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Motivating Example #1: fMRI

• fMRI Data: Time series of 3-d images acquired while subject

performs specified tasks.
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• Goal: Characterize task-related signal changes caused (indirectly)

by neural activity. [See, for example, Genovese (2000), JASA 95, 691.]



fMRI (cont’d)

Perform hypothesis tests at

many thousands of volume

elements to identify loci of

activation.



Motivating Example #2: Cosmology

• Baryon wiggles (Miller, Nichol, Batuski 2001)

• Radio Source Detection (Hopkins et al. 2002)

•Dark Energy (Scranton et al. 2003)
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Motivating Example #3: DNA Microarrays

•New technologies allow measurement of gene expression for

thousands of genes simultaneously.
Subject Subject

1 2 3 . . . 1 2 3 . . .

1 X111 X121 X131 . . . X112 X122 X132 . . .

2 X211 X221 X231 . . . X212 X222 X232 . . .

3 ... ... ... . . . ... ... ... . . .

Gene 4

5

6
...

Condition 1 Condition 2

• Goal: Identify genes associated with differences among conditions.

•Typical analysis: hypothesis test at each gene.



Objective

Develop methods for exceedance control of the

False Discovery Proportion (FDP):

P

{
False Discoveries

Discoveries
> γ

}
≤ α for 0 < α, γ < 1,

as an alternative to mean (FDR) control.

Useful in applications as the basis for a secondary inference

about the pattern of false discoveries.

Also useful as an FDR diagnostic.



Plan

1. Set Up

– Testing Framework

– FDR and FDP

2. Exceedance Control for FDP

– Inversion and the P(k) test

– Power and Optimality

– Combining P(k) tests

– Augmentation

3. False Discovery Control for Random Fields

– Confidence Supersets and Thresholds

– Controlling the Proportion of False Clusters

– Scan Statistics
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The Multiple Testing Problem

• Performm simultaneous hypothesis tests with a common procedure.

• For any given procedure, classify the results as follows:

H0 Retained H0 Rejected Total

H0 True TN FD T0

H0 False FN TD T1

Total N D m

Mnemonics: T/F = True/False, D/N = Discovery/Nondiscovery

All quantities except m, D, and N are unobserved.

•The problem is to choose a procedure that balances the

competing demands of sensitivity and specificity.



Testing Framework: Hypotheses

Let random vectors X1, . . . , Xn be drawn iid from distribution P.

Consider m hypotheses (typically m >> n) of the form

H0j : P ∈Mj versus H1j : P 6∈ Mj j = 1, . . . ,m,

for sets of probability distributionsM1, . . . ,Mm.

Common case:

Xi = (Xi1, . . . , Xim) comprises m measurements on subject i.

Here, we might take Mj =
{
P: E

P
(Xij) = µj

}
for some constant µj.



Testing Framework: P-values

Define the following:

•Hypothesis indicatorsHm = (H1, . . . , Hm) withHj = 1
{
P 6∈ Mj

}
.

• Set of true nulls S0 ≡ S0(P) = {j ∈ S: Hj = 0} where

S = {1, . . . ,m}.

•Test statistics Zj = Zj(X1, . . . , Xn) for H0j, for each j ∈ S.

• P-values Pm = (P1, . . . , Pm). Let PW = (Pi: i ∈W ⊂ S).

•Ordered p-values P(1) < · · · < P(m).

Assume Pj | Hj = 0 ∼ Unif(0, 1).

Initially assume that the Pjs are independent, but

will weaken this later.



Testing Framework: Rejection Sets

We call a rejection set any R = R(Pm) ⊂ S that

indexes the rejected null hypotheses H0j.

In practice, R will usually be of the form
{
j ∈ S: Pj ≤ T

}

for a random threshold T = T (Pm).

Want to define rejection sets that control specified error criteria.

Example: say that R controls k-familywise error at level α if

P

{
#(R ∩ S0(P)) > k

}
≤ α,

where #(B) denotes the number of points in a set B.



