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Motivating Example #1: fMRI

• fMRI Data: Time series of 3-d images acquired while subject

performs specified tasks.
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• Goal: Characterize task-related signal changes caused (indirectly)

by neural activity. [See, for example, Genovese (2000), JASA 95, 691.]



fMRI (cont’d)

Perform hypothesis tests at

many thousands of volume

elements to identify loci of

activation.



Motivating Example #2: Cosmology

• Baryon wiggles (Miller, Nichol, Batuski 2001)

• Radio Source Detection (Hopkins et al. 2002)

•Dark Energy (Scranton et al. 2003)
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Motivating Example #3: DNA Microarrays

•New technologies allow measurement of gene expression for

thousands of genes simultaneously.
Subject Subject

1 2 3 . . . 1 2 3 . . .

1 X111 X121 X131 . . . X112 X122 X132 . . .

2 X211 X221 X231 . . . X212 X222 X232 . . .

3 ... ... ... . . . ... ... ... . . .

Gene 4

5

6
...

Condition 1 Condition 2

• Goal: Identify genes associated with differences among conditions.

•Typical analysis: hypothesis test at each gene.



One Test, One Threshold

With a single hypothesis test, we choose a rejection

threshold to control the Type I error rate,

Threshold

Type I
Error Rate

Type II
Error Rate

while achieving a desirable Type II error rate for

relevant alternatives.



Many Tests, One Threshold

With multiple tests, the problem is more complicated

Each test has possible Type I and Type II errors, and there are many

possible ways to combine them. The probability of a Type I error

grows with the number of tests.



Many, Many Tests

It has become quite common

in applications to perform

many thousands, even millions,

of simultaneous hypothesis

tests.

Power is critical in these

applications because the most

interesting effects are usually

at the edge of detection.
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The Multiple Testing Problem

• Performm simultaneous hypothesis tests with a common procedure.

• For any given procedure, classify the results as follows:

H0 Retained H0 Rejected Total

H0 True TN FD T0

H0 False FN TD T1

Total N D m

Mnemonics: T/F = True/False, D/N = Discovery/Nondiscovery

All quantities except m, D, and N are unobserved.

•The problem is to choose a procedure that balances the

competing demands of sensitivity and specificity.



How to Choose a Threshold?

• Control Per-Comparison Type I Error (PCER)

– a.k.a. “uncorrected testing,” many type I errors

– Gives P
{
FDi > 0

}
≤ α marginally for all 1 ≤ i ≤ m

• Control Familywise Type I Error (FWER)

– e.g.: Bonferroni: use per-comparison significance level α/m

– Guarantees P
{
FD > 0

}
≤ α

• Control False Discovery Rate (FDR)

– first defined by Benjamini & Hochberg (BH, 1995, 2000)

– Guarantees FDR ≡ E

(
FD

D

)
≤ α

• . . .



A Practical Problem

•While guarantee of FWER-control is appealing,

the resulting thresholds often suffer from low power.

In practice, this tends to wipe out evidence of the

most interesting effects.

• FDR control offers a way to increase power while

maintaining some principled bound on error.

It is based on the assessment that

4 false discoveries out of 10 rejected null hypotheses

is a more serious error than

20 false discoveries out of 100 rejected null hypotheses.

• A simple illustration . . .



FWER Control



FDR Control



Recurring Notation

•Define p-values Pm = (P1, . . . , Pm) for the m tests.

|Test Statistic|−|Test Statistic|

p/2p/2

Test Statistic

p

• Let P(0) ≡ 0 and order the p-values

P(0) = 0 < P(1) < · · · < P(m).

•Define hypothesis indicators Hm = (H1, . . . , Hm), where Hi = 0

when the ith null hypothesis is true and Hi = 1 when the ith

alternative is true.

• A multiple testing threshold T is a map [0, 1]m → [0, 1], where we

reject each null hypothesis with Pi ≤ T (Pm).



