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Motivating Example #1: fMRI

• fMRI Data: Time series of 3-d images acquired while subject

performs specified tasks.
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• Goal: Characterize task-related signal changes caused (indirectly)

by neural activity. [See, for example, Genovese (2000), JASA 95, 691.]



fMRI (cont’d)

Perform hypothesis tests at

many thousands of volume

elements to identify loci of

activation.



Motivating Example #2: Source Detection

• Interferometric radio telescope observations processed into digital

image of the sky in radio frequencies.

• Signal at each pixel is a mixture of source and background signals.



Motivating Example #3: DNA Microarrays

•New technologies allow measurement of gene expression for

thousands of genes simultaneously.
Subject Subject

1 2 3 . . . 1 2 3 . . .

1 X111 X121 X131 . . . X112 X122 X132 . . .

2 X211 X221 X231 . . . X212 X222 X232 . . .

3 ... ... ... . . . ... ... ... . . .

Gene 4

5

6
...

Condition 1 Condition 2

• Goal: Identify genes associated with differences among conditions.

•Typical analysis: hypothesis test at each gene.
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The Multiple Testing Problem

• Perform m simultaneous hypothesis tests with a common procedure.

• For any given threshold, classify the results as follows:

H0 Retained H0 Rejected Total

H0 True TN FD T0
H0 False FN TD T1

Total N D m

Mnemonics: T/F = True/False, D/N = Discovery/Nondiscovery

All quantities except m, D, and N are unobserved.

•The problem is to choose a threshold that balances the

competing demands of sensitivity and specificity.



How to Choose a Threshold?

• Control Per-Comparison Type I Error

– a.k.a. “uncorrected testing,” many type I errors

– Gives P0

{
FDi > 0

} ≤ α marginally for all 1 ≤ i ≤ m

• Strong Control of Familywise Type I Error

– e.g.: Bonferroni: use per-comparison significance level α/m

– Guarantees P0

{
FD > 0

} ≤ α

• False Discovery Control

– e.g.: Benjamini & Hochberg (BH, 1995, 2000): False Discovery Rate (FDR)

– Guarantees FDR ≡ E

(
FD

D

)
≤ α
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The Benjamini-Hochberg Procedure

• Given m p-values ordered 0 ≡ P(0) < P(1) < · · · < P(m),
BH rejects any null hypothesis with Pj ≤ TBH, where

TBH = max

{
P(i): P(i) ≤ α

i

m

}
.

• BH procedure guarantees that

FDR ≡ E

(
FD

D

)
≤ T0

m
α.

•This bound holds at least under “positive dependence”.

• Gives more power than Bonferroni, fewer Type I errors than

uncorrected testing.

• Replacing α by α/
∑m

i=1 1/i extends FDR bound to any distribution,

but this is typically very conservative.



The Benjamini-Hochberg Procedure (cont’d)

m = 50, α = 0.1
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Astronomical Examples (PiCA Group)

• Baryon wiggles (Miller, Nichol, Batuski 2001)

• Radio Source Detection (Hopkins et al. 2002)

•Dark Energy (Scranton et al. 2003)
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Mixture Model for Multiple Testing

• Let Pm = (P1, . . . , Pm) be the p-values for the m tests.

• Let Hm = (H1, . . . , Hm) where Hi = 0 (or 1) if

the ith null hypothesis is true (or false).

•We assume the following model:

H1, . . . , Hm iid Bernoulli〈a〉
Ξ1, . . . ,Ξm iid LF

Pi | Hi = 0,Ξi = ξi ∼ Uniform〈0, 1〉
Pi | Hi = 1,Ξi = ξi ∼ ξi.

where LF denotes a probability distribution on a

class F of distributions on [0, 1].



Mixture Model for Multiple Testing (cont’d)

•Marginally, P1, . . . , Pm are drawn iid from

G = (1− a)U + aF,

where U is the Uniform〈0, 1〉 cdf and

F =
∫

ξ dLF(ξ).

•Typical examples:

– Parametric family: FΘ = {Fθ: θ ∈ Θ}
– Concave, continuous distributions

FC = {F : F concave, continuous cdf with F ≥ U}.
• Can also work under what we call the conditional model where

H1, . . . , Hm are fixed, unknown.



