Doing Cosmology with Balls and Envelopes

Christopher R. Genovese Department of Statistics Carnegie Mellon University http://www.stat.cmu.edu/~genovese/

> Larry Wasserman Department of Statistics Carnegie Mellon University

This work partially supported by NSF Grant SES 9866147 and ITR 0104016.

Overview: Two Talks in One

- "Envelopes"
 - -<u>Situation</u>: Performing many simultaneous hypothesis tests
 - <u>Problem</u>: Attain needed power while still controlling false discoveries in some principled way.
 - <u>Approach</u>: Bound the proportion of false discoveries among rejected nulls with high probability.
- "Balls"
 - -<u>Situation</u>: Have noisy samples of an unknown function.
 - <u>Problem</u>: Make inferences about various features of the function.
 - <u>Approach</u>: Construct uniformly valid confidence sets for the unknown function.

Notation

$$EX \equiv \langle X \rangle$$

$$\widehat{\theta} \equiv \text{estimate of } \theta$$

$$\sup \equiv \max$$

$$\inf \equiv \min$$

Also, focus on the blue stuff.

Road Map: "Envelopes"

1. The Multiple Testing Problem

- Idea and Examples
- Error Criteria

2. Controlling FDR

- The Benjamini-Hochberg Procedure
- Increasing Power

3. Confidence Envelopes and Thresholds

- Exact Confidence Envelopes for the False Discovery Proportion
- Choice of Tests

4. False Discovery Control for Random Fields

- Confidence Supersets and Thresholds
- Controlling the Proportion of False Clusters

Road Map: "Envelopes"

1. The Multiple Testing Problem

- Idea and Examples
- Error Criteria

2. Controlling FDR

- The Benjamini-Hochberg Procedure
- Increasing Power

3. Confidence Envelopes and Thresholds

- Exact Confidence Envelopes for the False Discovery Proportion
- Choice of Tests

4. False Discovery Control for Random Fields

- Confidence Supersets and Thresholds
- Controlling the Proportion of False Clusters

The Multiple Testing Problem

- \bullet Perform m simultaneous hypothesis tests with a common procedure.
- For any given threshold, classify the results as follows:

	H_0 Retained	H_0 Rejected	Total
H_0 True	TN	FD	T_0
H_0 False	FN	TD	T_1
Total	N	D	m

Mnemonics: T/F = True/False, D/N = Discovery/Nondiscovery

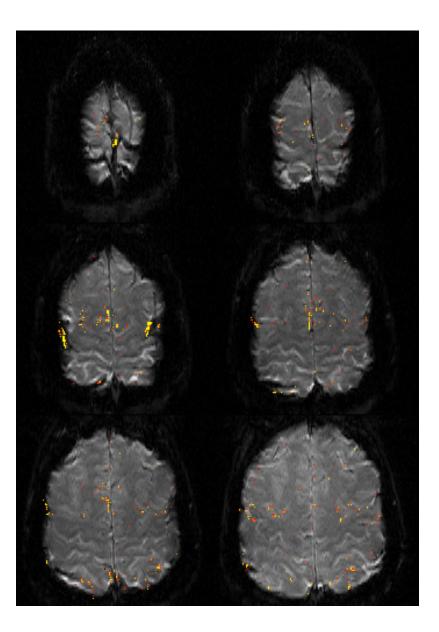
All quantities except m, D, and N are unobserved.

• The problem is to choose a threshold that balances the competing demands of sensitivity and specificity.

Motivating Examples

- fMRI Data
- Astronomical Source Detection
- DNA Microarrays
- Scan Statistics

These all involve many thousands of tests and interesting spatial structure.



How to Choose a Threshold?

- Control Per-Comparison Type I Error
 - -a.k.a. "uncorrected testing," many type I errors
 - Gives $P_0\{FD_i > 0\} \le \alpha$ marginally for all $1 \le i \le m$
- Strong Control of Familywise Type I Error
 - e.g.: Bonferroni: use per-comparison significance level α/m
 - Guarantees $P_0 \{FD > 0\} \le \alpha$
- False Discovery Control
 - -e.g.: Benjamini & Hochberg (BH, 1995, 2000): False Discovery Rate (FDR)

– Guarantees FDR
$$\equiv \mathsf{E}\left(\frac{FD}{D}\right) \leq \alpha$$

Road Map: "Envelopes"

1. The Multiple Testing Problem

- Idea and Examples
- Error Criteria

2. Controlling FDR

- The Benjamini-Hochberg Procedure
- Increasing Power

3. Confidence Envelopes and Thresholds

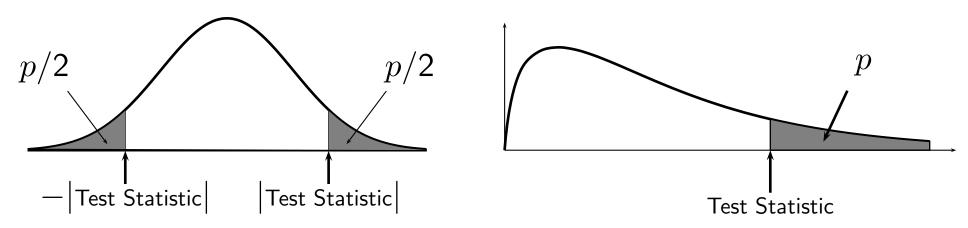
- Exact Confidence Envelopes for the False Discovery Proportion
- Choice of Tests

4. False Discovery Control for Random Fields

- Confidence Supersets and Thresholds
- Controlling the Proportion of False Clusters

