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Motivating Example #1: fMRI

• fMRI Data: Time series of 3-d images acquired while subject

performs specified tasks.
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• Goal: Characterize task-related signal changes caused (indirectly)

by neural activity. [See, for example, Genovese (2000), JASA 95, 691.]



fMRI (cont’d)

Perform hypothesis tests at

many thousands of volume

elements to identify loci of

activation.



Motivating Example #2: Source Detection

• Interferometric radio telescope observations processed into digital

image of the sky in radio frequencies.

• Signal at each pixel is a mixture of source and background signals.



Motivating Example #3: DNA Microarrays

•New technologies allow measurement of gene expression for

thousands of genes simultaneously.
Subject Subject

1 2 3 . . . 1 2 3 . . .

1 X111 X121 X131 . . . X112 X122 X132 . . .

2 X211 X221 X231 . . . X212 X222 X232 . . .

3 ... ... ... . . . ... ... ... . . .

Gene 4

5

6
...

Condition 1 Condition 2

• Goal: Identify genes associated with differences among conditions.

•Typical analysis: hypothesis test at each gene.



The Multiple Testing Problem

• Perform m simultaneous hypothesis tests.

Classify results as follows:

H0 Retained H0 Rejected Total

H0 True N0|0 N1|0 M0
H0 False N0|1 N1|1 M1

Total m − R R m

Only R is observed here.

• Assess outcome through combined error measure.

This binds the separate decision rules together.



Multiple Testing (cont’d)

•Traditional methods seek strong control of familywise

Type I error (FWER).

– Weak Control: If all nulls true, P
{
N1|0 > 0

}
≤ α.

– Strong Control: Corresponding statement holds for

any subset of tests for which all nulls are true.

For example, Bonferroni correction provides strong control

but is quite conservative.

• Can power be improved while maintaining control over a meaningful

measure of error?

Enter Benjamini & Hochberg . . .



FDR and the BH Procedure

•Define the realized False Discovery Rate (FDR) by

FDR =


N1|0
R

if R > 0,

0, if R = 0.

• Benjamini & Hochberg (1995) define a sequential p-value

procedure that controls expected FDR.

Specifically, the BH procedure guarantees

E(FDR) ≤ M0
m

α ≤ α

for a pre-specified 0 < α < 1.

(The first inequality is an equality in the continuous case.)



m = 50, α = 0.1
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•The BH procedure for p-values P1, . . . , Pm:

0. Select 0 < α < 1.

1. Define P(0) ≡ 0 and

RBH = max

{
0 ≤ i ≤ m: P(i) ≤ α

i

m

}
.

2. Reject H0 for every test where Pj ≤ P(RBH).

• Several variant procedures also control E(FDR).

• Bound on E(FDR) holds if p-values are independent or positively

dependent (Benjamini & Yekutieli, 2001). Storey (2001) shows it

holds under a possibly weaker condition.

• By replacing α with α/
∑m

i=1 1/i, control E(FDR) at level α for

any joint distribution on the p-values. (Very conservative!)



Road Map

1. Preliminaries

– Considering both types of errors: The False Nondiscovery Rate (FNR)

– Models for realized FDR and FNR

– FDR and FNR as stochastic processes

2. Understanding BH

– Re-express BH procedure as plug-in estimator

– Asymptotic behavior of BH

– Improving the power – more general plug-ins

– Asymptotic risk comparisons

3. Extensions to BH

– Conditional risk

– FDR control as an estimation problem

– Confidence intervals for realized FDR

– Confidence thresholds
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The False Nondiscovery Rate

• Controlling FDR alone only deals with Type I errors.

•Define the realized False Nondiscovery Rate as follows:

FNR =


N0|1

m − R
if R < m,

0 if R = m.

This is the proportion of false non-rejections among those tests

whose null hypothesis is not rejected.

• Idea: Combine FDR and FNR in assessment of procedures.



Basic Models

• Let Hi = 0 (or 1) if the ith null hypothesis is true (or false).

These are unobserved.

• Let Pi be the ith p-value.

•We assume that (P1, H1), . . . , (Pm, Hm) are independent.

– Under the conditional model, H1, . . . , Hm are fixed, unknown.

– Under the mixture model, we assume each Hi has Bernoulli〈a〉,
Pi |

{
Hi = 0

}
∼ Uniform〈0, 1〉, and Pi |

{
Hi = 1

}
∼ F ∈ F

Here, F is a class of alternative p-value distributions.

•Define M0 =
∑

i(1 − Hi) and M1 =
∑

i Hi = m − M0.
Under the conditional model, these are fixed.

Under the mixture model, M1 ∼ Binomial〈m, a〉.