Multiple Testing Procedures

• A multiple testing procedure T is a map [0, 1]m → [0, 1], where

the null hypotheses are rejected in all those tests for which

Pi ≤ T (Pm). We call T a threshold.

• Examples:
Uncorrected testing TU(Pm) = α

Bonferroni TB(Pm) = α/m

Fixed threshold at t Tt(P
m) = t

First r T(r)(P
m) = P(r)

Benjamini-Hochberg TBH(Pm) = sup{t: Ĝ(t) = t/α}
Oracle TO(Pm) = sup{t:G(t) = (1− a)t/α}
Plug In TPI(P

m) = sup{t: Ĝ(t) = (1− â)t/α}
Regression Classifier TReg(P

m) = sup{t: P̂{H1=1|P1=t}>1/2}



The False Discovery Process

•Define two stochastic processes as a function of threshold t:

the False Discovery Proportion FDP(t) and False Nondiscovery

Proportion FNP(t).

FDP(t;Pm, Hm) =

∑
i

1
{
Pi ≤ t

}
(1−Hi)∑

i

1
{
Pi ≤ t

}
+ 1

{
all Pi > t

} =
#False Discoveries

#Discoveries

FNP(t;Pm, Hm) =

∑
i

1
{
Pi > t

}
Hi∑

i

1
{
Pi > t

}
+ 1

{
all Pi ≤ t

} =
#False Nondiscoveries

#Nondiscoveries

•These converge to Gaussian processes away from t = 0.



The False Discovery Rate

• For a given procedure T , let FDP and FNP denote

the value of these processes at T (Pm).

•Then, the False Discovery Rate (FDR) and the

False Nondiscovery Rate (FNR) are given by

FDR = E(FDP) FNR = E(FNP).

•The BH guarantee becomes

FDR ≤ (1− a)α ≤ α,

where the first inequality is an equality in the continuous case.



The BH Procedure Revisited

• If Ĝ is the empirical cdf of the m p-values, Ĝ(P(i)) = i/m, so

TBH = max
{
t: Ĝ(t) =

t

α

}
= max

{
t:

t

Ĝ(t)
≤ α

}
.

Note that FDR(t) ≈ (1−a)t
G(t) , so BH bounds F̂DR taking a = 0.

• BH performs best in very sparse cases (T0 ≈ m); power can be

improved in non-sparse cases by more complicated procedures.

•One can think of BH as a plug-in procedure for estimating

u∗(a, G) = max
{
t: G(t) =

t

α

}
.

• Genovese and Wasserman (2002) showed that TBH converges

to a fixed-threshold at u∗.



Optimal Thresholds

• In the continuous case, Benjamini and Hochberg’s argument

shows that

E
[
FDP(TBH(Pm))

]
= (1− a)α.

•The BH procedure overcontrols FDR and thus will not

in general minimize FNR.

•This suggests using TPI, the plug-in estimator for

t∗(a, G) = max

{
t: G(t) =

(1− a)t

α

}
.

•Note that t∗ ≥ u∗. If we knew a, this would correspond to using

the BH procedure with α/(1− a) in place of α.



Optimal Thresholds (cont’d)

• For each 0 ≤ t ≤ 1,

E(FDP(t)) =
(1− a) t

G(t)
+ O

(
(1− t)m

)
E(FNP(t)) = a

1− F (t)

1−G(t)
+ O

(
(a + (1− a)t)m

)
.

• Ignoring O() terms and choosing t to minimize E(FNP(t)) subject

to E(FDP(t)) ≤ α, yields t∗(a, G) as the optimal threshold.

• TPI considered in some form by Benjamini & Hochberg (2000),

Storey (2003), and Genovese and Wasserman (2003).
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Outstanding Issues

• Interpretation

– How to choose α?

– How to interpret the FDR bound?

•Dependence

– Is positive regression dependence enough? How do we test for it?

– BH method appears to be very hard to “break;” plug-in more sensitive to

dependence.

– Extensions of new methods to handle dependence structure.

• Spatial Structure

– Standard multiple-testing methods ignore location information.

– Focal regions are easier to identify than arbitrarily placed voxels.

– Regions rather than voxels are the units of interest.

– This is the key to much improved inference in applications like fMRI.



