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WMAP: The Cosmic Microwave Background

Image: NASA/WMAP Science Team



WMAP in the News

‘‘Breakthrough of the Year, 2003’’ — Science

‘‘Most precise, detailed map yet produced of universe just after

its birth . . . confirms Big Bang theory’’ — New York Times

‘‘As of today we know better than ever when the universe began,

how it behaved in its earliest instants, how it has evolved since

then, and everything it contains.’’ — Sky & Telescope

‘‘The WMAP data pinpointed -- with unprecedented accuracy -- the

universe’s age at 13.7 billion years; its flat shape; and its

makeup of just 4 per cent "ordinary" matter, 23 per cent dark

matter, and 73 per cent dark energy.’’ — New Scientist

‘‘I think every astronomer will remember where they were when

they heard these results. . . . I certainly will. This announcement

represents a rite of passage for cosmology from speculation to

precision science.’’ — John Bahcall, Princeton astrophycist in

Washington Post



It’s Just Regression After All
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Road Map

1. Constructing Confidence Sets for Unknown Functions

– Simultaneity, Bias, and Relevance

– Example: The Pivot-Ball Construction

– Pivot-Ball Confidence Sets for Wavelet Bases

2. Making Inferences with Uniform Confidence Balls

– Simultaneous Inferences about sets of functionals

– Case Study: The Cosmic Microwave Background

– Keeping Our Eyes on the Ball: Parametric Probes and Confidence Catalogs

3. Non-Adaptive Inference

– If Confidence Bands Cannot Adapt . . .

– Confidence Catalogs

– ε-Coverage

– The Resolution-Uncertainty Tradeoff
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The Nonparametric Regression Problem

Observe data (xi, Yi) for i = 1, . . . , n where

Yi = f(xi) + εi

Assume Eε = 0 and Var ε = Σ.

Leading case: xi = i/n and Σ = σ2I with σ2 known.

Key Assumption: f ∈ F for some infinite dimensional space F .

Example: Sobolev ball

F ≡ Fp(C) =
{
f ∈ L2:

∫
|f (p)|2 ≤ C2

}
.

Other examples: Besov space, Lipschitz class



Rate-Optimal Estimators

For a specified loss L(f̂ , f) (e.g.,
∫
(f̂ − f)2 or |f̂(x0) − f(x0)|2),

want a procedure that achieves the minimax risk.

But typically must settle for achieving the optimal minimax rate

of convergence rn:

inf
f̂n

sup
f∈F

R(f̂n, f) � rn

In infinite-dimensional problems, rn
√
n→ ∞.

For example, rn = n
− 2p

2p+1 on Fp.

Rate-optimal estimators exist for a wide variety of spaces

and loss functions.



Adaptive Estimators

It’s unsatisfying to depend too strongly on intangible assumptions

such as whether f ∈ Fp or f ∈ Fq.
Instead, we want procedures to adapt to the unknown smoothness.

For example, f̂n is a (rate) adaptive procedure over the Fp spaces if

when f ∈ Fp
f̂n → f at rate n−2p/2p+1

without knowing p.

Rate adaptive estimators exist over a variety of function families and

over a range of norms (or semi-norms).

For example, certain wavelet shrinkage estimators are adaptive over

restricted families of Besov spaces. (See Donoho and Johnstone

1998, Cai 1999, for example.)



Inference about the Unknown Function

But in practice, we usually need more than f̂ .

We want to make inferences about features of f :

shape, magnitude, peaks, inclusion, derivatives.

One approach: construct a 1 − α confidence set for f ,

a random set C such that P
{
C 3 f

}
= 1 − α.

Typically, C is the set of functions within a confidence band

over all (or a finite set of) points in the domain.

Three challenges:

1. Bias

2. Simultaneity

3. Relevance



Bias

In nonparametric problems, using a rate-optimal

tuning parameter gives

bias2 ≈ var.

Loosely, if f̃ = Ef̂ and s =
√

Var f̂ , then

f̂ − f

s
=
f̂ − f̃

s
+
f̃ − f

s
≈ N(0, 1) +

bias√
var

.

So, “f̂ ± 2s” undercovers.

Two common solutions in the literature:

– Bias Correction: Shift confidence set by estimated bias.

