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WMAP: The Cosmic Microwave Background

Image: NASA/WMAP Science Team



WMAP in the News

‘‘Breakthrough of the Year, 2003’’ — Science

‘‘Most precise, detailed map yet produced of universe just after
its birth . . . confirms Big Bang theory’’ — New York Times

‘‘As of today we know better than ever when the universe began,
how it behaved in its earliest instants, how it has evolved since
then, and everything it contains.’’ — Sky & Telescope

‘‘The WMAP data pinpointed -- with unprecedented accuracy -- the
universe’s age at 13.7 billion years; its flat shape; and its
makeup of just 4 per cent "ordinary" matter, 23 per cent dark
matter, and 73 per cent dark energy.’’ — New Scientist

‘‘I think every astronomer will remember where they were when
they heard these results. . . . I certainly will. This announcement
represents a rite of passage for cosmology from speculation to
precision science.’’ — John Bahcall, Princeton astrophycist in
Washington Post



It’s Just Regression After All
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The Nonparametric Regression Problem

Observe data (xi, Yi) for i = 1, . . . , n where

Yi = f(xi) + εi

Assume Eε = 0 and Var ε = Σ.

Leading case: xi = i/n and Σ = diag(σ2, . . . , σ2) with σ2 known.

Model f as belonging to some infinite dimensional space F .

Example: Sobolev ball

Fp(C) =
{
f ∈ L2:

∫
|f (p)|2 ≤ C2

}
.

Other examples: Besov space, Lipschitz class



Smoothing

To obtain consistent estimators in this problem, it is necessary

to smooth.

Common methods include kernels, local polynomials, splines,

wavelet shrinkage, and other orthogonal basis expansion.

All of these methods have a tuning parameter which is usually

chosen to balance bias and variance.

This tuning parameter can be selected using the data

(e.g., CV, GCV, SURE).



Rate-Optimal Estimators

Define risk R(f̂ , f) = EL(f̂ , f) for specified loss L(f̂ , f).

Typical choice: L(f̂ , f) =

∫
(f̂ − f)2

Optimize rate of convergence rn for minimax risk. That is,

inf
f̂n

sup
f∈F

R(f̂n, f) ³ rn

In infinite-dimensional problems, rn
√

n → ∞.

For example, rn = n− 2p
2p+1 on Fp.

Rate-optimal estimators exist. In fact, adaptive estimators exist.

For example, can find f̂n → f in Fp at rate n−2p/2p+1 without knowing p.

More generally, Donoho and Johnstone (1998), Cai (1999) show that certain

wavelet shrinkage estimators adapt to unknown smoothness in Besov spaces.



Inference about the Unknown Function

But we usually need more than f̂ .

We want to make inferences about features of f : shape,

magnitude, peaks, inclusion, derivatives.

Would like to contruct a 1 − α confidence set for f ,

a set C such that P
{
C 3 f

}
= 1 − α.

Typically, C is the set of functions within a confidence band

over all (or a finite set of) points in the domain.

Three challenges:

1. Bias

2. Simultaneity

3. Relevance



Bias

In nonparametric problems, rate-optimal tuning parameter gives

bias2 ≈ var.

Loosely, if f̃ = Ef̂ and s =
√

Var f̂ , then

f̂ − f

s
=

f̂ − f̃

s
+

f̃ − f

s
≈ N(0, 1) +

bias√
var

.

So, “f̂ ± 2s” undercovers.

Two common solutions in the literature:

– Bias Correction: Shift confidence set by estimated bias.

– Undersmoothing: Smooth so that var dominates bias2.



Simultaneity

We observe f on a finite set of points x1, . . . , xn but often want to

extend inferences to the whole object.

Require additional assumptions to constrain f between design points.

For confidence bands, one solution is the “volume of tubes” formula

(Sun and Loader 1994).

If f̂(x) =
∑n

i=1 `i(x)Yi, then for a suitable class F ,

inf
f∈F

P
{
f̂(x) − cσ̂ ‖`(x)‖ ≤ f(x) ≤ f̂(x) + cσ̂ ‖`(x)‖,∀x

}
= 1−α,

where c solves α = Kφ(c) + 2(1 − Φ(c)).

The constants K and c depend on T (x) = `(x)/‖`(x)‖.



