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AstroStatistics: A Long History

•Hipparchus of Nicaea (190 bce – 120 bce)

– Estimated an Earth-Moon distance in the range

59–67 Earth radii to be consistent with observations,

accounting for uncertainty in Solar parallax measurement.

(The actual value is about 60.3.) First “confidence interval”?

– Tested his model with empirical observations.

– Ptolemy (Almagest V.11) criticized Hipparchus for obtaining a range

•New technologies have turned what was once

a trickle of astronomical data into a flood.

These data can reveal more complex and subtle

effects than ever, but they also demand new statistical methods.

•Many of the big questions in astronomy, astrophysics, and

cosmology hinge on statistical issues.



WMAP: The Cosmic Microwave Background

We see the Cosmic Microwave Background (CMB) as a pattern of

hot and cold spots on the sky.

Image: NASA/WMAP Science Team



WMAP in the News

‘‘Breakthrough of the Year, 2003’’ — Science

‘‘Most precise, detailed map yet produced of universe just after
its birth . . . confirms Big Bang theory’’ — New York Times

‘‘As of today we know better than ever when the universe began,
how it behaved in its earliest instants, how it has evolved since
then, and everything it contains.’’ — Sky & Telescope

‘‘The WMAP data pinpointed -- with unprecedented accuracy -- the
universe’s age at 13.7 billion years; its flat shape; and its
makeup of just 4 per cent "ordinary" matter, 23 per cent dark
matter, and 73 per cent dark energy.’’ — New Scientist

‘‘I think every astronomer will remember where they were when
they heard these results. . . . I certainly will. This announcement
represents a rite of passage for cosmology from speculation to
precision science.’’ — John Bahcall, Princeton astrophycist in
Washington Post



It’s Just Regression After All
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Road Map

1. Cosmology and the Cosmic Microwave Background

– A Brief History

– Can you hear the shape of the Universe?

2. Constructing Confidence Sets for Unknown Functions

– Simultaneity, Bias, and Relevance

– The Pivot-Ball Method (Beran and Dümbgen 1998)

– Extensions and Alternatives

3. Case Study: The Cosmic Microwave Background

– The WMAP Spectrum

– Keeping Our Eyes on the Ball: Parametric Probes and Model Checking
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Physics of the Early Universe

The Big Bang model posits an expanding universe that began hot and dense.

A concise history starting 13.7 billion years ago:

– Temperature ≈ 1 trillion K (about 1 second)

Density high enough to stop neutrinos

– Temperature > 1 billion K (about 3 minutes)

Atoms cannot form. Space filled with a stew of photons, baryons (e.g., protons

and neutrons), electrons, neutrinos, and other matter.

– Temperature 12000 K

Photons and baryons became coupled in a mathematically perfect fluid.

Dark matter begins to clump under gravity. Acoustic waves propagate.

– Temperature 3000 K (about 380,000 years). “Recombination”

Atoms form, photons are released.

– Temperature 2.7K (today). The Cosmic Microwave Background (CMB).

Photons released at recombination observed in microwave band.

Nearly uniform across the sky.



The Cosmic Microwave Background Today

Photons released at recombination seen as a pattern of hot and cold

spots on the sky.

Image: NASA/WMAP Science Team



Illustration: The One Mode Universe



Illustration: The One Mode Universe (cont’d)



Illustration: The One Mode Universe (cont’d)



Can you hear the shape of the universe?

The acoustic oscillations before

recombination carry information

about the geometry and composition

of the early universe.

Cosmologists decompose the sky map

into an orthonormal basis (spherical

harmonics).

The variance of the basis coefficients

at each angular scale “`” gives CMB

temperature power spectrum f(`).

The location, height, and width

of the peaks in this spectrum

relates to fundamental cosmological

parameters, such as the Universe’s

total energy density (Ωtotal) or the fraction of baryons (Ωbaryon).



Cosmological Models

Cosmologists use a finite-dimensional model (typically 6–13 parameters)

for the power spectrum. It’s common to incorporate other data to

obtain the “Concordance model”.

But the likelihood is complicated, multi-modal, and degenerate.