The Benjamini-Hochberg Procedure

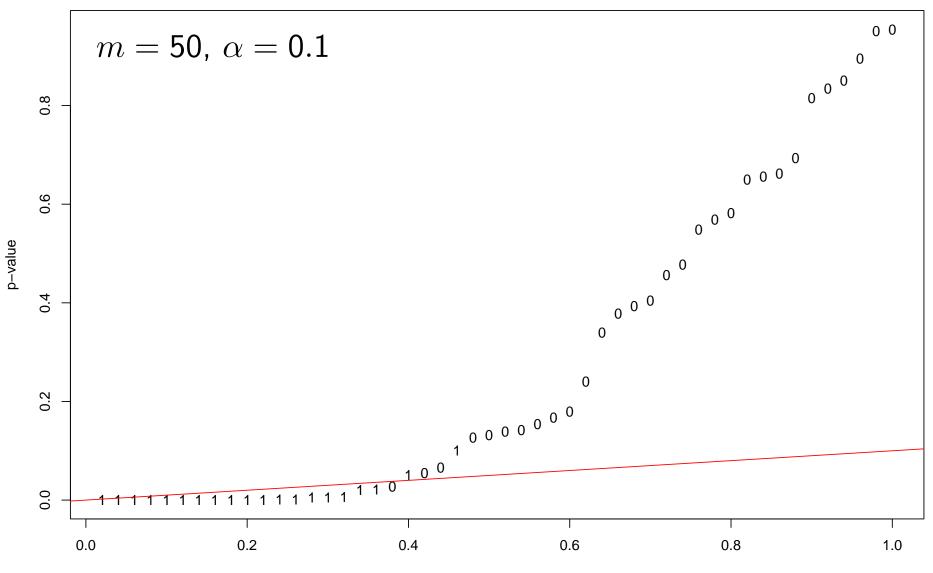
• Convenient to work with p-values



• Given m p-values ordered 0 $\equiv P_{(0)} < P_{(1)} < \cdots < P_{(m)}$, the BH procedure rejects any null hypothesis with $P_j \leq T_{\rm BH}$ where

$$T_{
m BH} = \max \left\{ P_{(i)} \colon P_{(i)} \leq lpha rac{i}{m}
ight\}.$$

The Benjamini-Hochberg Procedure (cont'd)



The Benjamini-Hochberg Procedure (cont'd)

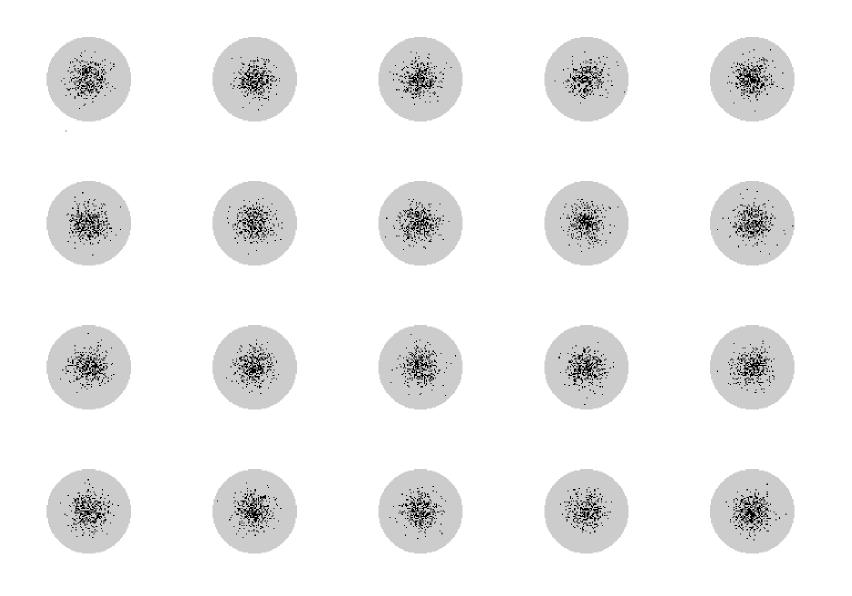
- BH guarantees that $FDR \equiv E\left(\frac{FD}{D}\right) \leq \frac{T_0}{m}\alpha$.
- Gives more power than Bonferroni, fewer Type I errors than uncorrected testing.
- If \widehat{G} is the empirical cdf of the m p-values, $\widehat{G}(P_{(i)}) = i/m$, so

$$T_{\rm BH} = \max\left\{t: \ \widehat{G}(t) = \frac{t}{\alpha}\right\} = \max\left\{t: \ \frac{t}{\widehat{G}(t)} \leq \alpha\right\}.$$

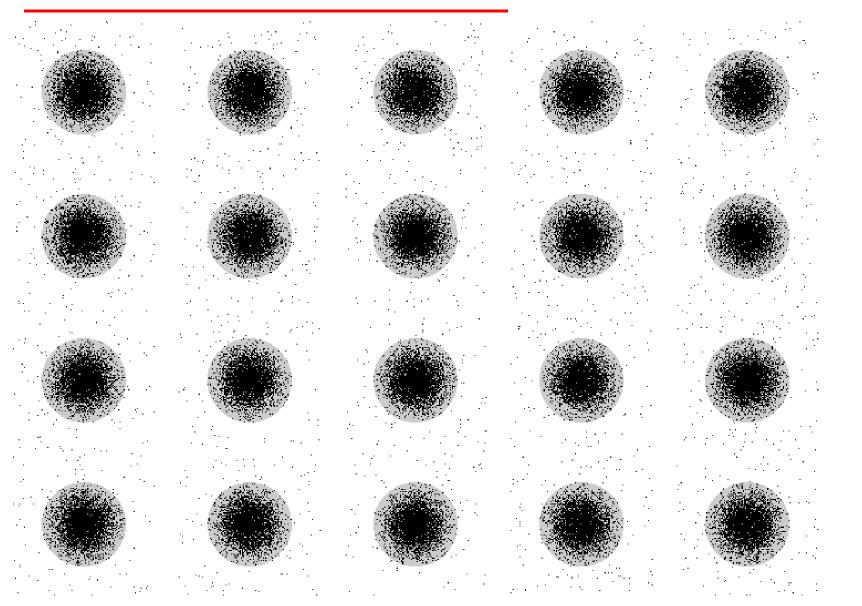
Note that $FDR(t) \approx \frac{(1-a)t}{G(t)}$, so BH bounds \widehat{FDR} taking a = 0.

• BH performs best in very sparse cases $(T_0 \approx m)$; power can be improved in non-sparse cases by more complicated procedures.

