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Overview: Two Talks in One

e "Envelopes”

— Situation: Performing many simultaneous hypothesis tests

— Problem: Attain needed power while still controlling false
discoveries in some principled way.

— Approach: Bound the proportion of false discoveries among
rejected nulls with high probability.

e "Balls”

— Situation: Have noisy samples of an unknown function.

— Problem: Make inferences about various features of the function.

— Approach: Construct uniformly valid confidence sets for the
unknown function.




Notation

EX = (X)

f = estimate of §
sup = max
inf = min

Also, focus on the blue stuff.



Road Map: “Envelopes”

1. The Multiple Testing Problem

— ldea and Examples

— Error Criteria

2. Controlling FDR

— The Benjamini-Hochberg Procedure

— Increasing Power

3. Confidence Envelopes and Thresholds

— Exact Confidence Envelopes for the False Discovery Proportion

— Choice of Tests

4. False Discovery Control for Random Fields

— Confidence Supersets and Thresholds

— Controlling the Proportion of False Clusters
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The Multiple Testing Problem

e Perform m simultaneous hypothesis tests with a common procedure.

e For any given threshold, classify the results as follows:

Hy Retained H( Rejected | Total
HO True TN FD TO
Hy False FN 1D T
Total N D m

Mnemonics: T/F = True/False, D/N = Discovery/Nondiscovery

All quantities except m, D, and [N are unobserved.

e The problem is to choose a threshold that balances the
competing demands of sensitivity and specificity.



Motivating Examples

e fMRI Data
e Astronomical Source Detection
e DNA Microarrays

e Scan Statistics

These all involve many thousands
of tests and interesting spatial
structure.




How to Choose a Threshold?

e Control Per-Comparison Type | Error

—a.k.a. “uncorrected testing,” many type | errors

— Gives PO{FDZ- > O} < a marginally forall 1 <7 <m

e Strong Control of Familywise Type | Error

—e.g.: Bonferroni: use per-comparison significance level o/m
— Guarantees P){FD >0} <

e False Discovery Control

—e.g.: Benjamini & Hochberg (BH, 1995, 2000): False Discovery Rate (FDR)

— Guarantees FDR =E (%) < o
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The Benjamini-Hochberg Procedure

e Convenient to work with p-values

p/2 p/2 p

— ‘Test Statistic| |Test Statistic‘ Test Statistic

e Given m p-values ordered 0 = Py < P(q) <--- < Py,
the BH procedure rejects any null hypothesis with P; < Ty
where

TBH = max{P(Z-): P(,L) < Oz?;} .



p-value

The Benjamini-Hochberg Procedure (cont'd)
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The Benjamini-Hochberg Procedure (cont'd)

FD 1
e BH guarantees that FDR = E <> < Yo,
D m

e Gives more power than Bonferroni, fewer Type | errors than
uncorrected testing.

o If G is the empirical cdf of the m p-values, CA?(P@)) =1/m, so

Tii = max {t: G(t) = é} = max{t: @it) < a} .

Note that FDR(t) ~ (15(?))75, so BH bounds FDR taking a = 0.
e BH performs best in very sparse cases (1) &~ m); power can be
Improved In non-sparse cases by more complicated procedures.




Simulated Example: Bonferroni




Simulated Example: BH




CotL + 1)/2m (uK?)

Astronomical Examples (PiCA Group)

e Baryon wiggles (Miller, Nichol, Batuski 2001)
e Radio Source Detection (Hopkins et al. 2002)
e Dark Energy (Scranton et al. 2003)
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Mixture Model for Multiple Testing

elet P" = (Py,..., Py) be the p-values for the m tests, drawn
independently from

G = (1-a)U + aF,
where: 1.0 < a <1 is the frequency of alternatives,
2. U is the Uniform(0, 1) cdf, and
3.F = /fdﬁj:(f) is a distribution on [0,1].

oelet H" = (Hy,...,Hy) where H; =0 (or 1) if
the 7" null hypothesis is true (or false).

Assume the H;s are independent Bernoulli{a), but everything
works with the H;'s fixed as well.



Mixture Model for Multiple Testing (cont'd)

e \We assume the following model (Efron et al., 2001; Efron, 2003):

Hy, ..., Hy iid Bernoulli{a)
=1,---,=miid Lp
P, | H;=0,=; =&; ~ Uniform(0, 1)
Pi|Hi=1,==¢ ~ &.
where £ £ denotes a probability distribution on a
class F of distributions on [0, 1].
e Typical examples:
— Parametric family: Fg = {Fy: 0 € ©}
— Concave, continuous distributions

Fo ={F: F concave, continuous cdf with F' > U}.



