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Example: Dark Energy
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Example: Dark Energy (cont’d)

Yi = r(zi) + εi, i = 1, . . . , n.

Yi: distance measure derived from supernova luminosity

zi: redshift

Want to make inferences about the Dark Energy Equation of State

w(z) = T (r, r′, r′′)

=
H2

0ΩM(1 + z)3 + 2
3
r′′(z)

(r′(z))3

H2
0ΩM(1 + z)3 − 1

(r′(z))2



Example: Dark Energy (cont’d)



Example: CMB
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Example: CMB Power Spectrum (cont’d)

Yi = f(xi) + εi, i = 1, . . . , n

Yi: estimated power spectrum

xi: multipole index

Want to make inferences about features of f such as

location and relative heights of peaks.
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Example: Galaxy Star Formation Rate

A galaxy’s evolution is affected by its local environment.

SFR Si = f(Di) + εi

Density Di = ρ̂(xi) ≈ ρ(xi) + δi.
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Why Nonparametric?

1. When we don’t have a well-justified parametric (finite-dimensional)

model for the object of interest.

2. When we have a well-justified parametric model but have enough

data to go after even more detail.

3. When we can do as well (or better) more simply.

4. As a way of assessing sensitivity to model assumptions.

Goal: make sharp inferences about unknown functions with a

minimum of assumptions.

This involves estimation procedures, but we also need an accurate

assessment of uncertainty.



Road Map

1. Smoothing

2. The Six Biases

3. Confidence Sets



Road Map

1. Smoothing

2. The Six Biases

3. Confidence Sets



The Nonparametric Regression Problem

Observe data (Xi, Yi) for i = 1, . . . , n where

Yi = f(Xi) + εi,

where E(εi) = 0 and the Xis can be fixed (xi) or random.

Leading cases: 1. xi = i/n and Cov(ε) ≡ Σ = σ2I.

2. Xi iid g and Cov(ε) ≡ Σ = σ2I.

Key Assumption: f ∈ F for some infinite dimensional space F .

Examples

1. Sobolev: F ≡ Wp(C) =
{
f :
∫
|f |2 <∞ and

∫
|f (p)|2 ≤ C2

}

2. Lipschitz: F ≡ H(A) = {f : |f(x)− f(y)| ≤ A|x− y|, for all x, y}

Goal: Make inferences about f or about specific features of f .



Variants of the Problem

• Inference for Derivatives of f

• Estimating Variance functions

• Regression in High dimensions

• Inferences about specific

functionals of f
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Related Problems:

– Density Estimation

– Spectral Density Estimation



Rate-Optimal Estimators

Choose a performance measure, or risk function, e.g.,

R(f̂ , f) = E
∫
(f̂ − f)2 or R(f̂ , f) = E|f̂(x0)− f(x0)|2)

Want f̂ that minimizes worst-case risk over F (minimax).

But typically must settle for achieving the optimal minimax rate

of convergence rn:

inf
f̂n

sup
f∈F

R(f̂n, f) � rn

In infinite-dimensional problems, rn
√
n→∞.

For example, rn = n
− 2p

2p+1 on Wp.

Rate-optimal estimators exist for a wide variety of spaces

and risk functions.



Smoothing Methods

• (Quasi-) Linear Methods

– Kernels and Local Polynomial Regression

– Roughness Penalty Regularization

(f̂n = arg min
ξ

n∑

i=1

(Yi − ξ(Xi))
2 + λQ(f), e.g., smoothing splines)

– Basis Decomposition

•Nonlinear Methods

– Wavelet Shrinkage

– Variable Bandwidth Kernels

(Attempt to adapt spatially by changing smoothing over domain; appealing but hard.)

•Others

– Scale-Space Methods (e.g., SiZer)

(Consider all levels of smoothing simultaneously.)



(Quasi-) Linear Smoothers

An estimator f̂n is a linear smoother if there exists functions

s(x) = (s1(x), . . . , sn(x)) such that

f̂n(x) =
n∑

j=1

sj(x)Yj.

Writing f̂n = (f̂n(x1), . . . , f̂n(xn)) and Sij = sj(xi), we have

f̂n = SY .

For nonparametric smoothers, the function s(x) ≡ sh(x) depends

on a free smoothing parameter h that governs complexity of f̂ .

The smoothing parameter must be selected, usually from the data.

