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Motivating Example #1: f{MRI

e fMRI Data: Time series of 3-d images acquired while subject
performs specified tasks.
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e Goal: Characterize task-related signal changes caused (indirectly)
by neural activity. [See, for example, Genovese (2000), JASA 95, 691.]



fMRI (cont'd)

Perform hypothesis tests at
many thousands of volume
elements to identify loci of

activation.




Motivating Example #2: Source Detection

e Interferometric radio telescope observations processed into digital
iImage of the sky in radio frequencies.

e Signal at each pixel is a mixture of source and background signals.




Motivating Example #3: DNA Microarrays

e New technologies allow measurement of gene expression for
thousands of genes simultaneously.
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e Goal: Identify genes associated with differences among conditions.

e Typical analysis: hypothesis test at each gene.



The Multiple Testing Problem

e Perform m simultaneous hypothesis tests.

Classify results as follows:
Hy Retained H{ Rejected

Total m— R R

Only R is observed here.
e Assess outcome through combined error measure.

This binds the separate decision rules together.



Multiple Testing (cont'd)

e Traditional methods seek strong control of familywise
Type | error (FWER).

—Weak Control: If all nulls true, P{Nl\o > O} < q.
— Strong Control: Corresponding statement holds for
any subset of tests for which all nulls are true.
For example, Bonferroni correction provides strong control

but is quite conservative.

e Can power be improved while maintaining control over a meaningful
measure of error?

Enter Benjamini & Hochberg . ..



FDR and the BH Procedure

e Define the realized False Discovery Rate (FDR) by

FDR = <

2

N
SR>,
R

0, ifR=0

e Benjamini & Hochberg (1995) define a sequential p-value
procedure that controls expected FDR.

Specifically, the BH procedure guarantees

E(FDR)

for a pre-specified 0 < o < 1.

My
< —a <«
m

(The first inequality is an equality in the continuous case.)
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e The BH procedure for p-values Py, ..., Py:

0.Select 0 < @ < 1.
1. Define P(O) = 0 and

RBH = max{O S 1 S m. P(z') S Ozz} .
m

2. Reject Hy for every test where P; < P(RBH)'

e Several variant procedures also control E(FDR).

e Bound on E(FDR) holds if p-values are independent or positively
dependent (Benjamini & Yekutieli, 2001). Storey (2001) shows it
holds under a possibly weaker condition.

¢ By replacing o with o/ 31" 1 1/, control E(FDR) at level « for
any joint distribution on the p-values. (Very conservative!)



Road Map

1. Preliminaries

— Considering both types of errors: The False Nondiscovery Rate (FNR)
— Models for realized FDR and FNR
— FDR and FNR as stochastic processes

2. Understanding BH

— Re-express BH procedure as plug-in estimator
— Asymptotic behavior of BH
— Improving the power — more general plug-ins

— Asymptotic risk comparisons

3. Extensions to BH

— Conditional risk
— FDR control as an estimation problem
— Confidence intervals for realized FDR

— Confidence thresholds



Recent Work on FDR

Benjamini & Hochberg (1995)
Benjamini & Liu (1999)
Benjamini & Hochberg (2000)
Benjamini & Yekutieli (2001)

Abromovich, et al. (2000)

Storey (2001a,b)

Efron, et al. (2001)

Storey & Tibshirani (2001)
Tusher, Tibshirani, Chu (2001)

Genovese & Wasserman (2001a,b)



The False Nondiscovery Rate

e Controlling FDR alone only deals with Type | errors.

e Define the realized False Nondiscovery Rate as follows:

FNR=¢m - R
0

if R =m.

This is the proportion of false non-rejections among those tests
whose null hypothesis is not rejected.

e Idea: Combine FDR and FNR in assessment of procedures.



Basic Models

e Let H; = 0 (or 1) if the ™™ null hypothesis is true (or false).
These are unobserved.

o Let P, be the i'" p-value.
e We assume that (Py, Hy), ..., (Pm, Hmy) are independent.

— Under the conditional model, Hy, ..., Hy, are fixed, unknown.