Simultaneity (cont’d)

Special case: f(x) = 〈`(x), θ〉. Then

α = P

 sup
x

∣∣∣∣∣∣f̂(x) − f(x)

‖`(x)‖

∣∣∣∣∣∣ > cσ


= P

{
sup
x

|〈T (x), ε〉| > cσ
}

= P

{
sup
x

∣∣∣∣∣〈T (x),
ε

‖ε‖〉
∣∣∣∣∣ > cσ/‖ε‖

}
.

By conditioning on ‖ε‖ this reduces to finding the volume of a tube

on the sphere Sn−1 around the image of T .

Approximation found by Hotelling (1939), generalized by Weyl

(1939), well studied since then.

Must account for bias in general.



Relevance

In small samples, confidence balls and bands need not constrain all

features of interest.

For example, number of peaks:
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Alternative: confidence intervals for specific functionals of f

Two practical problems:

1. Many relevant functionals (e.g., peak locations) hard to work with.

2. One often ends up choosing functionals post-hoc.

We prefer to obtain construct a confidence set for the whole object

with post-hoc protection for inferences about many functionals.



Remark: Uniform Coverage

For asymptotic confidence procedures, we prefer uniform coverage:

sup
f∈F

∣∣∣P{
Cn 3 f

}
− (1 − α)

∣∣∣ → 0.

This ensures that the coverage error depends only on n, not on f .

Li (1989) showed that with no prior smoothness bound in F , any

1 − α confidence sets for fn = (f(x1), . . . , f(xn)) of the form

Cn =
{
fn ∈ Rn: n−1/2‖fn − f̂n‖ ≤ sn(y)

}
that are “asymptotically honest” in the sense of

lim
n→∞ inf

f∈F
Pf

{
Cn 3 f

}
≥ 1 − α

must have sn ≥ n−1/4.



Possible Approaches

X Estimate bias pointwise

Often increases variance more than it reduces bias.

X Undersmoothing

Requires additional calibration; typically non-uniform coverage.
√

Pivot-Ball Method (Beran and Dümbgen 1998)

Uniform asymptotic coverage for L2 confidence balls.

Supports functional search.
√

Subspace Pretesting (Baraud 2004)

Finite-sample coverage for `2 confidence balls.

Supports functional search.

Other approaches include bounding global bias (Sun and Loader)

and scale-space methods (Chaudhuri and Marron).



Pivot-Ball (Beran and Dümbgen 1998)

Let φ1, φ2, . . . be an orthonormal basis and write f =
∑

j θjφj.

Let θ̂j(λ) for (possibly vector-valued) tuning parameter λ.

0. Define loss Ln(λ) =
∑n

j=1(θ̂j(λ) − θj)
2.

Let Sn(λ) be an unbiased estimate of ELn(λ).

Choose λ̂n to minimize Sn(λ).

1. Show that pivot process Bn(λ) =
√

n(Ln(λ) − Sn(λ)) converges

weakly to Gaussian process with mean 0, cov. K(s, t).

2. Find an estimator τ̂2
n of K(λ̂n, λ̂n) so that

Bn(λ̂n)

τ̂n
Ã N(0, 1).



Pivot-Ball (cont’d)

3. Conclude that Dn is an asymptotic 1 − α confidence set for θ:

Dn =

θ:
n∑

`=1
(θ̂n(λ̂n) − θ`)

2 ≤ τ̂n zα√
n

+ Sn(λ̂n)

 .

is

4. Hence Cn =

{
fn:

∫
(fn − f̂n)2 ≤ τ̂nzα√

n
+ Sn(λ̂n)

}
yields

sup
f∈F

∣∣∣P{
Cn 3 fn

}
− (1 − α)

∣∣∣ → 0.

for projection fn onto first n coefficients.

5. With extra assumptions, can dilate Cn to cover f similarly.



Pivot-Ball (cont’d)

Beran and Dümbgen considered modulators

θ̂ = (λ1θ̃1, . . . , λnθ̃n),

where

1 ≥ λ1 ≥ · · · ≥ λn ≥ 0,

and

θ̃j ≈
1

n

n∑
i=1

Yiφj(xi).

Remark: Beran and Dümbgen (1998) stated the main result in `2,
but in practice need Sobolev assumptions to (i) estimation σ and

(ii) move from sequence to function space.



Subspace Pretesting (Baraud 2004)

Write Y = f + σε where f = (f(x1), . . . , f(xn)).

