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Motivating Example #1: fMRI

• fMRI Data: Time series of 3-d images acquired while subject

performs specified tasks.
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• Goal: Characterize task-related signal changes caused (indirectly)

by neural activity. [See, for example, Genovese (2000), JASA 95, 691.]



fMRI (cont’d)

Perform hypothesis tests at

many thousands of volume

elements to identify loci of

activation.



Motivating Example #2: Source Detection

• Interferometric radio telescope observations processed into digital

image of the sky in radio frequencies.

• Signal at each pixel is a mixture of source and background signals.



Motivating Example #3: DNA Microarrays

•New technologies allow measurement of gene expression for

thousands of genes simultaneously.
Subject Subject

1 2 3 . . . 1 2 3 . . .

1 X111 X121 X131 . . . X112 X122 X132 . . .

2 X211 X221 X231 . . . X212 X222 X232 . . .

3 ... ... ... . . . ... ... ... . . .

Gene 4

5

6
...

Condition 1 Condition 2

• Goal: Identify genes associated with differences among conditions.

•Typical analysis: hypothesis test at each gene.
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The Multiple Testing Problem

• Perform m simultaneous hypothesis tests.

Classify results as follows:

H0 Retained H0 Rejected Total

H0 True N0|0 N1|0 M0
H0 False N0|1 N1|1 M1

Total m − R R m

Only R is observed here.

• Assess outcome through combined error measure.

•Traditional methods seek strong control of familywise Type I error.

• Can power be improved while maintaining control over a meaningful

measure of error? Enter Benjamini & Hochberg . . .



FDR and the BH Procedure

•Define the realized False Discovery Rate (FDR) by

FDR =


N1|0
R

if R > 0,

0, if R = 0.

• Benjamini & Hochberg (1995) define a sequential p-value

procedure that controls expected FDR.

Specifically, the BH procedure guarantees

E(FDR) ≤ M0
m

α ≤ α

for a pre-specified 0 < α < 1.

(The first inequality is an equality in the continuous case.)



m = 50, α = 0.1
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•The BH procedure for p-values P1, . . . , Pm:

0. Select 0 < α < 1.

1. Define P(0) ≡ 0 and

RBH = max

{
0 ≤ i ≤ m: P(i) ≤ α

i

m

}
.

2. Reject H0 for every test where Pj ≤ P(RBH).

• Several variant procedures also control E(FDR).

• Bound on E(FDR) holds if p-values are independent or positively

dependent (Benjamini & Yekutieli, 2001). Storey (2001) shows it

holds under a possibly weaker condition.

• By replacing α with α/
∑m

i=1 1/i, control E(FDR) at level α for

any joint distribution on the p-values. (Very conservative!)
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Basic Models

• Let Hi = 0 (or 1) if the ith null hypothesis is true (or false).

These are unobserved.

• Let Pi be the ith p-value.

•We assume that (P1, H1), . . . , (Pm, Hm) are independent with

Pi |
{
Hi = 0

}
∼ Uniform〈0, 1〉, and Pi |

{
Hi = 1

}
∼ F ∈ F ,

a class of alternative p-value distributions.

– Under the conditional model, H1, . . . , Hm are fixed, unknown.

– Under the mixture model, we assume each Hi ∼ Bernoulli〈a〉.
•Define M0 =

∑
i(1 − Hi) and M1 =

∑
i Hi = m − M0.

Under the mixture model, M1 ∼ Binomial〈m, a〉.
Under the conditional model, these are fixed.



Basic Models (cont’d)

•Typical examples:

– Parametric family: FΘ = {Fθ: θ ∈ Θ}
– Concave, continuous distributions

FC = {F : F concave, continuous cdf with F ≥ U}.

• Remark: The assumption of the mixture model does not require

the same alternative for each test. For example, suppose that

when the null is false

Pi | Ψi = ψ ∼ Fψ

Ψi ∼ L
Then, F =

∫
Fψ dL(ψ).



Multiple Testing Procedures

• A multiple testing procedure T is a map [0, 1]m → [0, 1], where

the null hypotheses are rejected in all those tests for which

Pi ≤ T (Pm). Often call T a threshold.

• Examples:
Uncorrected testing TU(Pm) = α

Bonferroni TB(Pm) = α/m

Fixed threshold at t Tt(P
m) = t

First r T(r)(P
m) = P(r)

Benjamini-Hochberg TBH(Pm) = P(RBH) or sup{t: Ĝ(t) = t/α}
Oracle TO(Pm) = sup{t:G(t) = (1 − a)t/α}
Plug-In TPI(P

m) = sup{t: Ĝ(t) = (1 − â)t/α}
Regression Classifier TReg(P

m) = sup{t: P̂{H1=1|P1=t}>1/2}



The False Nondiscovery Rate

• Controlling FDR alone only deals with Type I errors.

