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The Multiple Testing Problem

e Perform m simultaneous hypothesis tests with a common procedure.

e For any given threshold, classify the results as follows:

Hy Retained H( Rejected | Total
H() True TN FD T()
Hy False FN D T
Total N D m

Mnemonics: T/F = True/False, D/N = Discovery/Nondiscovery

All quantities except m, D, and /N are unobserved.

e The problem is to choose a threshold that balances the
competing demands of sensitivity and specificity.



Motivating Examples

e fMRI Data
e Astronomical Source Detection
e DNA Microarrays

e Scan Statistics

These all involve many thousands
of tests and interesting spatial
structure.




How to Choose a Threshold?

e Control Per-Comparison Type | Error

—a.k.a. “uncorrected testing,” many type | errors

— Gives Py{ FD; > 0} < a marginally for all 1 <i <m

e Strong Control of Familywise Type | Error

—e.g.: Bonferroni, Holmes et al. (1996), Cao & Worsley (1999)
— Guarantees P){FD >0} <

e False Discovery Control

—e.g.: Benjamini & Hochberg (BH, 1995), Storey (2002),
Genovese & Wasserman (2003)

— BH bounds False Discovery Rate: FDR =E(FD/D) < «



Road Map

2. Controlling FDR

— Review of FDR Control Methods
— Issues for fMRI

— Data Example

3. Confidence Envelopes and Thresholds

— Exact Confidence Envelopes for the False Discovery Proportion

— Choice of Tests

4. False Discovery Control for Random Fields

— Confidence Supersets and Thresholds

— Controlling the Proportion of False Clusters



Road Map

2. Controlling FDR

— Review of FDR Control Methods
— Issues for fMRI

— Data Example

3. Confidence Envelopes and Thresholds

— Exact Confidence Envelopes for the False Discovery Proportion

— Choice of Tests

4. False Discovery Control for Random Fields

— Confidence Supersets and Thresholds

— Controlling the Proportion of False Clusters



Mixture Model for Multiple Testing

olet P""=(Py,...,Py) be the p-values for the m tests.

oelet H" = (Hy,...,Hy) where H; =0 (or 1) if
the 7" null hypothesis is true (or false).

e \We assume the following model:

Hy,..., Hy, iid Bernoulli{a)
=1, Smiid Lr
P, | H;=0,=;, =&; ~ Uniform(0, 1)
PilHi=1==§ ~¢&.

where L r denotes a probability distribution on a
class F of distributions on [0, 1].



Mixture Model for Multiple Testing (cont'd)

e Marginally, Py, ..., Py, are drawn iid from
G = (1—a)U + aF,
where U is the Uniform(0, 1) cdf and

F = [¢dey(©).
e Typical examples:
— Parametric family: Fg = {Fy: 0 € O}
— Concave, continuous distributions

Fo = {F: F concave, continuous cdf with F > U}.

e Can also work under what we call the conditional model where
Hq, ..., Hy, are fixed, unknown.



Multiple Testing Procedures

e A multiple testing procedure T is a map [0, 1] — [0, 1], where

the null hypotheses are rejected in all those tests for which
P; <T(P™). We call T a threshold.

e Examples:
Uncorrected testing  Ty(P™) = «
Bonferroni Ts(P™) = a/m
Fixed threshold at ¢  T3(P™) =t
First 7 T()(P™) = Py

Benjamini-Hochberg Thu(P™) = sup{t: G(t) = t/a}

Oracle To(P™) =sup{t: G(t) = (1 — a)t/a}

Plug In Toi(P™) = sup{t: G(t) = (1 — a)t/a}
(P

Regression Classifier Tre.(P"") = sup{t: Is{lel\Plzt}>1/2}



The False Discovery Process

e Define two stochastic processes as a function of threshold ¢:

the False Discovery Proportion FDP(t) and False Nondiscovery
Proportion FNP(t).

SIUP <t} (1-Hy) P
. m my __ 1 L alse biIscoveries
FDP(t,P M ) B Zl{PZ < t} + 1{a|l P, > t} a #Discoveries
1

Zl{PZ>t}HZ N |
FNP(t; Pm’ Hm) _ 2 _ #False Nondiscoveries

Z 1{PZ > t} —+ 1{a|l PZ < t} #Nondiscoveries
?