Recurring Notation

m, M0, N1|0 # of tests, true nulls, false discoveries

a Mixture weight on alternative

Hm = (H1, . . . , Hm) Unobserved true classifications

Pm = (P1, . . . , Pm) Observed p-values

Pm
() = (P(1), . . . , P(m)) Sorted p-values (define P(0) ≡ 0)

U CDF of Uniform〈0, 1〉
F, f Alternative CDF and density

G = (1 − a)U + aF Marginal CDF of Pi (mixture model)

Ĝ Empirical CDF of Pm

εm =

√√√√ 1

2m
log

(
2

β

)
DKW bound 1 − β quantile of ‖Ĝ − G‖∞



Multiple Testing Procedures

• A multiple testing procedure T is a map [0, 1]m → [0, 1], where

the null hypotheses are rejected in all those tests for which

Pi ≤ T (Pm).

• Examples:

Uncorrected testing TU(Pm) = α

Bonferroni TB(Pm) = α/m

Benjamini-Hochberg TBH(Pm) = P(RBH)
Fixed Threshold Tt(P

m) = t

First-r T(r)(P
m) = P(r)



FDR and FNR as Stochastic Processes

•Define the realized FDR and FNR processes, respectively, by

FDR(t) ≡ FDR(t;Pm, Hm) =

∑
i

1
{
Pi ≤ t

}
(1 − Hi)∑

i

1
{
Pi ≤ t

}
+

∏
i

1
{
Pi > t

}

FNR(t) ≡ FNR(t;Pm, Hm) =

∑
i

1
{
Pi > t

}
Hi∑

i

1
{
Pi > t

}
+

∏
i

1
{
Pi ≤ t

}.

• For procedure T , the realized FDR and FNR are obtained by

evaluating these processes at T (Pm).

• Both these processes converge to Gaussian processes outside a

neighborhood of 0 and 1 respectively.



BH as a Plug-in Procedure

• Let Ĝ be the empirical cdf of Pm under the mixture model.

Ignoring ties, Ĝ(P(i)) = i/m, so BH equivalent to

TBH(Pm) = arg max
{
t: Ĝ(t) =

t

α

}
.

•We can think of this as a plug-in procedure for estimating

u∗(a, F ) = arg max
{
t: G(t) =

t

α

}
= arg max {t: F (t) = βt} ,

where β = (1 − α + αa)/αa.



Asymptotic Behavior of BH Procedure

This yields the following picture: α
m, α, u∗

0
m

u

Bonferroni FDR Uncorrected

F (u)

u

α α∗



Optimal Thresholds

•Under the mixture model and in the continuous case,

E(FDR(TBH(Pm))) = (1 − a)α.

•The BH procedure overcontrols E(FDR) and thus will not in

general minimize E(FNR).

•This suggests finding a plug-in estimator for

t∗(a, F ) = arg max

{
t: G(t) =

(1 − a)t

α

}
= arg max {t: F (t) = (β − 1/α)t} ,

where β − 1/α = (1 − a)(1 − α)/aα.

•Note that t∗ ≥ u∗.



Optimal Thresholds (cont’d)

• For each 0 ≤ t ≤ 1,

E(FDR(t)) =
(1 − a) t

G(t)
+ O

(
1√
m

)

E(FNR(t)) = a
1 − F (t)

1 − G(t)
+ O

(
1√
m

)
.

• Ignoring O(m−1/2) terms and choosing t to minimize E(FNR(t))

subject to E(FDR(t)) ≤ α, yields t∗(a, F ) as the optimal threshold.

• Can the potential improvement in power be achieved when

estimating t∗?
Yes, if F sufficiently far from U .



Operating Characteristics of the BH Method

•Define the misclassification risk of a procedure T by

RM(T ) =
1

m

m∑
i=1

E
∣∣∣1 {

Pi ≤ T (Pm)
}
− Hi

∣∣∣ .
This is the average fraction of errors of both types.

•Then RM(TBH) ∼ R(a, F ) as m → ∞, where

R(a, F ) = (1−a)u∗+a(1−F (u∗)) = (1−a)u∗+a(1−βu∗).

• Compare this to Uncorrected and Bonferroni and the oracle rule

TO(Pm) = b where b solves f(b) = (1 − a)/a.

RM(TU) = (1 − a)α + a (1 − F (α))

RM(TB) = (1 − a)
α

m
+ a

(
1 − F

(
α

m

))
RM(TO) = (1 − a) b + a (1 − F (b)) .
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Extension 1: Conditional Risk

• It is intuitively appealing (cf. Kiefer, 1977) to assess the performance

of a procedure conditionally given the ordered p-values.