– Undersmoothing: Smooth so that var dominates bias2.



Simultaneity

Want inferences to hold simultaneously across x1, . . . , xn.

Often want to extend inferences to the whole object, which requires

additional assumptions to constrain f between the xis.

Bonferroni confidence bands (yi ± σΦ−1(α/n)) are unsatisfactory

(grow with n, not smooth).

For confidence bands, one solution is the “volume of tubes” formula

(Sun and Loader 1994).

If f̂(x) =
∑n
i=1 `i(x)Yi, then for a suitable class F ,

inf
f∈F

P
{
f̂(x) − cσ̂ ‖`(x)‖ ≤ f(x) ≤ f̂(x) + cσ̂ ‖`(x)‖,∀x

}
= 1−α,

where c solves α = K`φ(c) + 2(1 − Φ(c)).

Must account for bias in general.



Relevance

In small samples, confidence balls and bands need not constrain all

features of interest.

For example, number of peaks:

0.0 0.2 0.4 0.6 0.8 1.0
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Alternative: confidence intervals for specific functionals of f

Two practical problems:

1. Many relevant functionals (e.g., peak locations) hard to work with.

2. One often ends up choosing functionals post-hoc.

Better to obtain construct a confidence set for the whole object with

post-hoc protection for inferences about many functionals.



Remark: Uniform Coverage

For asymptotic confidence procedures, prefer uniform coverage:

sup
f∈F

∣∣∣P
{
Cn 3 f

}
− (1 − α)

∣∣∣ → 0.

This ensures that the coverage error depends only on n, not on f .

Li (1989) showed that with no prior smoothness bound in F , any

1 − α confidence sets for fn = (f(x1), . . . , f(xn)) of the form

Cn =
{
fn ∈ R

n: n−1/2‖fn − f̂n‖ ≤ sn(y)
}

that are “asymptotically honest” in the sense of

lim
n→∞ inf

f∈F
Pf

{
Cn 3 f

}
≥ 1 − α

must have sn ≥ cn−1/4.



Remark: Adaptive Coverage

We would also like adaptive confidence procedures.

These would maintain coverage on F but could use the data

to tailor the set’s diameter to the unknown f , e.g., produce

smaller balls for sufficiently smooth f .

Whether this is possible depends on the ability of random-sized

confidence sets to outperform fixed-size sets.

Adaptive confidence sets exist in some spaces but not in others.

(See Low 1997, Juditsky 2002, Cai and Low 2004, Robbins and Van

der Vaart 2004, Baraud 2004, and Genovese and Wasserman 2005).

More on this later.



Possible Approaches

X Estimate bias pointwise
Often increases variance more than it reduces bias.

X Undersmoothing
Requires additional calibration; typically non-uniform coverage.

√
Pivot-Ball Method (Beran and Dümbgen 1998)

Uniform asymptotic coverage for L2 confidence balls.

Supports functional search.
√

Subspace Pretesting (Baraud 2004)

Finite-sample coverage for `2 confidence balls.

Supports functional search.
√

Centering on Adaptive Estimator (Cai and Low 2004)

Adapts over Besov balls in certain ranges. Optimality results.

Other approaches include bounding global bias (Sun and Loader)

and scale-space methods (Chaudhuri and Marron).



Pivot-Ball (Beran and Dümbgen 1998)

Let φ1, φ2, . . . be an orthonormal basis and write f =
∑
j θjφj.

Estimate θj by θ̂j(λ), with tuning parameter vector λ.

0. Define loss Ln(λ) =
∑n
j=1(θ̂j(λ) − θj)

2.

Let Sn(λ) be an unbiased estimate of ELn(λ).

Choose λ̂n to minimize Sn(λ).

1. Show that pivot process Bn(λ) =
√
n(Ln(λ) − Sn(λ)) converges

weakly to Gaussian process with mean 0, cov. K(s, t).

2. Find an estimator τ̂2
n of K(λ̂n, λ̂n) so that

Bn(λ̂n)

τ̂n
 N(0, 1).



