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Overview: Two Talks in One

• “Envelopes”

– Situation: Performing many simultaneous hypothesis tests

– Problem: Attain needed power while still controlling false

discoveries in some principled way.

– Approach: Bound the proportion of false discoveries among

rejected nulls with high probability.

• “Balls”

– Situation: Have noisy samples of an unknown function.

– Problem: Make inferences about various features of the function.

– Approach: Construct uniformly valid confidence sets for the

unknown function.



Notation

EX ≡ 〈X〉
θ̂ ≡ estimate of θ

sup ≡ max

inf ≡ min

Also, focus on the blue stuff.



Road Map: “Envelopes”

1. The Multiple Testing Problem

– Idea and Examples

– Error Criteria

2. Controlling FDR

– The Benjamini-Hochberg Procedure

– Increasing Power

3. Confidence Envelopes and Thresholds

– Exact Confidence Envelopes for the False Discovery Proportion

– Choice of Tests

4. False Discovery Control for Random Fields

– Confidence Supersets and Thresholds

– Controlling the Proportion of False Clusters



Road Map: “Envelopes”

1. The Multiple Testing Problem

– Idea and Examples

– Error Criteria

2. Controlling FDR

– The Benjamini-Hochberg Procedure

– Increasing Power

3. Confidence Envelopes and Thresholds

– Exact Confidence Envelopes for the False Discovery Proportion

– Choice of Tests

4. False Discovery Control for Random Fields

– Confidence Supersets and Thresholds

– Controlling the Proportion of False Clusters



The Multiple Testing Problem

• Perform m simultaneous hypothesis tests with a common procedure.

• For any given threshold, classify the results as follows:

H0 Retained H0 Rejected Total

H0 True TN FD T0
H0 False FN TD T1

Total N D m

Mnemonics: T/F = True/False, D/N = Discovery/Nondiscovery

All quantities except m, D, and N are unobserved.

•The problem is to choose a threshold that balances the

competing demands of sensitivity and specificity.



Motivating Examples

• fMRI Data

• Astronomical Source Detection

•DNA Microarrays

• Scan Statistics

These all involve many thousands

of tests and interesting spatial

structure.



How to Choose a Threshold?

• Control Per-Comparison Type I Error

– a.k.a. “uncorrected testing,” many type I errors

– Gives P0

{
FDi > 0

} ≤ α marginally for all 1 ≤ i ≤ m

• Strong Control of Familywise Type I Error

– e.g.: Bonferroni: use per-comparison significance level α/m

– Guarantees P0

{
FD > 0

} ≤ α

• False Discovery Control

– e.g.: Benjamini & Hochberg (BH, 1995, 2000): False Discovery Rate (FDR)

– Guarantees FDR ≡ E

(
FD

D

)
≤ α
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The Benjamini-Hochberg Procedure

• Convenient to work with p-values

|Test Statistic|−|Test Statistic|

p/2p/2

Test Statistic

p

• Given m p-values ordered 0 ≡ P(0) < P(1) < · · · < P(m),
the BH procedure rejects any null hypothesis with Pj ≤ TBH

where

TBH = max

{
P(i): P(i) ≤ α

i

m

}
.



The Benjamini-Hochberg Procedure (cont’d)

m = 50, α = 0.1
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The Benjamini-Hochberg Procedure (cont’d)

• BH guarantees that FDR ≡ E

(
FD

D

)
≤ T0

m
α.

• Gives more power than Bonferroni, fewer Type I errors than

uncorrected testing.

• If Ĝ is the empirical cdf of the m p-values, Ĝ(P(i)) = i/m, so

TBH = max
{
t: Ĝ(t) =

t

α

}
= max

{
t:

t

Ĝ(t)
≤ α

}
.

Note that FDR(t) ≈ (1−a)t
G(t) , so BH bounds F̂DR taking a = 0.

• BH performs best in very sparse cases (T0 ≈ m); power can be

improved in non-sparse cases by more complicated procedures.