Simulated Example: Bonferroni

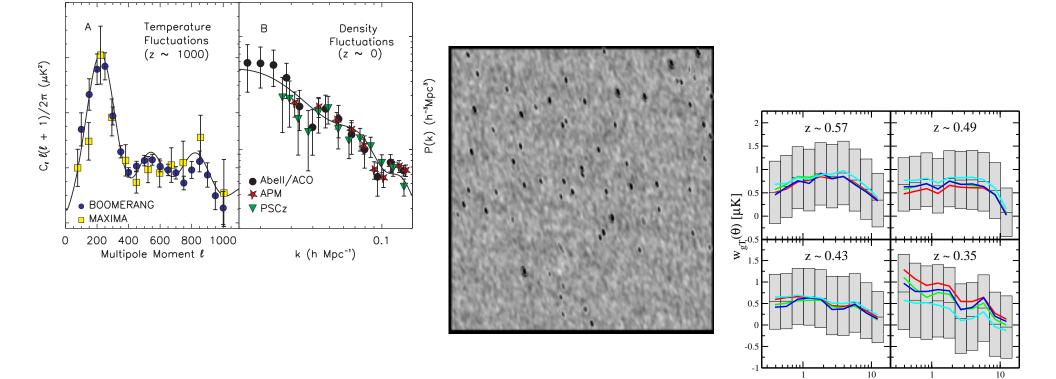


Simulated Example: BH



Astronomical Examples (PiCA Group)

- Baryon wiggles (Miller, Nichol, Batuski 2001)
- Radio Source Detection (Hopkins et al. 2002)
- Dark Energy (Scranton et al. 2003)



 θ (degrees)

• Let $P^m = (P_1, \dots, P_m)$ be the p-values for the *m* tests, drawn independently from

$$G = (1-a)U + aF,$$

where: $1.0 \le a \le 1$ is the frequency of alternatives, 2. U is the Uniform $\langle 0, 1 \rangle$ cdf, and 3. $F = \int \xi d\mathcal{L}_{\mathcal{F}}(\xi)$ is a distribution on [0,1].

• Let $H^m = (H_1, \ldots, H_m)$ where $H_i = 0$ (or 1) if the i^{th} null hypothesis is true (or false).

Assume the H_i s are independent Bernoulli $\langle a \rangle$, but everything works with the H_i 's fixed as well.

Mixture Model for Multiple Testing (cont'd)

• We assume the following model (Efron et al., 2001; Efron, 2003):

 $H_1, \dots, H_m \text{ iid Bernoulli}\langle a \rangle$ $\equiv_1, \dots, \equiv_m \text{ iid } \mathcal{L}_{\mathcal{F}}$ $P_i \mid H_i = 0, \equiv_i = \xi_i \sim \text{Uniform}\langle 0, 1 \rangle$ $P_i \mid H_i = 1, \equiv_i = \xi_i \sim \xi_i.$

where $\mathcal{L}_{\mathcal{F}}$ denotes a probability distribution on a class \mathcal{F} of distributions on [0, 1].

• Typical examples:

- Parametric family: $\mathcal{F}_{\Theta} = \{F_{\theta}: \theta \in \Theta\}$

- Concave, continuous distributions

 $\mathcal{F}_C = \{F: F \text{ concave, continuous cdf with } F \geq U\}.$

Multiple Testing Procedures

• A multiple testing procedure T is a map $[0,1]^m \rightarrow [0,1]$, where the null hypotheses are rejected in all those tests for which $P_i \leq T(P^m)$. We call T a *threshold*.

• Examples:

 $\begin{array}{ll} \mbox{Uncorrected testing} & T_{\rm U}(P^m) = \alpha \\ \mbox{Bonferroni} & T_{\rm B}(P^m) = \alpha/m \\ \mbox{Fixed threshold at } t & T_t(P^m) = t \\ \mbox{First } r & T_{(r)}(P^m) = P_{(r)} \\ \mbox{Benjamini-Hochberg} & T_{\rm BH}(P^m) = \sup\{t: \hat{G}(t) = t/\alpha\} \\ \mbox{Oracle} & T_{\rm O}(P^m) = \sup\{t: G(t) = (1-a)t/\alpha\} \\ \mbox{Plug-In} & T_{\rm PI}(P^m) = \sup\{t: \hat{G}(t) = (1-\hat{a})t/\alpha\} \\ \mbox{Regression Classifier} & T_{\rm Reg}(P^m) = \sup\{t: \hat{\mathsf{P}}\{H_1 = 1 | P_1 = t\} > 1/2\} \end{array}$

The False Discovery Process

 Define two stochastic processes as a function of threshold t: the False Discovery Proportion FDP(t) and False Nondiscovery Proportion FNP(t).

$$\begin{aligned} \mathsf{FDP}(t;P^m,H^m) &= \frac{\sum_{i} 1\left\{P_i \le t\right\} (1-H_i)}{\sum_{i} 1\left\{P_i \le t\right\} + 1\left\{\mathsf{all} \ P_i > t\right\}} = \frac{\#\mathsf{False Discoveries}}{\#\mathsf{Discoveries}} \\ \#\mathsf{FNP}(t;P^m,H^m) &= \frac{\sum_{i} 1\left\{P_i > t\right\} H_i}{\sum_{i} 1\left\{P_i > t\right\} + 1\left\{\mathsf{all} \ P_i \le t\right\}} = \frac{\#\mathsf{False Nondiscoveries}}{\#\mathsf{Nondiscoveries}} \end{aligned}$$

The False Discovery Rate

- For a given procedure T, let FDP and FNP denote the value of these processes at $T(P^m)$.
- Then, the False Discovery Rate (FDR) and the False Nondiscovery Rate (FNR) are given by

FDR = E(FDP) FNR = E(FNP).

- The BH guarantee becomes $FDR \leq (1 a)\alpha \leq \alpha$.
- This bound holds at least under "positive dependence".
- Replacing α by $\alpha / \sum_{i=1}^{m} 1/i$ extends FDR bound to any distribution, but this is typically *very* conservative.

Selected Recent Work on FDR

Abromovich, Benjamini, Donoho, & Johnstone (2000)

Benjamini & Hochberg (1995, 2000)

Benjamini & Yekutieli (2001)

Efron, Tibshirani, & Storey (2001)

Efron, Tibshirani, Storey, & Tusher (2002)

Finner & Roters (2001, 2002)

Hochberg & Benjamini (1999)

Genovese & Wasserman (2001,2002,2003)

Pacifico, Genovese, Verdinelli, & Wasserman (2003)

Sarkar (2002)

Seigmund, Taylor, & Storey (2003)

Storey (2002,2003)

Storey & Tibshirani (2001)

Tusher, Tibshirani, Chu (2001)

Yekutieli & Benjamini (2001)

Road Map: "Envelopes"

1. The Multiple Testing Problem

- Idea and Examples
- Error Criteria

2. Controlling FDR

- The Benjamini-Hochberg Procedure
- Increasing Power

3. Confidence Envelopes and Thresholds

- Exact Confidence Envelopes for the False Discovery Proportion
- Choice of Tests

4. False Discovery Control for Random Fields

- Confidence Supersets and Thresholds
- Controlling the Proportion of False Clusters

Confidence Envelopes and Thresholds

- $\bullet \ D \cdot \alpha$ need not bound the # of false discoveries.
 - In practice, it would be useful to control quantiles of FDP.
- \bullet We want a procedure T that for specified A and γ guarantees

 $\mathsf{P}\big\{\mathsf{FDP}(T) > A\big\} \leq \gamma$

We call this an $(A, 1 - \gamma)$ confidence-threshold procedure.