A quasi-linear smoother is linear conditional on h.



(Quasi-) Linear Smoothers: Kernels

The Nadaraya-Watson Kernel estimator, for suitable function K and

bandwidth h, is

f̂n(x) =

∑n
i=1K

(
Xi−x
h

)
Yi

∑n
j=1K

(
Xj−x
h

) =
n∑

i=1

si(x)Yi.

This weighted average is defined by a local optimization problem:

for each x, find a0 ≡ a0(x) to minimize

∑

i=1

K

(
Xi − x
h

)
(Yi − a0)

2.

This is fitting a local constant.



(Quasi-) Linear Smoothers: Local Polynomials

Consider higher order approximation for u near x:

f(u) ≈ a0 + a1(u− x) + · · ·+ ap
(u− x)p

p!
≡ px(u; a).

Let â ≡ â(x) minimize

∑

i=1

K

(
Xi − x
h

)
(Yi − px(Xi; a))2.

Then,

f̂n(x) = px(x; â) = â0(x).

The p = 0 case gives back the kernel estimator.



Remarks on Local Polynomials

• Although f̂n(x) = â0(x), this is not simply fitting a local constant.

• Performance is insensitive to the choice of kernel K but highly

sensitive to the choice of smoothing parameter h.

• Local polynomial estimators for p > 0 automatically correct some

of the biases inherent in the kernel estimator.

•Work well for estimating derivatives. For estimating the vth

derivative, prefer p− v odd.



Nonlinear Smoothers: Wavelet Shrinkage

Wavelets provide a sparse representation for a wide class of functions.

f =
∑

k

αJ0,kϕj +
∞∑

j=J0

∑

k

βjkψjk

= Coarse Part + Successively Refined Details

Schematic:

1. Fast Discrete Wavelet Transform (DWT):

(
α̃
β̃

)
= WY.

2. Nonlinear shrinkage of detail coefficients: β̂ = ηλ(β̃). For example,

β̂ = sgn(β̃)
(
|β̃| − λ

)
+
.

3. Invert Transform: f̂ = W−1(α̃, β̂)T .



Nonlinear Smoothers: Wavelet Shrinkage (cont’d)

Result: Adaptive Estimators

The same procedure is nearly optimal (asymptotic minimax)

across a range of assumed spaces.

Current State of the Art: Johnstone and Silverman (2005)

– Put mixture prior on each β

– Posterior median yields threshold

– Works with translation invariant transform

– Handles boundaries, estimates derivatives, excellent performance.



The Bias-Variance Tradeoff

All of these methods have a smoothing parameter that determines

the complexity of the fit.

Key goal: Choose the correct level of smoothing.

R(f̂ , f) = E
∫

(f(x)− f̂ (x))2 dx =
∫

bias2(x) dx+
∫

variance(x) dx

�

�

Risk

Bias2

Variance

optimal

Smoothing

moreless



The Bias-Variance Tradeoff (cont’d)

Example: CMB Spectrum
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Choosing the Smoothing Parameter

1. Plug-in

Asymptotically optimal bandwidths are often of the form

h∗ = C(f)rn for rn→ 0.

Then, ĥPI = C(f̃)r(n) for a pilot estimate f̃ .

Do not perform well in general (Loader 1999).

2. Cross-Validation

Divide {1, . . . , n} into m disjoint subsets S1, . . . , Sm.

Let f̂ [−`] be the estimate obtained with the same procedure but

omitting the subset of data (Xi, Yi) with i ∈ S`.



Choosing the Smoothing Parameter (cont’d)

Then P̂E(h) =
1

m

m∑

`=1

1

#(S`)

∑

i∈S`
(Yi − f̂ [−`](Xi))2.

When m = n and S` = {`}, this becomes

P̂E(h) =
1

n

n∑

i=1


Yi − f̂(Xi)

1− Sii(h)




2

,

where S(h) is the smoothing matrix.

Choose ĥ to minimize P̂E(h). (There are several variants.)

Then, PE(ĥ) ≤ c1 inf
h

PE(h) + o(1).



Choosing the Smoothing Parameter (cont’d)

3. Risk Estimation

Would like h to minimize the risk R(f̂h, f) =
∫
(f̂h − f)2.

Find R̂(h) such that ER̂(h) = R(f̂h, f).

Choose ĥ to minimize R̂(h).

