Nonparametric Inference and the Dark Energy Equation of State

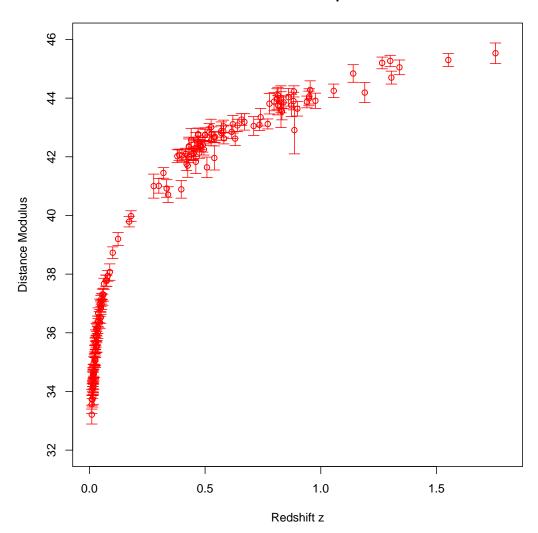
Christopher R. Genovese Department of Statistics Carnegie Mellon University http://www.stat.cmu.edu/~genovese/

Collaborators: Larry Wasserman, Peter Freeman Department of Statistics Carnegie Mellon University

This work partially supported by NIH Grant 1 R01 NS047493-01 and NSF Grants ACI 0121671.

A Small-Sample Story for a Large-Sample World

- The flood of data in astronomy is only just beginning.
- Such data open up new questions and raise new challenges.
- Nonparametric methods are ideally suited to these new problems.
 - Cosmic Microwave Background (Genovese et al. 2004, Bryan et al. 2005)
 - Galaxy Evolution (e.g., Rojas et al. 2006)
 - Galaxy Spectra (work in progress)
 - Dark Energy (e.g., Daly and Djorgovski 2004, 2005; and below)
- So, in this terabyte age, I want to illustrate this potential with a data set of mere hundreds.



Gold SNe Sample

- 1. Dark Energy
- 2. Nonparametric Inference
- 3. Derivative Estimation as an Inverse Problem
- 4. Inference for the Dark Energy Equation of State

- 1. Dark Energy
- 2. Nonparametric Inference
- 3. Derivative Estimation as an Inverse Problem
- 4. Inference for the Dark Energy Equation of State

Preliminaries

• The Expanding Universe

Scale factor a(t) indicates relative expansion of the universe.

 $(a(t_0) = 1$ where t_0 is current age of universe.)

Redshift z is an observable shift in the wavelength of light from a distant object that is induced by the expansion of the universe.

$$1+z=rac{\lambda_{ ext{obs}}}{\lambda_{ ext{emit}}}=rac{a(t_{ ext{obs}})}{a(t_{ ext{emit}})}.$$

Hubble parameter $H(t) = \frac{\dot{a}(t)}{a(t)}$. $(H_0 = H(t_0)$ is the Hubble "constant".)

• The Distance-Redshift Relation

The relationship between objects' distances and redshifts contains fundamental information about the Universe's geometry.

Hubble's Law, $z = H_0 d$, is reasonably accurate for small distances d.

Dark Energy

• Accelerating Expansion (Reiss et al. 2004, Perlmutter et al. 2004)

Type Ia supernovae can serve as a "standard candle".

Observations of many supernovae reveal that the expansion of the universe is *accelerating*.

This conclusion is supported by other, independent, measurements, including the Cosmic Microwave Background (Spergel et al. 2003) and large-scale structure (Verde et al. 2002).

- Einstein's "mistake," Cosmological Constant, and Vacuum Energy
- This raises several puzzles. What's going on?
 - Mistaken assumptions, models, or data analysis
 - A failure of General Relativity
 - Anthropic Selection
 - Dark Energy

Dark Energy (cont'd)

- Dark Energy is a smoothly-distributed energy density that dominates the universe (\sim 74% versus \sim 4% for baryonic matter) and provides a negative pressure acting in opposition to gravity.
- What does the acceleration imply?

