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Modeling Preliminaries

• Consider the simple, fixed-effects linear model

y = Xβ + ε, (∗)

where X is n×p, β is p×1 and unknown, and ε is an n×1 vector
of independent Normal(0, σ2) random variables.

This statement embodies an assumption that the observed data

y have a Normal distribution with mean Xβ and variance matrix

σ2I for some value of the quantities θ = (β, σ2).

• In abstract terms, a statistical model is an indexed collection of
probability distributions fθ(y) for data Y = (Y1, . . . ,Yn).

The index θ ∈ Θ is called a parameter and may be finite or

infinite-dimensional.



Modeling Preliminaries (cont’d)

The collection of possible parameters Θ allowed under the model

is called the parameter space.

The model carries with it an assumption that Y has distribution

fθ for some θ.

• For whatever value y of Y we have observed, the function that

maps θ ∈ Θ to fθ(y) is called the likelihood function. It is the

most important object in statistical inference.

In the linear model (*), the likelihood is given by

L(β, σ2) = C

(
1

σ2

)n/2
exp

(
−
1

2
‖y −Xβ‖2

)
.

Note that the data are fixed here (and not even denoted on the

left) and that we don’t care about multiplicative constants. It is

often convenient to work with the log of the likelihood.
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1306 Flavors, Subjectively Speaking

To understand Bayesian inference, it helps to see how it differs from

the frequentist (or classical) tradition and then in turn see how

Bayesians differ amongst themselves.

The key distinctions lie in the definition and interpretation of

probability.

(It’s an especially slippery idea, and none of the approaches are

entirely satisfactory.)



The Frequentist Tradition

For the frequentist, probability represents limiting relative frequencies

over a series of (hypothetical) replications. Probabilities are

objectively defined quantities. Classic example: coin flips.

This definition of probability has several implications:

• Probabilities can only stated for observations that are in principle
replicable. (They need not actually be replicated, though.)

• Any parameters describing the probability distribution of a random
quantity do not vary across replications. As such, no useful

probability statements can be made about them.

For example, we can’t speak of the probability that a hypothesis is true.

• Statistical procedures should be chosen to have good long-run
frequency performance.

For example, a 95 percent confidence interval should cover the true value with

limiting frequency 95 percent while being as short as possible on average.



The Bayesian Approach

For the Bayesian, probability represents a degree of belief. Probabilities

are subjectively defined quantities.

This definition of probability has several implications:

• Probabilities can be stated for essentially any event, and relating
to any quantity, random or non-random. We are using the classical

calculus of probability without requiring “physical” randomness.

• In particular, we can make probability statements about parameters
of interest in a statistical model.

• Statistical inference is a process by which the observed data update
our beliefs.

Our beliefs before seeing the data are described by a prior

distribution; our beliefs after seeing the data are described by

the posterior distribution.

Bayesian inferences derive entirely from the posterior.



Illustration: Hypothesis Testing

Frequentist

– Based on the logic of surprise: if I see a result that is too surprising under my

current world view, then I should change my view rather than think I’m that

lucky. Rather convoluted.

– The threshold for surprise (significance level) is subjective but often chosen by

convention (not always for the better).

– The quoted statistic, the p-value, is a very poor summary of evidence.

– Treats the candidate hypotheses differently (reject or retain H0 but not accept!)

– Often difficult to test the hypotheses we want to test (ex: point null).

Bayesian

– Begin with prior beliefs expressed as P(H0), . . . ,P(Hm).

– Data update these prior beliefs to posterior beliefs P(H0 | Y ), . . . ,P(Hm | Y ).

– In two hypothesis case, can compute the Bayes factor B such that
P(H1 | Y )

P(H0 | Y )
= B

P(H1)

P(H0)
.

P(H0 | Y ) is what we would all like a p-value to be.



1306 Flavors (cont’d)

Bayesians are not monolithic. Among the most important points of

disagreement is the question of how to choose a prior.

Two approaches in particular stand out.

• Subjective Bayes. The prior is “elicited” by careful assessment of
belief and much hard work.

• Automatic Bayes. The prior is selected by a formal rule or
algorithm.

Another issue is whether to consider frequentist performance in the

selection of a prior. Some ignore it, others consider it.
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Why Bayes?

1. Logic

• A single unified method applies to all problems.

