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The Multiple Testing Problem

• Performm simultaneous hypothesis tests with a common procedure.

• For any given threshold, classify the results as follows:

H0 Retained H0 Rejected Total

H0 True TN FD T0
H0 False FN TD T1

Total N D m

Mnemonics: T/F = True/False, D/N = Discovery/Nondiscovery

All quantities except m, D, and N are unobserved.

•The problem is to choose a threshold that balances the

competing demands of sensitivity and specificity.



Motivating Examples

• fMRI Data

• Astronomical Source Detection

•DNA Microarrays

• Scan Statistics

These all involve many thousands

of tests and interesting spatial

structure.



How to Choose a Threshold?

• Control Per-Comparison Type I Error

– a.k.a. “uncorrected testing,” many type I errors

– Gives P0

{
FDi > 0

}
≤ α marginally for all 1 ≤ i ≤ m

• Strong Control of Familywise Type I Error

– e.g.: Bonferroni, Holmes et al. (1996), Cao & Worsley (1999)

– Guarantees P0

{
FD > 0

}
≤ α

• False Discovery Control

– e.g.: Benjamini & Hochberg (BH, 1995), Storey (2002),

Genovese & Wasserman (2003)

– BH bounds False Discovery Rate: FDR ≡ E(FD/D) ≤ α
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Mixture Model for Multiple Testing

• Let Pm = (P1, . . . , Pm) be the p-values for the m tests.

• Let Hm = (H1, . . . , Hm) where Hi = 0 (or 1) if

the ith null hypothesis is true (or false).

•We assume the following model:

H1, . . . , Hm iid Bernoulli〈a〉

Ξ1, . . . ,Ξm iid LF

Pi | Hi = 0,Ξi = ξi ∼ Uniform〈0, 1〉

Pi | Hi = 1,Ξi = ξi ∼ ξi.

where LF denotes a probability distribution on a

class F of distributions on [0, 1].



Mixture Model for Multiple Testing (cont’d)

•Marginally, P1, . . . , Pm are drawn iid from

G = (1− a)U + aF,

where U is the Uniform〈0, 1〉 cdf and

F =
∫
ξ dLF(ξ).

•Typical examples:

– Parametric family: FΘ = {Fθ: θ ∈ Θ}

– Concave, continuous distributions

FC = {F : F concave, continuous cdf with F ≥ U}.

• Can also work under what we call the conditional model where

H1, . . . , Hm are fixed, unknown.



Multiple Testing Procedures

• A multiple testing procedure T is a map [0, 1]m → [0, 1], where

the null hypotheses are rejected in all those tests for which

Pi ≤ T (Pm). We call T a threshold.

• Examples:
Uncorrected testing TU(P

m) = α

Bonferroni TB(P
m) = α/m

Fixed threshold at t Tt(P
m) = t

First r T(r)(P
m) = P(r)

Benjamini-Hochberg TBH(P
m) = sup{t: Ĝ(t) = t/α}

Oracle TO(P
m) = sup{t:G(t) = (1− a)t/α}

Plug In TPI(P
m) = sup{t: Ĝ(t) = (1− â)t/α}

Regression Classifier TReg(P
m) = sup{t: P̂{H1=1|P1=t}>1/2}



The False Discovery Process

•Define two stochastic processes as a function of threshold t:

the False Discovery Proportion FDP(t) and False Nondiscovery

Proportion FNP(t).

FDP(t;Pm, Hm) =

∑

i

1
{
Pi ≤ t

}
(1−Hi)

∑

i

1
{
Pi ≤ t

}
+ 1

{
all Pi > t

} =
#False Discoveries

#Discoveries

FNP(t;Pm, Hm) =

∑

i

1
{
Pi > t

}
Hi

∑

i

1
{
Pi > t

}
+ 1

{
all Pi ≤ t

} =
#False Nondiscoveries

#Nondiscoveries



The False Discovery Rate

• For a given procedure T , let FDP and FNP denote the value of

these processes at T (Pm).

•Then, the False Discovery Rate (FDR) and False Nondiscovery

Rate (FNR) are given by

FDR = E(FDP) FNR = E(FNP).

• Benjamini and Hochberg (1995) introduced FDR and

described a procedure to guarantee that

FDR ≤ (1− a)α ≤ α.



The Benjamini-Hochberg Procedure

m = 50, α = 0.1
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The Benjamini-Hochberg Procedure (cont’d)

• Let Ĝm be the empirical cdf of P
m under the mixture model.

Ignoring ties, Ĝm(P(i)) = i/m, so BH equivalent to

TBH(P
m) = max

{
t: Ĝm(t) =

t

α

}
.

as Storey (2002) first noted.