Let $\rho = \rho_{\text{matter}} + \rho_{\text{radiation}} + \rho_{\text{DE}} + \cdots$ be the total energy density in the universe. Friedmann equation:

$$H^{2}(t) = \left(\frac{\dot{a}(t)}{a(t)}\right)^{2} = \frac{8\pi G}{3}\rho - \frac{\kappa}{a^{2}(t)}$$

or equivalently,

$$\dot{a}^2 = \frac{8\pi G}{3}a^2\rho - \kappa.$$

Acceleration implies that $a^2\rho$ must increase.

Neither matter ($ho_{
m matter} \propto a^{-3}$) nor radiation ($ho_{
m radiation} \propto a^{-4}$) can do this. A cosmological constant ($ho_{
m DE} \propto a^0$) could.

Dark Energy (cont'd)

• How do we quantify dark energy?

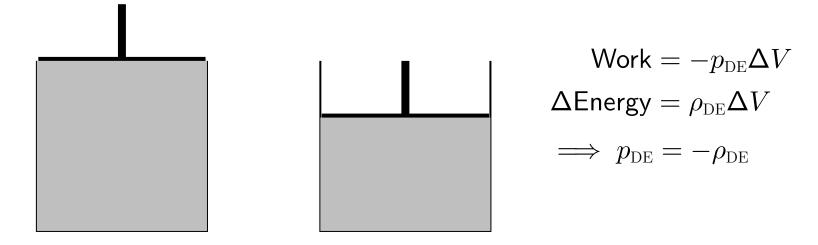
We can attempt to make inferences about ρ directly.

Alternatively, we can look at the equation of state (cf. ideal gas law).

Let $p_{\rm DE}$ and $\rho_{\rm DE}$ be the pressure and energy density of dark energy, then the equation of state w relates these by

$$p_{ ext{DE}} = w
ho_{ ext{DE}}.$$

For a cosmological constant, w = -1.



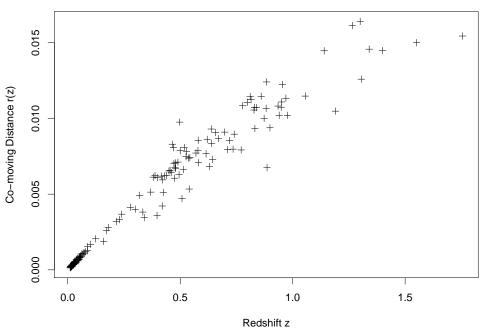
Dark Energy (cont'd)

• The supernova data give us a way to infer the equation of state Roughly, we get

$$Y_i = r(z_i) + \sigma_i \epsilon_i, \qquad i = 1, \dots, n,$$

where r is a measure of distance at each redshift z_i . Then,

$$w(z) = rac{H_0^2 \Omega_M (1+z)^3 + rac{2}{3} rac{r''(z)}{(r'(z))^3}}{H_0^2 \Omega_M (1+z)^3 - rac{1}{(r'(z))^2}} \equiv T(r',r'').$$



1. Dark Energy

- 2. Nonparametric Inference
- 3. Derivative Estimation as an Inverse Problem
- 4. Inference for the Dark Energy Equation of State

Nonparametric Inference

Goal: make sharp inferences about unknown functions with a minimum of assumptions.

Constructing good estimators is important, but an accurate assessment of uncertainty is critical.

Why use nonparametric methods?

- 1. When we don't have a well-justified parametric (finite-dimensional) model for the object of interest.
- 2. When we have a well-justified parametric model but have enough data to go after even more detail.
- 3. When we can do as well (or better) more simply.
- 4. As a way of assessing sensitivity to model assumptions.

The Nonparametric Regression Problem

Observe data (X_i, Y_i) for $i = 1, \ldots, n$ where

 $Y_i = f(X_i) + \epsilon_i,$

where $E(\epsilon_i) = 0$ and the X_i s can be fixed (x_i) or random. Leading cases: 1. $x_i = i/n$ and $Cov(\epsilon) \equiv \Sigma = \sigma^2 I$.

2.
$$X_i \text{ IID } g \text{ and } \text{Cov}(\epsilon) \equiv \Sigma = \sigma^2 I.$$

Key Assumption: $f \in \mathcal{F}$ for some infinite dimensional space \mathcal{F} . Examples

1. Sobolev: $\mathcal{F} \equiv \mathcal{W}_p(C) = \{f: \int |f|^2 < \infty \text{ and } \int |f^{(p)}|^2 \leq C^2\}$ 2. Lipschitz: $\mathcal{F} \equiv \mathcal{H}(A) = \{f: |f(x) - f(y)| \leq A|x - y|, \text{ for all } x, y\}$

Goal: Make inferences about f or about specific features of f.

