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Motivating Example #1: f{MRI

e fMRI Data: Time series of 3-d images acquired while subject
performs specified tasks.
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e Goal: Characterize task-related signal changes caused (indirectly)
by neural activity. [See, for example, Genovese (2000), JASA 95, 691.]



fMRI (cont'd)

Perform hypothesis tests at
many thousands of volume
elements to identify loci of

activation.




Motivating Example #2: Source Detection

e Interferometric radio telescope observations processed into digital
iImage of the sky in radio frequencies.

e Signal at each pixel is a mixture of source and background signals.




Motivating Example #3: DNA Microarrays

e New technologies allow measurement of gene expression for
thousands of genes simultaneously.
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e Goal: Identify genes associated with differences among conditions.

e Typical analysis: hypothesis test at each gene.
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The Multiple Testing Problem

e Perform m simultaneous hypothesis tests.

Classify results as follows:
Hy Retained H(y Rejected Total

Total m— R R m

Only R is observed here.
e Assess outcome through combined error measure.
e Traditional methods seek strong control of familywise Type | error.

e Can power be improved while maintaining control over a meaningful
measure of error? Enter Benjamini & Hochberg ...



FDR and the BH Procedure

e Define the realized False Discovery Rate (FDR) by

FDR = <

2

N
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R
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e Benjamini & Hochberg (1995) define a sequential p-value
procedure that controls expected FDR.

Specifically, the BH procedure guarantees

E(FDR)

for a pre-specified 0 < o < 1.

My
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(The first inequality is an equality in the continuous case.)
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e The BH procedure for p-values Py, ..., Py:

0.Select 0 < @ < 1.
1. Define P(O) = 0 and

RBH = max{O S 1 S m. P(z') S Ozz} .
m

2. Reject Hy for every test where P; < P(RBH)'

e Several variant procedures also control E(FDR).

e Bound on E(FDR) holds if p-values are independent or positively
dependent (Benjamini & Yekutieli, 2001). Storey (2001) shows it
holds under a possibly weaker condition.

¢ By replacing o with o/ 31" 1 1/, control E(FDR) at level « for
any joint distribution on the p-values. (Very conservative!)



Recent Work on FDR

Benjamini & Hochberg (1995) Storey (2001a,b)

Benjamini & Liu (1999) Efron, et al. (2001)

Benjamini & Hochberg (2000) Storey & Tibshirani (2001)
Benjamini & Yekutieli (2001) Tusher, Tibshirani, Chu (2001)
Abromovich, et al. (2000) Genovese & Wasserman (2001a,b)

Genovese, Lazar, & Nichols (2002)

See also technical reports 735, 737, 747, 752, 754
at http://1lib.stat.cmu.edu/www/cmu-stats/tr/.



Basic Models

e Let H; = 0 (or 1) if the ™™ null hypothesis is true (or false).
These are unobserved.

o Let P, be the i'" p-value.

e We assume that (P, Hy),...,(Pm, Hmn) are independent with
P; | {H; =0} ~ Uniform(0,1), and P; | {H; =1} ~ F € F,
a class of alternative p-value distributions.

— Under the conditional model, Hq, ..., Hy, are fixed, unknown.
— Under the mixture model, we assume each H; ~ Bernoulli{a).
e Define M() = ZZ(]. — HZ) and M1 = ZZ H’i =m — M().

Under the mixture model, M ~ Binomial(m,a).
Under the conditional model, these are fixed.



Basic Models (cont'd)

e Typical examples:
— Parametric family: Fg = {Fy: 0 € ©}

— Concave, continuous distributions

Fo ={F: F concave, continuous cdf with F' > U}.

e Remark: The assumption of the mixture model does not require
the same alternative for each test. For example, suppose that
when the null is false

PV, =9~ F,

W, ~ L
Then, F = [ Fy dL(1).