•Uncertainty rather than randomness is the central focus.

•The data are used to obtain direct quantitative inferences about
the parameters.

•Only concerned with the data in hand – not other possible data
sets that could have been observed but weren’t.

• All assumptions clearly stated up front and can be easily compared.

Example: Inference about
∑∞
k=1 ckz

k.



Why Bayes? (cont’d)

2. Performance

Consider a simple version of the linear model (*):

y = β + ε,

where n = p ≡ dim(β) ≥ 3.

The standard estimator (MLE, least squares) β̂ = y can be improved

upon in mean squared error for every value of β, with, for instance,

is the famous James-Stein estimator.

This extends to the full linear model (*) when p ≥ 3. Put another
way, the standard estimators in the linear model are known to be

sub-optimal in an important sense, often nontrivially.

Estimators derived from the mean of a Bayesian posterior distribution

do not have this problem.

In finite-dimensional problems, Bayesian estimators often have good

frequentist performance.



Why Bayes? (cont’d)

3. “Coherence”

A small set of seemingly common sense principles for rational decision

making, if accepted, lead inexorably to the Bayesian approach.

These also imply that two experiments with proportional likelihoods

should give the same inference, which is not true of classical methods.

(See Berger & Wolpert 1984 for details about these principles.)

This is a powerful argument for the subjective Bayesian paradigm,

but it has important limits.

The claim that this requires a Bayesian approach – as one colleague

puts it, “Either you’re a Bayesian or you’re a loser” – is easily (and

often) oversold.



Why Bayes? (cont’d)

4. Flexibility

In order to use a statistic for inference in frequentist methods, it’s

necessary to compute the statistic’s sampling distribution and relate

that to the parameters of interest.

Even in conceptually simple situations, this can be difficult,

sometimes prohibitively.

General Examples: truncated parameter ranges (bounded normal

mean), discrete model components (variable selection), clustering

(confidence statements concerning active regions in an image).

But for Bayesian methods, we need only be able to compute the

likelihood and prior up to constants of proportionality. This is easy

for a larger set of problems, and it’s all handled using exactly the

same approach.
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Why Not Bayes?

What standards of performance should we demand of Bayesian

procedures?

To the subjective Bayesian, the posterior is “right” whatever the prior, and the

resulting inferences are not bound by frequentist notions of performance.

Freedman (1999) constructs an example in high dimensions – with a “reasonable”

prior – in which a set with high posterior probability has arbitrarily small frequentist

probability of containing the truth.

Should the likelihood alone be the basis of inference?

Robins and Ritov (1997) construct an example in which likelihood-based methods

must produce useless inferences but for which another method performs well.

They argue that the “Coherence” principles need not make sense in high

dimensions.

In high dimensional and nonparametric problems, Bayesian procedures

often have poor frequentist performance. This forces the philosophy

upon us.
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Bayesian Inference

The basic Bayesian method is the same in every problem:

1. Select a probability model f(y | θ) that reflects our beliefs about the data y
for each value of the parameter. Note that this likelihood is now considered a

conditional probability distribution, not just an indexed set of distributions.

2. Select a prior distribution f(θ) for the parameter.

3. Combine these to form a posterior distribution via Bayes Theorem:

f(θ | y) =
f(y | θ)f(θ)∫
f(y | θ′)f(θ′) dθ′

. (∗)

The first two steps specify a joint distribution for y and θ: f(y, θ) =

f(y | θ)f(θ). The denominator in (*) is then
∫
f(y, θ′) dθ′ = f(y).

Note that only the observed y is ever used and that f(θ | y) is
proportional to likelihood times prior.

The integral in (*) can be very difficult to compute, but simulation-

based methods exist for deriving posterior inferences without

computing it explicitly.



Bayesian Inference: Examples

A simple example illustrates how Bayes theorem is used. In more

complicated cases, the calculations are more challenging, but the

idea is the same.

Suppose that Y1, . . . , Yn are independent and identically distributed

(iid), each taking values 0 or 1 with probability 1−p or p respectively,
as in the flips of a coin. Write Y = (Y1, . . . , Yn).

Likelihood: f(Y | p) ∝ p
∑

i Yi(1− p)n−
∑

i Yi, for 0 < p < 1.