The False Discovery Proportion

Define the false discovery proportion (FDP) for each rejection set R

by

Γ(R) ≡ FDP(R) =
false rejections

rejections
=

∑m
j=1(1−Hj)1

{
R 3 j

}

∑m
j=1 1

{
R 3 j

}

where the ratio is defined to be zero if the denominator is zero.

The false discovery rate FDR(R) is defined by

FDR(R) = E(Γ(R)).

If R is defined by a threshold T , write Γ(T ) interchangeably, with Γ(t)

corresponding to a fixed threshold t.

Specifying the function t 7→ Γ(t) is sufficient to determine the entire envelope for

rejection sets defined by a threshold.
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Confidence Envelopes and Exceedance Control

Goal: find a rejection set R such that

P

{
Γ(R) > γ

}
≤ α

for specified 0 < α, γ < 1. We call such an R a (γ, α) rejection set.

Our main tool for finding these are confidence envelopes.

A 1− α confidence envelope for FDP is a random function

Γ(C) = Γ(C;P1, . . . , Pm) such that

P

{
Γ(C) ≥ Γ(C), for all C

}
≥ 1− α.



Confidence Envelopes and Thresholds

It’s easiest to visualize a 1− α confidence envelope for FDP

as a random function FDP(t) on [0, 1] such that

P

{
FDP(t) ≤ FDP(t) for all t

}
≥ 1− α.

Given such an envelope, we can construct “confidence thresholds.”

Two special cases have proven useful:

– Fixed-ceiling: T = sup{t: FDP(t) ≤ α}.

– Minimum-envelope: T = sup{t: FDP(t) = mint FDP(t)}.

t

F
D

P



Inversion Construction: Main Idea

Construct confidence envelope by inverting a set of uniformity tests.

Specifically, consider all subsets of the p-values that cannot be

distinguished from a sample of Uniforms by a suitable level α test.

Allow each of these subsets as one configuration of true nulls.

Maximize FDP pointwise over these configurations.



Inversion Construction: Step 1

For every W ⊂ S, test at level α the hypothesis that

PW = (Pi: i ∈W )

is a sample from a Uniform(0, 1) distribution:

H0 : W ⊂ S0 versus H1 : W 6⊂ S0.

Formally, let Ψ = {ψW : W ⊂ S} be a set of non-randomized tests

such that

P

{
ψW (U1, . . . , U#(W )) = 1

}
≤ α

whenever U1, . . . , U#(W ) ← Uniform(0, 1).



Inversion Construction: Step 2

Let U denote the collection of all subsets W not rejected in the

previous step:

U = {W : ψW (PW ) = 0}.

Now define

Γ(C) =





max
B∈U

#(B ∩ C)

#(C)
if C 6= ∅,

0 otherwise.
If U is closed under unions, then

Γ(C) =
#(U ∩ C)

#(C)

where U = ∪{V : V ∈ U}. This is a confidence superset for S0:

P

{
S0 ⊂ U

}
≥ 1− α.



Inversion Construction: Step 3

Choose R = R(P1, . . . , Pm) as large as possible such that

Γ(R) ≤ γ.

(Typically, take R of the form R =
{
j: Pj ≤ T

}
where

the confidence threshold T = sup{t : Γ(t) ≤ c}.)

It follows that

1. Γ is a 1− α confidence envelope for FDP, and

2.R is a (γ, α) rejection set.

Note: Can also calibrate this procedure to control FDR.



Choice of Tests

•The confidence envelopes depend strongly on choice of tests.

•Two desiderata for selecting uniformity tests:

A. (Power). The envelope Γ should be close to Γ and thus

result in rejection sets with high power.

B. (Computational Tractability). The envelope Γ should be

easy to compute.

•We want an automatic way to choose a good test

•Traditional uniformity tests, such as the (one-sided) Kolmogorov-

Smirnov (KS) test, do not usually meet both conditions.

For example, the KS test is sensitive to deviations from uniformity

equally though all the p-values.