Pivot-Ball (cont’d)

3. Conclude that Dn is an asymptotic 1 − α confidence set for θ:

Dn =



θ:

n∑

`=1

(θ̂n(λ̂n) − θ`)
2 ≤ τ̂n zα√

n
+ Sn(λ̂n)



 .

is

4. Hence Cn =

{
fn:

∫
(fn − f̂n)

2 ≤ τ̂nzα√
n

+ Sn(λ̂n)

}
yields

sup
f∈F

∣∣∣P
{
Cn 3 fn

}
− (1 − α)

∣∣∣ → 0.

for projection fn onto first n coefficients.

5. With extra assumptions, can dilate Cn to cover f similarly.



Pivot-Ball (cont’d)

Beran and Dümbgen considered modulators

θ̂(λ) = (λ1θ̃1, . . . , λnθ̃n),

where

1 ≥ λ1 ≥ · · · ≥ λn ≥ 0,

and

θ̃j ≈
1

n

n∑

i=1

Yiφj(xi).

Remark: Beran and Dümbgen (1998) stated the main result in `2,

but in practice need Sobolev assumptions to (i) estimate σ and

(ii) move from sequence to function space.



Extensions to the Pivot-Ball Method

•Wavelet bases (Genovese and Wasserman 2003)

[next slide]

•Weighted-Loss/Nonconstant Variance (Genovese et al. 2004)

[see CMB example]

•Density Estimation (Jang, Genovese, and Wasserman 2004)

Uses pn term basis expansions with, e.g., pn = o(n1/3).



Pivot-Ball Method: Wavelets

Write f =
∑
k αJ0,kϕj +

∑∞
j=J0

∑
k βjkψjk.

Wavelet coefficients characterize f within family of Besov spaces.

Donoho and Johnstone devised several shrinkage schemes that yield rate-

optimal adaptive estimators over Besov spaces: Universal thresholding, global

SureShrink, levelwise SureShrink.

Use pivot-ball construction to get confidence ball centered on

wavelet-shrinkage estimator.

But wavelet basis functions unbounded, so pivot process is not

asymptotically equicontinuous near zero.

Hence, must restrict thresholds to [%σ̂ρn, σ̂ρn], where ρn =√
2 log n/n and 1/

√
2 < % < 1.

Conjecture that SureShrink result holds for % > 0 but it doesn’t hold for % = 0.



Pivot-Ball Method: Wavelets (cont’d)

The confidence ball Cn centered on the wavelet-shrinkage estimator

has radius:

s2n =
σ̂2zα√
n/2

+ Sn(λ̂n).

Confidence set radius O(n−1/4) over Besov balls consistent with

results of Li (1989) and Baraud (2004) for balls over R
n.

This rate swamps subtle performance differences among estimators.

What are the implications for inference here?

Remark: Cai and Low (2004) develop confidence balls that adapt

over restricted ranges of Besov balls.
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Pivot-Ball Method: Inferences for Functionals

To make inferences for functionals of f , we can search Cn:

 inf
f∈Cn

T (f), sup
f∈Cn

T (f)




is a confidence set for T (f).

If T is a set of functionals, then





 inf
f∈Cn

T (f), sup
f∈Cn

T (f)


 : T ∈ T





gives simultaneous intervals for all the functionals in T .

This is useful for post-hoc exploration.



Pivot-Ball Method: Functionals (cont’d)

Fix a decreasing sequence ∆n > 0 and consider block-averages

Tn =

{
T : T (f) =

1

b− a

∫ b

a
f dx, 0 ≤ a < b ≤ 1, |b− a| ≥ ∆n

}
.

If Cn is the confidence ball, we can get simultaneous coverage on Tn
lim inf
n→∞ inf

f∈Fη,c
P

{
T (f) ∈ Jn(T ) for all T ∈ Tn

}
≥ 1 − α,

where Fη,c is large — a union of Besov spaces (see details).

The intervals are of the form

Jn(T ) =


 inf
fn∈Cn

T (fn)−wn, sup
fn∈Cn

T (fn) +wn


 ,

where the wn → 0 at a rate inversely related to the rate

at which ∆n → 0.



Physics of the Early Universe

The Big Bang model posits an expanding universe that began hot and dense.