•One can think of this as a plug-in procedure for estimating

u∗(a,G) = max
{
t: G(t) =

t

α

}
.

• Genovese and Wasserman (2002) showed that TBH converges

to a fixed-threshold at u∗.



Optimal Thresholds

• In the continuous case, Benjamini and Hochberg’s argument

shows that

E
[
FDP(TBH(P

m))
]
= (1− a)α.

•The BH procedure overcontrols FDR and thus will not

in general minimize FNR.

•This suggests using TPI, the plug-in estimator for

t∗(a,G) = max

{
t: G(t) =

(1− a)t

α

}
.

•Note that t∗ ≥ u∗. If we knew a, this would correspond to using

the BH procedure with α/(1− a) in place of α.



Optimal Thresholds (cont’d)

• For each 0 ≤ t ≤ 1,

E(FDP(t)) =
(1− a) t

G(t)
+ O

(
(1− t)m

)

E(FNP(t)) = a
1− F (t)

1−G(t)
+ O

(
(a+ (1− a)t)m

)
.

• Ignoring O() terms and choosing t to minimize E(FNP(t)) subject

to E(FDP(t)) ≤ α, yields t∗(a,G) as the optimal threshold.

• TPI considered in some form by Benjamini & Hochberg (2000),

Storey (2003), and Genovese and Wasserman (2003).
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Issues for fMRI

• Interpretation

– How to choose α?

– How to interpret the FDR bound?

•Dependence

– Is positive regression dependence enough? How do we test for it?

– BH method appears to be very hard to “break;” plug-in more sensitive to

dependence.

– Extensions of new methods to handle dependence structure.

• Spatial Structure

– Standard multiple-testing methods ignore location information.

– Focal regions are easier to identify than arbitrarily placed voxels.

– Regions rather than voxels are the units of interest.

– This is the key to much improved inference in applications like fMRI.



Data Example

• Monkeys exhibit visual remapping in parietal

cortex

When the eyes move so that the receptive field

of a neuron lands on a previously stimulated

location, the neuron fires even though no stimulus

is present.

Implies transformation in neural representation

with eye movements. (Duhamel et al. 1992)

• Seek evidence for remapping in human cortex.

• See Merriam, Genovese, and Colby (2003).

Neuron, 39, 361–373 for more details.

• EPI-RT acquisition, TR 2s, TE 30ms, 20 oblique

slices, 3.125mm × 3.125mm × 3mm voxels.
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Confidence Envelopes and Thresholds

• In practice, it would be useful to be able to control quantiles of

the FDP process.

•We want a procedure T that for specified A and γ guarantees

PG

{
FDP(T ) > A

}
≤ γ

We call this an (A, 1− γ) confidence-threshold procedure.

•Three methods: (i) asymptotic closed-form threshold, (ii) asymptotic

confidence envelope, and (iii) exact small-sample confidence

envelope.

I’ll focus here on (iii).



Confidence Envelopes and Thresholds (cont’d)

• A 1− γ confidence envelope for FDP is a random function FDP(t)

on [0, 1] such that

P
{
FDP(t) ≤ FDP(t) for all t

}
≥ 1− γ.

• Given such an envelope, we can construct confidence thresholds.

Two special cases have proven useful.

– Fixed-ceiling: T = sup{t: FDP(t) ≤ α}.

–Minimum-envelope: T = sup{t: FDP(t) = mint FDP(t)}.

t

F
D

P



Exact Confidence Envelopes

• Given V1, . . . , Vj, let ϕj(v1, . . . , vj) be a level γ test of the

null hypothesis that V1, . . . , Vj are iid Uniform(0, 1).

•Define pm0 (h
m) = (pi:hi = 0, 1 ≤ i ≤ m)

m0(h
m) =

m∑

i=1

(1− hi)

and Uγ(p
m) =

{
hm ∈ {0, 1}m:ϕm0(hm) (p

m
0 (h

m)) = 0
}
.

Note that as defined, Uγ always contains the vector (1, 1, . . . , 1).

• Let
Gγ(p

m) =
{
FDP(·;hm, pm): hm ∈ Uγ(p

m)
}

Mγ(p
m) =

{
m0(h

m): hm ∈ Uγ(p
m)

}
.



Exact Confidence Envelopes (cont’d)

•Theorem. For all 0 < a < 1, F , and positive integers m,

P
{
Hm ∈ Uγ(P

m)
}
≥ 1− γ

P
{
M0 ∈Mγ(P

m)
}
≥ 1− γ

P
{
FDP(·;Hm, Pm) ∈ Gγ

}
≥ 1− γ.

