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Multiple Testing In fMRI

• In fMRI, we attach statistics to brain locations – voxels, triangles,

regions – but our inferences combine many locations.

• For m simultaneous hypothesis tests, get p-values P1, . . . , Pm.

Consider rejecting null hypotheses i with Pi ≤ t.

• For any rejection threshold t, classify results as follows:

H0 Retained H0 Rejected Total

H0 True TN FD T0
H0 False FN TD T1

Total N D m

Mnemonics: T/F = True/False, D/N = Discovery/Nondiscovery

•Want to find t that yields both sensitivity (small FN) and

specificity (small FD), but these goals are in conflict.

Must find a desirable balance.



How to Choose a Threshold?

•Uncorrected Testing (Control Per-Comparison Type I Error)

– high sensitivity, low specificity (equivalently: high power, many type I errors)

– bounds probability of false discovery for each test separately

– may be useful for small ROIs

• Strong Control of Familywise Type I Error Rate (FWER)

– low sensitivity, high specificity (equivalently: low power, few type I errors)

– guarantees P
{
FD > 0

} ≤ α for any subset of true nulls

– methods: traditional (e.g., Bonferroni), resampling, random field

•Move the Slider Until the Pattern Looks Right

– Uhhh, no.



More Power To You

• Strong control of FWER is effective but often want more power.

The problem is how to get more power while remaining principled.

• Alternative criteria:

– Cluster-size Threshold (Forman et al. 1996): Use spatial information

to separate signal from noise.

– Control k-FWER: Fix k and guarantee P
{
FD > k

}
≤ α.

– False Discovery Control: Bound ratio FD/D in some way.

Leading example (Benjamini and Hochberg 1995): guarantee that

FDR ≡ E

 FD

D + 1
{
D = 0

}
 ≤ α.

FDR is called the False Discovery Rate.



Controlling k-FWER

• k-FWER generalizes FWER by not penalizing some fixed number

of errors.

• Several approaches developed (van der Laan et al. 2004, Romano and

Lehmann 2004, Finner and Roters 2002, Sarkar 2002, Genovese and Wasserman

2002), but easiest is augmentation approach of van der Laan et

al. (2004).

• Begin with FWER-controlling procedure and reject k additional

null hypotheses.

Typically use the next k smallest p-values, but can split k in any

way – by slice, anatomical region, . . . whatever.

• But wait, shouldn’t we keep k small relative to the total number

of rejections (e.g., active voxels)?

Ah, that’s where False Discovery Control comes in.



The Benjamini-Hochberg (BH) Procedure

• Sort the m p-values 0 ≡ P(0) < P(1) < · · · < P(m).

The BH procedure has rejection threshold TBH where

TBH = max

{
P(i): P(i) ≤ α

i

m
, 0 ≤ i ≤ m

}
.

Almost trivial to compute.

• BH method guarantees that FDR ≤ T0
m

α.

• Proven for independent and “positive regression dependent”

p-values. Hard to break in general. Distribution-free variant is

simple but very conservative.

• Yields more power than Bonferroni (FWER control) and

fewer Type I errors than uncorrected testing.

• BH method overcontrols FDR by factor T0/m.



The Benjamini-Hochberg Procedure (cont’d)

m = 50, α = 0.1
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Issues for fMRI

• Performance and Interpretation

– How do we choose α? k?

– How do we interpret the bounds? Do these bounds meet our needs?

– How can we get more power?

•Dependence

– Are fMRI p-values positive regression dependent? How do we test this?

– How robust is the BH method to dependence assumptions?

• Smoothing

– How should the data be smoothed?

• Spatial Structure

– These methods ignore location information. How can we make regions rather

than voxels the unit of inference?



Adaptive FDR Control

• If we knew the proportion of true nulls T0/m, we could get

FDR = α by using BH with β = α/(T0/m).

• Instead: plug in an estimate. Several approaches developed

(Benjamini and Hochberg 2000, Storey 2003, Genovese and Wasserman 2003,

Benjamini et al. 2004).

• Easiest is Benjamini et al. (2004):

A. Apply BH procedure at level α. If nothing rejected, STOP.

B. Define µj = (m + 1 − j)/(1 − P(j)) for 1 ≤ j ≤ m.

C. Let k∗ = min{j ≥ 2 : µj > µj−1}.
D. Let T̂0/m = min

(
1, dµk∗e/m

)
.

E. Apply BH procedure at level β = α/(T̂0/m).



Controlling False Discovery Exceedance

•When controlling FDR, it is tempting to use the results to bound

the # of false discoveries, but D · α need not bound FD.

• Goal: Find a procedure that keeps FD/D low with high probability.

•Useful to define the False Discovery Proportion (FDP) at threshold
t by

FDP(t) =
FD(t)

D(t) + 1
{
D(t) = 0

}.

•Note: FDR(t) = E(FDP(t))



Confidence Thresholds

• In practice, it is useful to be able to make a confidence statement

about FDP.

• A (α, 1 − γ) confidence threshold T is a statistic that satisfies

P
{
FDP(T ) ≤ α

}
≥ 1 − γ.

This implies that FDR ≤ α(1−γ)+γ, though this is conservative.

• Can obtain such a procedure via a confidence envelope (Genovese

and Wasserman 2003, 2004), a “step-down” testing proceudre (Romano

and Lehmann 2004), or by augmenting a FWER-controlling procedure

(van der Laan et al. 2004).