The False Discovery Rate

e For a given procedure 1', let FDP and FNP denote the value of
these processes at T'(P").

e Then, the False Discovery Rate (FDR) and False Nondiscovery
Rate (FNR) are given by

FDR = E(FDP)  FNR = E(FNP).

e Benjamini and Hochberg (1995) introduced FDR and
described a procedure to guarantee that

FDR < (1 —a)a < a.
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The Benjamini-Hochberg Procedure (cont'd)

e Let G, be the empirical cdf of P™ under the mixture model.
lgnoring ties, @m(P@-)) = 1/m, so BH equivalent to

Teu(P™) = max {t: Gm(t) = é} .

as Storey (2002) first noted.

e One can think of this as a plug-in procedure for estimating

w*(a,G) = max {1 G(1) = 3} |

8

e Genovese and Wasserman (2002) showed that Ty converges
to a fixed-threshold at u*.



Optimal Thresholds

e In the continuous case, Benjamini and Hochberg's argument
shows that

E|FDP(Tsu(P™))| = (1 - a)a.

e The BH procedure overcontrols FDR and thus will not
in general minimize FNR.

e This suggests using Tpy, the plug-in estimator for

t(a, @) = max {t: Gy = L= "’)t} |

84

e Note that t* > u*. If we knew a, this would correspond to using
the BH procedure with «/(1 — a) in place of a.



Optimal Thresholds (cont'd)

efForeach 0 <t <1,

E(FDP(t)) = (1(;(;)15 + O ((1—t))
E(FNP(¢)) :aiiggg + O ((a+(1-a)t)™).

e Ignoring O() terms and choosing t to minimize E(FNP(%)) subject
to E(FDP(t)) < «, yields t*(a, G) as the optimal threshold.

e Tp; considered in some form by Benjamini & Hochberg (2000),
Storey (2003), and Genovese and Wasserman (2003).
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Issues for fMRI

e Interpretation

— How to choose a?
— How to interpret the FDR bound?

e Dependence

— |s positive regression dependence enough? How do we test for it?

— BH method appears to be very hard to “break;” plug-in more sensitive to
dependence.

— Extensions of new methods to handle dependence structure.

e Spatial Structure

— Standard multiple-testing methods ignore location information.
— Focal regions are easier to identify than arbitrarily placed voxels.
— Regions rather than voxels are the units of interest.

— This is the key to much improved inference in applications like fMRI.



Data Example

Figure 1
° i ' ' 1 ' Visual response
Monkeys exhibit visual remapping in parietal . . e e
CorteX + %% ',:,—-*"' Stimulus trace
in RVF
When the eyes move so that the receptive field @t’k:;:s;’ *
of a neuron lands on a previously stimulated @
location, the neuron fires even though no stimulus
. t B Left hemisphere Right hemisphere
is present.
Implies transformation in neural representation 5 /\
with eye movements. (Duhamel et al. 1992) et T T T ) e 14
Sac cue __|
. . . Eyepos __/
e Seek evidence for remapping in human cortex.
c Stimulus in RVF
. +,, +ap
e See Merriam, Genovese, and Colby (2003). I Stimulus trace
Neuron, 39, 361-373 for more details. @* et
e EPI-RT acquisition, TR 2s, TE 30ms, 20 oblique @
slices, 3.125mm x 3.125mm x 3mm voxels. D efheisehere ionthemisphere

Activation
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Confidence Envelopes and Thresholds

e In practice, it would be useful to be able to control quantiles of
the FDP process.

e \We want a procedure 1’ that for specified A and v guarantees
Pe{ FDP(T) > A} <~

We call this an (A, 1 — «) confidence-threshold procedure.

e Three methods: (i) asymptotic closed-form threshold, (ii) asymptotic
confidence envelope, and (iii) exact small-sample confidence
envelope.

I'll focus here on (iii).



Confidence Envelopes and Thresholds (cont'd)

e A 1 —~ confidence envelope for FDP is a random function FDP(t)
on [0, 1] such that

P{FDP(t) < FDP(t) forall t | > 1 — 1.

e Given such an envelope, we can construct confidence thresholds.

Two special cases have proven useful.
— Fixed-ceiling: T = sup{t: FDP(t) < a}.
— Minimum-envelope: T' = sup{t: FDP(t) = min; FDP(¢)}.