Simulated Example: Bonferroni



Simulated Example: BH



Astronomical Examples (PiCA Group)

• Baryon wiggles (Miller, Nichol, Batuski 2001)

• Radio Source Detection (Hopkins et al. 2002)

•Dark Energy (Scranton et al. 2003)
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Mixture Model for Multiple Testing

• Let Pm = (P1, . . . , Pm) be the p-values for the m tests, drawn

independently from

G = (1− a)U + aF,

where: 1. 0 ≤ a ≤ 1 is the frequency of alternatives,

2. U is the Uniform〈0, 1〉 cdf, and

3. F =
∫

ξ dLF(ξ) is a distribution on [0,1].

• Let Hm = (H1, . . . , Hm) where Hi = 0 (or 1) if

the ith null hypothesis is true (or false).

Assume the His are independent Bernoulli〈a〉, but everything

works with the Hi’s fixed as well.



Mixture Model for Multiple Testing (cont’d)

•We assume the following model (Efron et al., 2001; Efron, 2003):

H1, . . . , Hm iid Bernoulli〈a〉
Ξ1, . . . ,Ξm iid LF

Pi | Hi = 0,Ξi = ξi ∼ Uniform〈0, 1〉
Pi | Hi = 1,Ξi = ξi ∼ ξi.

where LF denotes a probability distribution on a

class F of distributions on [0, 1].

•Typical examples:

– Parametric family: FΘ = {Fθ: θ ∈ Θ}
– Concave, continuous distributions

FC = {F : F concave, continuous cdf with F ≥ U}.



Multiple Testing Procedures

• A multiple testing procedure T is a map [0, 1]m → [0, 1], where

the null hypotheses are rejected in all those tests for which

Pi ≤ T (Pm). We call T a threshold.

• Examples:
Uncorrected testing TU(Pm) = α

Bonferroni TB(Pm) = α/m

Fixed threshold at t Tt(P
m) = t

First r T(r)(P
m) = P(r)

Benjamini-Hochberg TBH(Pm) = sup{t: Ĝ(t) = t/α}
Oracle TO(Pm) = sup{t:G(t) = (1− a)t/α}
Plug-In TPI(P

m) = sup{t: Ĝ(t) = (1− â)t/α}
Regression Classifier TReg(P

m) = sup{t: P̂{H1=1|P1=t}>1/2}



The False Discovery Process

•Define two stochastic processes as a function of threshold t:

the False Discovery Proportion FDP(t) and False Nondiscovery

Proportion FNP(t).

FDP(t;Pm, Hm) =

∑
i

1
{
Pi ≤ t

}
(1−Hi)∑

i

1
{
Pi ≤ t

}
+ 1

{
all Pi > t

} =
#False Discoveries

#Discoveries

FNP(t;Pm, Hm) =

∑
i

1
{
Pi > t

}
Hi∑

i

1
{
Pi > t

}
+ 1

{
all Pi ≤ t

} =
#False Nondiscoveries

#Nondiscoveries



The False Discovery Rate

• For a given procedure T , let FDP and FNP denote

the value of these processes at T (Pm).

•Then, the False Discovery Rate (FDR) and the

False Nondiscovery Rate (FNR) are given by

FDR = E(FDP) FNR = E(FNP).

•The BH guarantee becomes FDR ≤ (1− a)α ≤ α.

•This bound holds at least under “positive dependence”.

• Replacing α by α/
∑m

i=1 1/i extends FDR bound to any distribution,

but this is typically very conservative.



Selected Recent Work on FDR

Abromovich, Benjamini, Donoho, & Johnstone (2000)

Benjamini & Hochberg (1995, 2000)

Benjamini & Yekutieli (2001)

Efron, Tibshirani, & Storey (2001)

Efron, Tibshirani, Storey, & Tusher (2002)

Finner & Roters (2001, 2002)

Hochberg & Benjamini (1999)

Genovese & Wasserman (2001,2002,2003)

Pacifico, Genovese, Verdinelli, & Wasserman (2003)

Sarkar (2002)

Seigmund, Taylor, & Storey (2003)

Storey (2002,2003)

Storey & Tibshirani (2001)

Tusher, Tibshirani, Chu (2001)

Yekutieli & Benjamini (2001)
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Confidence Envelopes and Thresholds

•D · α need not bound the # of false discoveries.

