper envelope



Road Map

1. Preliminaries

- Models for FDP and FNP
- FDP and FNP as stochastic processes

2. Plug-in Procedures

- Asymptotic behavior of BH procedure
- Optimal Thresholds

3. Confidence Envelopes and Thresholds

- Exact Confidence Envelopes for FDP
- Controlling exceedance probabilities for FDP

4. False Discovery Control for Random Fields

- Confidence Supersets and Thresholds
- Fast Algorithm

5. Estimating the p-value distribution

Estimating a and F

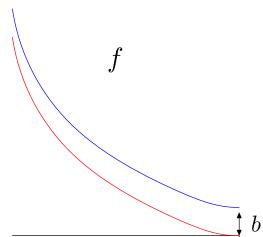
- Recall that the p-value distribution G = (1 a)U + aFwhere a and F are unknown.
- \bullet We need a good estimate of a for plug-in estimates,

$$T_{\mathrm{PI}}(P^m) = \max\left\{t: \ \widehat{G}(t) = \frac{(1-\widehat{a})t}{lpha}
ight\},$$

that approximate the optimal threshold.

• Good estimates of a and F can be useful for some types of confidence thresholds.

• Identifiability and Purity



If min f = b > 0, can write $F = (1-b)U+bF_0$, $\mathcal{O}_G = \{(\widetilde{a}, \widetilde{F}) : \widetilde{F} \in \mathcal{F}, G = (1-\widetilde{a})U + \widetilde{a}\widetilde{F}\}$ may contain more than one element.

If f = F' is decreasing with f(1) = 0, then (a, F) is identifiable.

• In general, let $\underline{a} \leq a$ be the smallest mixing weight in the orbit: $\underline{a} = 1 - \min_t g(t)$. This is identifiable.

Storey (2002) notes that $0 \leq \sup_{0 < t < 1} \frac{G(t) - t}{1 - t} \leq \underline{a} \leq a \leq 1$.

• $a - \underline{a}$ is typically small: $a - \underline{a} = ae^{-n\theta^2/2}$ in the two-sided test of $\theta = 0$ versus $\theta \neq 0$ in the Normal $\langle \theta, 1 \rangle$ model.

- Parametric Case
 - Derived a 1β one-sided conf. int. for <u>a</u> and thus a. (a, θ) typically identifiable even if $a > \underline{a}$; use MLE.
- Non-parametric case:
 - Derived a 1β one-sided conf. int. for <u>a</u> and thus a.
 - -When F concave, get $\hat{a}_{\text{HS}} = \underline{a} + O_P(m^{-1/3}(\log m)^{1/3}).$
 - -When F smooth enough, get $\hat{a}_{\rm S} = \underline{a} + O_P(m^{-2/5})$.
 - Consistent estimate for F_0 if \hat{a} consistent for \underline{a} :

$$\widehat{F}_m = \underset{H \in \mathcal{F}}{\operatorname{argmin}} \|\widehat{G} - (1 - \widehat{a})U - \widehat{a}H\|_{\infty}.$$

• $\hat{a}_{\rm S}$ uses "spacings" estimator (Swanepoel, 1999) to estimate min g(t). This yields

$$\frac{m^{2/5}}{(\log m)^{\delta}} (\widehat{a} - \underline{a}) \rightsquigarrow \operatorname{Normal}\langle 0, (1 - \underline{a})^2 \rangle$$

- $\hat{a}_{\text{HS}} = 1 \min\{h(1): \gamma_{-} \leq h \leq \gamma_{+}\}$, where $[\gamma_{-}, \gamma_{+}]$ is the 1α finite-sample confidence envelope for g derived in Hentgartner and Stark (1995).
 - A 1α confidence interval for a is $[1 \gamma_+(1), 1]$.
- \bullet Storey's estimator for fixed 0 $\leq t_0 \leq 1$

$$\widehat{a}_0 = \left(\frac{\widehat{G}(t_0) - t_0}{1 - t_0}\right)_+,$$

though asymptotically biased can also be useful.

 \bullet Confidence interval for a given by

$$\mathcal{A}_m = \left[\max_t \frac{\widehat{G}_m(t) - t - \epsilon_m(\alpha)}{1 - t}, 1 \right],$$

where
$$\widehat{G}_m$$
 is EDF and $\epsilon_m(\alpha) = \sqrt{\log(2/\alpha)/2m}$.