Prior: Uniform distribution, f(p) = 1, 0 < p < 1. (Note: this does

not require that p be random.)

Then, f(p | Y ) ∝ p
∑

i Yi(1− p)n−
∑

i Yi, for 0 < p < 1. By standard
integrals, we can recover the constant of proportionality to get:

f(p | Y ) =
Γ(n+ 2)

Γ(
∑

i Yi + 1)Γ(n−
∑

i Yi + 1)
p
∑

i
Yi+1−1(1− p)n−

∑
i
Yi+1−1,

which is called a Beta〈
∑
i Yi + 1, n−

∑
i Yi + 1〉 distribution.



Bayesian Inference: Examples (cont’d)

If we were to then observe another datum Yn+1, we would use

that posterior as our new prior with likelihood f(Yn+1 | p) =
pYn+1(1 − p)1−Yn+1. The posterior that results, Beta〈

∑n+1
i=1 Yi +

1, n+ 1−
∑n+1
i=1 Yi + 1〉 is the same as if we had used Y1, . . . , Yn+1

in the first place.

Suppose that we wanted to make inferences on the log odds ratio

ψ = log(p/(1 − p)) instead of p. We can compute the posterior
distribution of ψ directly from that for p:

H(u | Y ) ≡ P
{
ψ ≤ u

}

= P
{
log(p/(1− p)) ≤ u | Y

}

= P

{
p ≤

eu

1 + eu
| Y

}

=
∫ eu/(1+eu)

0
f(p | Y ) dp.



Bayesian Inference: Examples (cont’d)

The posterior density of ψ follows by taking derivatives with respect

to u.

Contrast this with the frequentist case, where making inference

about a function of your parameter requires essentially a seperate

analysis.

In the linear model y = Xβ+ε, functions of the parameter β include

most quantities of interest: parameters βj, contrasts
∑
cjβj with∑

cj = 0, indicators that βj is positive or that βj > βk, and so

forth.



Bayesian Inference: Examples (cont’d)

That trick above of taking a flat prior f(θ) = 1 seems pretty handy.

Suppose that Y1, . . . , Yn are iid Normal(θ, 1). If we take prior

f(θ) = 1, we get

f(θ | Y ) ∝ e−
1
2

∑
i(Yi−θ)

2

∝ e−
1
2(θ

2−2nθY )

∝ e−
n
2 (θ−Y )

2
,

which we easily recognize as a Normal(Y , θ) distribution. (Notice

how we useed our ability to drop constants – anything not depending

on a parameter – to make this easier.)

So the posterior is centered around the Maximum Likelihood

Estimator (MLE) Y with variance equal to the variance of the

MLE. This looks like a frequentist result but with all the advantages

of Bayesian inference!



Bayesian Inference: Examples (cont’d)

But beware. While this “flat prior Bayes” can sometimes produce

frequentist-like results, it is not the cure-all it might seem.

For instance, a flat prior is not the “noninformative” choice that it

appears. In particular, it is not invariant to change of variables.

In the binary variable example above, a flat prior on p gives

f(ψ) =
eψ

(1 + eψ)2
,

which is not flat. Kass and Wasserman (1999) show similar and

more extreme examples.

The “Jeffrey’s prior” is invariant. This takes f(θ) ∝
√
I(θ) where

I(θ) is the Fisher information for θ under the model.

In the binary example, the Jeffrey’s prior is

f(p) ∝ p−1/2(1− p)−1/2,

which is invariant but rather extreme at the endpoints.



Bayesian Inference: Examples (cont’d)

Example: Suppose Θ = Θ0 ∪Θ1 where Θ0 ∩Θ1 = ∅ and that each
Θi corresponds to a hypothesis Hi.

Our prior probabilities are P(Hi) =
∫
Θi
f(θ).

Let fi(y) =
∫
Θi
f(y)f(y | θ)f(θ)/P (Hi) be the marginal distribution

of the data under hypothesis Hi.

Then our posterior probabilities P (Hi | y) can be written as follows:

P(Hi | y) =

∫
Θi
f(y | θ)f(θ)

∫
f(y | θ)f(θ)

=
fi(y)P(Hi)

f0(y)P(H0) + f1(y)P(H1)
.

Hence,
P(H1 | y)

P(H0 | y)
=
f1(y)

f0(y)

P(H1)

P(H0)
.

