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Motivating Example #1: fMRI

• fMRI Data: Time series of 3-d images acquired while subject

performs specified tasks.
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• Goal: Characterize task-related signal changes caused (indirectly)

by neural activity. [See, for example, Genovese (2000), JASA 95, 691.]



fMRI (cont’d)

Perform hypothesis tests at

many thousands of volume

elements to identify loci of

activation.



Motivating Example #2: Source Detection

• Interferometric radio telescope observations processed into digital

image of the sky in radio frequencies.

• Signal at each pixel is a mixture of source and background signals.



Motivating Example #3: DNA Microarrays

•New technologies allow measurement of gene expression for

thousands of genes simultaneously.
Subject Subject

1 2 3 . . . 1 2 3 . . .

1 X111 X121 X131 . . . X112 X122 X132 . . .

2 X211 X221 X231 . . . X212 X222 X232 . . .

3 ... ... ... . . . ... ... ... . . .

Gene 4

5

6
...

Condition 1 Condition 2

• Goal: Identify genes associated with differences among conditions.

•Typical analysis: hypothesis test at each gene.
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The Multiple Testing Problem

• Perform m simultaneous hypothesis tests.

Classify results as follows:

H0 Retained H0 Rejected Total

H0 True M0|0 M1|0 M0
H0 False M0|1 M1|1 M1

Total m − R R m

Here, Mi|j is the number of Hi chosen when Hj true.

Only R and m are observed.



False Discovery and Nondiscovery Proportions

•Define the False Discovery Proportion (FDP) and the

False Nondiscovery Proportion (FNP) as follows:

FDP =


M1|0
R

if R > 0,

0, if R = 0.

FNP =


M0|1

m − R
if R < m,

0, if R = m.

•Then, the False Discovery Rate (FDR) and the

False Nondiscovery Rate (FNR) are given by

FDR = E(FDP) FNR = E(FNP).



Road Map

1. Preliminaries

– Models for FDP and FNP

– FDP and FNP as stochastic processes

2. Plug-in Procedures

– Asymptotic behavior of BH procedure

– Optimal Thresholds

3. Confidence Thresholds

– Controlling probability of exceeding specified proportion of false discoveries

4. Estimating the p-value distribution



Basic Models

• Let Pm = (P1, . . . , Pm) be the p-values for the m tests.

• Let Hm = (H1, . . . , Hm) where Hi = 0 (or 1) if

the ith null hypothesis is true (or false).

•We assume the following model:

H1, . . . , Hm iid Bernoulli〈a〉
Ξ1, . . . ,Ξm iid LF

Pi | Hi = 0,Ξi = ξi ∼ Uniform〈0, 1〉
Pi | Hi = 1,Ξi = ξi ∼ ξi.

where LF denotes a probability distribution on a

class F of distributions on [0, 1].



Basic Models (cont’d)

•Marginally, P1, . . . , Pm are drawn iid from

G = (1 − a)U + aF,

where U is the Uniform〈0, 1〉 cdf and

F =
∫

ξ dLF(ξ).

•Typical examples:

– Parametric family: FΘ = {Fθ: θ ∈ Θ}
– Concave, continuous distributions

FC = {F : F concave, continuous cdf with F ≥ U}.
• Can also work under what we call the conditional model where

H1, . . . , Hm are fixed, unknown.



Multiple Testing Procedures

• A multiple testing procedure T is a map [0, 1]m → [0, 1], where

the null hypotheses are rejected in all those tests for which

Pi ≤ T (Pm). Often call T a threshold.

• Examples:
Uncorrected testing TU(Pm) = α

Bonferroni TB(Pm) = α/m

Fixed threshold at t Tt(P
m) = t

First r T(r)(P
m) = P(r)

Benjamini-Hochberg TBH(Pm) = sup{t: Ĝ(t) = t/α}
Oracle TO(Pm) = sup{t:G(t) = (1 − a)t/α}
Plug In TPI(P

m) = sup{t: Ĝ(t) = (1 − â)t/α}
Regression Classifier TReg(P

m) = sup{t: P̂{H1=1|P1=t}>1/2}



FDP and FNP as Stochastic Processes

• Inherent difficulty: FDP, FNP, and a general threshold all depend

on the same data.