The P(k) Tests

• In contrast, using the kth order statistic as a one-sided test statistic

meets both desiderata.

– For small k, these are sensitive to departures that have a large

impact on FDP. Good “power.”

– Computing the confidence envelopes is linear in m.

•We call these the P(k) tests.

They form a sub-family of weighted, one-sided KS tests.



Results: P(k) 90% Confidence Envelopes

For k = 1, 10, 25, 50, 100, with 0.05 FDP level marked.
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Power and Optimality

The P(1) test corresponds to using the maximum test statistic on

each subset.

Heuristic suggests this is sub-optimal: Andy-Warhol-ize.

Consider simple mixture distribution for the p-values:

G = (1− a)U + aF,

where F is a Uniform(0, 1/β) distribution.

Then we can construct the optimal threshold T∗ (and corresponding

rejection set R∗).

For any fixed k, the P(k) threshold satisfies

Tk = oP (1)
T∗
Tk

P
→∞.



Combining P(k) tests

• Fixed k.

Can be effective if based on information about the alternatives,

but can yield poor power.

• Estimate optimal k

Often performs well, but two concerns: (i) if k̂ > kopt, rejection

set can be empty; (ii) dependence between k̂ and Γ complicates

analysis.

• Combine P(k) tests

LetQm ⊂ {1, . . . ,m} with cardinality qm. Define Γ = mink∈Qm Γk,

where Γk is a P(k) envelope with level α/qm.

Generally performs well and appears to be robust.



Dependence

Extending the inversion method to handle dependence is

straightforward.

Still assume each Pj is marginally Uniform(0, 1) under null,

but allow arbitrary joint distribution.

One formula changes: replace beta quantiles in uniformity tests with

a simpler threshold.

Jk = min{j : P(j) ≥
kα

m− j
}.



Simulation Results

Excerpt under simple mixture model with proportion a alternatives with

Normal(θ, 1) distribution. Here m = 10, 000 tests, γ = 0.2, α = 0.05.

a θ FDP Combined Power Combined FDPP(1) Power P(1) FDPP(10) Power P(10)

0.01 5 0.102 0.980 0.000 0.889 0.118 0.980

0.05 5 0.179 0.994 0.004 0.917 0.172 0.994

0.10 5 0.178 0.998 0.001 0.905 0.162 0.997

0.01 4 0.080 0.741 0.022 0.407 0.109 0.759

0.05 4 0.125 0.950 0.000 0.424 0.045 0.887

0.10 4 0.164 0.974 0.002 0.436 0.044 0.915

0.01 3 0.000 0.265 0.000 0.098 0.000 0.000

0.05 3 0.127 0.623 0.000 0.106 0.005 0.463

0.10 3 0.137 0.790 0.000 0.087 0.018 0.472

0.01 2 0.000 0.000 0.000 0.010 0.000 0.000



Results: (0.05,0.9) Confidence Threshold
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Results: (0.05,0.9) Threshold versus BH
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Results: (0.05,0.9) Threshold versus Bonferroni
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Augmentation

van der Laan, Dudoit and Pollard (2004) introduce an alternative

method of exceeedance control, called augmentation

Suppose that R0 is a rejection region that controls familywise error

at level α. If R0 = ∅ take R = ∅. Otherwise, let A be a set with

A ∩R = ∅ and set R = R0 ∪A. Then,

P

{
Γ(R) > γ

}
≤ α where γ =

#(A)

#(A) + #(R0)
.

The same logic extends to k-familywise error and also gives 1 − α
confidence envelopes.

For instance, if R0 is defined by a threshold, then

Γ(C) =





#(C −R0)

#(C)
if C 6= ∅,

0 otherwise.



Augmentation and Inversion

Augmentation and Inversion lead to the same rejection sets.

That is, for any Raug, we can find an inversion procedure

with Raug = Rinv.

Conversely under suitable conditions on the tests, for any Rinv,

we can find an augmentation procedure with Rinv = Raug.