/
S—

FDP




Exact Confidence Envelopes

e Given Vq,...,V;, let p;(v1,...,v;) be a level v test of the
null hypothesis that V7, ...,V are 11D Uniform(0,1).

o Define  pit(p™) = (p;:h; =0, 1 <4 < m)
m
mo(h™) = > (1 — hy)
1=1

and U (p™) = {B € {0, 1}™: 0, oy (0 (A™)) = 0} .
Note that as defined, U/, always contains the vector (1,1,...,1).

o let G~(p™") = { FDP(-; R, p™): B € Uv(pm)}

My (™) = { mo(h™): B™ € Uy(p™) } -



Exact Confidence Envelopes (cont'd)

e THEOREM. For all 0 < a < 1, F, and positive integers m,
P{Hm € Z/{W(Pm)} >1—7

P{Mye M\(P")} >1—+

P{FDP(;H™, P™) € Gy} > 1—1.

e Define FDP to be the pointwise supremum over G~.
This is a 1 — v confidence envelope for FDP.

e Confidence thresholds follow directly. For example,
T, = sup {t . FDP(t) < a}

is an (a, 1 — ) confidence threshold.



Choice of Tests

e The confidence envelopes depend strongly on choice of tests.

e Two desiderata for selecting uniformity tests:

— “"Power”, such that FDP is close to FDP, and

— Computability, given that there are 2" subsets to test.

e Traditional uniformity tests, such as the (one-sided) Kolmogorov-
Smirnov (KS) test, do not usually meet both conditions.

For example, the KS test is sensitive to deviations from uniformity
equally though all the p-values.



The P(/@ Tests

e In contrast, using the kth order statistic as a one-sided test statistic
meets both desiderata.

— For small k, these are sensitive to departures that have a large
impact on FDP. Good “power.”

— Computing the confidence envelopes is linear in m.

e We call these the P, tests.
They form a sub-family of weighted, one-sided KS tests.



FDP

Results: Py 90% Confidence Envelopes
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FDP

Results: Py 90% Modified Envelopes

For k = 1,10,25,50, 100, with 0.05 FDP level marked.
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Results: (0.05,0.9) Confidence Threshold

Frontal Eye Field Supplementary Eye Field

Inferior Prefrontal Inferior Prefrontal

Superior Parietal

Temporal-parietal junction Temporal-parietal junction
Extrastiate Visual Cortex




Results: (0.05,0.9) Threshold versus BH
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Results: (0.05,0.9) Threshold versus BH

Sample Slice




Results: (0.05,0.9) Threshold versus Bonferroni

Frontal Eye Field Supplementary Eye Field
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Temporal-parietal junction \ / Temporal-parietal junction

Extrastiate Visual Cortex




Choosing k

e Direct Approach

Simulate from prior family, such as Normal(8, 1), Noncentral ¢(8),
or mixtures of these.

Compute the optimal k, k£*(0, m).
e Data-dependent approaches
— Estimate a and F', and simulate from corresponding mixture.

— Parametric estimate k*(0, m).

— Solve for optimal k distribution using smoothed estimate of G.

The data-dependence only has a small effect on coverage.



FDP

Results: Direct versus Fitting Approach
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False Discovery Control for Random Fields

e Multiple testing methods based on the excursions of random
fields are widely used, especially in functional neuroimaging (e.g.,
Cao and Worsley, 1999) and scan clustering (Glaz, Naus, and
Wallenstein, 2001).

e False Discovery Control extends to this setting as well.

e For a set S and a random field X = {X(s):s € S} with mean

function p(s), use the realized value of X to test the collection of
one-sided hypotheses

Hy s : p(s) =0 versus Hy 5 : pu(s) > 0.
Let Sg={s€S: u(s) =0}



False Discovery Control for Random Fields

e Define a spatial version of FDP by

CASon{seS:X(s) >t})
FOP(?) = AM{se S:X(s)>t})

where A\ is usually Lebesgue measure.

e As in the cases discussed earlier, we can control FDR or
quantiles of FDP.

e Our approach is again based on constructing a confidence envelope
for FDP by finding a confidence superset U of 5.



Confidence Supersets and Envelopes

1.Forevery A C S, test Hy: AC Sy versus H| : A ¢ Sy
at level 7y using the test statistic X(A) = supgec 4 X ().

The tail area for this statistic is p(z, A) = P{X(A) > z}
2.Llet C={A C S: p(x(A),A) > ~}.

3. Then, U = | ] A satisfies P{U D SO} >1—7.
AeC

4. And, —— . MUN{seS:X(s)>1})
FDP(t) = AN{seS:X(s)>t}) '

Is a confidence envelope for FDP.

Note: We need not carry out the tests for all subsets.



Gaussian Fields

e With Gaussian Fields, our procedure works under similar smoothness
assumptions as familywise random-field methods.

e For our purposes, approximation based on the expected Euler
characteristic of the field’s level sets will not work because the
Euler characteristic is non-monotone for non-convex sets.