Multiple Testing Procedures

e A multiple testing procedure T' is a map [0, 1]"* — [0, 1], where

the null hypotheses are rejected in all those tests for which
P; <T(P™). Often call T a threshold.

e Examples:
Uncorrected testing  Ty(P™) = «
Bonferroni Ts(P™) = a/m
Fixed threshold at ¢t  T3(P™) =t
First r T(T)(Pm — P(r)

Oracle To(P"™) = sup{t: G(t) =(1—a)t/a}
Plug-In Tri(P™) = sup{t: G( )= (1—-a)t/a}

)
)
) =
)
Benjamini-Hochberg Tpu(P™) = Pp,,.y or sup{t: G(t) =t/a}
) =
) =
Regression Classifier Tre.(P"") = sup{t: P{H1 1|P=t}>1/2}



The False Nondiscovery Rate

e Controlling FDR alone only deals with Type | errors.

e Define the realized False Nondiscovery Rate as follows:

FNR=¢m - R
0

if R =m.

This is the proportion of false non-rejections among those tests
whose null hypothesis is not rejected.

e Idea: Combine FDR and FNR in assessment of procedures.



FDR and FNR as Stochastic Processes

e Define the realized FDR and FNR processes, respectively, by

> 1{P <t} (1-H)

FDR(?) = FDR(t; P, H™) = ZliP@-St} +II14P > )
> 1{P >t} H
FNR(t) = FNR(t; P, H™) = Y UE >ty + [[1{B <t}

e For procedure T', the realized FDR and FNR are obtained by
evaluating these processes at T(P"").

e Inherent difficulty: The processes and the threshold both depend
on the observed data.



Next Question ...

1. What is the False Discovery Rate?
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3. How does the BH method perform?
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6. How does dependence among the p-values affect the results?



BH as a Plug-in Procedure

e Let G be the empirical cdf of P™ under the mixture model.
lgnoring ties, (A}’(P(Z-)) = 1/m, so BH equivalent to

Teu(P™) = max {t: G(t) = E} .

o)
e \We can think of this as a plug-in procedure for estimating

(0, F) = max {1: G(1) = 3}

= max {t: F(t) = gt},

where 8 = (1 — a + aa)/aa.



Asymptotic Behavior of BH Procedure

This yields the following picture:
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Operating Characteristics of the BH Method

e Define the misclassification risk of a procedure T’ by

Ry(T) = % f;lE 1{P, <T(P™)} - Hy.

This is the average fraction of errors of both types.

e Then R,;(Tsn) ~ R(a, F') as m — oo, where
R(a,F)=(1-a)u*+a(l—-F(u*)) = (1 —-a)u" +a(l—pu").

e Compare this to Uncorrected and Bonferroni and the Bayes' oracle
rule Tpo(P") = b where b solves f(b) = (1 —a)/a.

Ry(Ty)=(1—a)a + a(l— F(a))

Rpy(Ts) = (1—0,)% + a(l—F(—))

Ry(Tpo) =(1—a)b + a(l - F(b)m



Normal(f,1) Model, o = 0.05
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Optimal Thresholds

e Under the mixture model and in the continuous case,

E(FDR(Tgu(P"™))) = (1 — a)a.

e The BH procedure overcontrols E(FDR) and thus will not in
general minimize E(FNR).

e This suggests using Tpy, the plug-in estimator for

= max {t: F(t)=(06—1/a)t},
where 0 —1/a = (1 —a)(l — a)/aa.
e Note that t* > u™.

£*(a, F) = max {t: Gy = 1 a)t}



Optimal Thresholds (cont'd)

eForeach 0 <t <1,

E(FDR(t)) = “&;ﬁ + O ((1—t))
E(FNR(t)) = a 1 — ggg + O ((a+ (1 -a))™).

e Ignoring O() terms and choosing ¢t to minimize E(FNR(%)) subject
to E(FDR(?)) < «, yields t*(a, F') as the optimal threshold.

e Can the potential improvement in power be achieved when
estimating t*7 VYes, if ' #£ U.



Plug-in Procedures

e The procedure Tp; is a plug-in estimator of the optimal t*(a, F')

~ 1 —a)t
Tei(P™) = max {t: G(t) = (1-2a) } .
Q
We need good estimates of G and a to make this work. Later, we

will also need good estimates of F.

e Identifiability and Purity
If min f =b > 0, can write F' = (1-b)U+bFy,
f O¢={(@F): FeF,G=(1-a)U+aF}
may contain more than one element.

If f = F' is decreasing with f(1) = 0, then
(a, F') is identifiable.




