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Motivating Example #1: f{MRI

e fMRI Data: Time series of 3-d images acquired while subject
performs specified tasks.
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e Goal: Characterize task-related signal changes caused (indirectly)
by neural activity. [See, for example, Genovese (2000), JASA 95, 691.]



fMRI (cont'd)

Perform hypothesis tests at
many thousands of volume
elements to identify loci of

activation.




Motivating Example #2: Source Detection

e Interferometric radio telescope observations processed into digital
iImage of the sky in radio frequencies.

e Signal at each pixel is a mixture of source and background signals.




Motivating Example #3: DNA Microarrays

e New technologies allow measurement of gene expression for
thousands of genes simultaneously.
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e Goal: Identify genes associated with differences among conditions.

e Typical analysis: hypothesis test at each gene.
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The Multiple Testing Problem

e Perform m simultaneous hypothesis tests.

Classify results as follows:

Hy Retained H( Rejected | Total
Total m— R R m

Here, Mz‘\j Is the number of H; chosen when Hj true.

Only R and m are observed.



False Discovery and Nondiscovery Proportions

e Define the False Discovery Proportion (FDP) and the
False Nondiscovery Proportion (FNP) as follows:

M

W0 f R >0

FDP=! p FNP={ m — R
0

0, ifR=0 0, if R =m.

\

e Then, the False Discovery Rate (FDR) and the
False Nondiscovery Rate (FNR) are given by

FDR = E(FDP)  FNR = E(FNP).



Road Map

1. Preliminaries

— Models for FDP and FNP
— FDP and FNP as stochastic processes

2. Plug-in Procedures

— Asymptotic behavior of BH procedure
— Optimal Thresholds

3. Confidence Thresholds

— Controlling probability of exceeding specified proportion of false discoveries

4. Estimating the p-value distribution



Basic Models

elet P""=(Py,...,Py) be the p-values for the m tests.

olet H" = (Hy,...,Hy) where H; =0 (or 1) if
the 7" null hypothesis is true (or false).

e \We assume the following model:

Hy,...,Hy iid Bernoulli{a)
=1, ... Spiid Lr
P, | H;=0,=;, =¢&; ~ Uniform(0, 1)
PilHi=1,Z=¢& ~ &

where L r denotes a probability distribution on a
class F of distributions on [0, 1].



Basic Models (cont'd)

e Marginally, Py, ..., Py, are drawn iid from
G = (1—-a)U + aF,
where U is the Uniform(0, 1) cdf and

F = [€dLy(g).
e Typical examples:
— Parametric family: Fg = {Fp: 0 € O}
— Concave, continuous distributions

Fo = {F: F concave, continuous cdf with F > U}.

e Can also work under what we call the conditional model where
Hq, ..., Hy, are fixed, unknown.



Multiple Testing Procedures

e A multiple testing procedure T' is a map [0, 1]"* — [0, 1], where
the null hypotheses are rejected in all those tests for which
P; <T(P™). Often call T a threshold.

e Examples:
Uncorrected testing  Ty(P™) = «
Bonferroni Ts(P™) = a/m
Fixed threshold at ¢t  T3(P™) =t
First r T(T)(Pm) — P(r)
Benjamini-Hochberg Tiu(P™) = sup{t: G(t) = t/a}
Oracle To(P™) = sup{t: G(t) = (1 —a)t/a}
Plug In Tei(P™) = sup{t: G(t) = (1 —a)t/a}
Regression Classifier Treo(P™) = sup{t: P{H=1|P,=t}>1/2}



FDP and FNP as Stochastic Processes

e Inherent difficulty: FDP, FNP, and a general threshold all depend
on the same data.

e Define the FDP and FNP processes, respectively, by

Zl{PZ- <t}(1- Hy)
FDP(t) = FDP(t; P, H™) = ZI{ZPZ' < t} 4 1{a|l P, > t}

Zl{P@ > t}Hi
PNP() = FNP(s: P HT) = Z1{Piz> t} + 1{all B <t}

e For procedure T', the FDP and FNP are obtained by evaluating
these processes at T'(P™).



FDP and FNP as Stochastic Processes (cont'd)

e Both these processes converge to Gaussian processes outside a
neighborhood of 0 and 1 respectively.

e For example, define

Zm(t) = vm (FDP(t) — Q(t)), 6<t<1,
where 0 < 9 <1 and Q(t) = (1 —a)U/G.

e Let Z be a mean 0 Gaussian process on [d, 1] with covariance
kernel

(1 —a)stF(sAt) + aF(s)F(t)(s N t).

K(s,t) = a(l —a) G2(s) G2(t)

e Then, Z,, ~Z.



Plug-in Procedures

e Let Gy, be the empirical cdf of P"" under the mixture model.
lgnoring ties, (A}’m(P(Z-)) = 1/m, so BH equivalent to

Teu(P™) = max {t: Gm(t) = &} .

as Storey (2002) first noted.

e One can think of this as a plug-in procedure for estimating

u*(a, G) = max {t: G(t) = E}

= max {t: F(t) = gt},

where 3 = (1 — a + aa)/aa.



