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Motivating Example #1: f{MRI

e fMRI Data: Time series of 3-d images acquired while subject
performs specified tasks.
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e Goal: Characterize task-related signal changes caused (indirectly)
by neural activity. [See, for example, Genovese (2000), JASA 95, 691.]



fMRI (cont'd)

Perform hypothesis tests at
many thousands of volume
elements to identify loci of

activation.




Motivating Example #2: Source Detection

e Interferometric radio telescope observations processed into digital
iImage of the sky in radio frequencies.

e Signal at each pixel is a mixture of source and background signals.




Motivating Example #3: DNA Microarrays

e New technologies allow measurement of gene expression for
thousands of genes simultaneously.
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e Goal: Identify genes associated with differences among conditions.

e Typical analysis: hypothesis test at each gene.
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The Multiple Testing Problem

e Perform m simultaneous hypothesis tests with a common procedure.

e For any given threshold, classify the results as follows:

Hy Retained H( Rejected | Total
HO True TN FD TO
Hy False FN 1D T
Total N D m

Mnemonics: T/F = True/False, D/N = Discovery/Nondiscovery

All quantities except m, D, and [N are unobserved.

e The problem is to choose a threshold that balances the
competing demands of sensitivity and specificity.



How to Choose a Threshold?

e Control Per-Comparison Type | Error

—a.k.a. “uncorrected testing,” many type | errors

— Gives PO{FDZ- > O} < a marginally forall 1 <7 <m

e Strong Control of Familywise Type | Error

—e.g.: Bonferroni: use per-comparison significance level o/m
— Guarantees P){FD >0} <

e False Discovery Control

—e.g.: Benjamini & Hochberg (BH, 1995, 2000): False Discovery Rate (FDR)

— Guarantees FDR =E (%) < o
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The Benjamini-Hochberg Procedure

o Given m p-values ordered 0 = Py < P(p) <--- < Py,
BH rejects any null hypothesis with P; < Tpy, where

(
TBH — MaxX {P(Z) P(Z) S Oza} .
e BH procedure guarantees that

FDR = E (FD> <do,
D m

e This bound holds at least under “positive dependence”.

e Gives more power than Bonferroni, fewer Type | errors than
uncorrected testing.

o Replacing a by i/ 37" { 1/ extends FDR bound to any distribution,
but this is typically very conservative.



p-value

The Benjamini-Hochberg Procedure (cont'd)
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CotL + 1)/2m (uK?)

Astronomical Examples (PiCA Group)

e Baryon wiggles (Miller, Nichol, Batuski 2001)
e Radio Source Detection (Hopkins et al. 2002)
e Dark Energy (Scranton et al. 2003)
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Mixture Model for Multiple Testing

elet P""=(Py,...,Py) be the p-values for the m tests.

olet H" = (Hy,...,Hy) where H; =0 (or 1) if
the 7" null hypothesis is true (or false).

e \We assume the following model:

Hy, ..., Hy, iid Bernoulli{a)
=1, ... Zpiid Lr
P, | H;=0,=;, =¢&; ~ Uniform(0, 1)
PilHi=1=Z=§ ~§&.

where L r denotes a probability distribution on a
class F of distributions on [0, 1].



Mixture Model for Multiple Testing (cont'd)

e Marginally, Py, ..., Py, are drawn iid from
G = (1—-a)U + aF,
where U is the Uniform(0, 1) cdf and

F = [€dLy(g).
e Typical examples:
— Parametric family: Fg = {Fp: 0 € O}
— Concave, continuous distributions

Fo = {F: F concave, continuous cdf with F > U}.

e Can also work under what we call the conditional model where
Hq, ..., Hy, are fixed, unknown.



Multiple Testing Procedures

e A multiple testing procedure T' is a map [0, 1]"* — [0, 1], where

the null hypotheses are rejected in all those tests for which
P; <T(P™). We call T" a threshold.

e Examples:
Uncorrected testing  Ty(P™) = «
Bonferroni Ts(P™) = a/m
Fixed threshold at ¢t  T}(P™) =t
First 7 Ty (P™) = Py
Benjamini-Hochberg Thu(P™) = sup{t: G(t) = t/a}
Oracle To(P™) =sup{t: G(t) = (1 — a)t/a}
Plug In Toi(P™) = sup{t: G(t) = (1 — a)t/a}
Regression Classifier Tre.(P") = sup{t: P{H,=1|P,= ty>1/2}



The False Discovery Process

e Define two stochastic processes as a function of threshold ¢:

the False Discovery Proportion FDP(%) and False Nondiscovery
Proportion FNP(t).

SIUP <t} (1-Hy) P
. m my __ 1 L alse biscoveries
FDP(t’P M ) B Zl{PZ < t} + 1{3” P, > t} B #Discoveries
1

Z ]-{Pz > t} HZ
EN P(t' pm H’m) _ ) _ #False Nondiscoveries
| | Z 1{PZ > t} + 1{3” P@' < t} #Nondiscoveries
)

e These converge to Gaussian processes away from ¢ = 0.