The False Discovery Rate

•Define the False Discovery Proportion (FDP) to be the (unobserved)

proportion of false discoveries among total rejections.

As a function of threshold t (and implicitly Pm and Hm), write

this as

FDP(t) =

∑

i

1
{
Pi ≤ t

}
(1−Hi)

∑

i

1
{
Pi ≤ t

}
+ 1

{
all Pi > t

} =
#False Discoveries

#Discoveries

•The False Discovery Rate (FDR) for a multiple testing threshold

T is defined as the expected FDP using that procedure:

FDR = E

(
FDP(T )

)
.



Aside: The False Non-Discovery Rate

•We can define a dual quantity to the FDR, the False Nondiscovery

Rate (FNR).

• Begin with the False Nondiscovery Proprotion (FNP): the

proportion of missed discoveries among those tests for which

the null is retained.

FNP(t) =

∑

i

1
{
Pi > t

}
Hi

∑

i

1
{
Pi > t

}
+ 1

{
all Pi ≤ t

} =
#False Nondiscoveries

#Nondiscoveries

•Then, the False Nondiscovery Rate (FNR) is given by

FNR = E

(
FNP(T )

)
.



The Benjamini-Hochberg Procedure

• Benjamini and Hochberg (BH, 1995) introduced the FDR and

show that a procedure of Eklund and Simes controls it.

•The BH threshold is defined for pre-specified 0 < α < 1 as

TBH = max

{
P(i): P(i) ≤ α

i

m
, 0 ≤ i ≤ m

}
.

• BH (1995) proved (for independent tests) that using this procedure

guarantees – for any alternative distributions – that

FDR ≡ E

(
FDP(TBH)

)
≤ T0

m
α,

and equality holds with continuous test statistics.



The Benjamini-Hochberg Procedure (cont’d)

m = 50, α = 0.1
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A Useful Mixture Model

•The following model is helpful for understanding and analyzing BH

and its variants:

H1, . . . , Hm iid Bernoulli〈a〉
Ξ1, . . . ,Ξm iid LF

Pi | Hi = 0,Ξi = ξi ∼ Uniform〈0, 1〉
Pi | Hi = 1,Ξi = ξi ∼ ξi.

where LF denotes a probability distribution on a

class F of distributions on [0, 1].

•Typical examples for the class F :

– Parametric family: FΘ = {Fθ: θ ∈ Θ}
– Concave, continuous distributions

FC = {F : F concave, continuous cdf with F ≥ U}.



A Useful Mixture Model (cont’d)

•Under this model, the m p-values Pm = (P1, . . . , Pm) are

marginally iid from

G = (1− a)U + aF,

where: 1. 0 ≤ a ≤ 1 is the frequency of alternatives,

2.U is the Uniform〈0, 1〉 cdf, and

3. F =
∫
ξ dLF(ξ) is a distribution on [0,1].

•The marginal alternative distribution F comes up again and again,

but its use does not preclude having different alternatives for

different tests.

• Although the model posits iid Bernoulli〈a〉 His, all the theory

carries through with fixed His as well.



BH Revisited

Let’s use this model to understand FDR and BH.

At any fixed threshold t, we have

FDR(t) = E

∑

i

1
{
Pi ≤ t

}
(1−Hi)

∑

i

1
{
Pi ≤ t

}
+ 1

{
all Pi > t

}

≈
E

1

m

∑

i

1
{
Pi ≤ t

}
(1−Hi)

E
1

m

∑

i

1
{
Pi ≤ t

}
+

1

m
P

{
all Pi > t

}

=
(1− a)t

G(t) +
1

m
(1−G(t))m

≈ (1− a)t
G(t)

.



BH Revisited (cont’d)

Now, let

Ĝm(t) =
1

m

∑

i

1
{
Pi ≤ t

}

be the empirical cdf of Pm.

In the continuous case, we can ignore ties, so Ĝm(P(i)) = i
m.