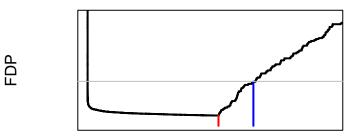
- Three methods: (i) asymptotic closed-form threshold, (ii) asymptotic confidence envelope, and (iii) exact small-sample confidence envelope. (See Genovese & Wasserman 2003, to appear *Annals of Statistics*.)
 - I'll focus here on (iii).

Confidence Envelopes and Thresholds (cont'd)

• A $1 - \gamma$ confidence envelope for FDP is a random function $\overline{\text{FDP}}(t)$ on [0, 1] such that

$$\mathsf{P}\big\{\mathsf{FDP}(t) \leq \overline{\mathsf{FDP}}(t) ext{ for all } t\big\} \geq 1 - \gamma.$$

- Given such an envelope, we can construct confidence thresholds. Two special cases have proven useful.
 - Fixed-ceiling: $T = \sup\{t: \overline{\mathsf{FDP}}(t) \leq \alpha\}.$
 - Minimum-envelope: $T = \sup\{t: \overline{FDP}(t) = \min_t \overline{FDP}(t)\}.$



Exact Confidence Envelopes

- Short version: take max FDP over all subsets that look Uniform.
- Given V_1, \ldots, V_j , let $\varphi_j(v_1, \ldots, v_j)$ be a level γ test of the null hypothesis that V_1, \ldots, V_j are IID Uniform(0, 1).

• Define
$$p_0^m(h^m) = (p_i: h_i = 0, \ 1 \le i \le m)$$

 $m_0(h^m) = \sum_{i=1}^m (1 - h_i)$
and $\mathcal{U}(p^m) = \int h^m \in \{0, 1\}^m; (p_i = m, (p^m(h^m)) = 0\}$

and $\mathcal{U}_{\gamma}(p^m) = \left\{ h^m \in \{0,1\}^m : \varphi_{m_0(h^m)}(p_0^m(h^m)) = 0 \right\}.$

Note that as defined, \mathcal{U}_{γ} always contains the vector $(1, 1, \ldots, 1)$.

• Let
$$\mathcal{G}_{\gamma}(p^{m}) = \left\{ \mathsf{FDP}(\cdot; h^{m}, p^{m}) \colon h^{m} \in \mathcal{U}_{\gamma}(p^{m}) \right\}$$
$$\mathcal{M}_{\gamma}(p^{m}) = \left\{ m_{0}(h^{m}) \colon h^{m} \in \mathcal{U}_{\gamma}(p^{m}) \right\}.$$

Exact Confidence Envelopes (cont'd)

- Short version: it works.
- THEOREM. For all 0 < a < 1, F, and positive integers m,

$$\mathsf{P} \Big\{ H^m \in \mathcal{U}_{\gamma}(P^m) \Big\} \ge 1 - \gamma$$
$$\mathsf{P} \Big\{ M_0 \in \mathcal{M}_{\gamma}(P^m) \Big\} \ge 1 - \gamma$$
$$\mathsf{P} \Big\{ \mathsf{FDP}(\cdot; H^m, P^m) \in \mathcal{G}_{\gamma} \Big\} \ge 1 - \gamma.$$

- Define $\overline{\text{FDP}}$ to be the pointwise sup over \mathcal{G}_{γ} . This is a $1 - \gamma$ confidence envelope for FDP.
- Confidence thresholds follow directly. For example, $T_{\alpha} = \sup \{t : \overline{\mathsf{FDP}}(t) \leq \alpha\}$ is an $(\alpha, 1 - \gamma)$ confidence threshold.

Choice of Tests

- The confidence envelopes depend strongly on choice of tests.
- Want an automatic way to choose a good test
- Two desiderata for selecting uniformity tests:
 - "Power", such that $\overline{\text{FDP}}$ is close to FDP, and
 - Computability, given that there are 2^m subsets to test.
- Traditional uniformity tests, such as the (one-sided) Kolmogorov-Smirnov (KS) test, *do not meet both conditions*.

For example, the KS test is sensitive to deviations from uniformity equally though all the p-values.

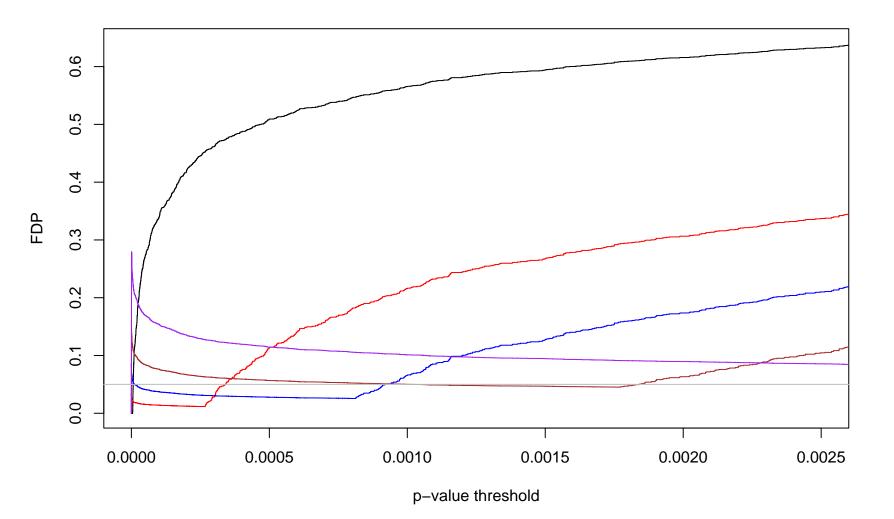
The $P_{(k)}$ Tests

- In contrast, using the *k*th order statistic as a one-sided test statistic meets both desiderata.
 - For small k, these are sensitive to departures that have a large impact on FDP. Good "power."
 - Computing the confidence envelopes is linear in m.
- We call these the $P_{(k)}$ tests.