This factor B = f1(y)/f0(y) is called the Bayes factor.
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Posteriors and How to Use Them

The posterior is the end product of Bayesian inference, but the

posterior can be a rather bulky summary of one’s results.

On the plus side, because the posterior is a probability distribution,

we can use all the calculus of probability to manipulate it.

In particular, it is straightforward to compute the posterior of derived

quantities.

For example, with a parameter θ = (θ1, . . . , θd), we can find the

posterior of θj by “marginalizing out” the other values

f(θj | Y ) =
∫
f(θ | Y )dθ1 · · · dθj−1dθj+1 · · · dθd.

Here are some common ways to use the posterior.



Posteriors and How to Use Them (cont’d)

• Point estimators. Under a mean-squared error criterion, the
posterior mean is commonly used:

θ̂ =
∫
θf(θ | Y ) dθ =

∫
θf(y | θ)f(θ) dθ
∫
f(y | θ)f(θ) dθ

.

• Functions of the parameter. Use the posterior distribution of a few
specified functions of θ.

• Posterior intervals. Find intervals (or more general sets) C such
that P(θ ∈ C | Y ) = 1− α for a specified α.

• Summarize. Approximate the posterior by a simpler distribution
such as a Gaussian or a few component mixture.

• Simulations. Numerically simulate draws from the posterior.

This is often necessary and can be combined with the previous

approaches.
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The Impact of the Prior

Although there is much hand-wringing about choice of prior, the

prior is asymptotically dominated by the data as the sample size

grows, at least in finite dimensional problems.

Theorem. Let θ̂n be the MLE and let ŝn = (nI(θ̂n))
−1/2. Under mild regularity

conditions, including that the prior does not put zero probability on the truth, the

posterior is approximately Normal(θ̂n, ŝ
2
n).

Also if Cn = (θ̂n − zα/2ŝn, θ̂n + zα/2ŝn) is the asymptotic frequentist 1 − α

confidence interval, then

P
{
θ ∈ Cn | Y

}
→ 1− α,

as n→∞.

This need not be true in nonparametric (infinite-dimensional)

problems. In finite samples, the choice of prior can have a large

impact, and these approximations need not be especially good.
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Hierarchical Models

Constructing a prior for a high-dimensional parameter is difficult –

there is a lot room in high-dimensional space.

But fortunately, because we are dealing with probability distributions,

we have the freedom to specify the prior in more intuitive pieces.

There are two basic tricks:

1. Conditioning

Suppose θ = (θ1, . . . , θm). The prior f(θ) ≡ f(θ1, . . . , θm) gives
the joint distribution of these components. But by standard
probability theory, we can write

f(θ1, . . . , θm) = f(θ1) f(θ2 | θ1) f(θ3 | θ2, θ1) · · · f(θm | θ1, . . . , θm−1).

That is, we can arrange the components in any order, and specify

the distribution of each given some of the others. (The θis above

can be vector blocks.) Other variants are possible.



Hierarchical Models (cont’d)

2. Hyperparameters

Write the prior f(θ) as a mixture by introducing hyperparameters

λ:

f(θ) =
∫
f(θ | λ)f(λ) dλ.

The hyperparameters can be anything we specify.

By combining these two techniques, we get a hierarchical model.

Example: Normal-Normal

Yi | θ, λ← Normal(θ, σ2)

θ | λ← Normal(0, λ2)
1

λ2
← Gamma(a0, b0),

where a0, b0 > 0 are fixed and pre-specified.



Hierarchical Models (cont’d)

This can be quite elaborate and flexible. Consider an m×m grid of
sites G, as on an image. Let Ni,j be the set of direct neighbors of
the point (i, j). Formally.

Ni,j = {(k, `) ∈ G: i = k and |j − `| = 1 or j = ` and |i− i| = 1} .

We want a model for a smooth field θ on the grid G. To specify
a prior f(θ | λ) up to a constant, it is sufficient to define the
conditional distributions θi,j | θ−(i,j).

An example, called a Markov Random Field, determines f(θ | λ) by

θi,j | θ−(i,j), λ ← Normal

(∑
(k,`)∈Ni,j

θk,`

#N(i,j)
, λ2

)
.

This is a somewhat crude model, but it can be elaborated in

interesting ways.