•Define FDP to be the pointwise supremum over Gγ.

This is a 1− γ confidence envelope for FDP.

• Confidence thresholds follow directly. For example,

Tα = sup
{
t : FDP(t) ≤ α

}

is an (α, 1− γ) confidence threshold.



Choice of Tests

•The confidence envelopes depend strongly on choice of tests.

•Two desiderata for selecting uniformity tests:

– “Power”, such that FDP is close to FDP, and

– Computability, given that there are 2m subsets to test.

•Traditional uniformity tests, such as the (one-sided) Kolmogorov-

Smirnov (KS) test, do not usually meet both conditions.

For example, the KS test is sensitive to deviations from uniformity

equally though all the p-values.



The P(k) Tests

• In contrast, using the kth order statistic as a one-sided test statistic

meets both desiderata.

– For small k, these are sensitive to departures that have a large

impact on FDP. Good “power.”

– Computing the confidence envelopes is linear in m.

•We call these the P(k) tests.

They form a sub-family of weighted, one-sided KS tests.



Results: P(k) 90% Confidence Envelopes

For k = 1, 10, 25, 50, 100, with 0.05 FDP level marked.
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Results: P(k) 90% Modified Envelopes

For k = 1, 10, 25, 50, 100, with 0.05 FDP level marked.
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Results: (0.05,0.9) Confidence Threshold
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Results: (0.05,0.9) Threshold versus BH

�� �� �� �� � �� � �� 	 �
 �� � �� �

Frontal Eye Field

Temporal-parietal junctionTemporal-parietal junction

Inferior Prefrontal Inferior Prefrontal

Superior Parietal

Supplementary Eye Field



Results: (0.05,0.9) Threshold versus BH

Sample Slice



Results: (0.05,0.9) Threshold versus Bonferroni
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Choosing k

•Direct Approach

Simulate from prior family, such as Normal(θ, 1), Noncentral t(θ),

or mixtures of these.

Compute the optimal k, k∗(θ,m).

•Data-dependent approaches

– Estimate a and F , and simulate from corresponding mixture.

– Parametric estimate k∗(θ̂,m).

– Solve for optimal k distribution using smoothed estimate of G.

The data-dependence only has a small effect on coverage.



Results: Direct versus Fitting Approach
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False Discovery Control for Random Fields

•Multiple testing methods based on the excursions of random

fields are widely used, especially in functional neuroimaging (e.g.,

Cao and Worsley, 1999) and scan clustering (Glaz, Naus, and

Wallenstein, 2001).

• False Discovery Control extends to this setting as well.

• For a set S and a random field X = {X(s): s ∈ S} with mean

function µ(s), use the realized value of X to test the collection of

one-sided hypotheses

H0,s : µ(s) = 0 versus H1,s : µ(s) > 0.

Let S0 = {s ∈ S : µ(s) = 0}.



False Discovery Control for Random Fields

•Define a spatial version of FDP by

FDP(t) =
λ(S0 ∩ {s ∈ S : X(s) ≥ t})

λ({s ∈ S : X(s) ≥ t})
,

where λ is usually Lebesgue measure.

• As in the cases discussed earlier, we can control FDR or

quantiles of FDP.

•Our approach is again based on constructing a confidence envelope

for FDP by finding a confidence superset U of S0.



Confidence Supersets and Envelopes

1. For every A ⊂ S, test H0 : A ⊂ S0 versus H1 : A 6⊂ S0
at level γ using the test statistic X(A) = sups∈AX(s).

The tail area for this statistic is p(z,A) = P
{
X(A) ≥ z

}
.

2. Let C = {A ⊂ S: p(x(A), A) ≥ γ}.

3. Then, U =
⋃

A∈C

A satisfies P
{
U ⊃ S0

}
≥ 1− γ.

4. And,
FDP(t) =

λ(U ∩ {s ∈ S : X(s) > t})

λ({s ∈ S : X(s) > t})
,

is a confidence envelope for FDP.

Note: We need not carry out the tests for all subsets.



Gaussian Fields

•With Gaussian Fields, our procedure works under similar smoothness

assumptions as familywise random-field methods.

• For our purposes, approximation based on the expected Euler

characteristic of the field’s level sets will not work because the

Euler characteristic is non-monotone for non-convex sets.

(Note also that for non-convex sets, not all terms in the Euler

approximation are accurate.)

• Instead we use a result of Piterbarg (1996) to approximate the

p-values p(z,A).