BH is thus equivalent to the following:

TBH(Pm) = sup
{
t: t ≤ αĜm(t)

}

= sup
{
t: Ĝm(t) =

t

α

}

= sup

{
t:

t

Ĝm(t)
= α

}
.



BH Revisited (cont’d)

One can think of this in two ways.

First, the BH procedure equates estimated FDR to the target α.

This estimator,

F̂DR(t) =
t

Ĝm(t)
,

uses Ĝm in place of G and â ≡ 0 in place of a.

Second, the BH threshold is a plug-in estimator of

u∗(a,G) = max
{
t: G(t) =

t

α

}

= max {t: F (t) = βt} ,

where β = (1− α+ αa)/αa.



Asymptotic Behavior of BH Procedure

This yields the following picture: α
m, α, u∗

0 α

m
u∗ α

Bonferroni FDR Uncorrected

F (u)

βu



BH Performance

• BH generally gives more power than FWER control and

fewer Type I errors than uncorrected testing.

• BH performs best in very sparse cases (T0 ≈ m).

For example, under the mixture model and in the continuous case,

E(FDP(TBH)) = (1− a)α.

The BH procedure thus overcontrols FDR and thus

will not in general minimize FNR.

• Power can be improved in non-sparse cases by more

complicated adaptive procedures.



BH Performance (cont’d)

•When all m null hypotheses are true, BH is equivalent

to FWER control.

•The BH FDR bound holds for certain classes of

dependent tests, as we will see.

In practice, it is quite hard to “break”.

•D · α need not bound the number of false discoveries.

This is a common misconception for end users.



Operating Characteristics of the BH Method

•Define the misclassification risk of a procedure T by

RM(T ) =
1

m

m∑

i=1

E

∣∣∣1
{
Pi ≤ T (Pm)

}
−Hi

∣∣∣ .

This is the average fraction of errors of both types.

•Then RM(TBH) ∼ R(a, F ) as m→∞, where

R(a, F ) = (1−a)u∗+a(1−F (u∗)) = (1−a)u∗+a(1−βu∗).

• Compare this to Uncorrected and Bonferroni and the Bayes’ oracle

rule TBO(Pm) = b where b solves f(b) = (1− a)/a.

RM(TU) = (1− a)α + a (1− F (α))

RM(TB) = (1− a) α
m

+ a
(
1− F

(
α

m

))

RM(TBO) = (1− a) b + a (1− F (b)) .



Normal〈θ, 1〉 Model, α = 0.05

θ=2

R
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FDP and FNP as Stochastic Processes

• Both the FDP(t) and FNP(t) stochastic processes converge

to Gaussian processes outside a neighborhood of 0 and 1

respectively.

• For example, define

Zm(t) =
√
m (FDP(t)−Q(t)) , δ ≤ t ≤ 1,

where 0 < δ < 1 and Q(t) = (1− a)U/G.

• Let Z be a mean 0 Gaussian process on [δ, 1] with covariance

kernel

K(s, t) = a(1− a) (1− a)stF (s ∧ t) + aF (s)F (t)(s ∧ t)
G2(s)G2(t)

.

•Then, Zm  Z.
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Optimal Thresholds

•The equality

E(FDP(TBH)) = (1− a)α
implies that if we knew a, we could improve power

by applying BH at level α/(1− a).

•This suggests using TPI, the plug-in estimator for

t∗(a,G) = max

{
t: G(t) =

(1− a)t
α

}

= max {t: F (t) = (β − 1/α)t} ,

where β − 1/α = (1− a)(1− α)/aα.

•Note that t∗ ≥ u∗.



Optimal Thresholds (cont’d)

• For each 0 ≤ t ≤ 1,

E(FDP(t)) =
(1− a) t
G(t)

+ O
(
(1− t)m

)

E(FNP(t)) = a
1− F (t)

1−G(t)
+ O

(
(a+ (1− a)t)m

)
.

• Ignore O() terms and choose t to minimize E(FNP(t)) subject to

E(FDP(t)) ≤ α.

This yields t∗(a,G) as the optimal threshold.