•When conditioning, we need only consider the m + 1 procedures

T(r)(P
m) = P(r) for r = 0, . . . , m.

•Under the conditional model, once Pm
() is observed, only the

randomness in the labelling of the true classifications remains.

• Consider a parametric family F = {Fθ: θ ∈ Θ} of alternative

p-value distributions.

Then, (M0, θ) becomes the unknown parameter.

Begin by treating this as known.



Conditional Risk (cont’d)

•Define a conditional risk for λ ≥ 0 by

Rλ(r;M0, θ | Pm
() ) = EM0,θ

[
FNR(P(r)) + λ FDR(P(r))

∣∣∣∣ Pm
()

]
,

where M0 and r are in {0, . . . , m} and θ ∈ Θ.

•Here λ determines the balance between the two error types.

It also serves as a Lagrange multiplier for the optimization problem:

r∗ = arg min
0≤r≤m

EM0,θ
(FNR(P(r)) | Pm

() )

subject to

EM0,θ
(FDR(P(r)) | Pm

() ) ≤ α.



Conditional Risk (cont’d)

•This problem can be solved exactly:

– Closed form for conditional distribution of FDR and FNR based

on expressions for

PM0,θ

{
N1|0 = k | Pm

()

}
and EM0,θ

(N1|0 | Pm
() )

derived via generating function methods.

– Find Rλ-minimizer explicitly.

– Select λ to satisfy the constraint.

• Remark: The Rλ minimizing conditional procedure also minimizes

the unconditional Rλ risk, but the constrained optimization

problem is harder to solve unconditionally.



Conditional Risk (cont’d)

• For M0 unknown case, Rλ dominated by extremes,

M0 = 0 or M0 = m.

One approach: minimize conditional Bayes risk based on Rλ

Rλ(r; θ | Pm
() ) =

m∑
m0=0

Rλ(r;m0, θ | Pm
() ) pθ(m0 | Pm

() ),

where pθ(m0 | Pm
() ) is derived from a specified (e.g., Uniform)

prior on {0, . . . , m}.
•This minimizes the unconditional Bayes risk.



Compare Rλ for BH, optimal, and naive:

Theta = 2

M0/m

R
_l

am
bd

a

0.0 0.4 0.8

0.
0

0.
4

0.
8

Theta = 3

M0/m

R
_l

am
bd

a

0.0 0.4 0.8

0.
0

0.
4

0.
8

Theta = 4

M0/m

R
_l

am
bd

a

0.0 0.4 0.8

0.
0

0.
4

0.
8

Theta = 5

M0/m

R
_l

am
bd

a

0.0 0.4 0.8

0.
0

0.
4

0.
8



Bayesian FDR

•These conditional results yield the posterior distribution of FDR

and FNR (and related quantities).

No simulation necessary: can compute full posterior directly.

• Suggests the procedure TBayes(P
m) = P(r∗), where

r∗ = arg min
0≤r≤m

E(FNR(P(r)) | Pm
() )

subject to

E(FDR(P(r)) | Pm
() ) ≤ α.

•This procedure has good asympotic frequentist performance.



Extension 2: Estimating a and F

•To compute plug-in estimates that approximate the optimal

threshold, we need a good estimate of a.

For instance,

t̂∗ = arg max

{
t: Ĝ(t) =

(1 − â)t

α

}
.

• For confidence thresholds, need estimate of a and F .

• Identifiability

f

b

If min f = b > 0, can write F = (1−b)U+bF0,

so many (a, F ) pairs yield the same G.

If f = F ′ is decreasing with f(1) = 0, then

(a, F ) is identifiable.



Estimating a and F (cont’d)

• Even when non-identifiable, a can be bounded from below by a.

a − a is typically small. For example, a − a = ae−nθ2/2 in the

two-sided test of θ = 0 versus θ 6= 0 in the Normal〈θ, 1〉 model.

• Parametric Case: (a, θ) typically identifiable; use MLE.

•Non-parametric case:

– Derived a 1 − β confidence interval for a and thus a.

– When F concave, get âLCM = a + OP (m−1/3).
Can do better with further smoothness assumptions.

– In general, requires density estimate of g.

– Can estimate F by: F̂m = argminH‖Ĝ − (1 − â)U − âH‖∞.

Consistent for reduced F if â consistent for a.

•Note: Assumption of concavity has a big effect.



Extension 3: Confidence Intervals

• Beyond controlling FDR and FNR on average, we would like to be

able to make inferences about the realized quantities.

•Want to find c(Pm, T ), for any procedure T , such that

Pa,F

{
FDR(T (Pm)) ≤ c(Pm, T )

}
≥ 1 − α,

at least asymptotically.