Other serious concerns with the model fits have been raised and are

being actively investigated.

Bottom line:

– The assessment of uncertainty in the inferences has likely been

optimistic.

– The underlying models still need checking.

What can Statistics offer?
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The Nonparametric Regression Problem

Observe data (xi, Yi) for i = 1, . . . , n where

Yi = f(xi) + εi

Assume Eε = 0 and Var ε = Σ.

Leading case: xi = i/n and Σ = diag(σ2, . . . , σ2) with σ2 known.

Model f as belonging to some infinite dimensional space F .

Example: Sobolev ball Fp(C) =
{
f ∈ L2:

∫
|f (p)|2 ≤ C2

}
.

Usually specify a loss function over F , such as L(f̂ , f) =
∫
(f̂ − f)2,

and define risk R(f̂ , f) = EfL(f̂ , f).



Rate-Optimal Estimators

Finding good estimators in this problem hinges on deciding

how much (and how to) smooth.

Optimize rate of convergence rn for minimax risk over F :

inf
f̂n

sup
f∈F

R(f̂n, f) ³ rn,

Want an estimator that achieves this rate.

For infinite-dimensional F , necessarily have rn
√

n → ∞.

For example, rn = n− 2p
2p+1 on Fp.

Rate-optimal estimators exist. In fact, adaptive estimators exist.

For example, can find f̂n → f in Fp at rate n−2p/2p+1 without knowing p.



Inference about the Unknown Function

But we usually need more than f̂ .

We want to make inferences about features of f : shape,

magnitude, peaks, inclusion, derivatives.

Would like to contruct a 1 − α confidence set for f ,

a set C such that P
{
C 3 f

}
= 1 − α.

Typically, C is the set of functions within a confidence band

over all (or a finite set of) points in the domain.

Three challenges:

1. Bias

2. Simultaneity

3. Relevance



Bias

In nonparametric problems, rate-optimal tuning parameter gives

bias2 ≈ var.

Loosely, if f̃ = Ef̂ and s =
√

Var f̂ , then

f̂ − f

s
=

f̂ − f̃

s
+

f̃ − f

s
≈ N(0, 1) +

bias√
var

.

So, “f̂ ± 2s” undercovers.

Two common solutions in the literature:

– Bias Correction: Shift confidence set by estimated bias.

Often increases variance more than it reduces bias.

– Undersmoothing: Smooth so that var dominates bias2.

Requires additional calibration; typically non-uniform coverage.



Simultaneity

We observe f on a finite set of points x1, . . . , xn but often want to

extend inferences to the whole object.

Require additional assumptions to constrain f between design points.

For confidence bands, one solution is the “volume of tubes” formula

(Sun and Loader 1994).

If f̂(x) =
∑n

i=1 `i(x)Yi, then for a suitable class F ,

inf
f∈F

P
{
f̂(x) − cσ̂ ‖`(x)‖ ≤ f(x) ≤ f̂(x) + cσ̂ ‖`(x)‖,∀x

}
= 1 − α,

where c solves α = Kφ(c) + 2(1 − Φ(c)) and the constant K depends on

T (x) = `(x)/‖`(x)‖.

Still must account for bias.



Relevance

In small samples, confidence balls and bands need not constrain all

features of interest.

For example, number of peaks:
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Alternative: confidence intervals for specific functionals of f

Two practical problems:

1. Many relevant functionals (e.g., peak locations) hard to work with.

2. One often ends up choosing functionals post-hoc.

We prefer to obtain construct a confidence set for the whole object

with post-hoc protection for inferences about many functionals.



An Inferential Strategy

– Build confidence sets for the whole function f that obtain

either finite-sample coverage or uniform asymptotic coverage

(supf∈F
∣∣∣P{

Cn 3 f
}
− (1 − α)

∣∣∣ → 0).

– Constrain the model post hoc and search the confidence set to

make inferences about any features of interest.

This enables model checking and comparison, follow up analyses,

and complicated functionals, all with post-hoc protection.

The confidence set induces a map from a set of assumptions to a

set of inferences.