A concise history starting 13.7 billion years ago:

– Temperature ≈ 1 trillion K (about 1 second)

Density high enough to stop neutrinos

– Temperature > 1 billion K (about 3 minutes)

Atoms cannot form. Space filled with a stew of photons, baryons (e.g., protons

and neutrons), electrons, neutrinos, and other matter.

– Temperature 12000 K

Photons and baryons became coupled in a mathematically perfect fluid.

Dark matter begins to clump under gravity. Acoustic waves propagate.

– Temperature 3000 K (about 380,000 years). “Recombination”

Atoms form, photons are released.

– Temperature 2.7K (today). The Cosmic Microwave Background (CMB).

Photons released at recombination observed in microwave band.

Nearly uniform across the sky.



The Cosmic Microwave Background Today

The acoustic oscillations before recombination carried information

about the geometry and composition of the early universe.

(Can you hear the shape of the universe?)

We see this today as a pattern of hot and cold spots on the sky.

Image: NASA/WMAP Science Team



Physics of the Early Universe (cont’d)

Cosmologists decompose the sky map

into spherical harmonics,

T − T

T
=

∑

`,m

a`,mY`,m,

and compute the coefficient variance

at each angular scale `.

This is the raw estimated CMB

“power spectrum” f(`) = Ĉ`.



CMB Power Spectrum: WMAP Data
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CMB Power Spectrum: WMAP Variances
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Noise correlated and heteroskedastic



Cosmological Models
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• Low-dimensional model maps cosmological parameters to spectra.

• Ultimate goal: inferences about these cosmological parameters.

• Subsidiary goal: identify location, height, widths of peaks



Confidence Ball Center vs Concordance Model
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• Concordance model (red) is an MLE based on WMAP and four other data sets.

• Confidence ball based on weighted L2 loss and WMAP data only.

• Notable discrepancies between WMAP and theory (e.g., low ` turn-off).



Eyes on the Ball I: Parametric Probes

Peak Heights, Peak Locations, Ratios of Peak Heights
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Eyes on the Ball I: Parametric Probes (cont’d)

Varied baryon fraction in CMBfast keeping Ωtotal ≡ 1
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Range [0.034,0.0586] in ball

Extended search, over millions of spectra, in progress.



Eyes on the Ball I: Parametric Probes (cont’d)

How much can spectrum change locally within the confidence ball?

For each `, add to Concordance model a multiple of a boxcar of given width

centered at `. Increase height until it leaves the 95% ball.
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Eyes on the Ball II: Model Checking

Inclusion in the confidence ball provides simultaneous

goodness-of-fit tests for parametric (or other) models.
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Eyes on the Ball III: Confidence Catalogs

•Our confidence set construction does not impose constraints

based on prior knowledge.

Instead: form ball first and impose constraints at will.

• Raises the possibility of viewing inferences as a function

of prior assumptions.

The confidence ball creates a mapping from prior assumptions

to inferences; we call this a confidence catalog.

• Example: Constraints on peak curvature over range defined by

reasonable parametric models.
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Adaptive and Non-Adaptive Confidence Sets

Let f = (f1, . . . , fn) with fi = f(xi) and consider a confidence set

of the form

C =



f :

1

n

n∑

i=1

(fi − f̂i)
2 ≤ sn



 with inf

f∈R
n
Pf{C 3 f} ≥ 1− α.

Then, results in Baraud (2004) and Cai and Low (2004) show that

inf
f∈R

n
Ef(sn) ≥ C1n

−1
4 and sup

f∈R
n
Ef(sn) ≥ C2,

for C1, C2 > 0. Moreover, the n−1/4 rate can be achieved.

This shows that a random-diameter L2 confidence balls can improve

on a fixed-diameter balls, which necessarily has rate O(1).



Confidence Bands Cannot Adapt

For Lp confidence balls 2 ≤ p < ∞, the corresponding rate is

n−1/2p, showing less adaptivity as p increases.

For confidence bands (or L∞ balls), there is no rate adaptivity.

Let D denote fixed-diameter confidence band. Then,

lim inf
n→∞

infC inff∈F Ef(sn(C))

infD inff∈F Ef (sn(D))
> 0.

This continues to hold (Low 1997, Genovese and Wasserman 2005)

even when typical smoothness constraints are imposed.