•Define the realized False Nondiscovery Rate as follows:

FNR =


N0|1

m − R
if R < m,

0 if R = m.

This is the proportion of false non-rejections among those tests

whose null hypothesis is not rejected.

• Idea: Combine FDR and FNR in assessment of procedures.



FDR and FNR as Stochastic Processes

•Define the realized FDR and FNR processes, respectively, by

FDR(t) ≡ FDR(t;Pm, Hm) =

∑
i

1
{
Pi ≤ t

}
(1 − Hi)∑

i

1
{
Pi ≤ t

}
+

∏
i

1
{
Pi > t

}

FNR(t) ≡ FNR(t;Pm, Hm) =

∑
i

1
{
Pi > t

}
Hi∑

i

1
{
Pi > t

}
+

∏
i

1
{
Pi ≤ t

}.

• For procedure T , the realized FDR and FNR are obtained by

evaluating these processes at T (Pm).

• Inherent difficulty: The processes and the threshold both depend

on the observed data.
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BH as a Plug-in Procedure

• Let Ĝ be the empirical cdf of Pm under the mixture model.

Ignoring ties, Ĝ(P(i)) = i/m, so BH equivalent to

TBH(Pm) = max
{
t: Ĝ(t) =

t

α

}
.

•We can think of this as a plug-in procedure for estimating

u∗(a, F ) = max
{
t: G(t) =

t

α

}
= max {t: F (t) = βt} ,

where β = (1 − α + αa)/αa.



Asymptotic Behavior of BH Procedure

This yields the following picture: α
m, α, u∗
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Operating Characteristics of the BH Method

•Define the misclassification risk of a procedure T by

RM(T ) =
1

m

m∑
i=1

E
∣∣∣1 {

Pi ≤ T (Pm)
}
− Hi

∣∣∣ .
This is the average fraction of errors of both types.

•Then RM(TBH) ∼ R(a, F ) as m → ∞, where

R(a, F ) = (1−a)u∗+a(1−F (u∗)) = (1−a)u∗+a(1−βu∗).

• Compare this to Uncorrected and Bonferroni and the Bayes’ oracle

rule TBO(Pm) = b where b solves f(b) = (1 − a)/a.

RM(TU) = (1 − a)α + a (1 − F (α))

RM(TB) = (1 − a)
α

m
+ a

(
1 − F

(
α

m

))
RM(TBO) = (1 − a) b + a (1 − F (b)) .



Normal〈θ, 1〉 Model, α = 0.05
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Optimal Thresholds

•Under the mixture model and in the continuous case,

E(FDR(TBH(Pm))) = (1 − a)α.

•The BH procedure overcontrols E(FDR) and thus will not in

general minimize E(FNR).

•This suggests using TPI, the plug-in estimator for

t∗(a, F ) = max

{
t: G(t) =

(1 − a)t

α

}
= max {t: F (t) = (β − 1/α)t} ,

where β − 1/α = (1 − a)(1 − α)/aα.

•Note that t∗ ≥ u∗.



Optimal Thresholds (cont’d)

• For each 0 ≤ t ≤ 1,

E(FDR(t)) =
(1 − a) t

G(t)
+ O

(
(1 − t)m

)
E(FNR(t)) = a

1 − F (t)

1 − G(t)
+ O

(
(a + (1 − a)t)m

)
.

• Ignoring O() terms and choosing t to minimize E(FNR(t)) subject

to E(FDR(t)) ≤ α, yields t∗(a, F ) as the optimal threshold.

• Can the potential improvement in power be achieved when

estimating t∗? Yes, if F 6= U .



Plug-in Procedures

•The procedure TPI is a plug-in estimator of the optimal t∗(a, F )

TPI(P
m) = max

{
t: Ĝ(t) =

(1 − â)t

α

}
.

We need good estimates of G and a to make this work. Later, we

will also need good estimates of F .

• Identifiability and Purity

f

b

If min f = b > 0, can write F = (1−b)U+bF0,

OG = {(ã, F̃ ) : F̃ ∈ F , G = (1 − ã)U + ãF̃}
may contain more than one element.

If f = F ′ is decreasing with f(1) = 0, then

(a, F ) is identifiable.



Estimating a and F (cont’d)

• In general, let a ≤ a be the smallest mixing weight in the orbit.

a − a is typically small. For example, a − a = ae−nθ2/2 in the

two-sided test of θ = 0 versus θ 6= 0 in the Normal〈θ, 1〉 model.

• Parametric Case: (a, θ) typically identifiable; use MLE.

•Non-parametric case:

– Derived a 1 − β one-sided conf. int. for a and thus a.

