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Motivating Example #1: fMRI

e fMRI Data: Time series of 3-d images acquired while subject
performs specified tasks.
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e Goal: Characterize task-related signal changes caused (indirectly)
by neural activity. [See, for example, Genovese (2000), JASA 95, 691.]



fMRI (cont'd)

Perform hypothesis tests at
many thousands of volume
elements to identify loci of

activation.
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Motivating Example #2: Cosmology

e Baryon wiggles (Miller, Nichol, Batuski 2001)
e Radio Source Detection (Hopkins et al. 2002)
e Dark Energy (Scranton et al. 2003)
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Motivating Example #£3: DNA Microarrays

e New technologies allow measurement of gene expression for
thousands of genes simultaneously.
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e Goal: Ildentify genes associated with differences among conditions.

e Typical analysis: hypothesis test at each gene.



Objective

Develop methods for exceedance control of the
False Discovery Proportion (FDP):

False Di '
IP{ a se. |sc0\./er|es - ’y} <a for 0 < .y < 1,
Discoveries

as an alternative to mean (FDR) control.

Useful in applications as the basis for a secondary inference
about the pattern of false discoveries.

Also useful as an FDR diagnostic.
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The Multiple Testing Problem

e Perform m simultaneous hypothesis tests with a common procedure.

e For any given procedure, classify the results as follows:

Hy Retained H( Rejected | Total
HO True TN FD TQ
Hy False EFN D T
Total N D m

Mnemonics: T/F = True/False, D/N = Discovery/Nondiscovery

All quantities except m, D, and IN are unobserved.

e The problem is to choose a procedure that balances the
competing demands of sensitivity and specificity.



Testing Framework: Hypotheses

Let random vectors X1, ..., X,, be drawn 1ID from distribution P.

Consider m hypotheses (typically m >> n) of the form
HOjZPEMj VErsus Hlj:IP’QMj 7=1....m,
for sets of probability distributions M1, ..., My,.

Common case:

X; = (X1, ..., Xim) comprises m measurements on subject 1.

Here, we might take M; = {IP: Ep(X;;) = p;} for some constant ;.



Testing Framework: P-values

Define the following:

e Hypothesis indicators H"" = (Hy, ..., Hy,) with H; = 1{IP’¢ /\/lj}.

e Set of true nulls Sy = So(P) = {j € S: H; = 0} where
S=A{1,...,m}.

e Test statistics Z; = Z;(X1,...,Xp) for Hyj;, for each j € S.

e P-values P"" = (Py,...,Pp). Let Py = (P;: i € W C 5).

e Ordered p-values Py <--- < Pp.

Assume P; | H; = 0 ~ Unif(0,1).

Initially assume that the Pjs are independent, but
will weaken this later.



Testing Framework: Rejection Sets

We call a rejection set any R = R(P"™) C S that
indexes the rejected null hypotheses Hy;.

In practice, R will usually be of the form {j €5 P < T}
for a random threshold T' = T(P™).

Want to define rejection sets that control specified error criteria.

Example: say that R controls k-familywise error at level o if
P{#(RNSy(P)) >k} <o,

where #(B) denotes the number of points in a set B.



The False Discovery Proportion

Define the false discovery proportion (FDP) for each rejection set R

by

false rejections  >-7q(1 — Hj)l{R > j}
rejections 7, {R S j}

where the ratio is defined to be zero if the denominator is zero.

The false discovery rate FDR(R) is defined by
FDR(R) = E(I'(R)).

(R) = FDP(R) =

If R is defined by a threshold T, write I'(T) interchangeably, with [(¢)
corresponding to a fixed threshold ¢.

Specifying the function t — () is sufficient to determine the entire envelope for

rejection sets defined by a threshold.
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Confidence Envelopes and Exceedance Control

Goal: find a rejection set R such that
P{I(R) >~} <a
for specified 0 < a;,v < 1. We call such an R a (v, «) rejection set.

Our main tool for finding these are confidence envelopes.

A 1 — « confidence envelope for FDP is a random function
rC)=r(C;Py,...,Py) such that

P{T(C) >T(C), forall C} >1-a.



Confidence Envelopes and Thresholds

It's easiest to visualize a 1 — o confidence envelope for FDP
as a random function FDP(¢) on [0, 1] such that

P{FDP(t) < FDP(t) for all t} > 1 — a.

Given such an envelope, we can construct “confidence thresholds.”

Two special cases have proven useful:
— Fixed-ceiling: T = sup{t: FDP(t) < a}.
— Minimum-envelope: T" = sup{t: FDP(t) = min; FDP(¢)}.
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Inversion Construction: Main ldea

Construct confidence envelope by inverting a set of uniformity tests.