Bottom line: For commonly used smoothers, neither the width nor

the tuning parameter of the optimal confidence bands depends on

the data.



If Confidence Bands Cannot Adapt . . .

Adaptation for confidence balls is possible, though limited.

Because confidence bands are not adaptive, the width of the bands

will be determined by the worst-case assumption contemplated.

This is both arbitrary and unsatisfying:

– The results are extremely sensitive to the assumptions made.

– There is rarely enough information to constrain this worst-case assumption

too strictly.

– No benefit is provided by the advanced adaptive estimators because the width

of the bands swamps the differences among good and not-so-good estimators.

Moreover, the “unknown σ” problem can have a substantial impact

on the best rate.

What strategies can we use for non-adaptive inference?



Confidence Catalogs

View the product of inference not as a single confidence set but as

a mapping from assumptions to confidence sets.

Let A be a finite-dimensional space parametrizing the assumptions.

Define a confidence catalog Cα to be a mapping from A to a

collection of uniform 1 − α confidence sets for f .

Examples:

• Lipschitz Catalog. Assume f ∈ FL for some L > 0 where

FL = {f : |f(x) − f(y)| ≤ L|x− y|, ∀x, y}. Let A = (0,∞) index L.

• Local Extremes Catalog. Assume that f has two continuous derivatives and k

local extremes. Then, A = {0, 1, 2, . . .}.

Typical question: What do I have to assume to detect a particular

feature? C−1
α (feature significant)
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ε-Coverage

But perhaps the standard notion of coverage is too stringent.

Missing only a few sharp features might be considered a success.
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Consider weakening “coverage” to include only the features for

which we have power to test.

Define a partial order g � f that measures “complexity”, as derived

for instance from a confidence catalog.



ε-Coverage (cont’d)

Examples of partial orders:

1. Linear Sieve

Let φ1, φ2, . . . denote an orthonormal basis on [0, 1].

If f =
∑n
j=1 θjφj and g =

∑n
j=1 βjφj, write g � f if

for all 1 ≤ j ≤ n,
∑j
k=1

β2
k ≤ ∑j

k=1
θ2
k.

2. k-Local Extremes.

g � f if g has fewer (inclusive) local extremes than f .

3. Wavelet Sieve

Given an inaccuracy measure d(f, g), define ε-coverage by

coverageε(`, u) = inf
f∈R

n
sup
g�f

d(f,g)≤ε

Pf
{
` ≤ g ≤ u

}

We want a procedure that gives coverageε(`, u) ≥ 1 − α.



ε-Coverage: Linear Sieve Example

Define

• d(f, g) = ‖f − g‖2,

• Tj = n
∑n
k=j+1 θ̂

2
j/σ

2 for each j,

• Ĵ = min
{
j : Tj ≤ χ2

α

2n
,n−j

}
,

• (`j, uj), which are 1 − α
2n confidence bands for model j, and

• B = (`, u) ≡ (`
Ĵ
, u
Ĵ
).

Theorem. There are constants Cα,n0 such that if n ≥ n0 and

ε ≥ Cα,n0 σ n
−1/4

√
2 log n,

then B = (`, u) is a 1 − α ε-confidence band for f .

In progress: similar results for the k-Local Extremes ordering and

several flavors of Wavelet sieve.



Example: CMB Power Spectrum
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Resolution Limited Inference

There is a resolution-uncertainty relation that is connected to,

though distinct from, the usual bias various trade-off.

Consider making inferences about f at varying levels of resolution.

At low resolution, discover few features because of large degree of

smoothing.

At high resolution, discover few features because of large uncertainties.

For example, given confidence bands (`, u) (and mean zero data for

simplicity), define the Discovery Index

D =
∫

1
{
(`(x), u(x)) 63 0

}
dx.

If h is the bandwidth for a local linear estimator, then we’d expect

D to be small for both small and large h. Find h to maximize D.



Resolution Limited Inference (cont’d)

Example: Doppler
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ĥDI ≈ 0.27, ĥCV ≈ 0.12.