•Define the FDP and FNP processes, respectively, by

FDP(t) ≡ FDP(t;Pm, Hm) =

∑
i

1
{
Pi ≤ t

}
(1 − Hi)∑

i

1
{
Pi ≤ t

}
+ 1

{
all Pi > t

}

FNP(t) ≡ FNP(t;Pm, Hm) =

∑
i

1
{
Pi > t

}
Hi∑

i

1
{
Pi > t

}
+ 1

{
all Pi ≤ t

}.

• For procedure T , the FDP and FNP are obtained by evaluating

these processes at T (Pm).



FDP and FNP as Stochastic Processes (cont’d)

• Both these processes converge to Gaussian processes outside a

neighborhood of 0 and 1 respectively.

• For example, define

Zm(t) =
√

m (FDP(t) − Q(t)) , δ ≤ t ≤ 1,

where 0 < δ < 1 and Q(t) = (1 − a)U/G.

• Let Z be a mean 0 Gaussian process on [δ, 1] with covariance

kernel

K(s, t) = a(1 − a)
(1 − a)stF (s ∧ t) + aF (s)F (t)(s ∧ t)

G2(s)G2(t)
.

•Then, Zm Ã Z.



Plug-in Procedures

• Let Ĝm be the empirical cdf of Pm under the mixture model.

Ignoring ties, Ĝm(P(i)) = i/m, so BH equivalent to

TBH(Pm) = max
{
t: Ĝm(t) =

t

α

}
.

as Storey (2002) first noted.

•One can think of this as a plug-in procedure for estimating

u∗(a, G) = max
{
t: G(t) =

t

α

}
= max {t: F (t) = βt} ,

where β = (1 − α + αa)/αa.



Asymptotic Behavior of BH Procedure

This yields the following picture: α
m, α, u∗

0
m

u

Bonferroni FDR Uncorrected

F (u)

u



Optimal Thresholds

•Under the mixture model and in the continuous case,

E(FDP(TBH(Pm))) = (1 − a)α.

•The BH procedure overcontrols FDR and thus will not in general

minimize FNR.

•This suggests using TPI, the plug-in estimator for

t∗(a, G) = max

{
t: G(t) =

(1 − a)t

α

}
= max {t: F (t) = (β − 1/α)t} ,

where β − 1/α = (1 − a)(1 − α)/aα.

•Note that t∗ ≥ u∗.



Optimal Thresholds (cont’d)

• For each 0 ≤ t ≤ 1,

E(FDP(t)) =
(1 − a) t

G(t)
+ O

(
(1 − t)m

)
E(FNP(t)) = a

1 − F (t)

1 − G(t)
+ O

(
(a + (1 − a)t)m

)
.

• Ignoring O() terms and choosing t to minimize E(FNP(t)) subject

to E(FDP(t)) ≤ α, yields t∗(a, G) as the optimal threshold.

• GW (2002) show that

E(FDP(t∗(â, Ĝ))) ≤ α + O(m−1/2).



Confidence Thresholds

• In practice, it would be useful to have a procedure TC
that guarantees

PG

{
FDP(TC) > c

}
≤ α

for some specified c and α.

We call this a (1 − α, c) confidence threshold procedure.

• Four approaches: (i) an asymptotic Bootstrap threshold,

(ii) an asymptotic closed-form threshold, (iii) an exact

(small-sample) threshold requiring numerical search, and (iv) a

Bayesian threshold.

•Here, I’ll discuss the case where a is known.

In general, all of this works using an estimator, but this introduces

additional complexity.



Bootstrap Confidence Thresholds

• First guess: Choose T such that

P
Ĝ

{
FDP∗(T ) ≤ c

}
≥ 1 − α.

•This fails. The problem is an additional bias term:

1 − α = P
Ĝ

{
FDP∗(T ) ≤ c

}
≈ PG

{
FDP(T ) ≤ c + (Q(T ) − Q̂(T ))

}
6= PG

{
FDP(T ) ≤ c

}
,

where Q = (1 − a)U/G and Q̂ = (1 − a)U/Ĝ.

• Can fix this with double bootstrap (harder) or

DKW correction (easier).



Bootstrap Confidence Thresholds (cont’d)

• Let β = α/2 and εm ≡ εm(β) =

√√√√ 1

2m
log

(
2

β

)
.

• Procedure

1. Draw H∗
1 . . . , H∗

m iid Bernoulli〈a〉
2. Draw P ∗

i |H∗
i from (1 − H∗

i )U + H∗
i F̂ .