In many cases, can show that this approximates true minimum.

Example: Basis coefficients f̂h =
∑h
k=0 βkφk, h = 0, . . . n.

R(f̂h, f) = h
σ2

n
+

n∑

k=h+1

β2
k ←→ R̂(h) = h

σ2

n
+

n∑

k=h+1

(β2
k −

σ2

n
).

Whatever the method,
ĥn − hn
hn

→ 0 slowly.

Estimating the tuning parameter is an intrinsically hard problem.
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The Six Biases

1. Model Bias

2. Design Bias

3. Boundary Bias

4. Derivative Bias

5. Measurement-Error Bias

6. Coverage Bias

Most of these can be dealt with well-understood statistical techniques.



Model Bias

Without assumptions, there can be no conclusions.

– John Tukey

The performance of nonparametric procedures can depend on the

space F assumed to contain f .

Choosing F too restrictively incurs a bias from the un-modeled

component of f ; choosing F too expansively can lead the procedure’s

to be driven by implausible cases.

And how can we justify the abstract choice of a particular space or

ball size etc. in terms of concrete data and prior information?



Model Bias (cont’d): Adaptive Estimators

It’s unsatisfying to depend too strongly on intangible assumptions

such as whether f ∈ Wp(C) or f ∈ H(A).

Instead, we want procedures to adapt to the unknown smoothness.

For example, f̂n is a (rate) adaptive procedure over the Wp spaces

if when f ∈ Wp

f̂n→ f at rate n−2p/2p+1

without knowing p.

Rate adaptive estimators exist over a variety of function families and

over a range of norms (or semi-norms).

Adaptive confidence sets? (later)



Design Bias

Some procedures affected by clustering or positioning of Xis.

Example: Kernel and local linear estimators have

variance(x) =
1

nhn

σ2(x)
∫
K2(u)du

g(x)
+ oP

(
1

nhn

)
.

But, the kernel estimator p = 0 has bias

h2
n




1

2
f ′′(x) +

f ′(x)g′(x)
g(x)︸ ︷︷ ︸

design bias




∫
u2K(u)du+ oP (h2)

whereas the local linear estimator p = 1 has asymptotic bias

h2
n




1

2
f ′′(x)




∫
u2K(u)du+ oP (h2).



Design Bias (cont’d)

Another Example: Wavelets and choice of origin

from Coifman and Donoho (1995)

One solution: Translation Invariant wavelet transform

f̂ =
1

n

n∑

∆=1

Shift−1
∆ ◦ DWT−1 ◦ Threshold ◦ DWT ◦ Shift∆,

where Shift∆ is a circular shift of an n vector by ∆ components.



Boundary Bias

Many methods exhibit nontrivial biases near data boundaries.
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This is potentially important in problems such as the CMB and Dark

Energy because boundary behavior is of scientific interest.

Boundary biases get worse in high-dimensions because a greater

proportion of points lie near boundaries.



Boundary Bias (cont’d)

Example: Kernel Smoothing

The kernel “hits” fewer points near the boundary.

Local polynomial for p ≥ 1 is an easy fix, called

“automatic boundary carpentry”.

Example: Periodic Wavelets

Standard orthonormal wavelets on an interval are periodic,

but can lead to significant bias when the function is not periodic.

Cohen, Daubechies, Jawerth and Vial (1993) construction:

a preconditioning step that creates boundary wavelets.



Derivative Bias

When estimating derivatives f ′, f ′′, . . ., f (d), note that

(f̂n)
(d) is NOT a good estimator of f (d).

Illustration: Let φ0(x) = 1 and φk(x) =
√

2 cos(πkx), for k ≥ 1.

If f =
∑

k≥0

βkφk on [0, 1], then f ′′ =
∑

k>0

−π2k2βkφk.

Let β̂k =
1

n

n∑

i=0

Yiφk(xi) ≈ N(βk, σ
2/n).

Then, β̂
(d)
k ≡ −π2k2β̂k ≈ N(−π2k2βk, π

4k4σ
2

n
). Ouch.

Inference for derivatives requires different levels of smoothing.



Derivative Bias (cont’d)

With local polynomial estimation, this takes a manageable form.

Recall px(u; a) = a0 + a1(u− x) + · · ·+ ap
(u− x)p

p!
and f̂n(x) = â0(x).