Resolution Limited Inference: (cont’d)
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Road Map

1. Constructing Confidence Sets for Unknown Functions

– Simultaneity, Bias, and Relevance

– Example: The Pivot-Ball Construction

– Pivot-Ball Confidence Sets for Wavelet Bases

2. Making Inferences with Uniform Confidence Balls

– Simultaneous Inferences about sets of functionals

– Case Study: The Cosmic Microwave Background

– Keeping Our Eyes on the Ball: Parametric Probes and Confidence Catalogs

3. Non-Adaptive Inference

– If Confidence Bands Cannot Adapt . . .

– Confidence Catalogs

– ε-Coverage

– The Resolution-Uncertainty Tradeoff



Take-Home Points

• Inference as Search

– Build confidence sets with uniform coverage and post-hoc protection.

– Constrain and search post-hoc

– Can yield effective and practically useful inferences.

• Adaptation

– It is possible to construct adaptive confidence balls, though adaptation is limited

(and delicate).

– Confidence bands, in most cases, cannot adapt.

– Without adaptation, inferences driven by worst-case assumptions.

• Strategies for Non-Adaptive Inference

– Consider the impact of the assumptions explicitly. (Need this to be efficiently realized.)

– Change the notion of coverage.

– Tune inferences to appropriate resolution level.



Appendix I: Tube Formula

Special case: f(x) = 〈`(x), θ〉. Then, for T (x) = `(x)/‖`(x)‖,

α = P



 sup

x

∣∣∣∣∣∣
f̂(x) − f(x)

‖`(x)‖

∣∣∣∣∣∣
> cσ





= P
{

sup
x

|〈T (x), ε〉| > cσ
}

= P

{
sup
x

∣∣∣∣∣〈T (x),
ε

‖ε‖〉
∣∣∣∣∣ > cσ/‖ε‖

}
.

By conditioning on ‖ε‖ this reduces to finding the volume of a tube

on the sphere Sn−1 around the image of T .

Approximation found by Hotelling (1939), generalized by Weyl

(1939), well studied since then.

Must account for bias in general.



Appendix II

Pivot-Ball Simulations



Pivot-Ball Method: Simple Simulation

Test functions:

f0(x) = 0

f1(x) = 2(6.75)3x6(1 − x)3

f2(x) =





1.5 if 0 ≤ x < 0.3
0.5 if 0.3 ≤ x < 0.6
2.0 if 0.6 ≤ x < 0.8
0.0 otherwise.

Let α = .05, n = 1024, σ = 1, and use 5000 iterations.

For comparison, χ2 radius is 1.074.



Pivot-Ball Method: Simple Simulation (cont’d)

σ known:

Method Function Coverage Average Radius

SureShrink (levelwise) f0 0.944 0.268

f1 0.940 0.289

f2 0.927 0.395

Modulator (cosine) f0 0.931 0.253

f1 0.930 0.259

f2 0.905 0.318

σ unknown:
Method Function Coverage

SureShrink (levelwise) f0 0.954

f1 0.953

f2 0.929

Modulator (cosine) f0 0.999

f1 0.999

f2 0.997



Appendix III

Details on simultaneous coverage of block average functionals with

Pivot-Ball confidence set.



Pivot-Ball Method: Functionals, Details

For η, c > 0, define

Fη,c =
⋃

p,q≥1

⋃

γ≥1/2+η

Bς(γ)p,q (c),

with ς(γ) = γ + (1/p − 1/2)+. The parameter η is an increment of

smoothness required only in the non-sparse case (p ≥ 2).

Let

κ = sup
{
#{ψjk(x) 6= 0 : 0 ≤ k < 2j}: 0 ≤ x ≤ 1, j ≥ J0

}

be the maximal number of ψj. that “hit” a given point.



Pivot-Ball Method: Functionals, Details (cont’d)

Theorem. Let ψ, φ be compactly supported wavelets with

κ <∞ and ‖ψ‖1 <∞.

If for some 0 ≤ ζ ≤ 1,

∆−1
n = o(nζ/(log n)bζc)

then for any sequence wn ≥ 0 satisfying

wn → 0 and lim inf
n→∞ wnn

1−ζ(log n)bζc > 0,

we have

lim inf
n→∞ inf

f∈Fη,c
P

{
T (f) ∈ Jn(T ) for all T ∈ Tn

}
≥ 1 − α.

The conditions are satisfied by most standard wavelet functions.