Data Example

• Monkeys exhibit visual remapping in parietal

cortex

When the eyes move so that the receptive field

of a neuron lands on a previously stimulated

location, the neuron fires even though no stimulus

is present.

Implies transformation in neural representation

with eye movements. (Duhamel et al. 1992)

• Seek evidence for remapping in human cortex.

• See Merriam, Genovese, and Colby (2003).

Neuron, 39, 361–373 for more details.

• EPI-RT acquisition, TR 2s, TE 30ms, 20 oblique

slices, 3.125mm × 3.125mm × 3mm voxels.
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Confidence Envelopes and Thresholds

• In practice, it would be useful to be able to control quantiles of

the FDP process.

•We want a procedure T that for specified A and γ guarantees

PG

{
FDP(T ) > A

}
≤ γ

We call this an (A, 1− γ) confidence-threshold procedure.

•Three methods: (i) asymptotic closed-form threshold, (ii) asymptotic

confidence envelope, and (iii) exact small-sample confidence

envelope. (See Genovese & Wasserman 2003, to appear Annals of

Statistics.)

I’ll focus here on (iii).



Confidence Envelopes and Thresholds (cont’d)

• A 1− γ confidence envelope for FDP is a random function FDP(t)

on [0, 1] such that

P
{
FDP(t) ≤ FDP(t) for all t

}
≥ 1− γ.

• Given such an envelope, we can construct confidence thresholds.

Two special cases have proven useful.

– Fixed-ceiling: T = sup{t: FDP(t) ≤ α}.
– Minimum-envelope: T = sup{t: FDP(t) = mint FDP(t)}.

t

F
D

P



Exact Confidence Envelopes

• Given V1, . . . , Vj, let ϕj(v1, . . . , vj) be a level γ test of the

null hypothesis that V1, . . . , Vj are iid Uniform(0, 1).

•Define pm
0 (hm) = (pi:hi = 0, 1 ≤ i ≤ m)

m0(h
m) =

m∑
i=1

(1− hi)

and Uγ(pm) =
{
hm ∈ {0, 1}m:ϕm0(hm) (p

m
0 (hm)) = 0

}
.

Note that as defined, Uγ always contains the vector (1, 1, . . . , 1).

• Let Gγ(pm) =
{

FDP(·; hm, pm): hm ∈ Uγ(pm)
}

Mγ(pm) =
{

m0(h
m): hm ∈ Uγ(pm)

}
.



Exact Confidence Envelopes (cont’d)

•Theorem. For all 0 < a < 1, F , and positive integers m,

P
{
Hm ∈ Uγ(Pm)

}
≥ 1− γ

P
{
M0 ∈Mγ(Pm)

}
≥ 1− γ

P
{
FDP(·;Hm, Pm) ∈ Gγ

}
≥ 1− γ.

•Define FDP to be the pointwise supremum over Gγ.

This is a 1− γ confidence envelope for FDP.

• Confidence thresholds follow directly. For example,

Tα = sup
{
t : FDP(t) ≤ α

}
is an (α, 1− γ) confidence threshold.



Choice of Tests

•The confidence envelopes depend strongly on choice of tests.

•Two desiderata for selecting uniformity tests:

– “Power”, such that FDP is close to FDP, and

– Computability, given that there are 2m subsets to test.

•Want an automatic way to choose a good test

•Traditional uniformity tests, such as the (one-sided) Kolmogorov-

Smirnov (KS) test, do not usually meet both conditions.

For example, the KS test is sensitive to deviations from uniformity

equally though all the p-values.



The P(k) Tests

• In contrast, using the kth order statistic as a one-sided test statistic

meets both desiderata.

– For small k, these are sensitive to departures that have a large

impact on FDP. Good “power.”

– Computing the confidence envelopes is linear in m.

•We call these the P(k) tests.

They form a sub-family of weighted, one-sided KS tests.



Results: P(k) 90% Confidence Envelopes

For k = 1, 10, 25, 50, 100, with 0.05 FDP level marked.
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Results: P(k) 90% Modified Envelopes

For k = 1, 10, 25, 50, 100, with 0.05 FDP level marked.