Multiple Testing Procedures

e A multiple testing procedure T' is a map [0, 1]"* — [0, 1], where

the null hypotheses are rejected in all those tests for which
P; <T(P™). We call T" a threshold.

e Examples:
Uncorrected testing  Ty(P™) = «
Bonferroni Ts(P™) = a/m
Fixed threshold at ¢t  T}(P™) =t
First 7 Ty (P™) = Py
Benjamini-Hochberg Thu(P™) = sup{t: G(t) = t/a}
Oracle To(P™) =sup{t: G(t) = (1 — a)t/a}
Plug-In Toi(P™) = sup{t: G(t) = (1 — a)t/a}
Regression Classifier Tre.(P") = sup{t: P{H,=1|P,= ty>1/2}



The False Discovery Process

e Define two stochastic processes as a function of threshold ¢:

the False Discovery Proportion FDP(%) and False Nondiscovery
Proportion FNP(t).

SIUP <t} (1-Hy) P
. m my __ 1 L alse biscoveries
FDP(t’P M ) B Zl{PZ < t} + 1{3” P, > t} B #Discoveries
1

Z ]-{Pz > t} HZ
EN P(t' pm H’m) _ ) _ #False Nondiscoveries
| | Z 1{PZ > t} + 1{3” P@' < t} #Nondiscoveries
)




The False Discovery Rate

e For a given procedure 7', let FDP and FNP denote
the value of these processes at T'(P").

e Then, the False Discovery Rate (FDR) and the
False Nondiscovery Rate (FNR) are given by

FDR = E(FDP)  FNR = E(FNP).

e The BH guarantee becomes FDR < (1 — a)a < «a.
e [ his bound holds at least under “positive dependence” .

o Replacing a by i/ 37" { 1/ extends FDR bound to any distribution,
but this is typically very conservative.
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Road Map: “Envelopes”

3. Confidence Envelopes and Thresholds

— Exact Confidence Envelopes for the False Discovery Proportion

— Choice of Tests

4. False Discovery Control for Random Fields

— Confidence Supersets and Thresholds

— Controlling the Proportion of False Clusters



Confidence Envelopes and Thresholds

e D - o need not bound the # of false discoveries.
In practice, it would be useful to control quantiles of FDP.

e \We want a procedure T that for specified A and ~ guarantees
P{FDP(T) > A} <~

We call this an (A, 1 — ) confidence-threshold procedure.

e Three methods: (i) asymptotic closed-form threshold, (ii) asymptotic
confidence envelope, and (iii) exact small-sample confidence
envelope. (See Genovese & Wasserman 2003, to appear Annals of
Statistics.)

I'll focus here on (iii).



Confidence Envelopes and Thresholds (cont'd)

e A 1 —~ confidence envelope for FDP is a random function FDP(%)
on [0, 1] such that

P{FDP(t) < FDP(t) for all t | > 1 — 1.

e Given such an envelope, we can construct confidence thresholds.

Two special cases have proven useful.
— Fixed-ceiling: T = sup{t: FDP(t) < a}.
— Minimum-envelope: T" = sup{t: FDP(¢) = min; FDP(¢)}.

/
S—

FDP




Exact Confidence Envelopes

e Short version: take max FDP over all subsets that look Uniform.

e Given V1,..., V), let p;(v1,...,v;) be a level «y test of the
null hypothesis that V1,...,V; are 11D Uniform(0, 1).

e Define  pi"(h™) = (p;:h; =0, 1 <i < m)
m
mo(h™") = Z(l — hy)
and U (p™) = {hm € {0,1}™: @, oy (P (R™)) = 0}
Note that as defined, Uy always contains the vector (1,1,...,1).

o Let Go(p™) = { FOP(;; ", p™): W™ € U (p™)}
Mo (p™) = { mo(h™): K™ € Us(p™) } -



Exact Confidence Envelopes (cont'd)

e Short version: it works.

e THEOREM. For all 0 < a < 1, F, and positive integers m,
P{Hm € L{W(Pm)} >1—7
P{Mye My(P")} =1~
P{FDP(;H™, P™) € Gy} >1—1.

e Define FDP to be the pointwise sup over G-.
This is a 1 — v confidence envelope for FDP.

e Confidence thresholds follow directly. For example,
T, = sup {t . FDP(t) < a} is an («, 1 — ) confidence threshold.



Choice of Tests

e The confidence envelopes depend strongly on choice of tests.
e \Want an automatic way to choose a good test

e Two desiderata for selecting uniformity tests:

— "Power”, such that FDP is close to FDP, and
— Computability, given that there are 2" subsets to test.

e Traditional uniformity tests, such as the (one-sided) Kolmogorov-
Smirnov (KS) test, do not meet both conditions.

For example, the KS test is sensitive to deviations from uniformity
equally though all the p-values.



The P(k) Tests

e In contrast, using the kth order statistic as a one-sided test statistic
meets both desiderata.

— For small k, these are sensitive to departures that have a large
impact on FDP. Good “power.”

— Computing the confidence envelopes is linear in m.

o We call these the P, tests.
They form a sub-family of weighted, one-sided KS tests.