• Genovese and Wasserman (2002) show that

E(FDP(t∗(â, Ĝ))) ≤ α+O(m−1/2)

under weak conditions on â.



Improving Power

• In practice, the main difficulty here is finding a good estimator

of 1− a, or alternatively, a good estimator of T0.

Part of the challenge is guaranteeing FDR control with the

increased variability induced by the estimator.

• Adaptive estimators for improving power in FWER-controlling

methods go back to Schweder and Spjotvol (1982) and Hochberg

and Benjamini (1990).

• Recent approaches in the context of FDR have come from

Benjamini and Hochberg (2000), Efron et al. (2001), Storey

(2002), Genovese and Wasserman (2002), Storey et al. (2003),

and Benjamini, Krieger, and Yekutieli (BKY, 2004).



Improving Power (cont’d)

• Benjamini, Krieger, and Yekutieli (BKY, 2004) give a comprehensive

numerical comparison of adaptive procedures and introduce new

procedures, with an elegant proof of FDR control.

•Their two stage method is as follows:

– Use BH at level β1. Let r1 be the number of rejected null hypotheses.

– If r1 = 0, stop.

– Otherwise, let T̂0 = m− r1.

– Use BH at level α′ = β2m/T̂0.

•The initial procedure takes β1 = β2 = α/(1 + α), but they also

have success with β1 = α and β2 = α/(1 + α).

•This method has good power and remains valid under certain kinds

of dependence, as we will see.



Improving Power (cont’d)

• Genovese, Roeder, and Wasserman (2004) give an alternative way

to increase power: a priori p-value weighting.

• For instance, if we define prior weights W1, . . . ,Wm > 0, we can

define a weighted-BH (wBH) threshold

TwBH = sup{t : R̂(t) ≤ α},
where

R̂(t) =
t
∑m
i=1Wi

∑m
i=1 1

{
Pi ≤Wit

} =
tW

D̂(t)
.

where D̂ is the edf of the Qi = Pi/Wi. When all W ≡ 1, get

BH.

•Main result: if weights are positively associated with the null being

false, power improves (unless already very near 1).

Even weights are poorly chosen, power is only reduced slightly, as

long as weightsare not too large.



Dependence

• BH procedure still controls FDR at nominal level for some

dependent tests (Benjamini and Yekutieli, 2001).

In particular, this holds under positive regression dependence

on a subset.

•Under general dependence structure, the BH method controls FDR

at level

α
T0

m

m∑

i=1

1

i
.

Distribution-free procedure: Apply BH at level α/
∑m
i=1

1
i .

Typically very conservative.

• In practice, simulation studies suggest BH is quite hard to “break”.



Dependence (cont’d)

•The challenge of dependence for adaptive procedures is finding

an estimator of 1 − a (or T0) that performs well under various

dependence structures.

This turns out to be far from easy.

• BKY (2004) show that their two stage procedure continues to

control FDR under positive dependence.

They argue, convingingly, that this is the best option when the

degree of dependence is unknown.

•There are also advantages to be explored in using the estimated

dependence structure itself to improve performance.



pFDR and Bayesian Connections

• Storey (2001) considers the “positive FDR,” defined by

pFDR(t) = E

(
FDP(t)

∣∣∣∣ D(t) > 0
)
.

Note that FDR(t) = pFDR(t) · P
{
D(t) > 0

}
≤ pFDR(t).

• Storey (2001) makes a nice Bayesian connection.

Taking a under the mixture model to be the prior probability that

a null hypothesis is false, it follows taht

pFDR(t) =
(1− a)t
G(t)

=
(1− a)P

{
P ≤ t | H = 0

}

P

{
P ≤ t

} = P

{
H = 0 | P ≤ t

}
.

• Storey (2003) also introduces the q-value as the minimum pFDR

for which the given statistic is rejected.

This has a Bayesian interpretation as a “posterior Bayesian p-

value”.