Baraud procedure constructs finite-sample confidence ball for f .

Ideal Construction: Control ‖f − f̂‖ uniformly over f for good f̂ .

But this doesn’t work.

Let S ⊂ Rn
be a subspace of dimension < n and define πS to be orthogonal

projection onto S.

If f̂ ≡ πSY , then ‖f − f̂‖2
= ‖(I − πS)f‖2 + σ2‖πSε‖2.

We usually cannot bound ‖(I − πS)f‖2 a priori.

Instead: Use pretest to control ‖(I − πS)f‖2. Specifically, use

(I − πS)Y to test f ∈ S versus f 6∈ S.

When don’t reject f ∈ S, then ‖(I − πS)f‖2 is small with high-probability.



Subspace Pretesting (cont’d)

Let S be a collection of subspaces S such that Rn ∈ S.

Example: f(x) =
∑

j θjφj(x) and Sj corresponds to j-term partial sums.

For S ∈ S, let f̂S = πSY and choose αS such that
∑

S αS ≤ α.

Choose tests and radii ρS for S ∈ S so that

P
{
Ball(f̂S, ρS) 63 f and Don’t reject H0 : f ∈ S

}
≤ αS.

If Ŝ = argminS∈S ρS, then

P
{
Ball(f̂

Ŝ
, ρ

Ŝ
) 63 f

}
≤

∑
P

{
f 6∈ Ball(f̂S, ρS) and Don’t reject S

}
≤

∑
αS ≤ α.

Can get a smaller set by taking intersection of balls.
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Extensions to the Pivot-Ball Method

•Wavelet bases (Genovese and Wasserman 2003)

[next slide]

•Weighted-Loss/Nonconstant Variance (Genovese et al. 2004)

[see CMB example]

•Density Estimation (Jang, Genovese, and Wasserman 2004)

[not discussed]

•Other loss functions (in progress)



Pivot-Ball Method: Wavelets

Write f =
∑

k αJ0,kϕj +
∑∞

j=J0

∑
k βjkψjk.

Wavelet coefficients characterize f within family of Besov spaces.

Donoho and Johnstone considered several shrinkage schemes that lead to

rate-optimal (adaptive) estimators over Besov spaces: Universal thresholding,

global SureShrink, levelwise SureShrink.

Because wavelet basis functions unbounded in general, pivot process

is not asymptotically equicontinuous near zero.

Thus we need to restrict thresholds to [%σ̂ρn, σ̂ρn], where ρn =√
2 log n/n and 1/

√
2 < % < 1.

Conjecture that SureShrink result holds for % > 0 but it doesn’t hold for % = 0.



Pivot-Ball Method: Wavelets (cont’d)

But pivot-ball method does carry over to wavelet shrinkage with ball

Cn as before but with radius:

s2
n =

σ̂2zα√
n/2

+ Sn(λ̂n).

Confidence set radius O(n−1/4) over Besov balls consistent with

results of Li (1989) and Baraud (2004).

Have the adaptive estimators really helped here?



Pivot-Ball Method: Simple Simulation

Test functions:

f0(x) = 0

f1(x) = 2(6.75)3x6(1 − x)3

f2(x) =


1.5 if 0 ≤ x < 0.3
0.5 if 0.3 ≤ x < 0.6
2.0 if 0.6 ≤ x < 0.8
0.0 otherwise.

Let α = .05, n = 1024, σ = 1, and use 5000 iterations.

For comparison, χ2 radius is 1.074.



Pivot-Ball Method: Simple Simulation (cont’d)

σ known:
Method Function Coverage Average Radius

SureShrink (levelwise) f0 0.944 0.268

f1 0.940 0.289

f2 0.927 0.395

Modulator (cosine) f0 0.931 0.253

f1 0.930 0.259

f2 0.905 0.318

σ unknown:
Method Function Coverage

SureShrink (levelwise) f0 0.954

f1 0.953

f2 0.929

Modulator (cosine) f0 0.999

f1 0.999

f2 0.997



Pivot-Ball Method: Functionals

To make inferences for functionals of f , we can search Cn: inf
f∈Cn

T (f), sup
f∈Cn

T (f)


is a confidence set for T (f).

If T is a set of functionals, then
 inf

f∈Cn
T (f), sup

f∈Cn

T (f)

 : T ∈ T


gives simultaneous intervals for all the functionals in T .