– When F concave, get âLCM = a + OP (m−1/3).

– When F smooth enough, get âS = a + OP (m−2/5).

– Estimate F by: F̂m = arg min
H∈F ‖Ĝ − (1 − â)U − âH‖∞.

Consistent for F0 if â consistent for a.
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Confidence Thresholds

• In practice, it would be useful to have a procedure TC
that guarantees

PG

{
FDR(TC) > c

}
≤ α

for some specified c and α.

We call this a (1 − α, c) confidence threshold procedure.

•Three approaches: (i) an asymptotic Bootstrap threshold,

(ii) an asymptotic closed-form threshold, and (iii) an exact

(small-sample) threshold requiring numerical search.

•Here, I’ll discuss the case where a is known.

In general, all of this works using a consistent estimate of a,

but this introduces additional complexity.



Bootstrap Confidence Thresholds

• First guess: Choose T such that

P
Ĝ

{
FDR∗(T ) ≤ c

}
≥ 1 − α.

Unfortunately, this fails.

•The problem is an additional bias term:

1 − α = P
Ĝ

{
FDR∗(T ) ≤ c

}
≈ PG

{
FDR(T ) ≤ c + (Q(T ) − Q̂(T ))

}
6= PG

{
FDR(T ) ≤ c

}
,

where Q = (1 − a)U/G and Q̂ = (1 − a)U/Ĝ.



Bootstrap Confidence Thresholds (cont’d)

• Let β = α/2 and εm ≡ εm(β) =

√√√√ 1

2m
log

(
2

β

)
.

• Procedure

1. Draw H∗
1 . . . , H∗

m iid Bernoulli〈a〉
2. Draw P ∗

i |H∗
i from (1 − H∗

i )U + H∗
i F̂ .

3. Define Ω∗
c(t) =

∑
i I{P ∗

i ≤ t}(1 − H∗
i − c).

4. Use threshold defined by

TC = max
{
t: P

Ĝ

{
Ω∗

c(t) ≤ −c εm
}
≥ 1 − β

}
.

•Then,

PG

{
FDR(TC) ≤ c

}
≥ 1 − α + O

(
1√
m

)
.



Closed-Form Asymptotic Confidence Thresholds

• Let t0 solve G(t0) = (1 − a)t0/c and let t̂0 denote an estimate of

t0 based on Ĝ.

• Let

TC = t̂0 +
∆̂m,α√

m
,

where ∆̂ is a complicated expression that depends on a density

estimate of g = G′.
•Then, PG

{
FDR(TC) ≤ c

}
≥ 1 − α + o(1).

•This requires no bootstrapping but does require density estimation.

This is analogous to the situation faced when estimating the

standard error of a median.



Exact Confidence Thresholds

• Let Mβ be a 1 − β confidence set for M0, derived from the

Binomial〈m, 1 − a〉.
•Define

S(t;hm, pm) =

∑
i 1

{
pi ≤ t

}
(1 − hi)∑

i(1 − hi)
,

Uβ(p
m) =

{
hm:

∑
i

(1 − hi) ∈ Mβ and ‖S(·;hm, pm) − U‖∞ ≤ εm0(β)

}
,

where m0 =
∑

i(1 − hi).

• If β = 1 −√
1 − α, then PG

{
Hm ∈ Uβ(Pm)

}
≥ 1 − α and

TC = sup
{
t : FDR(t;hm, Pm) ≤ c and hm : hm ∈ Uβ(Pm)

}
is a (1 − α, c) confidence threshold procedure.

That is, PG

{
FDR(TC) ≤ c

}
≥ 1 − α.



Exact Confidence Thresholds (cont’d)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

Threshold

F
D

R

U yields a confidence envelope for FDR(t) sample paths.



Next Question . . .

1. What is the False Discovery Rate?

2. Why does the BH method work?

3. How does the BH method perform?

4. Can BH be made more powerful?

5. What are the implications for inference?

6. How does dependence among the p-values affect the results?



Dealing with Dependence

•Most of the foregoing assumed independence among the p-values.

This rarely holds.

• Although standard BH works under “positive dependence”, which

often seems reasonable as with fMRI data.

• Yet, whatever form the dependence takes, BH is increasingly

conservative as correlation increases.

Hence, for example, spatial pre-smoothing of fMRI data is not

recommended prior to BH.

•Two other approaches in my current work:

– Local dependence and blocked correction

– Incorporating estimated covariance into generalized plug-in

procedure



Take-Home Points

• Realized versus Expected FDR

• Considering both FDR and FNR yields greater power

•Multiple testing problem is transformed to an estimation problem.

•Must control FDR and FNR as stochastic processes.

In general, the threshold and the FDR are coupled, and these

correlations can have a large effect.

• Results can be improved under dependence