Empirical Bayes Testing

• Efron et al (2001) construct an empirical Bayes measure of “local

FDR”. They note that

P

{
Hi = 0 | Pm

}
=

(1− a)
g(Pi)

≡ q(Pi),

where g = G′.
•This suggests a rejection rule q(p) ≤ α, but we need to estimate

q, e.g., q̂(p) = 1−â
ĝ(p)

.

•Under weak conditions, can show that

q(t) ≤ α implies
(1− a)t
G(t)

≡ E(FDR) ≤ α

So EBT is conservative and performance depends on behavior of

q̂.



Exceedance Control

• Genovese and Wasserman (2002, 2004) introduce the idea of

“exceedance control” where we bound P

{
FDP > γ

}
rather than

FDR ≡ E FDP.

• van der Laan, Dudoit, and Pollard (2004) introduce FDR and

exceedance controlling procedures based on “augmenting” a

FWER-controlling test.

•Motivates the term “False Discovery Control” since we’re no longer

just controlling FDR.
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Objective

•Want a procedure to control the exceedance False Discovery

Proportion (FDP):

P

{
False Discoveries

Discoveries
> γ

}
≤ α for 0 < α, γ < 1,

•This allows tuning of the inference to account for variability in the

FDP distribution.

• Also useful as a basis for secondary inference about patterns of
false discovery. Examples:

– Controlling proportion of false regions (rather than pixels) in spatial/image

problems.

– Scan statistics for finding “hot spots” in random fields.

• Also useful as an FDR diagnostic.



Rejection Sets and the FDP

• Let S = {1, . . . ,m} and let S0 = {j ∈ S: Hj = 0}.
• Call a rejection set any R ≡ R(Pm) ⊂ S that indexes the set of

rejected null hypotheses.

The prototypical rejection set is defined by a threshold:

RT = {j ∈ S: Pj ≤ T}.
• A rejection set is another way to represent a multiple testing

procedure. That is, if P

{
#(R ∩ S0) > 0

}
≤ α, then R controls

FWER at level α.

• Similarly, we can defined the FDP for any such procedure:

FDP(R) =
false rejections

rejections
=

∑m
j=1(1−Hj)1

{
R 3 j

}

∑m
j=1 1

{
R 3 j

} ,

where the ratio is defined to be zero if the denominator is zero.



Confidence Envelopes

•Our main tools for exceedance control are confidence envelopes.

A 1− α confidence envelope for FDP is a random function

FDP(C) ≡ FDP(C;P1, . . . , Pm) such that

P

{
FDP(C) ≥ FDP(C), for all C

}
≥ 1− α.

• If we take the largest rejection set R such that FDP(R) ≤ γ, then,

P

{
FDP(R) ≤ γ

}
≥ P

{
FDP ≤ FDP

}
≥ 1− α,

so we have controlled the FDP exceedance at the target levels.



Confidence Envelopes (cont’d)

In terms of thresholds, a 1−α confidence envelope for FDP satisfies

P

{
FDP(t) ≤ FDP(t) for all t

}
≥ 1− α.

With this, we can construct thresholds that give

P

{
FDP(T ) ≤ γ

}
≥ 1− α.

Two special cases have proven useful:

– Fixed-ceiling: T = sup{t: FDP(t) ≤ α}.
– Minimum-envelope: T = sup{t: FDP(t) = mint FDP(t)}.

t

F
D

P



Inversion Construction: Main Idea

• Construct confidence envelope by inverting

a set of uniformity tests.

• Specifically, consider all subsets of the p-values that

cannot be distinguished from a sample of Uniforms

by a suitable level α test.

• Consider each of these subsets as one

configuration of true nulls.

•Maximize FDP pointwise over these configurations.



Inversion Construction: Step 1

For every W ⊂ S, test at level α the hypothesis that

PW = (Pi: i ∈W )

is a sample from a Uniform(0, 1) distribution:

H0 : W ⊂ S0 versus H1 : W 6⊂ S0.