Estimating a and F' (cont'd)

e In general, let a < a be the smallest mixing weight in the orbit.

a — a is typically small. For example, a — a = ae_”92/2 in the
two-sided test of 6 = 0 versus 6 # 0 in the Normal(#, 1) model.

e Parametric Case: (a,#) typically identifiable; use MLE.

e Non-parametric case:

— Derived a 1 — 3 one-sided conf. int. for a and thus a.

—When F' concave, get arcy = a + Op(m_l/S).

—When F' smooth enough, get as = a + Op(m_2/5).

—Estimate F by: F,, = in |G —(1—a)U —aH]| ...
stimate I by: Fy, = arg min |G — (1 - a)U — aH|

Consistent for F{ if a consistent for a.
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Confidence Thresholds

e In practice, it would be useful to have a procedure T~
that guarantees

Pe{ FDR(T¢) > ¢} < o
for some specified ¢ and «.
We call this a (1 — «, ¢) confidence threshold procedure.

e Three approaches: (i) an asymptotic Bootstrap threshold,
(ii) an asymptotic closed-form threshold, and (iii) an exact
(small-sample) threshold requiring numerical search.

e Here, I'll discuss the case where a is known.

In general, all of this works using a consistent estimate of a,
but this introduces additional complexity.



Bootstrap Confidence Thresholds

e First guess: Choose 7' such that
P-{FDR*(T) < ¢} >1-a.

Unfortunately, this fails.

e T he problem is an additional bias term:
1 —a=Pz{FDRY(T) < c}
~ Pe{ FDR(T) < ¢+ (Q(T) — Q(T)) |
# Po{FDR(T) < c},
where Q = (1 — a)U/G and Q = (1 — a)U/G.



Bootstrap Confidence Thresholds (cont'd)

elet f=a/2and e, = e,,(0) = \lQ?ln log (;)

e Procedure

1. Draw HY ..., H;, iid Bernoulli(a)

2. Draw P}|H? from (1 — H)U + H}F.

3. Define Q27(t) = >2; [{P" <t}(1—-H —c).
4. Use threshold defined by

T = max {t: P@{Qi(t) < —cem} >1— ﬁ}
e [ hen,

Po{FDR(T¢) < ¢} >1-a+0 <\/1m> .



Closed-Form Asymptotic Confidence Thresholds

o Let ¢y solve G(tg) = (1 — a)ty/c and let ( denote an estimate of
to based on G.

o Let

—

m,x
/m Y

where A is a complicated expression that depends on a density

estimate of g = G'.

e Then, P(;{ FDR(T) < c} >1—a+o(1).

e T his requires no bootstrapping but does require density estimation.

T =ty +

This is analogous to the situation faced when estimating the
standard error of a median.



Exact Confidence Thresholds

o Let ./\/lﬁ be a 1 — (3 confidence set for M, derived from the
Binomial(m,1 — a).

e Define 1{p; 1—h,
S(t; ™, p") = = {§(§1 t_}fi) )7

Us(p™) = {hmi Z(l — hi) € Mg and [|S(-; ™, p™) = U], < Emo(ﬁ)} :

where mgo — ZZ(]. — hz)
oIf 3=1— T —a, then Pe{H™ € Uy(P™)} > 1 — a and

To =sup {t: FDR(t; ™, P™) < c and K™ : B"™ € Ug(P™)}

is a (1 — «, ¢) confidence threshold procedure.
That is, Po{ FDR(T¢) < c} > 1 - a.



FDR

Exact Confidence Thresholds (cont'd)

U yields a confidence envelope for FDR(t) sample paths.
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Dealing with Dependence

e Most of the foregoing assumed independence among the p-values.
This rarely holds.

e Although standard BH works under “positive dependence”, which
often seems reasonable as with fMRI data.

e Yet, whatever form the dependence takes, BH is increasingly
conservative as correlation increases.

Hence, for example, spatial pre-smoothing of fMRI data is not
recommended prior to BH.

e Two other approaches in my current work:

— Local dependence and blocked correction

— Incorporating estimated covariance into generalized plug-in
procedure



Take-Home Points

e Realized versus Expected FDR
e Considering both FDR and FNR vyields greater power
e Multiple testing problem is transformed to an estimation problem.

e Must control FDR and FNR as stochastic processes.

In general, the threshold and the FDR are coupled, and these
correlations can have a large effect.

e Results can be improved under dependence