In practice, it would be useful to control quantiles of FDP.

•We want a procedure T that for specified A and γ guarantees

P
{
FDP(T ) > A

}
≤ γ

We call this an (A, 1− γ) confidence-threshold procedure.

•Three methods: (i) asymptotic closed-form threshold, (ii) asymptotic

confidence envelope, and (iii) exact small-sample confidence

envelope. (See Genovese & Wasserman 2003, to appear Annals of

Statistics.)

I’ll focus here on (iii).



Confidence Envelopes and Thresholds (cont’d)

• A 1− γ confidence envelope for FDP is a random function FDP(t)

on [0, 1] such that

P
{
FDP(t) ≤ FDP(t) for all t

}
≥ 1− γ.

• Given such an envelope, we can construct confidence thresholds.

Two special cases have proven useful.

– Fixed-ceiling: T = sup{t: FDP(t) ≤ α}.
– Minimum-envelope: T = sup{t: FDP(t) = mint FDP(t)}.

t

F
D

P



Exact Confidence Envelopes

• Short version: take max FDP over all subsets that look Uniform.

• Given V1, . . . , Vj, let ϕj(v1, . . . , vj) be a level γ test of the

null hypothesis that V1, . . . , Vj are iid Uniform(0, 1).

•Define pm
0 (hm) = (pi:hi = 0, 1 ≤ i ≤ m)

m0(h
m) =

m∑
i=1

(1− hi)

and Uγ(pm) =
{
hm ∈ {0, 1}m:ϕm0(hm) (p

m
0 (hm)) = 0

}
.

Note that as defined, Uγ always contains the vector (1, 1, . . . , 1).

• Let Gγ(pm) =
{

FDP(·; hm, pm): hm ∈ Uγ(pm)
}

Mγ(pm) =
{

m0(h
m): hm ∈ Uγ(pm)

}
.



Exact Confidence Envelopes (cont’d)

• Short version: it works.

•Theorem. For all 0 < a < 1, F , and positive integers m,

P
{
Hm ∈ Uγ(Pm)

}
≥ 1− γ

P
{
M0 ∈Mγ(Pm)

}
≥ 1− γ

P
{
FDP(·;Hm, Pm) ∈ Gγ

}
≥ 1− γ.

•Define FDP to be the pointwise sup over Gγ.

This is a 1− γ confidence envelope for FDP.

• Confidence thresholds follow directly. For example,

Tα = sup
{
t : FDP(t) ≤ α

}
is an (α, 1− γ) confidence threshold.



Choice of Tests

•The confidence envelopes depend strongly on choice of tests.

•Want an automatic way to choose a good test

•Two desiderata for selecting uniformity tests:

– “Power”, such that FDP is close to FDP, and

– Computability, given that there are 2m subsets to test.

•Traditional uniformity tests, such as the (one-sided) Kolmogorov-

Smirnov (KS) test, do not meet both conditions.

For example, the KS test is sensitive to deviations from uniformity

equally though all the p-values.



The P(k) Tests

• In contrast, using the kth order statistic as a one-sided test statistic

meets both desiderata.

– For small k, these are sensitive to departures that have a large

impact on FDP. Good “power.”

– Computing the confidence envelopes is linear in m.

•We call these the P(k) tests.

They form a sub-family of weighted, one-sided KS tests.



Results: P(k) 90% Confidence Envelopes

For k = 1, 10, 25, 50, 100, with 0.05 FDP level marked.
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Results: (0.05,0.9) Confidence Threshold
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Results: (0.05,0.9) Threshold versus BH
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Results: (0.05,0.9) Threshold versus Bonferroni
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Choosing k

•Direct (Simulation) Approach

Simulate from pre-specified parametric family or mixtures of these.

Compute the optimal k, k∗(θ, m).

•Data-dependent approaches

– Estimate a and F , and simulate from corresponding mixture.

– Parametric estimate k∗(θ̂, m).

– Solve for optimal k distribution using smoothed estimate of G.