Formally, let Ψ = {ψW : W ⊂ S} be a set of

non-randomized tests such that

P

{
ψW (U1, . . . , U#(W )) = 1

}
≤ α

whenever U1, . . . , U#(W ) ← Uniform(0, 1).



Inversion Construction: Step 2

Let U denote the collection of all subsets W not rejected in the

previous step:

U = {W : ψW (PW ) = 0}.
Now define

FDP(C) =





max
B∈U

#(B ∩ C)

#(C)
if C 6= ∅,

0 otherwise.

If U is closed under unions, then

FDP(C) =
#(U ∩ C)

#(C)

where U = ∪{V : V ∈ U}. This is a confidence superset for S0:

P

{
S0 ⊂ U

}
≥ 1− α.



Inversion Construction: Step 3

Choose R = R(P1, . . . , Pm) as large as possible such that

FDP(R) ≤ γ.

(Typically, take R of the form R =
{
j: Pj ≤ T

}
where

the confidence threshold T = sup{t : FDP(t) ≤ c}.)

It follows that

1. FDP is a 1− α confidence envelope for FDP, and

2.R is a (γ, α) exceedance-controlling rejection set.

Note: Can also calibrate this procedure to control FDR.



Choice of Tests

•The confidence envelopes depend strongly on choice of tests.

•Two desiderata for selecting uniformity tests:

A. (Power). The envelope FDP should be close to FDP and thus

result in rejection sets with high power.

B. (Computational Tractability). The envelope FDP should be

easy to compute.

•Traditional uniformity tests, such as the (one-sided) Kolmogorov-

Smirnov (KS) test, do not usually meet both conditions.

•One good approach is to combine uniformity tests based on the

kth order statistic.
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Results: (0.05,0.9) Threshold versus BH
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Results: (0.05,0.9) Threshold versus Bonferroni
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False Discovery Control for Random Fields

•Multiple testing methods based on the excursions of random

fields are widely used, especially in functional neuroimaging (e.g.,

Cao and Worsley, 1999) and scan clustering (Glaz, Naus, and

Wallenstein, 2001).

• False Discovery Control extends to this setting as well.

• For a set S and a random field X = {X(s): s ∈ S} with mean

function µ(s), use the realized value of X to test the collection of

one-sided hypotheses

H0,s : µ(s) = 0 versus H1,s : µ(s) > 0.

Let S0 = {s ∈ S : µ(s) = 0}.



False Discovery Control for Random Fields

•Define a spatial version of FDP for threshold T by

FDP(T ) =
λ(S0 ∩ {s ∈ S : X(s) ≥ t})
λ({s ∈ S : X(s) ≥ t}) ,

where λ is usually Lebesgue measure.

• As before, we can control FDR or FDP exceedance.

•Our approach is again based on the inversion method

for constructing a confidence envelope for FDP.



Controlling the Proportion of False Regions

• Say a region R is false at tolerance ε if more than an ε proportion

of its area is in S0:
λ(R ∩ S0)

λ(R)
≥ ε.

•Decompose the t-level set of X into its connected components

Ct1, . . . , Ctkt.

• For each level t, let ξ(t) denote the proportion of false regions (at

tolerance ε) out of kt regions.

•Then,

ξ(t) =
#

{
1 ≤ i ≤ kt :

λ(Cti∩U)
λ(Cti)

≥ ε
}

kt
gives a 1− γ confidence envelope for ξ.



Results: False Region Control Threshold

P
{
prop’n false regions ≤ 0.1

}
≥ 0.95 where false means null overlap ≥ 10%
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Scan Statistics

Let X = (X1, . . . , XN) be a realization of a point process with

intensity function ν(s) defined on a compact set S ⊂ <d. Assume

that ν(s) = ν0 on S0 ⊂ S and ν(s) > ν0 otherwise.

Assume that conditional on N = n, X is an iid sample from the

density

f(s) =
ν(s)

∫
S ν(u) du

.