Then, f̂
(d)
n (x) = âd(x). Note â

(d)
0 6= âd.

Choose p − d odd (e.g., p = d + 1) to avoid boundary and design

bias.

The (asymptotically) optimal bandwidth for d derivatives is then

hd(k) = C(k, p)h0

where C(k, p) is a known constant.

What about confidence sets? There it’s not so easy.

Example: Dark Energy.



Measurement-Error Bias

Errors on the covariates can lead to counter-intuitive effects.

Simplified Example: Galaxy Star Formation Rates versus Local

Density

SFR Si = f(Di) + εi

Density Di = ρ̂(xi) ≈ ρ(xi) + δi.

Common result is attenuation bias, but the opposite is possible

(Carroll, Ruppert, and Stefanski 1995).

Bias depends on the nature and extent of the errors.



Measurement-Error Bias

Observe:

Yi = f(Xi) + εi

X̃i = Xi + Ui

If we use the (X̃i, Yi) to estimate f , the estimator will be inconsistent
∫

(f̂n(x)− f)2 6→ 0.

Not enough to simply increase the error bars on Y .

The extra bias σ2
U

(
g′(x)
g(x)

f ′(x) +
f ′′(x)

2

)
6→ 0.



Measurement-Error Bias (cont’d)

Toy Illustration of Attenuation Bias:

Yi = βXi + εi, but we observe (Wi, Yi) where Wi = Xi + Ui.

Then, least squares estimate consistent for β̃ = β
σ2
X

σ2
X + σ2

U

< β.

Also Var(Y |W ) = σ2
ε + β2 σ2

Xσ
2
U

σ2
X+σ2

U
.

This is not just an issue of variance – both variance and bias are

affected.



Measurement-Error Bias (cont’d)

One solution: SIMEX (Cook and Stefanski 1994)

Key idea: determine effect of error empirically via simulation.

Toy Illustration Revisited: Given data sets with measurement error

variances by factors of (1 + λm) for 0 = λ1 < λ1 < · · · < λm

Get a regression for r(λ) =
β2σ2

X
σ2
X+(1+λ)σ2

U
. Want to estimate r(−1).

In general, new data sets made from old by adding noise.

�

�

-1.0 0.0 1.0 2.0λ

Uncorrected Estimate f̂

simex Estimate f̃



Measurement-Error Bias (cont’d)

Another Solution: Special kernels (Fan and Truong 1990)

f̂n(x) =

∑n
i=1Kn

(
x−X̃i
hn

)
Yi

∑n
i=1Kn

(
x−X̃i
hn

)

where

Kn(x) =
1

2π

∫
e−itx

φK(t)

φU(t/hn)
dt,

where φK is the Fourier transform of a kernel K and φU is the

characteristic function of U .

This is a standard kernel estimator except for the unusual kernel Kn,

chosen to reduce bias.

How to do confidence bands/spheres for this case? We are currently

working on that.



Coverage Bias

Using a rate-optimal smoothing parameter gives

bias2 ≈ var.

Loosely, if f̃ = Ef̂ and s =
√

Var f̂ , then

f̂ − f
s

=
f̂ − f̃
s

+
f̃ − f
s
≈ N(0, 1) +

bias√
var

.

So, “f̂ ± 2s” undercovers.

Two common solutions in the literature:

– Bias Correction: Shift confidence set by estimated bias.

– Undersmoothing: Smooth so that var dominates bias2.



Road Map

1. Smoothing

2. The Six Biases

3. Confidence Sets



Confidence Sets

In practice, we usually need more than f̂ .

We want to make inferences about features of f :

shape, magnitude, peaks, inclusion, derivatives.

One approach: construct a 1− α confidence set for f ,

a random set C such that P
{
C 3 f

}
= 1− α.

Usually C is a ball or a band around some f̂ .

Three challenges:

1. Bias

2. Simultaneity

3. Relevance



Relevance

In small samples, confidence balls and bands need not constrain all

features of interest.

For example, number of peaks:

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

Alternative: confidence intervals for specific functionals of f

Two practical problems:

1. Many relevant functionals (e.g., peak locations) hard to work with.

2. One often ends up choosing functionals post-hoc.

Better to obtain construct a confidence set for the whole object with

post-hoc protection for inferences about many functionals.