Confidence Envelopes

• A 1− γ confidence envelope for FDP is a random function FDP(t)

on [0, 1] such that

P
{
FDP(t) ≤ FDP(t) for all t

}
≥ 1 − γ.

• Given such an envelope, we can construct confidence thresholds.

Two special cases have proved useful.

– Fixed-ceiling: T = sup{t: FDP(t) ≤ α}.
– Minimum-envelope: T = sup{t: FDP(t) = mint FDP(t)}.

F
D

P



Exact Confidence Envelopes

• Let FDP maximize FDP over all subsets that look Uniform

according to a hypothesis test.

• Can compute in linear time for suitable uniformity tests.

•Traditional uniformity tests have little power in the direction

needed here.

• In contrast, using the kth order statistic as a one-sided test statistic

— the P(k) test — has what we need:

– For small k, sensitive to departures that have a large impact on

FDP. Good “power.”

– Computing the confidence envelopes is linear in m.

– Can choose k automatically.



Data Example

• Monkeys exhibit visual remapping in parietal

cortex

When the eyes move so that the receptive field

of a neuron lands on a previously stimulated

location, the neuron fires even though no stimulus

is present.

Implies transformation in neural representation

with eye movements. (Duhamel et al. 1992)

• Seek evidence for remapping in human cortex.

• See Merriam, Genovese, and Colby (2003).

Neuron, 39, 361–373 for more details.

• EPI-RT acquisition, TR 2s, TE 30ms, 20 oblique

slices, 3.125mm × 3.125mm × 3mm voxels.



Results: P(k) 90% Confidence Envelopes

For k = 1, 10, 25, 50, 100, with 0.05 FDP level marked.

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

p−value threshold

F
D

P



Results: Confidence Threshold

FDP bound: α = 0.05 and Confidence Level: 1 − γ = 0.9
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Results: Confidence Threshold versus BH

FDP bound: α = 0.05 and Confidence Level: 1 − γ = 0.9

Extrastriate Visual Cortex
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Temporal-parietal junctionTemporal-parietal junction

Inferior Prefrontal Inferior Prefrontal

Superior Parietal

Supplementary Eye Field

Red = BH + Confidence Blue = BH only



Results: Confidence Threshold versus Bonferroni

FDP bound: α = 0.05 and Confidence Level: 1 − γ = 0.9

Extrastriate Visual Cortex
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Inferior Prefrontal Inferior Prefrontal

Superior Parietal

Supplementary Eye Field

Red = Confidence + Bonferroni Blue = Confidence only



False Discovery Control for Random Fields

•Multiple testing methods based on the excursions of random fields

are widely used in functional neuroimaging (e.g., Worsley 2003, Worsley

et al. 2002, Cao and Worsley 2001).

• False Discovery Control extends to this setting under the same

basic assumptions (Pacifico Perone, Genovese, et al. 2004).

• For a set S and a random field X = {X(s): s ∈ S} with mean

function µ(s), use the realized value of X to test the collection of

one-sided hypotheses

H0,s : µ(s) = 0 versus H1,s : µ(s) > 0.

Let S0 = {s ∈ S : µ(s) = 0}.



False Discovery Control for Random Fields

•Define a spatial version of FDP by

FDP(t) =
Volume(S0 ∩ {s ∈ S : X(s) ≥ t})

Volume({s ∈ S : X(s) ≥ t}) .

• Approach analogous to confidence thresholds:

i. Find a confidence superset U such that P
{
U ⊃ S0

}
≥ 1 − γ.

ii. Compute a confidence envelope for FDP:

FDP(t) =
Volume(U ∩ {s ∈ S : X(s) > t})

Volume({s ∈ S : X(s) > t}) ,

iii. Select threshold from confidence envelope.

•With appropriate choice of α (FDP bound) and 1 − γ (confidence

level), can control FDR or FDP exceedance.



Controlling the Proportion of False Regions

•We can use this to make inferences at the region level. (See also

Taylor 2004 for another good idea on this.)

• Say a region R is false at tolerance ε if more than an ε proportion

of its area is in null set S0:

error(R) =
λ(R ∩ S0)

λ(R)
≥ ε.

•Decompose the t-level set of X into its connected components

Ct1, . . . , Ctkt
.

• For each level t, let ξ(t) denote the proportion of false regions (at

tolerance ε) out of kt regions.

•Then,

ξ(t) =
#

{
1 ≤ i ≤ kt :

λ(Cti∩U)
λ(Cti)

≥ ε
}

kt
gives a 1 − γ confidence envelope for ξ.



Results: False Region Control Threshold

P
{
prop’n false regions ≤ 0.1

} ≥ 0.95 where false means null overlap ≥ 10%
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Take Home Points

•Though multiple testing is only one among many problems in

fMRI, recent research has produced a variety of useful error criteria

and efficient procedures.

• Confidence thresholds have advantages for False Discovery Control.

In particular, we gain a stronger inferential guarantee with little

effective loss of power.

•Dependence tends to make all these procedures more conservative,

but the bounds are still valid for practically relevant dependence.

• False Discovery Control procedures are available for smoothed or

unsmoothed data.

• For spatial applications, we care about clusters/regions/areas

not voxels. Current methods are extending to such region-based

inferences.