And we can use the methods coming up to simulate directly from

the posterior.
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Simulation-Based Methods

While applying Bayes theorem to get a posterior is conceptually

simple, it can be computationally demanding.

The biggest difficulty lies in computing the “normalizing constant”

f(y) =

∫
f(y | θ)f(θ) dθ,

which is often high-dimensional and complicated, making standard

numerical integration problematic.

This is needed to compute the posterior probabilities or posterior
means: e.g.,

P(A | Y ) =

∫
A f(y | θ)f(θ) dθ

f(y)
.

Three approaches:

1. Basic Monte Carlo

2. Importance Sampling and its extensions

3. Markov Chain Monte Carlo



Importance Sampling

Suppose we want to compute the integral I =
∫
h(x)f(x) dx. If we

could simulate draws from f , we could compute

Î =
1

N

N∑

j=1

h(Xj) ≈ Efh(X) = I,

to estimate I. This is basic Monte Carlo.

But typically we will not know how to obtain draws from f . In

importance sampling, we find a distribution g that we can draw from

and draw N iid samples. We then compute

Î =
1

N

N∑

j=1

h(Xj)f(Xj)

g(Xj)
≈ Eg

h(X)f(X)

g(X)
= Efh(X) = I.



Importance Sampling (cont’d)

The basic rule of importance sampling is to sample from a density

g with thicker tails than f . Otherwise, the estimate will have large

variance, and may even blow up.

The choice of g that minimizes variance is

g∗(x) =
|h(x)|f(x)

∫
|h(t)|f(t) dt

Unfortunately, this is only of theoretical interest.

Making a good choice of g becomes challenging in high dimensions.

Gelman and Meng (1998) give a nice review of importance sampling

and its extensions.

But importance sampling has been mostly subsumed by Markov

Chain Monte Carlo.
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Markov Chain Monte Carlo (MCMC)

A (discrete time) Markov Chain is a random process X =

(X0, X1, X2, . . .) with the so-called Markov property: at every

time, the future is conditionally independent of the past given the

present. Loosely: the distribution of Xn+1 depends only on Xn.

Under certain conditions, a Markov Chain will settled down into

an equilibrium, where the distribution of Xn approaches a fixed

distribution π. Loosely: the Markov Chain “forgets” its initial

conditions.

The idea of MCMC is to design a Markov Chain whose limiting

distribution is the desired posterior. (See Gelman et al. 1995, Gilks

et al. 1998, Robert and Casella 1999.)

Then, we run the chain until it is approximately in equilibirium (how

long?) and read off the sequence of states as a sample from our

posterior (iid?).



The Metropolis-Hastings Algorighm

The Metropolis-Hastings algorithm is a general method for constructing

Markov Chains for posterior sampling. (See Tierney 1994.)

We start with a “proposal distribution” q(· | x) which generates a
proposed move given that we are state x. We must know how to

draw from each q(· | x).

The algorithm then creates a sequence X0, X1, . . . , whose limiting

(equlibrium) distribution is the desired posterior.

The construction is designed to ensure that with the target

distribution the chain satisfies the “detailed balance” condition:

f(s)p(s, t) = f(t)p(t, s). That is, for any pair of states s and t, the

rate at which the chain moves from state s to t equals that rate at

which it moves from t to s.

If this were not true, the chain could not be in equilibrium with that

distribution.



The Metropolis-Hastings Algorighm (cont’d)

The algorithm is as follows:

0. Choose X0 arbitrarily.

1. Having generated X0, . . . , Xi, draw Z from q(· | Xi).

2. Evaluate r ≡ r(Xi, Z) where

r(x, z) = min

{
f(z)

f(x)

q(x | z)

q(z | x)
, 1

}
.

3. Let Xi+1 equal Z with probability r and Xi with probability 1− r.

The possibility that Xi+1 = Xi is essential and such repeated states

cannot be simply ignored.



The Metropolis-Hastings Algorighm (cont’d)

Different choices proposal distribution lead to quite varied methods.

1. Independence Metropolis. (Simple but inflexible.)
Let q(z | x) = q(z), a fixed density. Then,

r(x, z) = min

{
f(z)

f(x)

q(x)

q(z)
, 1

}
.