Remark: What We Want

1. For asymptotic confidence procedures, prefer uniform coverage:

sup
f∈F

∣∣∣P
{
Cn 3 f

}
− (1− α)

∣∣∣→ 0.

This ensures that the coverage error depends only on n, not on f .

2. We would also like adaptive confidence procedures.

That is, maintain coverage on F but can use the data

to tailor the set’s diameter to the unknown f .



Confidence Bands Cannot Adapt

Confidence bands are of the form C = {f : L ≤ f ≤ U} for some

random functions L and U .

Unfortunately, confidence bands whose width is determined from the

data cannot do better than fixed-width bands.

Let D denote fixed-diameter confidence band. Then,

lim inf
n→∞

infC inff∈F Ef(sn(C))
infD inff∈F Ef (sn(D))

> 0.

This continues to hold (Low 1997, Genovese and Wasserman 2005)

even when smoothness constraints are imposed.

Bottom line: For commonly used smoothers, neither the width nor

the tuning parameter of the optimal confidence bands depends on

the data.



Building Confidence Bands: Volume of Tubes

If f̂(x) =
∑n
i=1 `i(x)Yi, for weights `(x) = (`1(x), . . . , `n(x)), then

inf
f∈F

P
{
f̂(x)− cσ̂ ‖`(x)‖ ≤ f(x) ≤ f̂(x) + cσ̂ ‖`(x)‖, ∀x

}
= 1− α,

for suitable class F (Sun and Loader 1994). The constant c solves the

equation α = K`φ(c) + 2(1− Φ(c)).

Special case: f(x) =
∑n
i=1 `i(x)θi.

Then, |f̂(x)− f(x)| =
∣∣∣
∑n
i=1 `i(x)εi

∣∣∣ = |〈`(x), ε〉|, so

α = P



 sup

x

∣∣∣∣∣∣
f̂(x)− f(x)

‖`(x)‖

∣∣∣∣∣∣
> cσ



 = P

{
sup
x

∣∣∣∣∣

〈
`(x)

‖`(x)‖,
ε

‖ε‖

〉∣∣∣∣∣ >
cσ

‖ε‖

}
.

Reduces to finding the volume of a tube on the sphere Sn−1.



Building Confidence Bands: Parametric

Approximately minimum expected size parametric confidence bands

(Schafer 2004)
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Confidence Balls

1. Expand f =
∑
k βkφk in orthonormal basis (e.g., cosine basis).

2. Shrink naive estimators by β̂k = λkβ̃k, 1 ≥ λ1 ≥ · · · ≥ λn.
3. Choose λ by minizing estimated risk R̂(λ).

4. Cn =



β :

∑

k

(β̂k − βk)2 ≤
kα√
n

+ R̂(λ̂)



.

Confidence balls can adapt to unknown smoothness.

Can impose constraints post-hoc and get valid inferences.



Confidence Ball Center vs Concordance Model
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• Concordance model is an MLE based on WMAP and four other data sets.

• Confidence ball center based on WMAP data only.



Eyes on the Ball I: Parametric Probes

Simultaneous 95% CIs on Peak Heights, Locations, and Height Ratios
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Eyes on the Ball I: Parametric Probes (cont’d)

Varied baryon fraction (Ωbh
2) keeping Ωtotal ≡ 1
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Ωbh
2 range [0.0169,0.0287] in ball

Extended search over millions of spectra (Bryan et al. 2006).



Eyes on the Ball II: Model Checking

Inclusion in the confidence ball provides simultaneous

goodness-of-fit tests for parametric (or other) models.
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Concordance 1 − α = 0.16
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Just WMAP 1 − α = 0.73
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Comment: Coverage and Posterior Probability

• Frequentist Confidence Set C

min
f

P
{
C 3 f

}
≥ 1− α. (1)

• Bayesian Posterior Region B

P
{
f ∈ B | Data

}
≥ 1− α. (2)

• In nonparametric problems, can have (2) hold and yet have

min
f

P
{
B 3 f

}
≈ 0. (3)



Road Map

1. Smoothing

2. The Six Biases
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Take-Home Points

•The crucial decision in nonparametric estimation is choosing the

correct amount of smoothing.

•We must avoid the six biases, but fortunately methods exist to

deal with most of them.

• Estimates alone are not enough, also need an assesment of

uncertainty. Various types of confidence sets can be constructed,

but their dependence on the assumptions can be delicate.