The False Discovery Rate

e For a given procedure 7', let FDP and FNP denote
the value of these processes at T'(P").

e Then, the False Discovery Rate (FDR) and the
False Nondiscovery Rate (FNR) are given by

FDR = E(FDP) FNR = E(FNP).
e [ he BH guarantee becomes
FDR < (1 —a)a < q,

where the first inequality is an equality in the continuous case.



The BH Procedure Revisited

o If G is the empirical cdf of the m p-values, CA?(P(Z-)) = 1/m, SO

Try = max {t: G(t) = é} — max{t: G’Et) < a} .

Note that FDR(?) ~ (1(;_(?)”, so BH bounds FDR taking a = 0.

e BH performs best in very sparse cases (1) ~ m); power can be
Improved in non-sparse cases by more complicated procedures.

e One can think of BH as a plug-in procedure for estimating

u*(a, G) = max {t: G(t) = é} .

e Genovese and Wasserman (2002) showed that Tpy converges
to a fixed-threshold at u*.



Optimal Thresholds

e In the continuous case, Benjamini and Hochberg's argument
shows that

E|FDP(Tu(P™))| = (1 - a)a.

e T he BH procedure overcontrols FDR and thus will not
in general minimize FNR.

e This suggests using Tpj, the plug-in estimator for

(a, Q) = max{t: Gy = L= a)t} |

84

e Note that t* > u*. If we knew a, this would correspond to using
the BH procedure with /(1 — a) in place of a.



Optimal Thresholds (cont'd)

eForeach 0 <t <1,

E(FDP(t)) = (1(;(;‘;)75 + O ((1—t))
E(FNP(t)) = a 1 — ggg + O ((a+(1-a))™).

e Ignoring O() terms and choosing t to minimize E(FNP(¢)) subject
to E(FDP(%)) < «, yields t*(a, G) as the optimal threshold.

e Tp; considered in some form by Benjamini & Hochberg (2000),
Storey (2003), and Genovese and Wasserman (2003).
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Outstanding Issues

e Interpretation

— How to choose o?
— How to interpret the FDR bound?

e Dependence

— Is positive regression dependence enough? How do we test for it?

— BH method appears to be very hard to “break;” plug-in more sensitive to
dependence.

— Extensions of new methods to handle dependence structure.

e Spatial Structure

— Standard multiple-testing methods ignore location information.
— Focal regions are easier to identify than arbitrarily placed voxels.
— Regions rather than voxels are the units of interest.

— This is the key to much improved inference in applications like fMRI.



Data Example
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Confidence Envelopes and Thresholds

e In practice, it would be useful to be able to control quantiles of
the FDP process.

e \We want a procedure 1" that for specified A and ~ guarantees
Pe{ FDP(T) > A} <

We call this an (A,1 — ) confidence-threshold procedure.

e Three methods: (i) asymptotic closed-form threshold, (ii) asymptotic
confidence envelope, and (iii) exact small-sample confidence
envelope. (See Genovese & Wasserman 2003, to appear Annals of
Statistics.)

I'll focus here on (iii).



Confidence Envelopes and Thresholds (cont'd)

e A 1 —~ confidence envelope for FDP is a random function FDP(%)
on [0, 1] such that

P{FDP(t) < FDP(t) for all t | > 1 — 1.

e Given such an envelope, we can construct confidence thresholds.

Two special cases have proven useful.
— Fixed-ceiling: T = sup{t: FDP(t) < a}.
— Minimum-envelope: T" = sup{t: FDP(¢) = min; FDP(¢)}.
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Exact Confidence Envelopes

e Given V1,...,Vj, let p;(v1,...,v;) be a level v test of the
null hypothesis that V7,...,V; are 11D Uniform(0, 1).

o Define  pit(p™) = (p;:h; = 0, 1 <4 < m)
m
mo(h™) = > (1 — hy)
1=1

and U (p™) = {B™ € {0, 1}™: 0, oy (0 (A™)) = O} .
Note that as defined, Uy always contains the vector (1,1,...,1).

olet G, (p™) = { FDP( ™, p™): h™ € Uy (p™) )

My (p™) = { mo(h™): B™ € Uy(p™) } -



Exact Confidence Envelopes (cont'd)

e THEOREM. For all 0 < a < 1, F, and positive integers m,
P{Hm € MW(Pm)} >1—7

P{Mye My(P")} >1-~

P{FDP(-H™,P™) € Gy} > 1—1.

e Define FDP to be the pointwise supremum over G~.
This is a 1 — v confidence envelope for FDP.

e Confidence thresholds follow directly. For example,
T, = sup {t . FDP(¢) < a}

is an (a, 1 — «) confidence threshold.



Choice of Tests

e The confidence envelopes depend strongly on choice of tests.

e Two desiderata for selecting uniformity tests:

— “"Power”, such that FDP is close to FDP, and

— Computability, given that there are 2" subsets to test.

e \WWant an automatic way to choose a good test

e Traditional uniformity tests, such as the (one-sided) Kolmogorov-
Smirnov (KS) test, do not usually meet both conditions.