When U is not closed under unions, inversion produces

rejection sets that are not augmentations of a familywise test.
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False Discovery Control for Random Fields

•Multiple testing methods based on the excursions of random

fields are widely used, especially in functional neuroimaging (e.g.,

Cao and Worsley, 1999) and scan clustering (Glaz, Naus, and

Wallenstein, 2001).

• False Discovery Control extends to this setting as well.

• For a set S and a random field X = {X(s): s ∈ S} with mean

function µ(s), use the realized value of X to test the collection of

one-sided hypotheses

H0,s : µ(s) = 0 versus H1,s : µ(s) > 0.

Let S0 = {s ∈ S : µ(s) = 0}.



False Discovery Control for Random Fields

•Define a spatial version of FDP for threshold T by

FDP(T ) =
λ(S0 ∩ {s ∈ S : X(s) ≥ t})

λ({s ∈ S : X(s) ≥ t})
,

where λ is usually Lebesgue measure.

• As before, we can control FDR or FDP exceedance.

•Our approach is again based on the inversion method

for constructing a confidence envelope for FDP.



Inversion for Random Fields: Details

1. For every A ⊂ S, test H0 : A ⊂ S0 versus H1 : A 6⊂ S0

at level γ using the test statistic X(A) = sups∈AX(s).

The tail area for this statistic is p(z, A) = P

{
X(A) ≥ z

}
.

2. Let U = {A ⊂ S: p(x(A), A) ≥ γ}.

3. Then, U =
⋃

A∈U

A satisfies P

{
U ⊃ S0

}
≥ 1− γ.

4. And,
FDP(t) =

λ(U ∩ {s ∈ S : X(s) > t})

λ({s ∈ S : X(s) > t})
,

is a confidence envelope for FDP.

Note: We need not carry out the tests for all subsets.



Gaussian Fields

•With Gaussian Fields, our procedure works under similar smoothness

assumptions as familywise random-field methods.

• For our purposes, approximation based on the expected Euler

characteristic of the field’s level sets will not work because the

Euler characteristic is non-monotone for non-convex sets.

(Note also that for non-convex sets, not all terms in the Euler

approximation are accurate.)

• Instead we use a result of Piterbarg (1996) to approximate the

p-values p(z, A).

• Simulations over a wide variety of S0s and covariance structures

show that coverage of U rapidly converges to the target level.



Controlling the Proportion of False Regions

• Say a region R is false at tolerance ε if more than an ε proportion

of its area is in S0:
λ(R ∩ S0)

λ(R)
≥ ε.

•Decompose the t-level set of X into its connected components

Ct1, . . . , Ctkt.

• For each level t, let ξ(t) denote the proportion of false regions (at

tolerance ε) out of kt regions.

•Then,

ξ(t) =
#

{
1 ≤ i ≤ kt :

λ(Cti∩U)
λ(Cti)

≥ ε
}

kt
gives a 1− γ confidence envelope for ξ.



Results: False Region Control Threshold

P
{
prop’n false regions ≤ 0.1

}
≥ 0.95 where false means null overlap ≥ 10%
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Scan Statistics

Let X = (X1, . . . , XN) be a realization of a point process with

intensity function ν(s) defined on a compact set S ⊂ <d. Assume

that ν(s) = ν0 on S0 ⊂ S and ν(s) > ν0 otherwise.

Assume that conditional on N = n, X is an iid sample from the

density

f(s) =
ν(s)

∫
S ν(u) du

.

Scan statistic test for “clusters” via the statistic T = sups∈SNs.,

Our procedure:

1. Kernel estimators f̂H with a set of bandwidths H.

2. Bias correction

3. False Discovery Control



Scan Statistics (cont’d)
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Take-Home Points

• Confidence thresholds have practical advantages for

False Discovery Control.

In particular, we gain a tunable inferential guarantee without too

much loss of power.

•Works under general dependence, though there is potential gain in

tailoring the procedure to the dependence structure.

•This helps with secondary inference about the structure of

alternatives (e.g., controlling proportion of false regions), but

a better next step is to handle that structure directly.