This is useful for post-hoc exploration.



Pivot-Ball Method: Functionals (cont’d)

Fix a decreasing sequence ∆n > 0 and consider block-averages

Tn =

{
T : T (f) =

1

b − a

∫ b

a
f dx, 0 ≤ a < b ≤ 1, |b − a| ≥ ∆n

}
.

For η, c > 0, define

Fη,c =
⋃

p,q≥1

⋃
γ≥1/2+η

Bς(γ)
p,q (c),

with ς(γ) = γ + (1/p − 1/2)+. The parameter η is an increment of

smoothness required only in the non-sparse case (p ≥ 2).

Let

κ = sup
{
#{ψjk(x) 6= 0 : 0 ≤ k < 2j}: 0 ≤ x ≤ 1, j ≥ J0

}
be the maximal number of ψj. that “hit” a given point.



Pivot-Ball Method: Functionals (cont’d)

Theorem. If the mother and father wavelets are compactly

supported with κ < ∞ and ‖ψ‖1 < ∞ and if ∆−1
n = o(nζ/(log n)bζc)

for some 0 ≤ ζ ≤ 1, then for any sequence wn ≥ 0 that satisfies

wn → 0 and lim inf
n→∞ wnn1−ζ(log n)bζc > 0,

we have

lim inf
n→∞ inf

f∈Fη,c
P

{
T (f) ∈ Jn(T ) for all T ∈ Tn

}
≥ 1 − α.

where

Jn(T ) =

 inf
fn∈Cn

T (fn) − wn, sup
fn∈Cn

T (fn) + wn

 .

Conditions are satisfied by most standard wavelet functions.
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Extensions to Subspace Pretesting: Bands

Let φ1, φ2, . . . be bounded, ortho. basis on [0, 1], e.g., cosine basis.

Assume f =
∑J

j=1 θjφj for specified J ≡ Jn. Often take Jn = n.

Consider subspaces Sd of partial sums, and let f̂d =
∑d

j=1 θ̂jφj,

where θ̂j ≈ ind N(θj, σ
2/n).

Define ad =
√∑d

j=1 φ2
j and bd =

√∑J
j=d+1 φ2

j .

We consider confidence bands

B = ∩dBd where Bd =

{
f : |f(x) − f̂d(x)| ≤ σ√

n
δdad(x)

}
.

Following Baraud, choose tests and define δds so that

P
{
Bd 63 f and Sd not rejected

}
≤ αd,

then B is a 1 − α confidence set that accounts for the bias.



Subspace Pretesting: Bands (cont’d)

Define the following:

1. Normalized basis functions Tdj = φj/ad and T̃dj = φj/bd.

2. Bias function zθ,d = bd
ad

∑J
j=d+1 θjT̃dj.

3. Maximum bias

Wd =

∥∥∥∥∥∥f̂d − f

ad

∥∥∥∥∥∥∞ = sup
x

∣∣∣∣∣∣∣
σ√
n

d∑
j=1

ZjTdj(x) + zθ,d(x)

∣∣∣∣∣∣∣
4. Test statistic

Ud =

∥∥∥∥∥∥f̂d − f̂J

ad

∥∥∥∥∥∥∞ = sup
x

∣∣∣∣∣∣∣
σ√
n

bd(x)

ad(x)

d∑
j=1

ZjT̃dj(x) + zθ,d(x)

∣∣∣∣∣∣∣ .
5. Distributions Gθ,d(w) = P

{
Wd > w

}
and Hθ,d(u) = P

{
Ud ≤ u

}
.

6. Critical value for test cd = H−1
0,d(1 − γd) where 0 < γd < 1 − αd.



Subspace Pretesting: Bands (cont’d)

Set

δd = sup
θ

√
n

σ
G
−1
θ,d

 αd

Hθ,d(cd)

 .

We have

P
{
Bd 63 f, Ud ≤ cd

}
= P

{
Bd 63 f

}
P

{
Ud ≤ cd

}
= P


∥∥∥∥∥∥f̂d − f

ad

∥∥∥∥∥∥∞ >
σ√
n

δd

 Hθ,d(cd)

= Gθ,d(
σ√
n

δd)Hθ,d(cd)

≤ αd.

By suitable approximation, we can reduce the δd computation to a

smooth (but largish) optimization problem.

Still working on computational side of the problem.