Scan statistic test for “clusters” via the statistic T = sups∈SNs.,
Our procedure:

1. Kernel estimators f̂H with a set of bandwidths H.

2. Bias adjustment

3. False Discovery Control



Scan Statistics (cont’d)



Plan

1. The Multiple Testing Problem

– Error Criteria and Power

– False Discovery Control and the BH Method

2. Why BH Works

– A Useful Model

– A Stochastic Process Perspective

– Performance Characteristics

3. Toward False Discovery Control: Variations on BH

– Improving Power

– Dependence

– Alternative Formulations

4. Exceedance Control and Random Fields



Take-Home Points

• False Discovery Control provides a useful alternative to traditional

multiple testing methods.

•The BH method is fast and robust, but it overcontrols FDR. Good

adaptive methods exist that can increase power (e.g., BKY 2004).

• Exceedance control has practical advantages.

In particular, gives a tunable inferential guarantee without too

much loss of power.

Works under general dependence and can be used to make

inferences about the pattern of false discoveries.

• Important open problems include explicitly accounting for dependence

and taking advantage of spatial structure in the alternatives.
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Appendix



Improving Power (cont’d)

• Benjamini and Hochberg (2000) introduced the idea of
using the BH procedure to estimate T0.

– Use BH at level α. If no rejections, stop.

– Otherwise, define T̂0,k =
m+ 1− k
1− P(k)

, for k = 1, . . . ,m.

– Find first k∗ ≥ 2 such that T̂0,k > T̂0,k−1.

– Estimate T̂0 = min(m, dT̂0,k∗e).
– Use BH at level α′ = αm/T̂0.

•Here, the intermediate estimators T̂0,k are derived from

the number of rejections at fixed threshold P(k),

adjusted for the expected T0 · P(k) false rejections.

•This procedure controls FDR and has good power

under independence.



Improving Power (cont’d)

• Storey (2002) gave an alternative adaptive procedure that uses

̂1− a =
1− Ĝ(λ)

1− λ ,

for some fixed λ, often λ = 1/2. The rationale for this estimator

is that most of the p-values near 1 should be null, implying

1−G(λ) ≈ (1− a)(1− λ).

• Storey et al. (2003) modified this estimator for theoretical reasons

to

̂1− a =
1 + 1

m − Ĝ(λ)

1− λ ,

with the proviso that only nulls with P(i) ≤ λ can be rejected.

•With this modification, this procedure tends to have higher power

than BH2000 under independence.



Improving Power (cont’d)

• Genovese and Wasserman (2002) show that this procedure controls

FDR asymptotically.

Storey et al. (2003) show by a nice martingale argument that it

controls FDR for a finite number of independent tests.

They also extended it to a particular form of dependence among

the tests.

• Efron et al. (2001) considered a variant with λ set to the median

p-value.

This was motivated primarily toward computing their empirical

Bayes local FDR.



Inversion for Random Fields: Details

1. For every A ⊂ S, test H0 : A ⊂ S0 versus H1 : A 6⊂ S0

at level γ using the test statistic X(A) = sups∈AX(s).

The tail area for this statistic is p(z, A) = P

{
X(A) ≥ z

}
.

2. Let U = {A ⊂ S: p(x(A), A) ≥ γ}.

3. Then, U =
⋃

A∈U
A satisfies P

{
U ⊃ S0

}
≥ 1− γ.

4. And,
FDP(t) =

λ(U ∩ {s ∈ S : X(s) > t})
λ({s ∈ S : X(s) > t}) ,

is a confidence envelope for FDP.

Note: We need not carry out the tests for all subsets.



Gaussian Fields

•With Gaussian Fields, our procedure works under similar smoothness

assumptions as familywise random-field methods.

• For our purposes, approximation based on the expected Euler

characteristic of the field’s level sets will not work because the

Euler characteristic is non-monotone for non-convex sets.

(Note also that for non-convex sets, not all terms in the Euler

approximation are accurate.)

• Instead we use a result of Piterbarg (1996) to approximate the

p-values p(z, A).