Then,

$$1 - \alpha \le \inf_{a,F} \mathsf{P} \{ a \in A_m \} \le 1 - \alpha + R_m$$

where

$$R_m = \sum_j (-1)^j rac{{lpha j}^2}{2^{j^2 - 1}} + O\left(rac{(\log m)^2}{\sqrt{m}}
ight)$$

Road Map

1. Preliminaries

- Models for FDP and FNP
- FDP and FNP as stochastic processes

2. Plug-in Procedures

- Asymptotic behavior of BH procedure
- Optimal Thresholds

3. Confidence Envelopes and Thresholds

- Exact Confidence Envelopes for FDP
- Controlling exceedance probabilities for FDP

4. False Discovery Control for Random Fields

- Confidence Supersets and Thresholds
- Fast Algorithm

5. Estimating the p-value distribution

Take-Home Points

- It's helpful to think of FDP (FNP, FDR, ...) as stochastic processes. Dependence between threshold and FDP can have a big effect.
- Asymptotic approach motivated by particular applications, but asymptotics appear to kick in rather quickly.
- Confidence thresholds have practical advantages over FDR control.
- Dependence complicates the analysis greatly; confidence envelopes appear to be valid under positive dependence.
- For spatial applications, adjacency can be highly informative but is ignored by standard multiple testing methods.

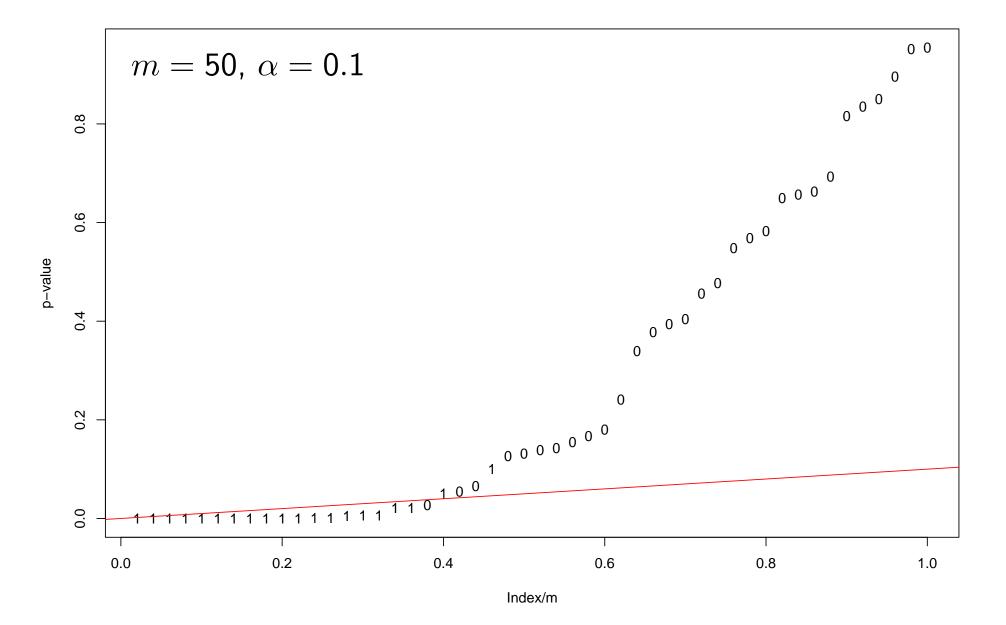
Cluster-based false discovery control (work in progress) offers an advantage in these cases.

Appendix

- 1. Notation
- 2. BH Picture
- 3. Asymptotic Confidence Thresholds
- 4. Bayes and Empirical Bayes Thresholds

Recurring Notation

 $m, M_0, M_{1|0}$ a $H^m = (H_1, \ldots, H_m)$ $P^m = (P_1, \ldots, P_m)$ U F, fG = (1 - a)U + aFq = G' \widehat{G}_m $\epsilon_k(\beta) = \sqrt{\frac{1}{2k} \log\left(\frac{2}{\beta}\right)}$ # of tests, true nulls, false discoveries Mixture weight on *a*lternative Unobserved true classifications Observed p-values CDF of Uniform(0, 1)Alternative CDF and density Marginal CDF of P_i Marginal density of P_i Estimate of G (e.g., empirical CDF of P^m) DKW bound $1 - \beta$ quantile of $\|\hat{G}_k - G\|_{\infty}$