Two good approaches based on the Pivot-Ball (Beran and Dümbgen

1998) and Subspace Pretesting (Baraud 2004) methods.



Pivot-Ball Confidence Sets

Expand unknown f in orthonormal basis (φj): f =
∑

j θjφj.

Method yields confidence sets Cn satisfying

sup
f∈F

∣∣∣P{
Cn 3 fn

}
− (1 − α)

∣∣∣ → 0,

where fn is projection onto first n coefficients.

With extra assumptions, can dilate Cn to cover f similarly.

Define

– Coefficient estimator θ̂j(λ) for (possibly vector-valued)

tuning parameter λ.

– Loss function Ln(λ) =
∑n

j=1(θ̂j(λ) − θj)
2.

– Unbiased risk estimate Sn(λ).



Pivot-Ball Method

1. Choose λ̂n to minimize Sn(λ).

2. Show that for an appropriate statistic τ̂n,
√

n(Ln(λ̂n) − Sn(λ̂n))

τ̂n
Ã N(0, 1).

3. Conclude that Dn is an asymptotic 1 − α confidence set for θ:

Dn =

θ:
n∑

`=1
(θ̂n(λ̂n) − θ`)

2 ≤ τ̂n zα√
n

+ Sn(λ̂n)

 .

4. Hence Cn =

{
fn:

∫
(fn − f̂n)2 ≤ τ̂nzα√

n
+ Sn(λ̂n)

}
has desired

properties.



Extensions and Alternatives

• Extensions of the pivot ball method

– Weighted-Loss and non-constant variance (Genovese et al.

2004), as with the CMB spectrum.

– Wavelet bases (Genovese and Wasserman 2003).

– Density estimation (Jang, Genovese, and Wasserman 2004).

– Using better risk estimates allow limited adaptation (Van der

Vaart and Robins, 2004)

• Alternatives: Finite-sample and uniform asymptotic confidence

bands (Baraud 2004, Genovese and Wasserman 2004).
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Inference for the CMB Power Spectrum

After correcting for our motion and other artifacts, expand sky
temperature map into spherical harmonics

T =
∞∑

`=1

∑̀
m=−`

a`mY`m.

The spectrum C` is the variance of the a`ms for each `.

From the data, get noisy version of C`, which can be cast as a

nonparametric regression problem.

Apply the pivot-ball method, generalized for non-constant variance.

Constrain F to functions with bounded number of local extremes.

Obtain confidence set Cn for the unknown spectrum; use this to

check the models and make inferences about the peaks.



CMB Power Spectrum: WMAP Data
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CMB Power Spectrum: WMAP Variances
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Noise correlated and heteroskedastic



Cosmological Models
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• 6–13 dimensional model maps cosmological parameters to spectra.

• Ultimate goal: inferences about basic cosmological quantities.

• Subsidiary goal: identify location, height, widths of peaks



Confidence Ball Center vs Concordance Model
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Eyes on the Ball I: Parametric Probes

Peak Heights, Peak Locations, Ratios of Peak Heights
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Eyes on the Ball I: Parametric Probes (cont’d)

Varied baryon fraction in CMBfast keeping Ωtotal ≡ 1
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Range [0.034,0.0586] in ball

Extended search, over millions of spectra, in progress.



Eyes on the Ball I: Parametric Probes (cont’d)

Probe from center with boxcars of given width centered at each `.

Maximum boxcar height in 95% ball, relative to Concordance Model
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Eyes on the Ball II: Model Checking

Inclusion in the confidence ball provides simultaneous

goodness-of-fit tests for parametric (or other) models.
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Take-Home Points

• A general strategy for nonparametric inference

– Build confidence sets for functions with uniform asymptotic

(or finite-sample) coverage and post-hoc protection.

– Constrain and search post-hoc to make inferences

• Advantages:

– Supports simultaneous inferences on any functionals.

– Makes it easy to work with complicated spaces or features.

– Straightforward to vary and compare assumptions.

•With CMB, nonparametric analysis strikingly confirms many

WMAP findings but also shows how some depend strongly on the

model.

Also provides guidance for subsequent analyses and data collection.