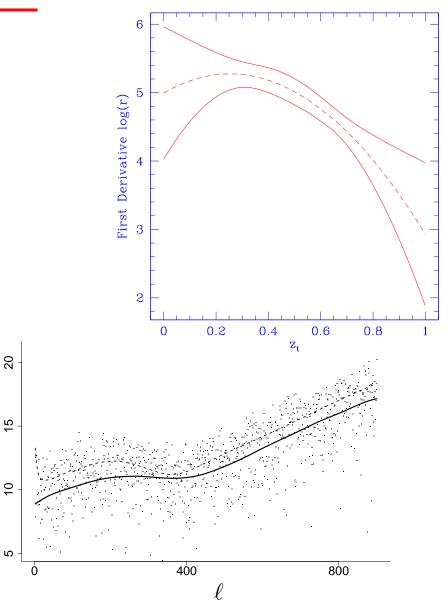
Variants of the Problem

- \bullet Inference for Derivatives of f
- Estimating Variance functions
- Regression in High dimensions
- Inferences about specific functionals of f

Related Problems:

- Density Estimation
- Spectral Density Estimation

 $\log \sigma^2(x)$



Rate-Optimal Estimators

Choose a performance measure, or risk function, e.g., $R(\hat{f}, f) = \mathsf{E} \int (\hat{f} - f)^2$ or $R(\hat{f}, f) = \mathsf{E} |\hat{f}(x_0) - f(x_0)|^2$)

Want \hat{f} that minimizes worst-case risk over \mathcal{F} (minimax). But typically must settle for achieving the optimal minimax rate of convergence r_n :

 $\inf_{\widehat{f}_n} \sup_{f \in \mathcal{F}} R(\widehat{f}_n, f) \asymp r_n$

In infinite-dimensional problems, $r_n\sqrt{n} \rightarrow \infty$.

For example, $r_n = n^{-\frac{2p}{2p+1}}$ on \mathcal{W}_p .

Rate-optimal estimators exist for a wide variety of spaces and risk functions.

Adaptive Estimators

It's unsatisfying to depend too strongly on intangible assumptions such as whether $f \in \mathcal{W}_p(C)$ or $f \in \mathcal{H}(A)$.

Instead, we want procedures to *adapt* to the unknown smoothness.

For example, \hat{f}_n is a *(rate) adaptive procedure* over the \mathcal{W}_p spaces if when $f \in \mathcal{W}_p$

 $\widehat{f}_n \to f$ at rate $n^{-2p/2p+1}$

without knowing p.

Rate adaptive estimators exist over a variety of function families and over a range of norms (or semi-norms).

Adaptive confidence sets?? Limited at best.

Inference Not So Easy

Using a rate-optimal smoothing parameter gives

 $\mathsf{bias}^2\approx\mathsf{var}.$

Loosely, if
$$\tilde{f} = \mathsf{E}\hat{f}$$
 and $s = \sqrt{\mathsf{Var}\,\hat{f}}$, then
$$\frac{\hat{f} - f}{s} = \frac{\hat{f} - \tilde{f}}{s} + \frac{\tilde{f} - f}{s} \approx \mathsf{N}(0, 1) + \frac{\mathsf{bias}}{\sqrt{\mathsf{var}}}.$$

So, " $\widehat{f} \pm 2s$ " undercovers.

Two common solutions in the literature:

- Bias Correction: Shift confidence set by estimated bias.
- Undersmoothing: Smooth so that var dominates bias².

- 1. Dark Energy
- 2. Nonparametric Inference
- 3. Derivative Estimation as an Inverse Problem
- 4. Inference for the Dark Energy Equation of State

Derivative Estimation as an Inverse Problem

We can think of derivative estimation as an ill-posed inverse problem. Suppose we have data

$$Y_i = r(z_i) + \sigma_i \epsilon_i$$

and want to make inferences about $f \equiv r'$. Then we can write (in vector form)

$$Y = Kf + \Sigma^{1/2}\epsilon$$

where the operator $K = (K_1, \ldots, K_n)$ maps functions to \mathbb{R}^n and where $K_i = \int_0^{z_i}$.