2. Random Walk Metropolis. (Commonly used.)
Let q(z | x) = g(z − x) for fixed, symmetric density g, such as a
Normal(0, τ2).

r(x, z) = min

{
f(z)

f(x)
, 1

}
.

The trick is to choose τ so that the chain moves around nontrivially.

A very rough empirical guideline is to target around 50% move

acceptance. Note that this is designed for walks on full Euclidean

spaces. On subsets like (0,∞), one should do a random walk in
transformed (e.g., log) coordinates.



The Metropolis-Hastings Algorighm (cont’d)

3. Gibbs Sampling. (Good if you can get it.)

WriteXn = (X
1
n, X

2
n). We cycle through draws of each component

given the others:

X1
n+1 ← fX1|X2(x1 | X2

n)

X2
n+1 ← fX2|X1(x2 | X1

n+1)

Repeat

This generalizes to any number of components, which may be

scalars or vector blocks.

Gibbs sampling is a form of Metropolis-Hastings where the move

is always accepted. (What is the proposal distribution?)

If we don’t know how to sample from the conditional distributions,

we can use a separate Metropolis-Hastings step for that. This is

called Metropolis within Gibbs.
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Model Jumping and Averaging

Consider a linear model y = Xβ + ε with many predictors (and thus

parameters), but many of the parameters should be zero in any one

fit.

Fitting too large a model leads to estimates with high variance.

Fitting too small a model leads to biased estimates. This is called

the bias-variance trade-off, a fundamental reality of statistical

inference.

Without some form of “shrinkage” toward a good bias-variance

balance, the estimators will be statistically inefficient.



Model Jumping and Averaging (cont’d)

One approach is model selection: use the data to pick which

parameters should be allowed to be non-zero. Unfortunately, it is

difficult to account for model uncertainty in this case, rendering the

resulting inferences optimistic.

What we want to do is allow variation in the model (i.e., which βjs

non-zero) while accounting for model uncertainty. This is very hard

to do with classical methods, but the Bayesian approach makes this

straighforward.

This leads to the idea of model averaging: make the model a

parameter.

(This idea also arises in neuroimaging in the problem of making

inferences about regions that borrow strength across related voxels.)



Model Jumping and Averaging (cont’d)

Suppose we have models M1, . . . ,MK. For any event A, we can
write it’s posterior probability as the average over the posterior

probability in each model:

P(A | Y ) =
K∑

k=1

P(A | Y,Mk) P(Mk | Y ).

The model probabilities are given, as you might expect, by

P
{
Mk | Y

}
=

f(y | Mk)fk∑K
k′=1 f(y | M

′
k)f
′
k

,

where the model k likelihood is defined by

f(y | Mk) =
∫
f(y | θk,Mk)f(θk | Mk) dθk.

Using the model averaged probabilities, gives better performance

than any single model and maintains a full accounting of the

uncertainty. Hoeting, Madigan, Raftery, and Volinksy (1999) gives

an excellent review of model averaging techniques.



Model Jumping and Averaging (cont’d)

But one additional method has proved very important, this is the

Reversible Jump MCMC of Green (1995), called loosely “Model

Jumping”.

The idea is to construct a meta-Metropolis-Hastings chain that

jumps across model spaces – usually of different dimensions – linking

chains that are running on the separate spaces.

Instead of one proposal distribution, there are now several q1, . . . , qr,

with one chosen randomly at each stage.

Some of the proposal distributions are standard Metropolis-Hastings

moves within the current model.

Some carry the chain from one model to the other. The key

requirement is that these moves satisfy detailed balance. Green

(1995) gives a recipe for such moves.



Model Jumping and Averaging (cont’d)

To get the gist, a simple illustration is sufficient. Suppose we want to

move between a two parameter space (θ1, θ2) and a one parameter

space θ0.

From the two-parameter space, we could move by dropping the

second coordinate (θ1, θ2) → θ1 and move back by adding a fixed

component θ0→ (θ0, 0).

But this doesn’t satisfy detailed balance because the chain moves to

any given θ0 from (θ0, 3.4) but never from a one-dimensional state

to (θ0, 3.4).

Green’s solution is to introduce auxilliary random variables, say

a one-dimensional variable U such that the moves are (θ1, θ2) to

θ1 + θ2 and θ0 to θ0 + U, θ0 − U . By careful choice of distribution
for U , detailed balance can be satisfied.