3. Define Ω∗
c(t) =

∑
i 1

{
P ∗

i ≤ t
}

(1 − H∗
i − c).

4. Use threshold defined by

TC = max
{
t: P

Ĝ

{
Ω∗

c(t) ≤ −c εm
}
≥ 1 − β

}
.

•Then,

PG

{
FDP(TC) ≤ c

}
≥ 1 − α + O

(
1√
m

)
.



Closed-Form Asymptotic Confidence Thresholds

• Let

t0 = Q−1(c) t̂0 = Q̂−1(c).

•Then define

TC = t̂0 +
∆̂m,α√

m
,

where ∆̂m,α is depends on a density estimate of g = G′.
•Then,

PG

{
FDP(TC) ≤ c

}
≥ 1 − α + o(1).



Closed-Form Asymptotic Confidence Thresholds

•Details:

∆̂m,α =

zα/2

(√
K̂Q−1(t̂0, t̂0) + ĝ(t̂0)

)
+ 2

√
log m

1 − â − cĝ(t̂0)

K̂Q−1(s, t) =
K̂Q(Q̂−1(s), Q̂−1(t))

Q̂′(Q̂−1(s))Q̂′(Q̂−1(t))

K̂Q(s, t) =
(1 − â)2st

Ĝ2(s)Ĝ2(t)

[
Ĝ(s ∧ t) − Ĝ(s)Ĝ(t)

]
.

•This requires no bootstrapping but does require density estimation.

This is analogous to the situation faced when estimating the

standard error of a median.



Exact Confidence Thresholds

• Let Mβ be a 1 − β confidence set for M0, derived from the

Binomial〈m, 1 − a〉.
•Define

S(t; hm, pm) =

∑
i 1

{
pi ≤ t

}
(1 − hi)∑

i(1 − hi)
[edf of null p-values]

Uβ(p
m) =

{
hm:

∑
i

(1 − hi) ∈ Mβ and ‖S(·;hm, pm) − U‖∞ ≤ εm0(β)

}
,

where m0 =
∑

i(1 − hi) and εm0(β) =
√

log(2/β)/2m0.

•Take β = 1 −√
1 − α.



Exact Confidence Thresholds (cont’d)

• Let

TC = sup
{
t : FDP(t;hm, Pm) ≤ c and hm ∈ Uβ(Pm)

}
G =

{
FDP(·;hm, Pm): hm ∈ Uβ(Pm)

}
.

•Then,
PG

{
Hm ∈ Uβ(Pm)

}
≥ 1 − α,

PG

{
FDP(·;Hm, Pm) ∈ G

}
≥ 1 − α,

PG

{
FDP(TC) ≤ c

}
≥ 1 − α.

Hence, TC is a (1 − α, c) confidence threshold procedure.



Exact Confidence Thresholds (cont’d)
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G gives a confidence envelope for FDP(t) sample paths.



Estimating a and F

• Recall that the p-value distribution G = (1 − a)U + aF

where a and F are unknown.

•We need a good estimate of a for plug-in estimates,

TPI(P
m) = max

{
t: Ĝ(t) =

(1 − â)t

α

}
,

that approximate the optimal threshold.

•We need good estimates of a and F for confidence thresholds.



Estimating a and F (cont’d)

• Identifiability and Purity

f

b

If min f = b > 0, can write F = (1−b)U+bF0,

OG = {(ã, F̃ ) : F̃ ∈ F , G = (1 − ã)U + ãF̃}
may contain more than one element.

If f = F ′ is decreasing with f(1) = 0, then

(a, F ) is identifiable.

• In general, let a ≤ a be the smallest mixing weight in the orbit:

a = 1 − mint g(t). This is identifiable.

Storey (2002) notes that 0 ≤ sup
0<t<1

G(t) − t

1 − t
≤ a ≤ a ≤ 1.

• a − a is typically small: a − a = ae−nθ2/2 in the two-sided test

of θ = 0 versus θ 6= 0 in the Normal〈θ, 1〉 model.



Estimating a and F (cont’d)

• Parametric Case

– Derived a 1 − β one-sided conf. int. for a and thus a.

(a, θ) typically identifiable even if a > a; use MLE.

•Non-parametric case:

– Derived a 1 − β one-sided conf. int. for a and thus a.

– When F concave, get âLCM = a + OP (m−1/3).

– When F smooth enough, get âS = a + OP (m−2/5).