• Simulations over a wide variety of S0s and covariance structures

show that coverage of U rapidly converges to the target level.



The P(k) Tests

• In contrast, using the kth order statistic as a one-sided test statistic

meets both desiderata.

– For small k, these are sensitive to departures that have a large

impact on FDP. Good “power.”

– Computing the confidence envelopes is linear in m.

•We call these the P(k) tests.

They form a sub-family of weighted, one-sided KS tests.



Results: P(k) 90% Confidence Envelopes

For k = 1, 10, 25, 50, 100, with 0.05 FDP level marked.
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Power and Optimality

The P(1) test corresponds to using the maximum test statistic on

each subset.

Heuristic suggests this is sub-optimal: Andy-Warhol-ize.

Consider simple mixture distribution for the p-values:

G = (1− a)U + aF,

where F is a Uniform(0, 1/β) distribution.

Then we can construct the optimal threshold T∗ (and corresponding

rejection set R∗).
For any fixed k, the P(k) threshold satisfies

Tk = oP (1)
T∗
Tk

P→∞.



Combining P(k) tests

• Fixed k.

Can be effective if based on information about the alternatives,

but can yield poor power.

• Estimate optimal k

Often performs well, but two concerns: (i) if k̂ > kopt, rejection

set can be empty; (ii) dependence between k̂ and FDP complicates

analysis.

• Combine P(k) tests

Let Qm ⊂ {1, . . . ,m} with cardinality qm. Define FDP =

mink∈Qm FDPk, where FDPk is a P(k) envelope with level α/qm.

Generally performs well and appears to be robust.



Dependence

Extending the inversion method to handle dependence is

straightforward.

Still assume each Pj is marginally Uniform(0, 1) under null,

but allow arbitrary joint distribution.

One formula changes: replace beta quantiles in uniformity tests with

a simpler threshold.

Jk = min{j : P(j) ≥
kα

m− j}.



Simulation Results

Excerpt under simple mixture model with proportion a alternatives with

Normal(θ, 1) distribution. Here m = 10, 000 tests, γ = 0.2, α = 0.05.

a θ FDP Combined Power Combined FDPP(1) Power P(1) FDPP(10) Power P(10)

0.01 5 0.102 0.980 0.000 0.889 0.118 0.980

0.05 5 0.179 0.994 0.004 0.917 0.172 0.994

0.10 5 0.178 0.998 0.001 0.905 0.162 0.997

0.01 4 0.080 0.741 0.022 0.407 0.109 0.759

0.05 4 0.125 0.950 0.000 0.424 0.045 0.887

0.10 4 0.164 0.974 0.002 0.436 0.044 0.915

0.01 3 0.000 0.265 0.000 0.098 0.000 0.000

0.05 3 0.127 0.623 0.000 0.106 0.005 0.463

0.10 3 0.137 0.790 0.000 0.087 0.018 0.472

0.01 2 0.000 0.000 0.000 0.010 0.000 0.000



Augmentation

van der Laan, Dudoit and Pollard (2004) introduce an alternative

method of exceeedance control, called augmentation

Suppose that R0 is a rejection region that controls familywise error

at level α. If R0 = ∅ take R = ∅. Otherwise, let A be a set with

A ∩R = ∅ and set R = R0 ∪A. Then,

P

{
FDP(R) > γ

}
≤ α where γ =

#(A)

#(A) + #(R0)
.

The same logic extends to k-familywise error and also gives 1 − α
confidence envelopes.

For instance, if R0 is defined by a threshold, then

FDP(C) =





#(C −R0)

#(C)
if C 6= ∅,

0 otherwise.



Augmentation and Inversion

Augmentation and Inversion lead to the same rejection sets.

That is, for any Raug, we can find an inversion procedure

with Raug = Rinv.

Conversely under suitable conditions on the tests, for any Rinv,

we can find an augmentation procedure with Rinv = Raug.

When U is not closed under unions, inversion produces

rejection sets that are not augmentations of a familywise test.