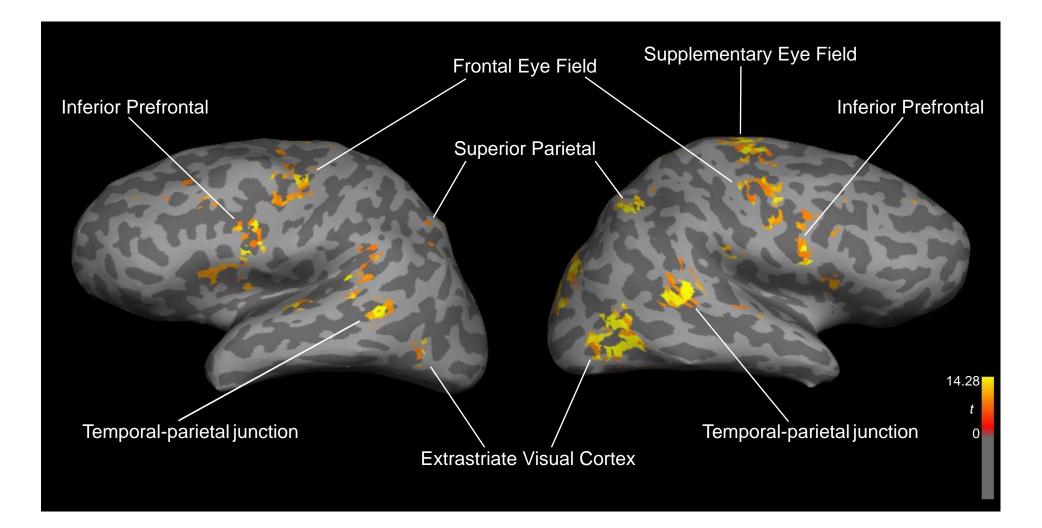
They form a sub-family of weighted, one-sided KS tests.

Results: $P_{(k)}$ 90% Confidence Envelopes

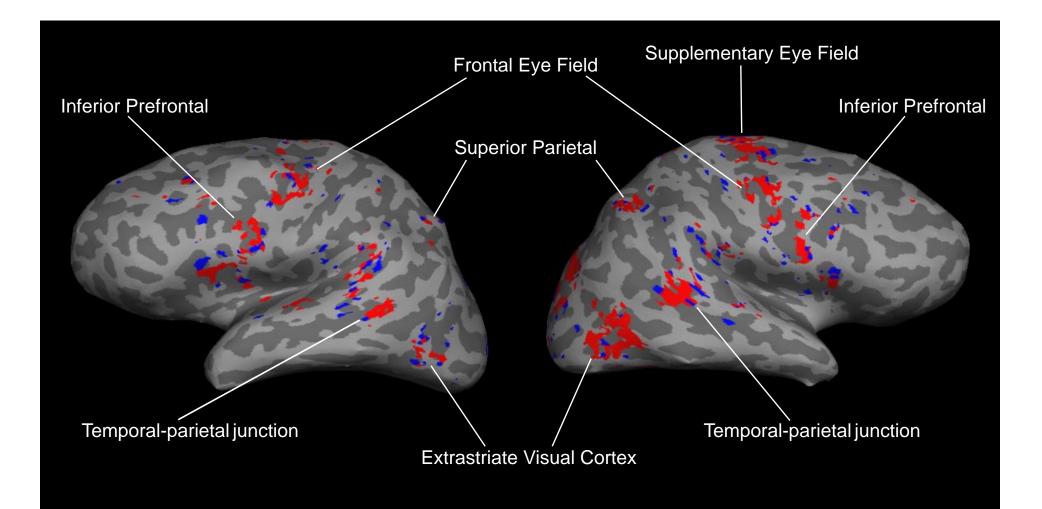
For k = 1, 10, 25, 50, 100, with 0.05 FDP level marked.



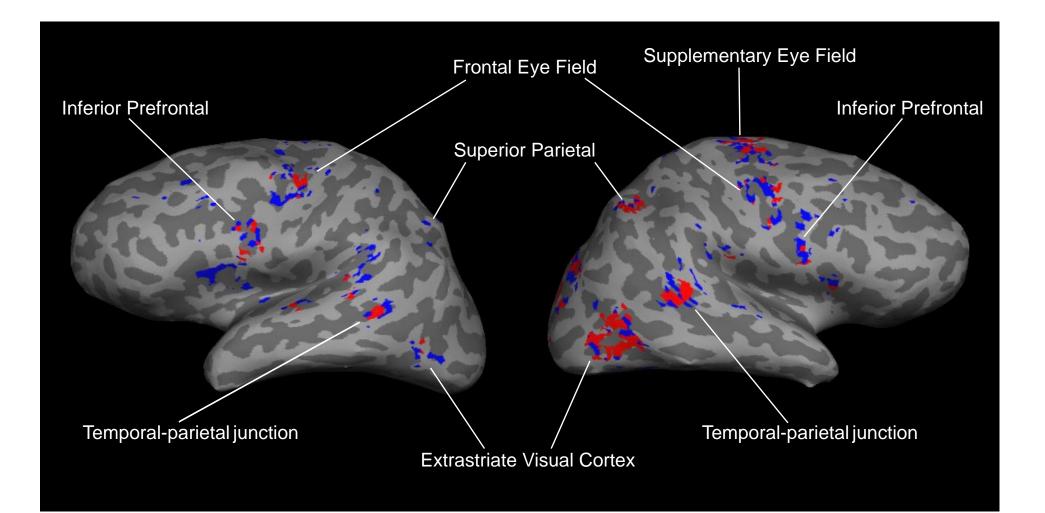
Results: (0.05,0.9) Confidence Threshold