• Simulations over a wide variety of S0s and covariance structures

show that coverage of U rapidly converges to the target level.



Results: (0.05,0.9) Confidence Threshold
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Controlling the Proportion of False Regions

• Say a region R is false at tolerance ε if more than an ε proportion

of its area is in S0:
λ(R ∩ S0)

λ(R)
≥ ε.

•Decompose the t-level set of X into its connected components

Ct1, . . . , Ctkt
.

• For each level t, let ξ(t) denote the proportion of false regions (at

tolerance ε) out of kt regions.

•Then,

ξ(t) =
#
{
1 ≤ i ≤ kt :

λ(Cti∩U)
λ(Cti)

≥ ε
}

kt
gives a 1− γ confidence envelope for ξ.



Results: False Region Control Threshold

γ = 0.05, ε = 0.10
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Take-Home Points

• Confidence thresholds have practical advantages for False Discovery

Control.

In particular, we gain a stronger inferential guarantee with little

effective loss of power.

•Dependence complicates the analysis greatly, but confidence

envelopes appear to be valid under positive dependence.

• For spatial applications, adjacency relations can be highly

informative but are typically ignored by multiple-testing methods.

Controlling proportion of false regions is a first step.

Region-based false discovery control (work in progress) is the next

step.



Appendix



Computing P(k) Envelopes

• Let qmkj denote the α quantile of the Beta(k,m − j + 1) for

k ≤ j ≤ m.

• Let Jk be the index of the smallest P(j) which is ≥ qmkj.

•The confidence envelope for the P(k)-test is achieved by the

configuration of nulls (0) and alternatives (1) in the ordered

p-values.

0 · · · 0︸ ︷︷ ︸
k−1

Jk−k︷ ︸︸ ︷
1 · · · 1 0 · · · 0

FDPk(t) =





1 if t ≤ k−1
m

k−1
mĜ(t)

if k−1m < t ≤ Jk
m

1− Jk−k+1

mĜ(t)
if t > Jk

m



Computing P(k) Envelopes (cont’d)
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Choice Among P(k) Tests

• For any k, let Vk = Jk − k.

• In any pairwise comparison of P(k) and P(k′) tests with k < k′,

there are only three possible orderings:

A. P(k) dominates everwhere if Vk ≥ Vk′,

B. P(k′) dominates everywhere if Vk′ > Vk

[
1 +

k′ − k

k − 1

]
+

k′ − k

k − 1
,

C. Otherwise, the two profiles cross at Jk′ with value (k
′ − 1)/Jk′.

•The result for any k can be put in terms of Uniform hitting times

for a boundary of the form G(qmkj) ≈ G(q̃mk/(m− j + 1)).

The distribution of these hitting times can be computed exactly

(with difficulty) via Steck’s equality.



Algorithm for Confidence Superset

1. Compute all realized values of the test statistics x(Sj)

2. Sort these in decreasing order x(1) ≥ · · · ≥ x(N).

Let S(j) be the partition element corresponding to x(j).

3. For k = 1, . . . , N do the following:

a. Set Vk =
⋃N
j=k S(j).

b. Compute p(x(k), Vk).

c. If p(x(k), Vk) ≥ α: stop and set V ∗ = Vk.

d. If p(x(k), Vk) < α: increase k by 1 and goto 3a.



Gaussian Fields

• Assume S = [0, 1]d and that X is a zero-mean, homogeneous

Gaussian field with covariance

Cov(X(r), X(s)) = σ2ρ(r − s),

that gives X almost surely continuous sample paths.

Example: ρ(u) = 1− uTC−2u+ o(‖u‖2) for some matrix C.

•The key challenge here is to approximate the p-values p(z,A).

One approximation is based on the expected Euler characteristic

of the field’s level sets.



Gaussian Fields (cont’d)

• For our purposes, this will not work because the Euler characteristic

approximation is non-monotone for non-convex sets.

Note also that for non-convex sets, not all terms in the Euler

approximation are accurate.

• Instead we use a result of Piterbarg (1996) to obtain

p(z,A) = P

{
sup
s∈A

X(s)

σ
≥

z

σ

}
'

π−
d

2

| detC|
λ(A)

(z
σ

)d [
1− Φ

(z
σ

)]
,

for C as in the quadratic form above.

• Simulations over a wide variety of S0s and covariance structures

show that coverage of U rapidly converges to the target level.



Gaussian Fields: Example

Bubbles



Gaussian Fields: Example (cont’d)

Bubbles + noise



Gaussian Fields: Example (cont’d)

Bubbles: confidence bound



Gaussian Fields: Example (cont’d)
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