– Consistent estimate for F0 if â consistent for a:

F̂m = argmin
H∈F

‖Ĝ − (1 − â)U − âH‖∞.



Estimating a and F (cont’d)

• âS uses “spacings” estimator (Swanepoel, 1999) to estimate

min g(t). This yields

m2/5

(log m)δ
(â − a)Ã Normal〈0, (1 − a)2〉

• In the concave case, take ĝ = G′
LCM and âLCM = 1 − ĝ(1).

A 1 − α confidence interval for a is

âLCM ± 4qα |ĝ(1)|1/3 n−1/3

where P
{

argmaxh(W (h) − h2) ≥ qα

}
= α and Wh is a 2-sided

Brownian motion tied down at 0.



Estimating a and F (cont’d)

• Confidence interval for a given by

Am =

max
t

Ĝm(t) − t − εm(α)

1 − t
, 1

 ,

where Ĝm is edf and εm(α) =
√

log(2/α)/2m.

Then,

1 − α ≤ inf
a,F

P
{
a ∈ Am

}
≤ 1 − α + Rm

where

Rm =
∑
j

(−1)j
αj2

2j2−1
+ O

(log m)2√
m





Take-Home Points

• Asymptotic view motivated by particular applications, but

asymptotics appear to kick in rather quickly.

• Confidence thresholds address a question that collaborating

scientists frequently raise.

•Helpful to think of FDP (FDR) and FNP (FNR) as stochastic

processes.

In general, the threshold and the FDP are coupled, and these

correlations can have a large effect.

•Dependence



Recurring Notation

m, M0, M1|0 # of tests, true nulls, false discoveries

a Mixture weight on alternative

Hm = (H1, . . . , Hm) Unobserved true classifications

Pm = (P1, . . . , Pm) Observed p-values

U CDF of Uniform〈0, 1〉
F, f Alternative CDF and density

G = (1 − a)U + aF Marginal CDF of Pi

g = G′ Marginal density of Pi

Ĝm Estimate of G (e.g., empirical CDF of Pm)

εk(β) =

√√√√ 1

2k
log

(
2

β

)
DKW bound 1 − β quantile of ‖Ĝk − G‖∞



m = 50, α = 0.1
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Bayesian Thresholds

• Bayesian Threshold bounds posterior FDR:

TBayes = sup{t : E(FDP(t) | Pm) ≤ α}

• Similarly, can construct a posterior (c, α) confidence threshold

TBayes,c by

TBayes,c = sup{t : P
{
FDP(t) ≤ c | Pm

}
≤ α}



EBT (Empirical Bayes Testing)

• Efron et al (2001) note that

P
{
Hi = 0 | Pm

}
=

(1 − a)

g(Pi)
≡ q(Pi)

• Reject whenever q(p) ≤ α?

• For a, f unknown, f ≥ 0 implies that

a ≥ 1 − min
p

g(p) =⇒ â = 1 − min
p

ĝ(p).

•Then, q̂(p) =
1 − â

ĝ(p)
=

mins ĝ(s)

ĝ(p)



EBT versus FDR

• If we reject when P
{
Hi = 0 | Pm

}
≤ α,

how many errors are we making?

•Under weak conditions, can show that

q(t) ≤ α implies Q(t) < α

So EBT is conservative.



Behavior of q̂

•Theorem. Let q̂(t) =
(1−a)
ĝ(t) . Suppose that

mα(ĝ(t) − g(t))ÃW

for some α > 0, where W is a mean 0 Gaussian process with

covariance kernel τ(v, w). Then

mα (q̂(t) − q(t))Ã Z

where Z is a Gaussian process with mean 0 and covariance kernel

Kq(v, w) =
(1 − a)2τ(v, w)

g(v)4g(w)4
.



Behavior of q̂ (cont’d)

• Parametric Case: g ≡ gθ = (1 − a) + afθ(v) Then,

rel(v) =
ŝe(q̂(v))

q(v)
≈ O

(
1√
m

) ∣∣∣∣∂ log gθ

∂dθ

∣∣∣∣ = O

(
1√
m

)
|v − θ| Normal case

•Nonparametric Case

ĝ(t) =
1

m

m∑
i=1

1

hm
K

(
t − Pi

hm

)

hm = cm−β where β > 1/5 (undersmooth). Then

relv =
c

m(1−β)/2
√

g(v)
.