Create an orthonormal basis ϕ_1, \ldots, ϕ_n from the eigenfunctions of K^*K with associated eigenvalues $\lambda_1 \ge \cdots \ge \lambda_n \ge 0$.

Here, K^* is the adjoint of K given by

$$K^* u = \sum_{i=1}^n u_i \mathbf{1}_{[0,z_i]}.$$

Derivative Estimation (cont'd)

Then,

$$f = \sum_{j=1}^{n} \beta_j \phi_j + f_\perp$$
$$= \sum_{j=1}^{n} \lambda_j^{-1/2} \langle u_j, Kf \rangle \phi_j + f_\perp,$$

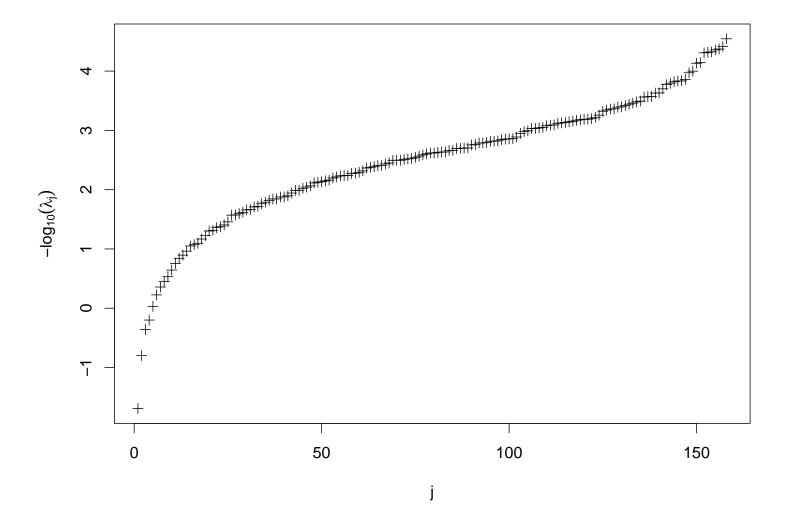
where $u_j = K\phi_j/||K\phi_j||$. The f_{\perp} component is not estimable. Using an optimal shrinkage scheme,

$$MSE \approx \sum_{j=1}^{n} \min(\beta_j^2, \lambda_j^{-1} \tau_j^2),$$

where $\tau_j^2 = \sum_k u_{jk}^2 \sigma_k^2$. Large components at high order are bad news!

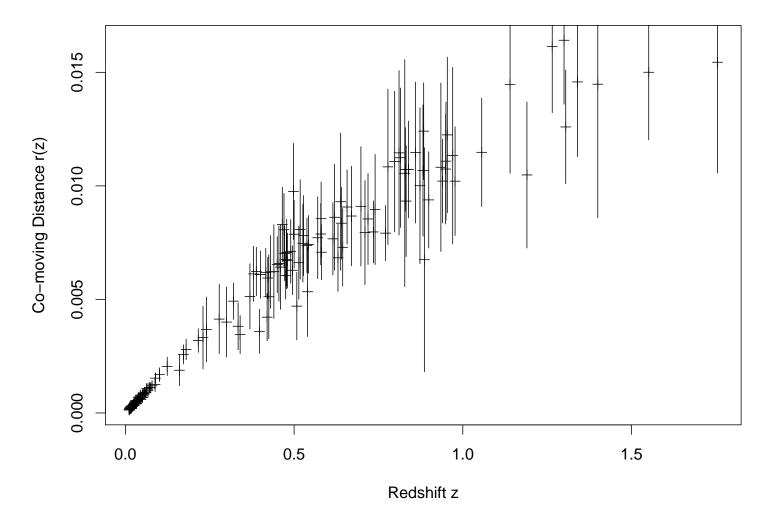
Derivative Estimation (cont'd)

Associated Eigenvalues (as $-\log_{10}\lambda_j$) for the Supernova Data



- 1. Dark Energy
- 2. Nonparametric Inference
- 3. Derivative Estimation as an Inverse Problem
- 4. Inference for the Dark Energy Equation of State

Inference for the Equation of State



Two approaches: Direct testing and nonparametric methods.