The data-dependence only has a small effect on coverage.



Results: Direct versus Fitting Approach
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Results: False Region Control Threshold

P
{
prop’n false regions ≤ 0.1

} ≥ 0.95 where false means null overlap ≥ 10%
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Take-Home Points: “Envelopes”

• Confidence thresholds have advantages for False Discovery Control.

In particular, we gain a stronger inferential guarantee with little

effective loss of power.

•Dependence complicates the analysis greatly, but confidence

envelopes appear to be valid under positive dependence.

• For spatial applications, we care about clusters/regions/sources

not “pixels”. Current methods ignore spatial information.

Controlling proportion of false regions is a first step.

Region-based false discovery control is the next step.

(work in progress)
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CMB Power Spectrum: WMAP Data
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CMB Power Spectrum: WMAP Variances
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CMB Power Spectrum: Models
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• 11(7)-dimensional model maps cosmological parameters to spectra.

• Ultimate goal: inferences about these cosmological parameters.

• Subsidiary goal: identify location, height, widths of peaks



The Statistical Problem

•Observe noisy samples of an unknown function.

Data of the form

Yi = f(xi) + εi, i = 1, . . . , n,

where f is a function on [0, 1] and ε is a possibly correlated

vector of (Gaussian) noise.

•We assume f lies in some pre-specified space of functions F ,

such as a Besov ball.

• Assume for the moment that the noise covariance is known.

• Goal: Make inferences about (often complicated) functionals of f .



Approaches to Function Inference

• Common

– Estimate plus Goodness of Fit

– Pointwise confidence bands

– Confidence intervals on pre-specified features

• Another Idea

A. Generate a confidence set for the whole object.

B. Restrict by imposing constraints, if desired.

C. Probe confidence set to address specific questions of interest.



What Do We Want from an Inference?

• Frequentist Confidence Set C
min
f

P
{
C 3 f

}
≥ 1− α. (1)

• Bayesian Posterior Region B
P

{
f ∈ B | Data

}
≥ 1− α. (2)

• Can have (2) hold and yet have

min
f

P
{
B 3 f

}
≈ 0 (3)

in nonparametric problems.
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Our Approach

• Construct (asymptotic) confidence set for f

– that is uniform sup
f∈F

|P
{
Cn 3 f

}
− (1− α)| → 0,

– that provides post-hoc protection: we can constrain or

probe the ball to address any set of questions.

• Construction based on Stein-Beran-Dümbgen pivot method.

• Extended to wavelet bases (GW, 2003b), weighted loss functions

(GW, 2003c), and density estimation (GJW, 2003).

• Confidence set takes form of ball (or ellipsoid)



CMB: Center of Ball vs Concordance Model
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Eyes on the Ball I: Parametric Probes

• Peak Heights

• Peak Locations

• Ratios of Peak Heights



Eyes on the Ball I: Parametric Probes (cont’d)

Varied baryon fraction in CMBfast keeping Ωtotal ≡ 1
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Eyes on the Ball I: Parametric Probes (cont’d)

Probe from center with boxcars of given width centered at each `.

Maximum boxcar height in 95% ball, relative to Concordance Model
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Eyes on the Ball II: Model Checking

Inclusion in the confidence ball provides simultaneous

goodness-of-fit tests for parametric (or other) models.
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Eyes on the Ball III: Confidence Catalogs

•Our confidence set construction does not impose constraints

based on prior knowledge.

Instead: form ball first and impose constraints at will.

• Raises the possibility of viewing inferences as a function

of prior assumptions.

The confidence ball creates a mapping from prior assumptions

to inferences; we call this a confidence catalog.

• Ex: Constraints on peak curvature over range defined by

reasonable parametric models.



Take-Home Points: “Balls”

•Uniformity makes the asymptotic approximations more useful.

• Post-hoc protection allows snooping. Can make inferences about

any set of functionals with simultaneous validity.

•Nonparametric approach provides check on physical models.

Embedding parametric model in constrained nonparametric model

gives flexibility when model is uncertain.

• Beginning with a confidence set on the whole object makes it easy

to compare different sets of assumptions.