(Note also that for non-convex sets, not all terms in the Euler
approximation are accurate.)

e Instead we use a result of Piterbarg (1996) to approximate the
p-values p(z, A).

e Simulations over a wide variety of Sgs and covariance structures
show that coverage of U rapidly converges to the target level.



Results: (0.05,0.9) Confidence Threshold

Frontal Eye Field SUppIementary Eye Field

Inferior Prefrontal Inferior Prefrontal
Superlor Parletal

Temporal-parietal junction Temporal-parietal junction
Extrastiate Visual Cortex




Controlling the Proportion of False Regions

e Say a region R is false at tolerance € if more than an € proportion

of its area is in Sy:
A(R N Sp) S

AMR) T~
e Decompose the t-level set of X into its connected components

Ct17 s ey Ct]{?t'

e For each level ¢, let &£(t) denote the proportion of false regions (at
tolerance €) out of k¢ regions.

e [ hen,

€.

- . AMCyNU)
E(t):#{lgzgkt. )\(tcti) ZE}
ki

gives a 1 — v confidence envelope for .




Results: False Region Control Threshold

~ = 0.05, ¢ = 0.10
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Extrastiate Visual Cortex




Take-Home Points

e Confidence thresholds have practical advantages for False Discovery
Control.

In particular, we gain a stronger inferential guarantee with little
effective loss of power.

e Dependence complicates the analysis greatly, but confidence
envelopes appear to be valid under positive dependence.

e For spatial applications, adjacency relations can be highly
informative but are typically ignored by multiple-testing methods.

Controlling proportion of false regions is a first step.

Region-based false discovery control (work in progress) is the next
step.



Appendix




Computing P,y Envelopes

o Let ¢p,1; denote the o quantile of the Beta(k,m — j + 1) for
k<j<m.

e Let J;. be the index of the smallest P(jy which is 2> g1

e The confidence envelope for the P(k)—test Is achieved by the
configuration of nulls (0) and alternatives (1) in the ordered

p-values. To—k
0--0T---10---0
Bl
( 1 if ¢t < %
FDP(t) = nfé(t) g <t <




FDP

Computing P, Envelopes (cont'd)
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Choice Among P, Tests

e For any k, let V. = J. — k.

e In any pairwise comparison of Py and P tests with k < K
there are only three possible orderings:

A. P}, dominates everwhere it Vi, > V5,

F-1] k-1
C. Otherwise, the two profiles cross at J;/ with value (k' —1)/J/.

K —k K —k
B. P(;ry dominates everywhere it Vi, >V [1 + ]

e The result for any k£ can be put in terms of Uniform hitting times
for a boundary of the form G(qy,15) =~ G(@p/(m — 7+ 1)).

The distribution of these hitting times can be computed exactly
(with difficulty) via Steck’s equality.



Algorithm for Confidence Superset

1. Compute all realized values of the test statistics z(5;)
2. Sort these in decreasing order z (1) = -+ = (.

Let S(j) be the partition element corresponding to ()
3.For k=1,...,N do the following:

a.Set V). = Ué\f:k S(5):

b. Compute p(z 1), V).

c.If p(z (1), Vi) = ax STOP and set V* = V.

d. If p(z 1y, Vi) < a: increase k by 1 and GOTO 3a.



Gaussian Fields

e Assume S = [0,1]% and that X is a zero-mean, homogeneous
Gaussian field with covariance

Cov(X(r), X(s)) = o?p(r — s),
that gives X almost surely continuous sample paths.

Example: p(u) = 1 — uf'C~2u + o(||u||?) for some matrix C.

e The key challenge here is to approximate the p-values p(z, A).

One approximation is based on the expected Euler characteristic
of the field’'s level sets.



Gaussian Fields (cont'd)

e For our purposes, this will not work because the Euler characteristic
approximation is non-monotone for non-convex sets.

Note also that for non-convex sets, not all terms in the Euler
approximation are accurate.

e Instead we use a result of Piterbarg (1996) to obtain

e ) =P X > 2L T () 10 (2)]

for C as in the quadratic form above.

e Simulations over a wide variety of Sgs and covariance structures
show that coverage of U rapidly converges to the target level.



Gaussian Fields: Example

Bubbles




Gaussian Fields: Example (cont'd)

Bubbles + noise




Gaussian Fields: Example (cont'd)

Bubbles: confidence bound




Gaussian Fields: Example (cont'd)

Bubbles: True FDP and upper envelope
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