— Under the mixture model, we assume each H; has Bernoulli{a),
P; | {H; =0} ~ Uniform(0,1), and P; | {H;=1} ~F € F

Here, F is a class of alternative p-value distributions.

e Define M() = ZZ(]. — HZ) and M1 = ZZ H’i =m — M().
Under the conditional model, these are fixed.
Under the mixture model, M; ~ Binomial(m, a).



Recurring Notation

m, My, Nl\o # of tests, true nulls, false discoveries
a Mixture weight on alternative
H" = (Hy,...,Hy) Unobserved true classifications

P" =(Py,...,Py)  Observed p-values
P} = (Puy,..., Pum)) Sorted p-values (define P = 0)

U CDF of Uniform(0, 1)

F, f Alternative CDF and density
G=(1—a)U+aF  Marginal CDF of P; (mixture model)
G Empirical CDF of P

1 2 A
€ = \l2m log (B) DKW bound 1 — 3 quantile of |G — G||



Multiple Testing Procedures

e A multiple testing procedure T' is a map [0, 1]"* — [0, 1], where

the null hypotheses are rejected in all those tests for which
P, <T(P™).

e Examples:
Uncorrected testing Tu(P™") =«
Bonferroni Ts(P™) =a/m
Benjamini-Hochberg Teu(P™) = PRap)
Fixed Threshold T.(P™) =t

First-r T(T)(Pm) — P(r)



FDR and FNR as Stochastic Processes

e Define the realized FDR and FNR processes, respectively, by

> 1{P <t} (1-H)

FDR(?) = FDR(t; P, H™) = ZliP@-St} +II14P > )
> 1{P >t} H
FNR(t) = FNR(t; P, H™) = Y UE >ty + [[1{B <t}

e For procedure T', the realized FDR and FNR are obtained by
evaluating these processes at T(P"").

e Both these processes converge to Gaussian processes outside a
neighborhood of 0 and 1 respectively.



BH as a Plug-in Procedure

e Let G be the empirical cdf of P™ under the mixture model.
lgnoring ties, (A}’(P(Z-)) = 1/m, so BH equivalent to

Teu(P™) = arg max {t: G(t) = é} .

e We can think of this as a plug-in procedure for estimating

uw*(a, F') = arg max {t: G(t) = i}

= argmax{t: F(t) = gt},

where 8 = (1 — a + aa)/aa.



Asymptotic Behavior of BH Procedure

This yields the following picture:
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Optimal Thresholds

e Under the mixture model and in the continuous case,

E(FDR(Tgu(P"™))) = (1 — a)a.

e The BH procedure overcontrols E(FDR) and thus will not in
general minimize E(FNR).

e This suggests finding a plug-in estimator for

o
= argmax{t: F(t) = (06— 1/a)t},
where 0 —1/a = (1 —a)(l — a)/aa.
e Note that t* > u™.

t*(a, F') = arg max {t: () =" a)t}



Optimal Thresholds (cont'd)

eForeach 0 <t <1,

E(FDR(1)) = G-t 0<1>

G(t) vm
E(FNR(t)) = a 1 — 58 + 0 <\/%> .

e Ignoring O(m—1/2) terms and choosing ¢ to minimize E(FNR(¢))
subject to E(FDR(%)) < «, yields t*(a, F') as the optimal threshold.

e Can the potential improvement in power be achieved when
estimating t*7

Yes, if F' sufficiently far from U.



Operating Characteristics of the BH Method

e Define the misclassification risk of a procedure T’ by

Ry(T) = % f;lE 1{P, <T(P™)} - Hy.

This is the average fraction of errors of both types.

e Then R,;(Tsn) ~ R(a, F') as m — oo, where
R(a,F)=(1-a)u*+a(l—-F(u*)) = (1 —-a)u" +a(l—pu").

e Compare this to Uncorrected and Bonferroni and the oracle rule
To(P"™) = b where b solves f(b) = (1 — a)/a.