Double-Confidence Tube

Let Id(x) be tube 1 − αd/2 confidence band centered on f̂d.

Let Bd = ‖zθ,d(x)‖∞ ≤ supx

∣∣∣∣bd(x)
ad(x)

∣∣∣∣ √∑J
j=d+1 θ2

j .

1. Find Bd such that P
{
Bd ≤ Bd

}
≥ 1 − αd/2.

2. Let Id be Id inflated by Bd.

3. Then I = ∩Id is a 1 − α confidence set for f .

Note that with ψ2 =
∑J

j=d+1 θ2
j ,

ψ̂2 =
J∑

j=d+1
θ̂2
j

d
=

σ2

n
χ2

J−d(nψ2/σ2).

Then, set

Bd = sup
x

∣∣∣∣bd(x)

ad(x)

∣∣∣∣ sup{ψ2: qchisq(αd/2, J − d, nψ2/σ2) ≤ nψ̂2/σ2}.



Double-Confidence Tube (cont’d)
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Double-Confidence Tube (cont’d)
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Double-Confidence Tube (cont’d)
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Physics of the Early Universe

The Big Bang model posits an expanding universe that began hot and dense.

A concise history starting 13.7 billion years ago:

– Temperature ≈ 1 trillion K (about 1 second)

Density high enough to stop neutrinos

– Temperature > 1 billion K (about 3 minutes)

Atoms cannot form. Space filled with a stew of photons, baryons (e.g., protons

and neutrons), electrons, neutrinos, and other matter.

– Temperature 12000 K

Photons and baryons became coupled in a mathematically perfect fluid.

Dark matter begins to clump under gravity. Acoustic waves propagate.

– Temperature 3000 K (about 380,000 years). “Recombination”

Atoms form, photons are released.

– Temperature 2.7K (today). The Cosmic Microwave Background (CMB).

Photons released at recombination observed in microwave band.

Nearly uniform across the sky.



The Cosmic Microwave Background Today

Image: NASA/WMAP Science Team



Physics of the Early Universe (cont’d)

The acoustic oscillations before

recombination carry information

about the geometry and composition

of the early universe. (Can you hear

the shape of the universe?)

They produce a pattern of hot and

cold spots on the sky map.

Cosmologists decompose the sky

map into spherical harmonics and

compute the coefficient variance at

each angular scale `.

This is the raw estimated CMB

“power spectrum” f(`) = Ĉ`.



CMB Power Spectrum: WMAP Data
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CMB Power Spectrum: WMAP Variances
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Cosmological Models
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• 13/11/7-dimensional model maps cosmological parameters to spectra.

• Ultimate goal: inferences about these cosmological parameters.

• Subsidiary goal: identify location, height, widths of peaks



Confidence Ball Center vs Concordance Model
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Eyes on the Ball I: Parametric Probes

Peak Heights, Peak Locations, Ratios of Peak Heights
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Eyes on the Ball I: Parametric Probes (cont’d)

Varied baryon fraction in CMBfast keeping Ωtotal ≡ 1
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Range [0.034,0.0586] in ball

Extended search, over millions of spectra, in progress.



Eyes on the Ball I: Parametric Probes (cont’d)

Probe from center with boxcars of given width centered at each `.

Maximum boxcar height in 95% ball, relative to Concordance Model
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Eyes on the Ball II: Model Checking

Inclusion in the confidence ball provides simultaneous

goodness-of-fit tests for parametric (or other) models.
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Concordance 1 − α = 0.16
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Just WMAP 1 − α = 0.73
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Extremal 1 1 − α = 0.95
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Eyes on the Ball III: Confidence Catalogs

•Our confidence set construction does not impose constraints

based on prior knowledge.

Instead: form ball first and impose constraints at will.

• Raises the possibility of viewing inferences as a function

of prior assumptions.

The confidence ball creates a mapping from prior assumptions

to inferences; we call this a confidence catalog.

• Ex: Constraints on peak curvature over range defined by

reasonable parametric models.



Take-Home Points

• Strategy

– Build confidence sets for functions with uniform asymptotic (or

finite-sample) coverage and post-hoc protection.

– Constrain and search post-hoc

• Supports inferences on any set of functionals with simultaneous

validity.

• Embedding parametric model in constrained nonparametric model

gives flexibility when model is uncertain. Model checking.

• Balls and bands can both be useful, alone or in combination.

Considering other metrics as well.