Results: (0.05,0.9) Threshold versus BH



Results: (0.05,0.9) Threshold versus Bonferroni



Choosing k

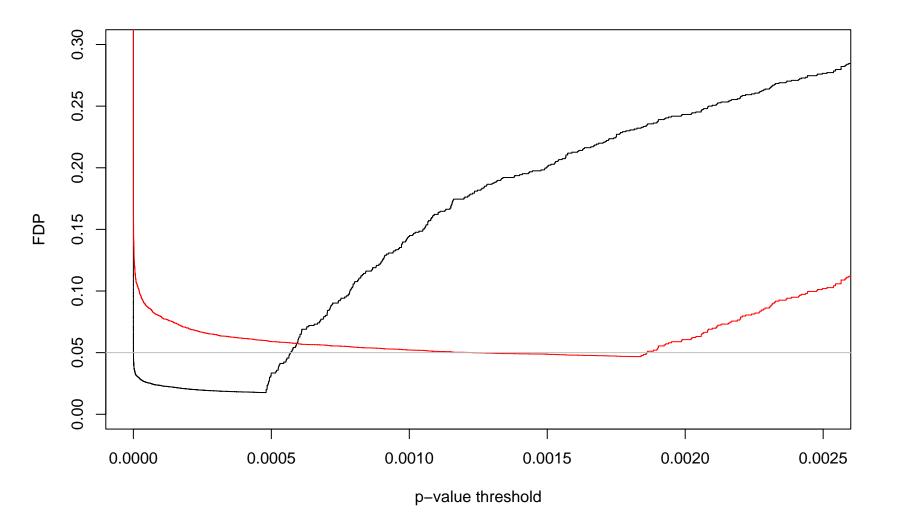
• Direct (Simulation) Approach

Simulate from pre-specified parametric family or mixtures of these. Compute the optimal k, $k^*(\theta, m)$.

- Data-dependent approaches
 - Estimate a and F, and simulate from corresponding mixture.
 - Parametric estimate $k^*(\hat{\theta}, m)$.
 - -Solve for optimal k distribution using smoothed estimate of G.

The data-dependence only has a small effect on coverage.

Results: Direct versus Fitting Approach



Road Map: "Envelopes"

1. The Multiple Testing Problem

- Idea and Examples
- Error Criteria

2. Controlling FDR

- The Benjamini-Hochberg Procedure
- Increasing Power

3. Confidence Envelopes and Thresholds

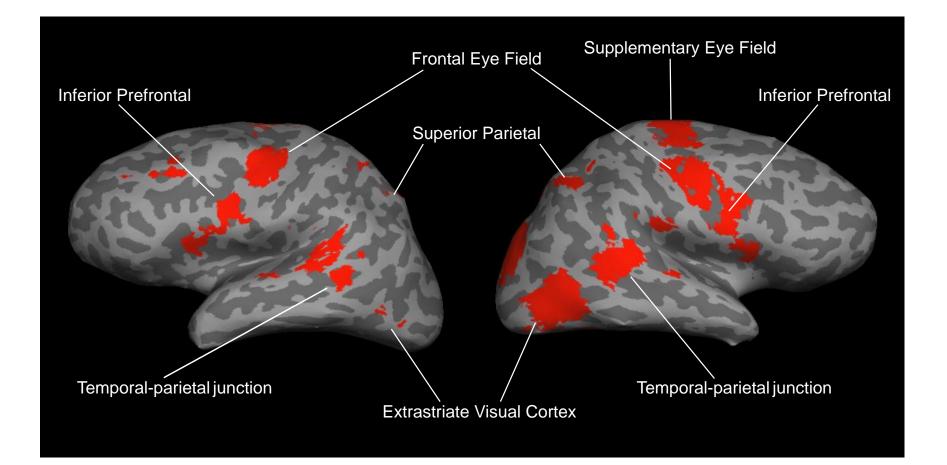
- Exact Confidence Envelopes for the False Discovery Proportion
- Choice of Tests

4. False Discovery Control for Random Fields

- Confidence Supersets and Thresholds
- Controlling the Proportion of False Clusters

Results: False Region Control Threshold

 $\mathsf{P}\big\{\mathsf{prop'n}\ \mathsf{false}\ \mathsf{regions} \le 0.1\big\} \ge 0.95$ where false means null overlap $\ge 10\%$



Take-Home Points: "Envelopes"

- Confidence thresholds have advantages for False Discovery Control.
 In particular, we gain a stronger inferential guarantee with little effective loss of power.
- Dependence complicates the analysis greatly, but confidence envelopes appear to be valid under positive dependence.
- For spatial applications, we care about clusters/regions/sources not "pixels". Current methods ignore spatial information.
 Controlling proportion of false regions is a first step.
 Region-based false discovery control is the next step. (work in progress)

1. Inferences about Functions

- CMB Spectrum Example
- The Statistical Problem in General Form
- Criteria for Effective Inferences

2. Nonparametric Confidence Balls

- Features and Extensions

- Parametric Probes
- Model Checking
- Confidence Catalogs

1. Inferences about Functions

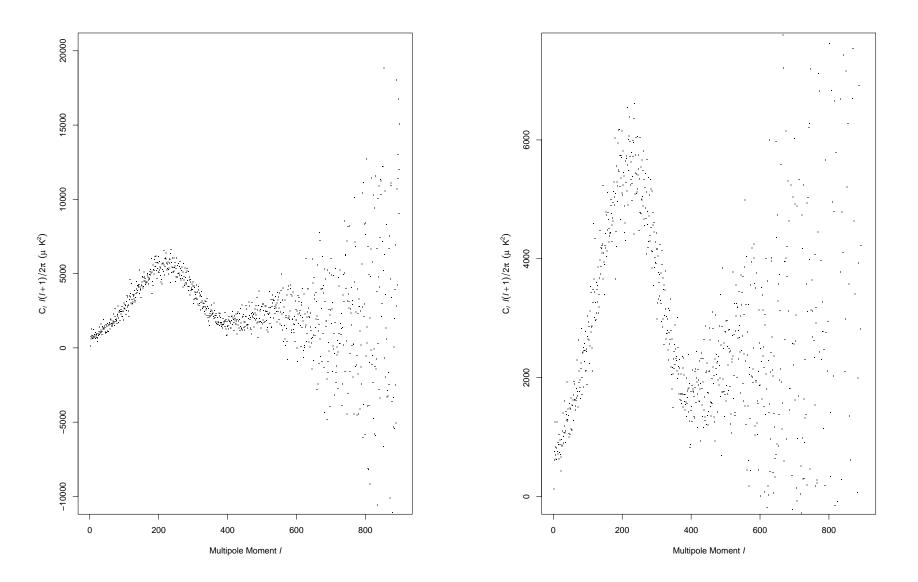
- CMB Spectrum Example
- The Statistical Problem in General Form
- Criteria for Effective Inferences