Ry(Tvy)=(1—a)a + a(l — F(a))

Ryy(Th) = (1—a) = + a(l—F<%>>
Ry(To)=(1—a)b + a(1l — F(b)).
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Extension 1: Conditional Risk

e It is intuitively appealing (cf. Kiefer, 1977) to assess the performance
of a procedure conditionally given the ordered p-values.

e When conditioning, we need only consider the m + 1 procedures
T(T)(Pm) = P(r) for r = 0, e o.M,

e Under the conditional model, once P<7>n Is observed, only the
randomness in the labelling of the true classifications remains.

e Consider a parametric family F = {Fp: 6 € ©} of alternative
p-value distributions.

Then, (Mj, ) becomes the unknown parameter.
Begin by treating this as known.



Conditional Risk (cont'd)

e Define a conditional risk for A > 0 by
Ry(ri Mo, 0 | P™™) = Epy g [FN R(P,)) + AFDR(P,)) ' P{)TL] |

where Mg and r are in {0,...,m} and 0 € ©.
e Here A\ determines the balance between the two error types.
It also serves as a Lagrange multiplier for the optimization problem:

Iy = arg ()<n71i<nm En.0(FNR(Fy) | BT)

subject to
Evyo(FDR(P) | PIY) < a



Conditional Risk (cont'd)

e T his problem can be solved exactly:

— Closed form for conditional distribution of FDR and FNR based
on expressions for

PMOﬁ{NHO = k ‘ P{)n} and EMan(N”O ‘ P(T)n)
derived via generating function methods.
—Find Ry-minimizer explicitly.
— Select A to satisfy the constraint.
e Remark: The R, minimizing conditional procedure also minimizes

the unconditional R) risk, but the constrained optimization
problem is harder to solve unconditionally.



Conditional Risk (cont'd)

e For My unknown case, R\ dominated by extremes,
MO =0 or MQ — m.
One approach: minimize conditional Bayes risk based on R)

m
Ry(ri 0| P")= > Rx(rimo,0| P)")pg(mo | F}"),
moy=0

where pg(mg | F)") is derived from a specified (e.g., Uniform)
prior on {0, ..., m}.

e This minimizes the unconditional Bayes risk.



Compare R) for BH, optimal, and naive:
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Bayesian FDR

e These conditional results yield the posterior distribution of FDR
and FNR (and related quantities).

No simulation necessary: can compute full posterior directly.
e Suggests the procedure Tp,es(P"") = P,), Where

e = arg ()<n¢1~|<nm E(FNR(Fy) | P

subject to
E(FDR(F) | P)) < o

e This procedure has good asympotic frequentist performance.



Extension 2: Estimating a and F

e To compute plug-in estimates that approximate the optimal
threshold, we need a good estimate of a.

For instance,

84

* = arg max {t: G(t) = (1= a)t} .

e For confidence thresholds, need estimate of a and F'.

e |dentifiability

If min f =0 >0, canwrite ' = (1-0)U+bFy,
f so many (a, F') pairs yield the same G.

If f = F'is decreasing with f(1) = 0, then
(a, F') is identifiable.




Estimating a and F' (cont'd)

e Even when non-identifiable, a can be bounded from below by a.

: : 2/9 .
a — a iIs typically small. For example, a —a = ae~ /2 in the
two-sided test of 6 = 0 versus 6 # 0 in the Normal(#, 1) model.

e Parametric Case: (a, ) typically identifiable; use MLE.

e Non-parametric case:

— Derived a 1 — 3 confidence interval for a and thus a.

—When F' concave, get arcy = a + Op(m_l/S).
Can do better with further smoothness assumptions.

—In general, requires density estimate of g.

—Can estimate F by: Fy,, = argming||G — (1 —a)U — aH]|| ..
Consistent for reduced F' if a consistent for a.

e Note: Assumption of concavity has a big effect.