Road Map

1. Philosophy (briefly)

2. Theory

3. Computation

– Simulation-Based Methods

– Markov Chain Monte Carlo

– Model Jumping and Averaging

4. Practice
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Example: A Basic Bayesian Neuroimaging Model

BRAIN (Bayesian Response Analysis and Inference for Neuroimaging)

is a software package that implements a variety of Bayesian models

for fMRI data. (See Genovese 2000.)

Handles:

– block, event-related, and mixed designs;

– a variety of noise models, response shapes, and priors;

– spatial inferences.

Here, I’ll describe a basic version that illustrates some of today’s

topics.

BRAIN software in public domain

(http://www.stat.cmu.edu/∼genovese/brain/)



Example Model (cont’d)

Parameters grouped in blocks, each related to one source of variation

µ Baseline level of signal

Drift Coefficients of drift profile in current basis

Response Amplitude of response in an epoch/trial (θResponse

c,k )

Average amplitude of response in a condition (θResponse
c )

Shape Shape of response curve (θShape)

Noise Noise Level

Blocks at each level of the hierarchy are taken as independent



Voxelwise Hierarchy

Y (t) = µ + d(t; θDrift) + a(t; θResponse

c(t),k(t), θ
Shape, µ) + ε(t; θNoise)

Baseline Drift Profile Activation Profile Noise

Across-Epoch Variations: (Optional)

θResponse

c,k | θResponse

−(c,k) , . . . ← πEpoch(θ
Response

c,k | θResponse
c )

Voxelwise Variations:

θDrift | λ, θNoise, . . . ← A exp(−Q(d;λ))

λ | θNoise, . . . ← Exponential(θNoise/λ0)

θResponse
c | θResponse

−c , . . . ← Gamma/Point-Mass Mixture

θShape, . . . ← Gamma [Independent Components]

θNoise ← Inverse Gamma [Proper and diffuse]



Priors

• πEpoch

(
θResponse

c,k | θResponse
c

)
=

{
N+(θ

Response
c , τ20 ) if θResponse

c > 0
δ0 o.w.

•Model drift profile d(t) as a spline, but constrained to be smooth
(λ, a hyperparameter).

Knots and coefficients of splines are model parameters.

Drift profile penalized with weighted Sobolev prior, e.g.,

Q(d;λ) ∝ −
1

2λ

[
ρnc

∫
|d(t)|2 +

∫
|d′′(t)|

2
]

• Response amplitude by default ≈ 1–5% of baseline for active voxel,
constrained to be non-negative.

• Prior mean for noise level usually well constrained from prior data.



Structure of the Response

• Parameterize shape of response function by a
smooth, nonlinear family of piecewise polynomials.

Offers flexibility, but still constrains the shape.

A B D E
G

C F

H
Task Performance

A Lag-On
B Attack
C Rise
D Lag-Off
E Decay
F Fall
G Dip
H Skew

(This function can be replaced by any desired alternative.)



Model Averaging
• Posterior inferences average over submodels based on subsets of
conditions.

R F Tr T1T2T3 R F Tr T1T2T3 R F Tr T1T2T3

R F Tr T1T2T3 R F Tr T1T2T3 R F Tr T1T2T3

• Estimate posterior probabilities of the sub-models.



Computational Techniques

• Posterior Maximization

– Direct numerical optimization

– Standard Errors derived from normal approximation at the mode

– Posterior probabilities of submodels derived from approximate Bayes Factors

• Posterior Sampling

– Mix of Metropolis and Hastings steps.

– Reversible jump MCMC to move across submodels.

– Automatically tune jumping parameters during prescan phase.

•With many thousands of voxels, require automated tuning of fitting
algorithms.



A Quick Look
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Take-Home Points

• Bayesian inference differs in fundamental ways from classical

inference even when the procedures are similar.

• Bayesian inferences derive entirely from the posterior and are

determined in turn by the likelihood.

•This approach has substantial appeal, and it has become an
important part of mainstream statistics.

• Among the features that recommend it for neuroimaging models
are the flexibility with which one can handle discrete components

in models, including variable selection and spatial clustering.

• Computational methods have improved markedly in recent years,
but they can still be costly relative to a simple regression.

In the end, the gains in efficiency and inferential freedom may be

worth the cost.
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