2. Nonparametric Confidence Balls

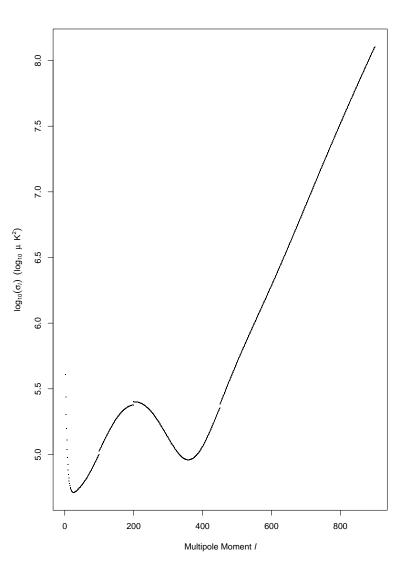
- Features and Extensions

- Parametric Probes
- Model Checking
- Confidence Catalogs

CMB Power Spectrum: WMAP Data

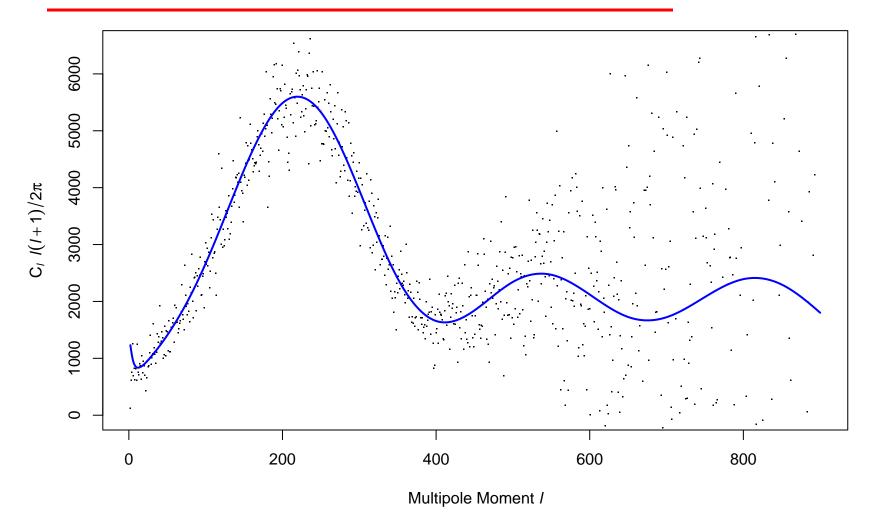


CMB Power Spectrum: WMAP Variances



Noise is correlated and heteroskedastic

CMB Power Spectrum: Models



- 11(7)-dimensional model maps cosmological parameters to spectra.
- Ultimate goal: inferences about these cosmological parameters.
- Subsidiary goal: identify location, height, widths of peaks

The Statistical Problem

Observe noisy samples of an unknown function.
 Data of the form

$$Y_i = f(x_i) + \epsilon_i, \qquad i = 1, \dots, n,$$

where f is a function on [0, 1] and ϵ is a possibly correlated vector of (Gaussian) noise.

- We assume f lies in some pre-specified space of functions \mathcal{F} , such as a Besov ball.
- Assume for the moment that the noise covariance is known.
- Goal: Make inferences about (often complicated) functionals of f.

Approaches to Function Inference

• Common

- Estimate plus Goodness of Fit
- Pointwise confidence bands
- Confidence intervals on pre-specified features
- Another Idea
 - A. Generate a confidence set for the *whole* object.
 - B. Restrict by imposing constraints, if desired.
 - C. Probe confidence set to address specific questions of interest.

What Do We Want from an Inference?

 \bullet Frequentist Confidence Set ${\cal C}$

$$\min_{f} \mathsf{P}\big\{\mathcal{C} \ni f\big\} \ge 1 - \alpha. \tag{1}$$

 \bullet Bayesian Posterior Region ${\cal B}$

$$\mathsf{P}ig\{f\in\mathcal{B}\mid\mathsf{Data}ig\}\geq1-lpha.$$

• Can have (2) hold and yet have

$$\min_{f} \mathsf{P} \Big\{ \mathcal{B} \ni f \Big\} \approx 0 \tag{3}$$

(2)

in nonparametric problems.

1. Inferences about Functions

- CMB Spectrum Example
- The Statistical Problem in General Form
- Criteria for Effective Inferences

2. Nonparametric Confidence Balls

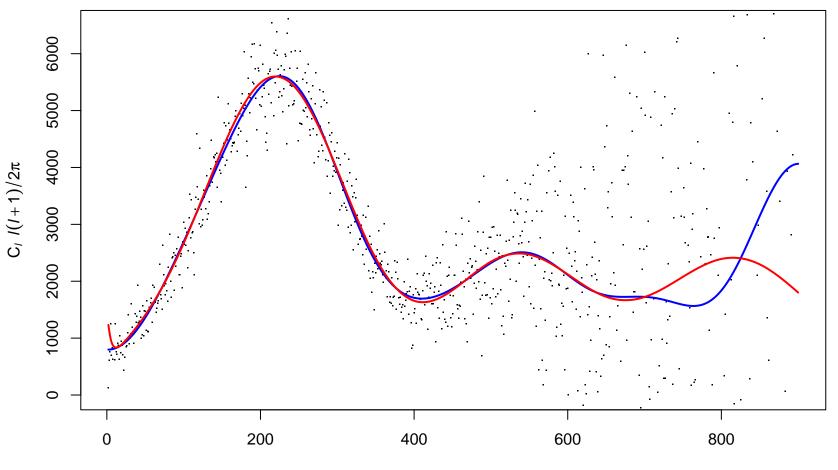
- Features and Extensions

- Parametric Probes
- Model Checking
- Confidence Catalogs

Our Approach

- Construct (asymptotic) confidence set for f
 - -that is uniform $\sup_{f \in \mathcal{F}} |\mathsf{P} \{ \mathcal{C}_n \ni f \} (1 \alpha) | \to 0$,
 - that provides post-hoc protection: we can constrain or probe the ball to address any set of questions.
- Construction based on Stein-Beran-Dümbgen pivot method.
- Extended to wavelet bases (GW, 2003b), weighted loss functions (GW, 2003c), and density estimation (GJW, 2003).
- Confidence set takes form of ball (or ellipsoid)

CMB: Center of Ball vs Concordance Model



Multipole Moment /

1. Inferences about Functions

- CMB Spectrum Example
- The Statistical Problem in General Form
- Criteria for Effective Inferences