Closed-Form Asymptotic Confidence Thresholds

• Let

$$t_0 = Q^{-1}(c)$$
 $\hat{t}_0 = \hat{Q}^{-1}(c).$

• Then define

$$T_C = \hat{t}_0 + \frac{\widehat{\Delta}_{m,\alpha}}{\sqrt{m}},$$

where $\widehat{\Delta}_{m,\alpha}$ is depends on a density estimate of g = G'. • Then, $P_G \{ FDP(T_C) \le c \} \ge 1 - \alpha + o(1).$

Closed-Form Asymptotic Confidence Thresholds

• Details:

$$\widehat{\Delta}_{m,\alpha} = \frac{z_{\alpha/2} \left(\sqrt{\widehat{K}_{Q^{-1}}(\widehat{t}_0, \widehat{t}_0)} + \widehat{g}(\widehat{t}_0) \right) + 2\sqrt{\log m}}{1 - \widehat{a} - c\widehat{g}(\widehat{t}_0)}$$

$$\widehat{K}_{Q^{-1}}(s, t) = \frac{\widehat{K}_Q(\widehat{Q}^{-1}(s), \widehat{Q}^{-1}(t))}{\widehat{Q'}(\widehat{Q}^{-1}(s))\widehat{Q'}(\widehat{Q}^{-1}(t))}$$

$$\widehat{K}_Q(s, t) = \frac{(1 - \widehat{a})^2 st}{\widehat{G}^2(s)\widehat{G}^2(t)} \left[\widehat{G}(s \wedge t) - \widehat{G}(s)\widehat{G}(t) \right].$$

This requires no bootstrapping but does require density estimation.
 This is analogous to the situation faced when estimating the standard error of a median.

Bayesian Thresholds

• Bayesian Threshold bounds posterior FDR:

 $T_{\text{Bayes}} = \sup\{t : \mathsf{E}(\mathsf{FDP}(t) \mid P^m) \le \alpha\}$

• Similarly, can construct a posterior (c, α) confidence threshold $T_{\mathrm{Bayes},c}$ by

 $T_{\text{Bayes},c} = \sup\{t : \mathsf{P}\{\mathsf{FDP}(t) \le c \mid P^m\} \le \alpha\}$

EBT (Empirical Bayes Testing)

• Efron et al (2001) note that

$$\mathsf{P}\big\{H_i = \mathsf{0} \mid P^m\big\} = \frac{(1-a)}{g(P_i)} \equiv q(P_i)$$

- Reject whenever $q(p) \leq \alpha$?
- \bullet For a,f unknown, $f\geq 0$ implies that

$$a \ge 1 - \min_p g(p) \Longrightarrow \widehat{a} = 1 - \min_p \widehat{g}(p).$$

• Then,
$$\widehat{q}(p) = \frac{1 - \widehat{a}}{\widehat{g}(p)} = \frac{\min_s \widehat{g}(s)}{\widehat{g}(p)}$$

EBT versus FDR

- If we reject when $P\{H_i = 0 \mid P^m\} \le \alpha$, how many errors are we making?
- Under weak conditions, can show that

 $q(t) \leq \alpha$ implies $Q(t) < \alpha$

```
So EBT is conservative.
```

Behavior of \widehat{q}

• THEOREM. Let $\widehat{q}(t) = \frac{(1-a)}{\widehat{g}(t)}$. Suppose that $m^{\alpha}(\widehat{g}(t) - g(t)) \rightsquigarrow W$

for some $\alpha > 0$, where W is a mean 0 Gaussian process with covariance kernel $\tau(v, w)$. Then

$$m^{\alpha} (\widehat{q}(t) - q(t)) \rightsquigarrow Z$$

where Z is a Gaussian process with mean 0 and covariance kernel

$$K_q(v,w) = \frac{(1-a)^2 \tau(v,w)}{g(v)^4 g(w)^4}.$$

Behavior of \hat{q} (cont'd)

• Parametric Case: $g \equiv g_{\theta} = (1 - a) + a f_{\theta}(v)$ Then,

$$\mathsf{rel}(v) = \frac{\widehat{\mathsf{se}}(\widehat{q}(v))}{q(v)} \approx O\left(\frac{1}{\sqrt{m}}\right) \left|\frac{\partial \log g_{\theta}}{\partial d\theta}\right| = O\left(\frac{1}{\sqrt{m}}\right) |v - \theta| \quad \text{Normal case}$$

• Nonparametric Case

$$\widehat{g}(t) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{h_m} K\left(\frac{t - P_i}{h_m}\right)$$

 $h_m = cm^{-\beta}$ where $\beta > 1/5$ (undersmooth). Then

$$\mathsf{rel}_v = \frac{c}{m^{(1-\beta)/2}\sqrt{g(v)}}.$$