FDP

Results: Py 90% Confidence Envelopes

For £ = 1,10, 25,50,100, with 0.05 FDP level marked.
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Results: (0.05,0.9) Confidence Threshold
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Results: (0.05,0.9) Threshold versus BH
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Results: (0.05,0.9) Threshold versus Bonferroni
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Choosing k

e Direct (Simulation) Approach
Simulate from pre-specified parametric family or mixtures of these.
Compute the optimal k, k*(6, m).

e Data-dependent approaches

— Estimate a and F', and simulate from corresponding mixture.

— Parametric estimate k*(6,m).

— Solve for optimal £ distribution using smoothed estimate of G.

The data-dependence only has a small effect on coverage.



FDP

Results: Direct versus Fitting Approach
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Road Map: “Envelopes”

1.

4. False Discovery Control for Random Fields

— Confidence Supersets and Thresholds

— Controlling the Proportion of False Clusters



Results: False Region Control Threshold

P{prop’n false regions < 0.1} > 0.95 where false means null overlap > 10%
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Take-Home Points: “Envelopes”

e Confidence thresholds have advantages for False Discovery Control.

In particular, we gain a stronger inferential guarantee with little
effective loss of power.

e Dependence complicates the analysis greatly, but confidence
envelopes appear to be valid under positive dependence.

e For spatial applications, we care about clusters/regions/sources
not “pixels’. Current methods ignore spatial information.

Controlling proportion of false regions is a first step.

Region-based false discovery control is the next step.
(work in progress)
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2. Nonparametric Confidence Balls

— Features and Extensions
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WMAP Data
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CMB Power Spectrum: WMAP Variances
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Noise is correlated and heteroskedastic



C, I(1+1)/2m

CMB Power Spectrum: Models
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e 11(7)-dimensional model maps cosmological parameters to spectra.
e Ultimate goal: inferences about these cosmological parameters.

e Subsidiary goal: identify location, height, widths of peaks



The Statistical Problem

e Observe noisy samples of an unknown function.

Data of the form
Yi:f(:vz-)—l—ez-, 1 =1,...,n,
where f is a function on [0, 1] and € is a possibly correlated

vector of (Gaussian) noise.

e We assume f lies in some pre-specified space of functions F,
such as a Besov ball.

e Assume for the moment that the noise covariance is known.

e Goal: Make inferences about (often complicated) functionals of f.



Approaches to Function Inference

e Common

— Estimate plus Goodness of Fit
— Pointwise confidence bands

— Confidence intervals on pre-specified features

e Another Idea

A. Generate a confidence set for the whole object.
B. Restrict by imposing constraints, if desired.

C. Probe confidence set to address specific questions of interest.



What Do We Want from an Inference?

e Frequentist Confidence Set C

min P<C > >1— q. 1
inP{C> [} (1)
e Bayesian Posterior Region 5

P{fEB|Data}21—a. (2)

e Can have (2) hold and yet have
minP:B> f;~0 3
inP{5> f (3)

In nonparametric problems.



Road Map: “Balls”
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Our Approach

e Construct (asymptotic) confidence set for f

—that is uniform sup |P{Cn > f} —(1—a)| —0,
feF

—that provides post-hoc protection: we can constrain or
probe the ball to address any set of questions.

e Construction based on Stein-Beran-Dumbgen pivot method.

e Extended to wavelet bases (GW, 2003b), weighted loss functions
(GW, 2003c), and density estimation (GJW, 2003).

e Confidence set takes form of ball (or ellipsoid)



C, I(1+1)/2m

CMB: Center of Ball vs Concordance Model
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Road Map: “Balls”

1.

3. Keeping Your Eyes on the Ball

— Parametric Probes
— Model Checking

— Confidence Catalogs



Eyes on the Ball I: Parametric Probes

e Peak Heights
e Peak Locations

e Ratios of Peak Heights

Gt + 1)/27 (uK?)
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Eyes on the Ball I: Parametric Probes (cont'd)

Varied baryon fraction in CMBFAST keeping 20 = 1
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Range [0.034,0.0586] in ball



Eyes on the Ball I: Parametric Probes (cont'd)

Probe from center with boxcars of given width centered at each /.

Maximum boxcar height in 95% ball, relative to Concordance Model
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Eyes on the Ball Il: Model Checking

Inclusion in the confidence ball provides simultaneous
goodness-of-fit tests for parametric (or other) models.

_Concordance a =0.16 . _Just WMAP a =0.73
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Eyes on the Ball Ill: Confidence Catalogs

e Our confidence set construction does not impose constraints
based on prior knowledge.

Instead: form ball first and impose constraints at will.

e Raises the possibility of viewing inferences as a function
of prior assumptions.

The confidence ball creates a mapping from prior assumptions
to inferences; we call this a confidence catalog.

e Ex: Constraints on peak curvature over range defined by
reasonable parametric models.



Take-Home Points: “Balls”

e Uniformity makes the asymptotic approximations more useful.

e Post-hoc protection allows snooping. Can make inferences about
any set of functionals with simultaneous validity.

e Nonparametric approach provides check on physical models.

Embedding parametric model in constrained nonparametric model
gives flexibility when model is uncertain.

e Beginning with a confidence set on the whole object makes it easy
to compare different sets of assumptions.