• Let r(Pm, T ) =
∑

i 1
{
Pi ≤ T (Pm)

}
be the number of rejections.

•Template: c(Pm, T ) is a 1 − β quantile of the sum of r(Pm, T )

independent Bernoulli〈qi〉 variables.

Here, the qi bound q(P(i)) with high probability, where q(t) =

(1 − a)/g(t) gives the conditional distribution of H1 given P1.

The qi depend on the assumed class F of alternative p-value

distributions.



Confidence Intervals (cont’d)

• Case 1: F = {Fθ: θ ∈ Θ}

– Asymptotic: β = α and qi =
1 − â

1 − â + âf
θ̂
(P(i))

.

– Exact: Let β = 1 −√
1 − α and let Ψm be a 1 − β confidence

set for (a, θ).

qi = sup
Ψm

1 − a

1 − a + afθ(P(i))
.

Example: Invert DKW Envelope

Ψm = {(a, θ): ‖Ga,θ − Ĝ‖∞ ≤ εm}.



Confidence Intervals (cont’d)

• Case 2: F = {F :F concave, continuous cdf and F ≺ U}.
Can find a minimal concave cdf G in DKW envelope. Define

qi =
1 − â

g(Pi)
,

and use β = 1 − (1 − α)1/3.

•May be possible to obtain nonparametric results in non-concave

case, but the intervals appear to be hopelessly wide in practice.

• Bayesian posterior intervals also have asymptotically valid

frequentist coverage.

• All these results extend to give joint confidence intervals

for FDR and FNR.



Extension 4: Confidence Thresholds

• In practice, it would be useful to have a procedure TC that

guarantees

PG

{
FDR(TC) > c

}
≤ α

for some specified c and α.

We call this a (1 − α, c) confidence threshold procedure.

•Two approaches: an asymptotic threshold using the Bootstrap,

and an exact (small-sample) threshold requiring numerical search.

•Here, I’ll discuss the case where a is known.

In general, can use an estimate of a, but this introduces additional

complexity.



Bootstrap Confidence Thresholds

• First guess: Choose T such that

P
Ĝ

{
FDR∗(T ) ≤ c

}
≥ 1 − α.

Unfortunately, this fails.

•The problem is an additional bias term:

1 − α = P
Ĝ

{
FDR∗(T ) ≤ c

}
≈ PG

{
FDR(T ) ≤ c + (Q(T ) − Q̂(T ))

}
6= PG

{
FDR(T ) ≤ c

}
,

where Q = (1 − a)U/G and Q̂ = (1 − a)U/Ĝ.



Bootstrap Confidence Thresholds (cont’d)

• Let β = α/2 and εm =

√√√√ 1

2m
log

(
2

β

)
.

• Procedure

1. Draw H∗
1 . . . , H∗

m iid Bernoulli〈a〉
2. Draw P ∗

i |H∗
i from (1 − H∗

i )U + H∗
i F̂ .

3. Define Ω∗
c(t) =

∑
i I{P ∗

i ≤ t}(1 − H∗
i − c).

4. Use threshold defined by

TC = max
{
t: P

Ĝ

{
Ω∗

c(t) ≤ −c εm
}
≥ 1 − β

}
.

•Then,

PG

{
FDR(TC) ≤ c

}
≥ 1 − α + O

(
1√
m

)
.



Exact Confidence Thresholds

• Let Mβ be a 1 − β confidence set for M0, derived from the

Binomial〈m, 1 − a〉.
•Define

S(t;hm, pm) =

∑
i 1

{
pi ≤ t

}
(1 − hi)∑

i(1 − hi)
,

U =

{
(hm, pm):

∑
i

(1 − hi) ∈ Mα and ‖S(·;hm, pm) − U‖∞ ≤ εm

}
,

where εm =
√

log(2/β)/2m as above.

•Then, if β = 1 −√
1 − α, PG

{
(Hm, Pm) ∈ U

}
≥ 1 − α and

TC = sup {t : FDR(t;hm, Pm) ≤ c and hm : (hm, Pm) ∈ U}
is a (1 − α, c) confidence threshold procedure.

That is, PG

{
FDR(TC) ≤ c

}
≥ 1 − α.



Exact Confidence Thresholds (cont’d)

The confidence set U directly yields a confidence set for the FDR(t)

sample paths.



Take-Home Points

• Realized versus Expected FDR

• Considering both FDR and FNR yields greater power

•Multiple testing problem is transformed to an estimation problem.

•Must control FDR and FNR as stochastic processes.

In general, the threshold and the FDR are coupled, and these

correlations can have a large effect.