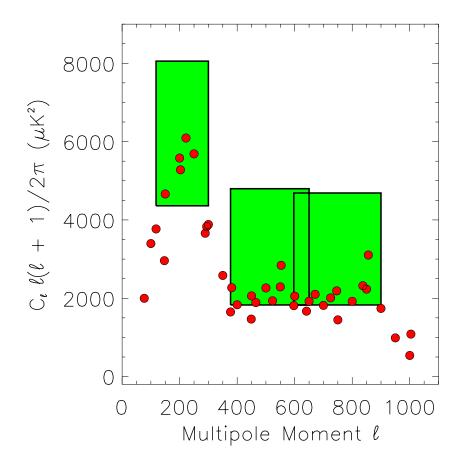
2. Nonparametric Confidence Balls

- Features and Extensions

- Parametric Probes
- Model Checking
- Confidence Catalogs

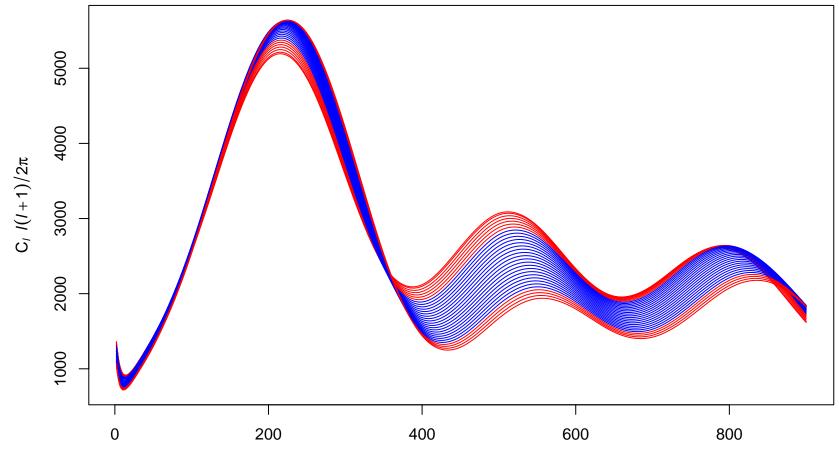
Eyes on the Ball I: Parametric Probes

- Peak Heights
- Peak Locations
- Ratios of Peak Heights



Eyes on the Ball I: Parametric Probes (cont'd)

Varied baryon fraction in $\rm CMBFAST$ keeping $\Omega_{\rm total}\equiv 1$



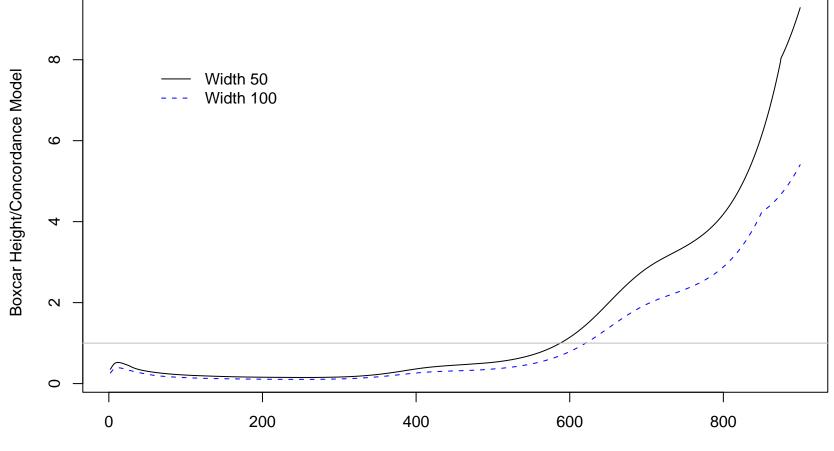
Multipole Moment /

Range [0.034,0.0586] in ball

Eyes on the Ball I: Parametric Probes (cont'd)

Probe from center with boxcars of given width centered at each ℓ .

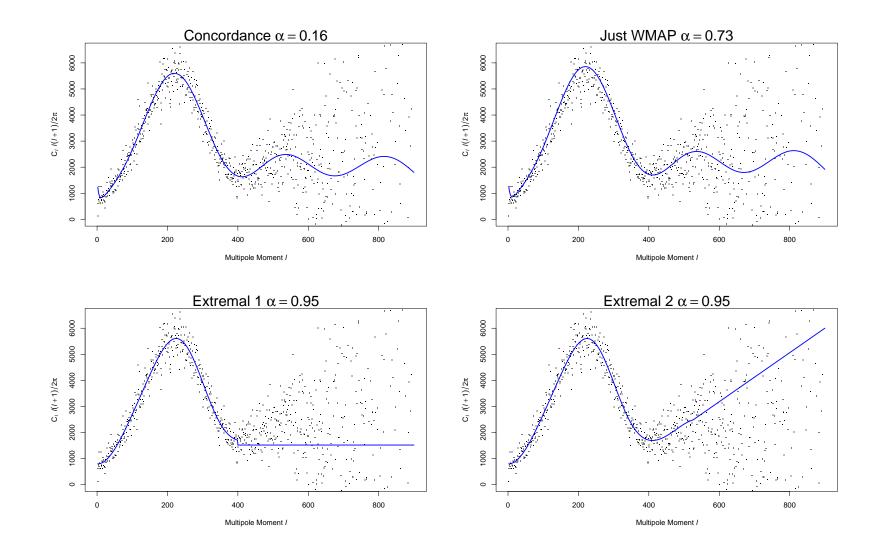
Maximum boxcar height in 95% ball, relative to Concordance Model



Multipole Moment /

Eyes on the Ball II: Model Checking

Inclusion in the confidence ball provides simultaneous goodness-of-fit tests for parametric (or other) models.



Eyes on the Ball III: Confidence Catalogs

• Our confidence set construction does not impose constraints based on prior knowledge.

Instead: form ball first and impose constraints at will.

• Raises the possibility of viewing inferences *as a function* of prior assumptions.

The confidence ball creates a mapping from prior assumptions to inferences; we call this a confidence catalog.

• Ex: Constraints on peak curvature over range defined by reasonable parametric models.

Take-Home Points: "Balls"

- Uniformity makes the asymptotic approximations more useful.
- Post-hoc protection allows snooping. Can make inferences about any set of functionals with simultaneous validity.
- Nonparametric approach provides check on physical models.
 Embedding parametric model in constrained nonparametric model gives flexibility when model is uncertain.
- Beginning with a confidence set on the whole object makes it easy to compare different sets of assumptions.