Extension 3: Confidence Intervals

e Beyond controlling FDR and FNR on average, we would like to be
able to make inferences about the realized quantities.

e Want to find ¢(P"™,T), for any procedure T, such that
Po,r{ FOR(T(P™)) < (P, T)} 21— a,

at least asymptotically.
olet r(P"™,T)=%,;1 {PZ- < T(Pm)} be the number of rejections.
e Template: ¢(P",T) is a 1 — 8 quantile of the sum of (P, T)

independent Bernoulli{g;) variables.
Here, the ¢; bound ¢(F; ) with high probability, where ¢(t) =
(1 —a)/g(t) gives the conditional distribution of Hy given P;.

The g; depend on the assumed class F of alternative p-value
distributions.



Confidence Intervals (cont'd)

e Case 1: F ={Fy:0 € ©}
1—a
1—a + afg(P@)'
—Exact: Let 3=1—+/1—a and let V,,, be a 1 — 3 confidence
set for (a,6).

— Asymptotic: 8 =« and ¢; =

1—a
g; = sup .
: v, 1—a + afg(Py)

Example: Invert DKW Envelope
Vi = {(a,0): |Gag— Gl < em}.



Confidence Intervals (cont'd)

e Case 2: F ={F: F concave, continuous cdf and F' < U}.
Can find a minimal concave cdf GG in DKW envelope. Define
1-a
RTI)

and use 3=1— (1 —a)l/3.

e May be possible to obtain nonparametric results in non-concave
case, but the intervals appear to be hopelessly wide in practice.

e Bayesian posterior intervals also have asymptotically valid
frequentist coverage.

e All these results extend to give joint confidence intervals
for FDR and FNR.



Extension 4: Confidence Thresholds

e In practice, it would be useful to have a procedure T that
guarantees

Pe{ FDR(T¢) > ¢} < a
for some specified ¢ and «.

We call this a (1 — «, ¢) confidence threshold procedure.

e Two approaches: an asymptotic threshold using the Bootstrap,
and an exact (small-sample) threshold requiring numerical search.

e Here, I'll discuss the case where a is known.

In general, can use an estimate of a, but this introduces additional
complexity.



Bootstrap Confidence Thresholds

e First guess: Choose 7' such that
P-{FDR*(T) < ¢} >1-a.

Unfortunately, this fails.

e T he problem is an additional bias term:
1 —a=Pz{FDRY(T) < c}
~ Pe{ FDR(T) < ¢+ (Q(T) — Q(T)) |
# Po{FDR(T) < c},
where Q = (1 — a)U/G and Q = (1 — a)U/G.



Bootstrap Confidence Thresholds (cont'd)

elet 3= «/2 and emJ;?ZIog <;>

e Procedure
1. Draw HY ..., Hy, iid Bernoulli(a)
2. Draw P}|H? from (1 — H)U + H}F.
3. Define Q27(t) = >2; [{P" <t}(1—-H —c).
4. Use threshold defined by

T = max {t: P@{Qi(t) < —cem} >1— ﬁ}

e [ hen,

Po{FDR(T¢) < ¢} >1-a+0 <\/1m> .



Exact Confidence Thresholds

o Let ./\/lﬁ be a 1 — (3 confidence set for M, derived from the
Binomial(m,1 — a).
e Define

(e, ) = 2 {;(gl t_};fl) 1)

U = {(hmapm): Z(l o hi) S Moz and HS(v hmvpm) — UHOO = Em} |

1

where ¢, = \/Iog(2/[3)/2m as above.
e Then, if 8=1—I—a, Po{(H™, P") €U} >1-aand
Te =sup{t: FDR(t; ", P™) < cand A" : (B, P™) e U}

is a (1 — «, ¢) confidence threshold procedure.
That is, Po{ FDR(T¢) < ¢} > 1 - a.



FDR(1)

Exact Confidence Thresholds (cont'd)

The confidence set U directly yields a confidence set for the FDR(?)
sample paths.
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Take-Home Points

e Realized versus Expected FDR

e Considering both FDR and FNR vyields greater power

e Multiple testing problem is transformed to an estimation problem.
e Must control FDR and FNR as stochastic processes.

In general, the threshold and the FDR are coupled, and these
correlations can have a large effect.