Asymptotic Behavior of BH Procedure

This yields the following picture:
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Optimal Thresholds

e Under the mixture model and in the continuous case,

E(FDP(Tsu(P"™))) = (1 — a)a.

e The BH procedure overcontrols FDR and thus will not in general
minimize FNR.

e This suggests using Tpy, the plug-in estimator for

= max {t: F(t) = (06— 1/a)t},
where 0 —1/a = (1 —a)(l — a)/aa.
e Note that t* > u™.

t(a, G) = max {t: Gy = 1 a)t}



Optimal Thresholds (cont'd)

eForeach 0 <t <1,
(1—a)t

E(FDP(t)) = 0 + O ((1—t))
E(FNP(t)) = a 1 — ggg + O ((a+(1-a))™).

e Ignoring O() terms and choosing ¢t to minimize E(FNP(%)) subject
to E(FDP(¢)) < «a, yields t*(a, G) as the optimal threshold.

e GW (2002) show that
E(FDP(t*(a, G))) < o+ O(m™1/2).



Confidence Thresholds

e In practice, it would be useful to have a procedure T~
that guarantees

Pe{ FDP(T¢) > ¢} < a
for some specified ¢ and «.
We call this a (1 — «, ¢) confidence threshold procedure.

e Four approaches: (i) an asymptotic Bootstrap threshold,
(ii) an asymptotic closed-form threshold, (iii) an exact
(small-sample) threshold requiring numerical search, and (iv) a
Bayesian threshold.

e Here, I'll discuss the case where a is known.

In general, all of this works using an estimator, but this introduces
additional complexity.



Bootstrap Confidence Thresholds

e First guess: Choose 7' such that
P-{FDP*(T) < ¢} >1-a.
e This fails. The problem is an additional bias term:
1 — a = Ps{FDP*(T) < c{

~ Po{FDP(T) < ¢ + (Q(T) — Q(T)) }
# Po{FDP(T) < c},

where Q@ = (1 —a)U/G and Q = (1 — a)U/G.

e Can fix this with double bootstrap (harder) or
DKW correction (easier).

| /\



Bootstrap Confidence Thresholds (cont'd)

elet f=a/2and e, = e,,(0) = \lQ?ln log (;)

e Procedure

1. Draw HY ..., H;, iid Bernoulli(a)

2. Draw P}|H? from (1 — H)U + H}F.

3. Define Qi(t) = >, 1{PF <t} (1 Hf —c).
4. Use threshold defined by

T = max {t: P@{Qz(t) < —cem} >1— B}
e [ hen,

Pe{FDP(Tp) < c} >1—a+0 (\%) .



Closed-Form Asymptotic Confidence Thresholds

o et

AN

th=Q '(c) to=Q o).
e [ hen define
TC — 1?0 -+ m,a

where /A\m,a is depends on a density estimate of g = G’.

e [ hen,
Pe{ FDP(T¢) < c} >1—a+o(1).



Closed-Form Asymptotic Confidence Thresholds

e Detalls:

cors (VR (o) + 5(0) ) + 21fogm
 l-a-g@)

R (s.1) = K@ (). Q (1)

Q- ()Q(Q (1)

_ B R PN
t) = S0 [G( At) — G )G(t)}.

e This requires no bootstrapping but does require density estimation.

This is analogous to the situation faced when estimating the
standard error of a median.



Exact Confidence Thresholds

o Let ./\/lﬁ be a 1 — (3 confidence set for M, derived from the
Binomial(m,1 — a).
e Define

S pi <t} (1-hy)

S(t; k™, p™) = S (L h) [EDF of null p-values]

Us(p™) = {hmi > (1—hi) € Mgand ||S(-; ™, p™) = Ul| < Emo(ﬂ)} ,

]

where mg = Y;(1 — h;) and €,,(8) = 1/log(2/3)/2my.
e Take 5 =1—+v1—q.



Exact Confidence Thresholds (cont'd)

o Let

Ter = sup {t . FDP(¢; A, P™) < ¢ and k'™ € uﬁ(Pm)}
G = {FDP(-; ™, P™): k"™ € Ug(P™)}.

e [ hen,

[V

Pg{Hm S Uﬁ(Pm)} 1
Po{FDP(-; H™, P™) € G }

Pe{ FDP(T¢) < c}

21—@,
>1— a.

Hence, To is a (1 — «, ¢) confidence threshold procedure.



FDR

Exact Confidence Thresholds (cont'd)

G gives a confidence envelope for FDP(t) sample paths.
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Estimating a and F

e Recall that the p-value distribution G = (1 — a)U + aF
where a and F' are unknown.

e \We need a good estimate of a for plug-in estimates,

Toi(P™) = max {t: Gty = 1= a)t} |

8%

that approximate the optimal threshold.

e We need good estimates of a and F' for confidence thresholds.