Specifically, consider all subsets of the p-values that cannot be
distinguished from a sample of Uniforms by a suitable level « test.

Allow each of these subsets as one configuration of true nulls.

Maximize FDP pointwise over these configurations.



Inversion Construction: Step 1

For every W C S, test at level a the hypothesis that
Py =(P;:ieW)
is a sample from a Uniform(0, 1) distribution:
Hy:W C Sy versus Hy:W ¢ 8S).

Formally, let W = {¢y;;: W C S} be a set of non-randomized tests
such that

P{¢W(Ula cee U#(W)) — 1} < «
whenever Uy, ..., Uy < Uniform(0, 1).



Inversion Construction: Step 2

Let {/ denote the collection of all subsets W not rejected in the
previous step:

U= {W: bw(Py) = 0}.

Now define ( 4 o)
BN .
F(C)=! P #(C) tC#0,
L0 otherwise.
If I/ i1s closed under unions, then
= #UNC)
[(C) =
() =""40)

where U = U{V: V € U}. This is a confidence superset for Sy

P{SycU}>1-o



Inversion Construction: Step 3

Choose R = R(P}, ..., Py) as large as possible such that
MN(R) <.

(Typically, take R of the form R = {j: P; < T} where
the confidence threshold T = sup{t : T(t) < c}.)

It follows that

1.T is a 1 — « confidence envelope for FDP, and

2. Ris a (v, a) rejection set.

Note: Can also calibrate this procedure to control FDR.



Choice of Tests

e The confidence envelopes depend strongly on choice of tests.

e Two desiderata for selecting uniformity tests:

A. (Power). The envelope I should be close to ' and thus
result in rejection sets with high power.

B. (Computational Tractability). The envelope I should be
easy to compute.

e \We want an automatic way to choose a good test

e Traditional uniformity tests, such as the (one-sided) Kolmogorov-
Smirnov (KS) test, do not usually meet both conditions.

For example, the KS test is sensitive to deviations from uniformity
equally though all the p-values.



The Py, Tests

e In contrast, using the kth order statistic as a one-sided test statistic
meets both desiderata.

— For small k, these are sensitive to departures that have a large
impact on FDP. Good “power.”

— Computing the confidence envelopes is linear in m.

e We call these the P, tests.
They form a sub-family of weighted, one-sided KS tests.



FDP

Results: P,y 90% Confidence Envelopes

For k = 1,10, 25,50, 100, with 0.05 FDP level marked.
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Power and Optimality

The P(l) test corresponds to using the maximum test statistic on
each subset.

Heuristic suggests this is sub-optimal: Andy-Warhol-ize.

Consider simple mixture distribution for the p-values:
G=(1-a)U+ aF,
where F' is a Uniform(0, 1/3) distribution.

Then we can construct the optimal threshold T (and corresponding
rejection set R.).

For any fixed k, the P(k) threshold satisfies



Combining P, tests

e Fixed k.

Can be effective if based on information about the alternatives,
but can yield poor power.

e Estimate optimal &

Often performs well, but two concerns: (i) if k> Kopt, rejection
set can be empty; (ii) dependence between k and I' complicates

analysis.

e Combine P tests
Let Qm C {1,...,m} with cardinality ¢;,,. Define I = mingco T,
where [ is a Py envelope with level a/gp.

Generally performs well and appears to be robust.



Dependence

Extending the inversion method to handle dependence is
straightforward.

Still assume each P; is marginally Uniform(0, 1) under null,
but allow arbitrary joint distribution.

One formula changes: replace beta quantiles in uniformity tests with
a simpler threshold.




Simulation Results

Excerpt under simple mixture model with proportion a alternatives with
Normal(#, 1) distribution. Here m = 10,000 tests, v = 0.2, o = 0.05.

a ¢ FDP Combined Power Combined FDPP;) Power Py FDPFq Power P,
0.01 5 0.102 0.980 0.000 0.889 0.118 0.980
0.05 5 0.179 0.994 0.004 0.917 0.172 0.994
0.10 5 0.178 0.998 0.001 0.905 0.162 0.997
0.01 4 0.080 0.741 0.022 0.407 0.109 0.759
0.05 4 0.125 0.950 0.000 0.424 0.045 0.887
0.10 4 0.164 0.974 0.002 0.436 0.044 0.915
0.01 3 0.000 0.265 0.000 0.098 0.000 0.000
0.05 3 0.127 0.623 0.000 0.106 0.005 0.463
0.10 3 0.137 0.790 0.000 0.087 0.018 0.472
0.01 2 0.000 0.000 0.000 0.010 0.000 0.000



Results: (0.05,0.9) Confidence Threshold
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Results: (0.05,0.9) Threshold versus BH
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Results: (0.05,0.9) Threshold versus Bonferroni
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Augmentation

van der Laan, Dudoit and Pollard (2004) introduce an alternative
method of exceeedance control, called augmentation

Suppose that R is a rejection region that controls familywise error
at level a. If Ry = () take R = (). Otherwise, let A be a set with
ANR=10and set R = RyU A. Then,

#(A
IP’{F(R) >7} <a where v = #(A)q(tyé)é(RO)'

The same logic extends to k-familywise error and also gives 1 — «
confidence envelopes.