Inference (cont'd): Direct Testing

- For any fixed function Q(z) (e.g., $Q(z) \equiv -1$) can solve the differential equation w(z) = Q(z) for r'.
- This gives a one-parameter family of solutions parameterized by r'(0).
- Goodness of fit tests generate a confidence set of those solutions in the family that are consistent with the data.
- Easily generalizes to any finite-dimensional family of Q(z)s.

Inference (cont'd): Nonparametric Methods

- Orthonormal basis expansion (singular functions or waveletvaguelete) or local polynomial regression
- Double reflection drastically reduces boundary bias in this problem.
- Minimize an unbiased estimate of risk \widehat{R} to select tuning parameters
- Confidence bands via tube formula (Sun and Loader 1994) must account for possible bias.
- Commonly used methods of bias adjustment/estimation fail in simulations.

Results

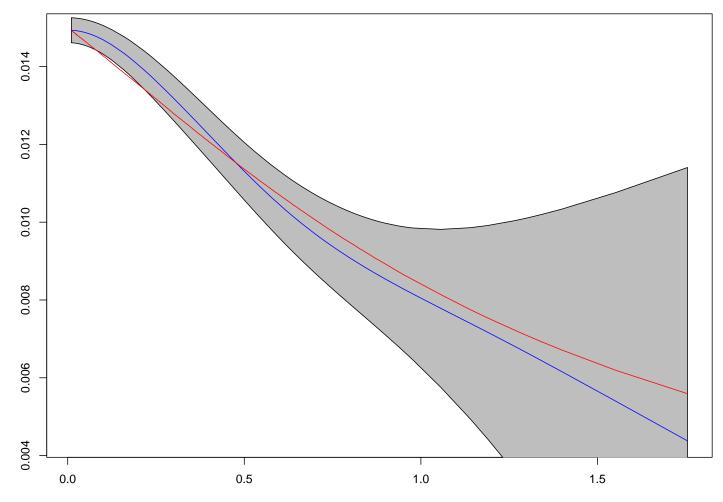
- Direct Testing: marginal rejection of $H_0: w = -1$ with $p \approx 0.006$. But a 12% increase in standard errors eliminates the effect.
- Nonparametric methods: All the methods generally agree and give results consistent with what we would expect.

Precision of the estimates is low at high redshift.

Best fitting r' for w = -1 just outside of the confidence bands over small range.

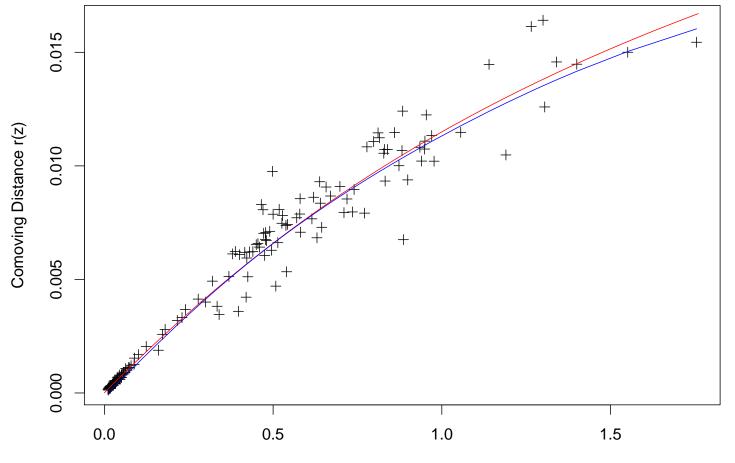
Results (cont'd)

 \hat{r}' with confidence bands (\hat{r}' within band; \hat{r}'_0 exits band)



Results (cont'd)

 \hat{r} from nonparametric and best fitting \hat{r}_0 from w = -1 solution.



Redshift z

- 1. Dark Energy
- 2. Nonparametric Inference
- 3. Derivative Estimation as an Inverse Problem
- 4. Inference for the Dark Energy Equation of State

Take-Home Points

- Nonparametric methods can contribute to fundamental problems in cosmology and astrophysics.
- With the large data sets coming through the pipeline, we can eschew simpler parameterizations and go after the basic physics directly.
- The critical statistical problems focus on constructing inferences for the unknown function (e.g., confidence sets) and for complicated functionals.