Estimating a and F' (cont'd)

e Identifiability and Purity
If min f =0 >0, can write I' = (1-0)U+bky,
f Oc={@F): FeF,G=(1-a)U+aF)}

may contain more than one element.

If f = F'is decreasing with f(1) = 0, then
(a, F') is identifiable.
b

e In general, let a < a be the smallest mixing weight in the orbit:
a =1 —mingg(t). This is identifiable.

Storey (2002) notes that 0 < sup Glt) — ¢

0<t<1 — 1

ea — a is typically small: a —a = ae_”92/2 in the two-sided test
of § = 0 versus 6 # 0 in the Normal(f, 1) model.

<a<a<l.



Estimating a and F' (cont'd)

e Parametric Case

— Derived a 1 — 3 one-sided conf. int. for a and thus a.
(a,0) typically identifiable even if a > a; use MLE.

e Non-parametric case:

— Derived a 1 — (3 one-sided conf. int. for a and thus a.
—When F' concave, get ajon = a + Op(m_1/3).
—When F' smooth enough, get ag = a + Op(m_2/5).

— Consistent estimate for Fj if a consistent for a:

Ly, = argmin |G — (1 —a)U — aH|| .
HeF



Estimating a and F' (cont'd)

® 0g uses “spacings’ estimator (Swanepoel, 1999) to estimate
min g(t). This yields

n2/5

(@ — a)~ Normal(0, (1 — a)?)

(log m)?

e In the concave case, take § = G ~;, and aron = 1 — g(1).
A 1 — a confidence interval for a is

CALLCM + 4QO4 ‘g(l)’l/g n_l/g

where P{ argmaxy, (W (h) — h?) > qQ} = « and W}, is a 2-sided
Brownian motion tied down at O.



Estimating a and F' (cont'd)

e Confidence interval for a given by

.Am - {max Gm(t) — Em(a)’ 1} 3
t 1—1¢

where G, is EDF and e,(a) = \/Iog(2/a)/2m.

Then,

l—a< (inB;P{aEAm} <l—-a+ Ry

where

B ol (log m)?
D ( Vm )



Take-Home Points

e Asymptotic view motivated by particular applications, but
asymptotics appear to kick in rather quickly.

e Confidence thresholds address a question that collaborating
scientists frequently raise.

e Helpful to think of FDP (FDR) and FNP (FNR) as stochastic
processes.

In general, the threshold and the FDP are coupled, and these
correlations can have a large effect.

e Dependence



Recurring Notation

m, My, Ml\o # of tests, true nulls, false discoveries

a Mixture weight on alternative

H" = (Hy,...,Hy;) Unobserved true classifications

P" = (Py,...,Pny) Observed p-values

U CDF of Uniform(0, 1)

F, f Alternative CDF and density
G=(1—a)U +aF  Marginal CDF of P,

g=G" Marginal density of P;

Gm Estimate of G (e.g., empirical CDF of P™)

1 2 .
e(B) = \l log (—) DKW bound 1 — 3 quantile of |G, — G||
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Bayesian Thresholds

e Bayesian Threshold bounds posterior FDR:
TBayes = sup{t : E(FDP(¢) | P™) < a}

e Similarly, can construct a posterior (¢, a) confidence threshold
TBayes,C by

Thayes,c = sup{t : P{FDP(t) <c¢| P} < a}



EBT (Empirical Bayes Testing)

e Efron et al (2001) note that

p{t=0| P} =S = o(P)

e Reject whenever ¢(p) < o7
e For a, f unknown, f > 0 implies that

a > 1—mping(p) — 4 = 1—mpin§(p).

1—a _ ming §(s)
g9(p) g(p)

e [ hen, q(p) =



EBT versus FDR

e If we reject when P{HZ- =0 | Pm} < a,
how many errors are we making?

e Under weak conditions, can show that
q(t) < a implies Q(t) < «

So EBT is conservative.



Behavior of ¢

e THEOREM. Let q(t) = (1;6"). Suppose that
g(t)

m®(g(t) — g(t))~W

for some o > 0, where W is a mean 0 Gaussian process with
covariance kernel 7(v,w). Then

m® (q(t) — q(t))~ 2

where Z is a Gaussian process with mean 0 and covariance kernel

1 —a)*r vV, W
Koo, ) = g(v)zlg(f(w)‘l |




Behavior of ¢ (cont'd)

e Parametric Case: g = gp = (1 — a) + afg(v) Then,

_ se(q(v)) 1 ) |0'0g90

) == 03" ~0 (7

1
= 0 <\/_ﬁ) lv — 0] Normal case

e Nonparametric Case

hin = cm ™ P where 8 > 1/5 (undersmooth). Then

C
m(1=0)/2, /g(v)

rel, =