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

p−value threshold

F
D

P



Results: (0.05,0.9) Confidence Threshold

Extrastriate Visual Cortex

Frontal Eye Field

Temporal-parietal junctionTemporal-parietal junction

Inferior Prefrontal Inferior Prefrontal

Superior Parietal

Supplementary Eye Field
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Results: (0.05,0.9) Threshold versus BH
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Results: (0.05,0.9) Threshold versus Bonferroni
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Choosing k

•Direct Approach

Simulate from prior family, such as Normal(θ, 1), Noncentral t(θ),

or mixtures of these.

Compute the optimal k, k∗(θ, m).

•Data-dependent approaches

– Estimate a and F , and simulate from corresponding mixture.

– Parametric estimate k∗(θ̂, m).

– Solve for optimal k distribution using smoothed estimate of G.

The data-dependence only has a small effect on coverage.



Results: Direct versus Fitting Approach
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False Discovery Control for Random Fields

•Multiple testing methods based on the excursions of random

fields are widely used, especially in functional neuroimaging (e.g.,

Cao and Worsley, 1999) and scan clustering (Glaz, Naus, and

Wallenstein, 2001).

• False Discovery Control extends to this setting as well.

• For a set S and a random field X = {X(s): s ∈ S} with mean

function µ(s), use the realized value of X to test the collection of

one-sided hypotheses

H0,s : µ(s) = 0 versus H1,s : µ(s) > 0.

Let S0 = {s ∈ S : µ(s) = 0}.



False Discovery Control for Random Fields

•Define a spatial version of FDP by

FDP(t) =
λ(S0 ∩ {s ∈ S : X(s) ≥ t})

λ({s ∈ S : X(s) ≥ t}) ,

where λ is usually Lebesgue measure.

• As in the cases discussed earlier, we can control FDR or

quantiles of FDP.

•Our approach is again based on constructing a confidence envelope

for FDP by finding a confidence superset U of S0.



Confidence Supersets and Envelopes

1. For every A ⊂ S, test H0 : A ⊂ S0 versus H1 : A 6⊂ S0
at level γ using the test statistic X(A) = sups∈A X(s).

The tail area for this statistic is p(z,A) = P
{
X(A) ≥ z

}
.

2. Let C = {A ⊂ S: p(x(A), A) ≥ γ}.

3. Then, U =
⋃

A∈C
A satisfies P

{
U ⊃ S0

}
≥ 1− γ.

4. And,
FDP(t) =

λ(U ∩ {s ∈ S : X(s) > t})
λ({s ∈ S : X(s) > t}) ,

is a confidence envelope for FDP.

Note: We need not carry out the tests for all subsets.



Gaussian Fields

•With Gaussian Fields, our procedure works under similar smoothness

assumptions as familywise random-field methods.

• For our purposes, approximation based on the expected Euler

characteristic of the field’s level sets will not work because the

Euler characteristic is non-monotone for non-convex sets.

(Note also that for non-convex sets, not all terms in the Euler

approximation are accurate.)

• Instead we use a result of Piterbarg (1996) to approximate the

p-values p(z, A).

• Simulations over a wide variety of S0s and covariance structures

show that coverage of U rapidly converges to the target level.



Results: (0.05,0.9) Confidence Threshold
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Controlling the Proportion of False Regions

• Say a region R is false at tolerance ε if more than an ε proportion

of its area is in S0:
λ(R ∩ S0)

λ(R)
≥ ε.

•Decompose the t-level set of X into its connected components

Ct1, . . . , Ctkt
.

• For each level t, let ξ(t) denote the proportion of false regions (at

tolerance ε) out of kt regions.

•Then,

ξ(t) =
#

{
1 ≤ i ≤ kt :

λ(Cti∩U)
λ(Cti)

≥ ε
}

kt
gives a 1− γ confidence envelope for ξ.



Results: False Region Control Threshold

P
{
prop’n false regions ≤ 0.1

} ≥ 0.95 where false means null overlap ≥ 10%
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Take-Home Points

• Confidence thresholds have practical advantages for False Discovery

Control.

In particular, we gain a stronger inferential guarantee with little

effective loss of power.

•Dependence complicates the analysis greatly, but confidence

envelopes appear to be valid under positive dependence.

• For spatial applications, adjacency relations can be highly

informative but are typically ignored by multiple-testing methods.

Controlling proportion of false regions is a first step.

Region-based false discovery control (work in progress) is the next

step.