For instance, if Ry is defined by a threshold, then

(#(C — Ry) .

L0 otherwise.




Augmentation and Inversion

Augmentation and Inversion lead to the same rejection sets.

That is, for any Rayg, we can find an inversion procedure
Wlth Raug S RiDV'

Conversely under suitable conditions on the tests, for any R;,,
we can find an augmentation procedure with R;, = Rayg.

When U is not closed under unions, inversion produces
rejection sets that are not augmentations of a familywise test.
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False Discovery Control for Random Fields

e Multiple testing methods based on the excursions of random
fields are widely used, especially in functional neuroimaging (e.g.,
Cao and Worsley, 1999) and scan clustering (Glaz, Naus, and
Wallenstein, 2001).

e False Discovery Control extends to this setting as well.

e For a set S and a random field X = {X(s): s € S} with mean

function p(s), use the realized value of X to test the collection of
one-sided hypotheses

Hy s :p(s) =0 versus Hy 4 : p(s) > 0.
Let So={s € S: u(s) =0}.



False Discovery Control for Random Fields

e Define a spatial version of FDP for threshold 1" by

ASpNq{seS: X(s)>t})
AM{s€eS:X(s)>t})

where A\ is usually Lebesgue measure.

FDP(T) =

e As before, we can control FDR or FDP exceedance.

e Our approach is again based on the inversion method
for constructing a confidence envelope for FDP.



Inversion for Random Fields: Details

1. For every A C S, test Hy: A C Sgversus Hy : A ¢ Sy
at level 7y using the test statistic X(A) = supgc 4 X ().

The tail area for this statistic is p(z, A) = IP{X(A) > z}
2.Lletd ={ACS: p(x(A),A) >~}

3. Then, U = | ] A satisfies IP{U D SO} >1—.
Acl

AMUN{se S: X(s) >t})
AM{se S:X(s)>t}) '
Is a confidence envelope for FDP.

4. And, W(t) _

Note: We need not carry out the tests for all subsets.



Gaussian Fields

e With Gaussian Fields, our procedure works under similar smoothness
assumptions as familywise random-field methods.

e For our purposes, approximation based on the expected Euler
characteristic of the field’s level sets will not work because the
Euler characteristic is non-monotone for non-convex sets.

(Note also that for non-convex sets, not all terms in the Euler
approximation are accurate.)

e Instead we use a result of Piterbarg (1996) to approximate the
p-values p(z, A).

e Simulations over a wide variety of Sgs and covariance structures
show that coverage of U rapidly converges to the target level.



Controlling the Proportion of False Regions

e Say a region R is false at tolerance € if more than an € proportion

of its area is in Sp:
A(R N Sp) S

AR)
e Decompose the t-level set of X into its connected components
Ci1s -5 Oy

e For each level t, let £(t) denote the proportion of false regions (at
tolerance €) out of k; regions.

e [ hen,

€.

: . ACyNU)
g(t):#{lgzgkt. A(%m) Ze}
ki

gives a 1 — v confidence envelope for €.




Results: False Region Control Threshold

[P{prop’n false regions < 0.1} > 0.95 where false means null overlap > 10%

Frontal Eye Field Supplementary Eye Field

Inferior Prefrontal Inferior Prefrontal

Superior Parietal

Temporal-parietal junction \ Temporal-parietal junction

Extrastriate Visual Cortex




Scan Statistics

Let X = (Xq,...,X ) be a realization of a point process with
intensity function v(s) defined on a compact set S C R%. Assume
that v(s) = vg on S C S and v(s) > v otherwise.

Assume that conditional on N = n, X is an 1ID sample from the
density
v(s)

1) = Jev(u)du

Scan statistic test for “clusters” via the statistic 7" = supycg Ns.,

Our procedure:

1. Kernel estimators fH with a set of bandwidths H.
2. Bias correction

3. False Discovery Control



Scan Statistics (cont'd)
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Take-Home Points

e Confidence thresholds have practical advantages for
False Discovery Control.

In particular, we gain a tunable inferential guarantee without too
much loss of power.

e Works under general dependence, though there is potential gain in
tailoring the procedure to the dependence structure.

e This helps with secondary inference about the structure of
alternatives (e.g., controlling proportion of false regions), but
a better next step is to handle that structure directly.