For example, the KS test is sensitive to deviations from uniformity
equally though all the p-values.



The P(k) Tests

e In contrast, using the kth order statistic as a one-sided test statistic
meets both desiderata.

— For small k, these are sensitive to departures that have a large
impact on FDP. Good “power.”

— Computing the confidence envelopes is linear in m.

o We call these the P, tests.
They form a sub-family of weighted, one-sided KS tests.



FDP

Results: Py 90% Confidence Envelopes

For £ = 1,10, 25,50,100, with 0.05 FDP level marked.

Q
—

0.8

0.6
I

0.4

0.2

0.0

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025

p—value threshold



FDP

Results: P,y 90% Modified Envelopes

For £ = 1,10, 25,50,100, with 0.05 FDP level marked.
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Results: (0.05,0.9) Confidence Threshold
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Inferior Prefrontal Inferior Prefrontal
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Results: (0.05,0.9) Threshold versus BH
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Results: (0.05,0.9) Threshold versus Bonferroni
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Choosing k

e Direct Approach

Simulate from prior family, such as Normal(#, 1), Noncentral ¢(6),
or mixtures of these.

Compute the optimal k, k*(0, m).
e Data-dependent approaches
— Estimate a and F', and simulate from corresponding mixture.

— Parametric estimate k*(0, m).

— Solve for optimal £ distribution using smoothed estimate of G.

The data-dependence only has a small effect on coverage.



FDP

Results: Direct versus Fitting Approach
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False Discovery Control for Random Fields

e Multiple testing methods based on the excursions of random
fields are widely used, especially in functional neuroimaging (e.g.,
Cao and Worsley, 1999) and scan clustering (Glaz, Naus, and
Wallenstein, 2001).

e False Discovery Control extends to this setting as well.

e For a set S and a random field X = {X(s):s € S} with mean

function u(s), use the realized value of X to test the collection of
one-sided hypotheses

Hy s : p(s) =0 versus Hy 5 : p(s) > 0.
Let S ={s€S: u(s) =0}



False Discovery Control for Random Fields

e Define a spatial version of FDP by

AMSopN{seS:X(s)>t})
AM{se S:X(s)>t}) ’

where \ is usually Lebesgue measure.

FDP(t) =

e As in the cases discussed earlier, we can control FDR or
quantiles of FDP.

e Our approach is again based on constructing a confidence envelope
for FDP by finding a confidence superset U of 5.



Confidence Supersets and Envelopes

1. For every A C S, test Hy: A C Sy versus Hy : A Z Sy
at level y using the test statistic X(A) = supgc4 X (s).

The tail area for this statistic is p(z, A) = P{X(A) > z}
2. Llet C={A CS: p(x(A),A) > ~}.

3. Then, U = | ] A satisfies P{U D SO} >1—7.
AeC

4. And, —— . MUN{seS:X(s)>1})
FOP(t) = AN{seS:X(s)>t}) '

Is a confidence envelope for FDP.

Note: We need not carry out the tests for all subsets.



Gaussian Fields

e With Gaussian Fields, our procedure works under similar smoothness
assumptions as familywise random-field methods.

e For our purposes, approximation based on the expected Euler
characteristic of the field's level sets will not work because the
Euler characteristic is non-monotone for non-convex sets.

(Note also that for non-convex sets, not all terms in the Euler
approximation are accurate.)

e Instead we use a result of Piterbarg (1996) to approximate the
p-values p(z, A).

e Simulations over a wide variety of Sgs and covariance structures
show that coverage of U rapidly converges to the target level.



Results: (0.05,0.9) Confidence Threshold

Frontal Eye Field Supplementary Eye Field

Inferior Prefrontal Inferior Prefrontal

Superior Parietal

Temporal-parietal junction Temporal-parietal junction
Extrastriate Visual Cortex




Controlling the Proportion of False Regions

e Say a region R is false at tolerance € if more than an € proportion

of its area is in Sp:
AR N Sp)
> €.

AMR)  ~
e Decompose the t-level set of X into its connected components

Ctla sy Ctkt'

e For each level ¢, let £(t) denote the proportion of false regions (at
tolerance €) out of k¢ regions.

e [ hen,

: . MCyNU)
E(t):#{lgzﬁkt. )\(tctz') 26}
ki

gives a 1 — v confidence envelope for &.




Results: False Region Control Threshold

P{prop’n false regions < 0.1} > 0.95 where false means null overlap > 10%
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Take-Home Points

e Confidence thresholds have practical advantages for False Discovery
Control.

In particular, we gain a stronger inferential guarantee with little
effective loss of power.

e Dependence complicates the analysis greatly, but confidence
envelopes appear to be valid under positive dependence.

e For spatial applications, adjacency relations can be highly
informative but are typically ignored by multiple-testing methods.

Controlling proportion of false regions is a first step.

Region-based false discovery control (work in progress) is the next
step.