Appendix IV

Subspace Pretesting: Baraud 2004 and extensions.



Subspace Pretesting (Baraud 2004)

Write Y = f + σε where f = (f(x1), . . . , f(xn)).

Baraud procedure constructs finite-sample confidence ball for f .

Ideal Construction: Control ‖f − f̂‖ uniformly over f for good f̂ .

But this doesn’t work.

Let S ⊂ R
n

be a subspace of dimension < n and define πS to be orthogonal

projection onto S.

If f̂ ≡ πSY , then ‖f − f̂‖2
= ‖(I − πS)f‖2 + σ2‖πSε‖2.

We usually cannot bound ‖(I − πS)f‖2 a priori.

Instead: Use pretest to control ‖(I − πS)f‖2. Specifically, use

(I − πS)Y to test f ∈ S versus f 6∈ S.

When don’t reject f ∈ S, then ‖(I − πS)f‖2 is small with high-probability.



Subspace Pretesting (cont’d)

Let S be a collection of subspaces S such that R
n ∈ S.

Example: f(x) =
∑
j θjφj(x) and Sj corresponds to j-term partial sums.

For S ∈ S, let f̂S = πSY and choose αS such that
∑
S αS ≤ α.

Choose tests and radii ρS for S ∈ S so that

P
{
Ball(f̂S, ρS) 63 f and Don’t reject H0 : f ∈ S

}
≤ αS.

If Ŝ = argminS∈S ρS, then

P
{
Ball(f̂

Ŝ
, ρ
Ŝ
) 63 f

}
≤

∑
P

{
f 6∈ Ball(f̂S, ρS) and Don’t reject S

}

≤
∑

αS ≤ α.

Can get a smaller set by taking intersection of balls.



Extensions to Subspace Pretesting: Bands

Let φ1, φ2, . . . be bounded, ortho. basis on [0, 1], e.g., cosine basis.

Assume f =
∑J
j=1 θjφj for specified J ≡ Jn. Often take Jn = n.

Consider subspaces Sd of partial sums, and let f̂d =
∑d
j=1 θ̂jφj,

where θ̂j ≈ ind N(θj, σ
2/n).

Define ad =
√∑d

j=1 φ
2
j and bd =

√∑J
j=d+1 φ

2
j .

We consider confidence bands

B = ∩dBd where Bd =

{
f : |f(x) − f̂d(x)| ≤

σ√
n
δdad(x)

}
.

Following Baraud, choose tests and define δds so that

P
{
Bd 63 f and Sd not rejected

}
≤ αd,

then B is a 1 − α confidence set that accounts for the bias.



Subspace Pretesting: Bands (cont’d)

Define the following:

1. Normalized basis functions Tdj = φj/ad and T̃dj = φj/bd.

2. Bias function zθ,d = bd
ad

∑J
j=d+1 θjT̃dj.

3. Maximum bias

Wd =

∥∥∥∥∥∥
f̂d − f

ad

∥∥∥∥∥∥∞
= sup

x

∣∣∣∣∣∣∣

σ√
n

d∑

j=1

ZjTdj(x) + zθ,d(x)

∣∣∣∣∣∣∣

4. Test statistic

Ud =

∥∥∥∥∥∥
f̂d − f̂J
ad

∥∥∥∥∥∥∞
= sup

x

∣∣∣∣∣∣∣

σ√
n

bd(x)

ad(x)

d∑

j=1

ZjT̃dj(x) + zθ,d(x)

∣∣∣∣∣∣∣
.

5. Distributions Gθ,d(w) = P
{
Wd > w

}
and Hθ,d(u) = P

{
Ud ≤ u

}
.

6. Critical value for test cd = H−1
0,d(1 − γd) where 0 < γd < 1 − αd.



Subspace Pretesting: Bands (cont’d)

Set

δd = sup
θ

√
n

σ
G
−1
θ,d


 αd
Hθ,d(cd)


 .

We have

P
{
Bd 63 f, Ud ≤ cd

}
= P

{
Bd 63 f

}
P

{
Ud ≤ cd

}

= P





∥∥∥∥∥∥
f̂d − f

ad

∥∥∥∥∥∥∞
>

σ√
n
δd



 Hθ,d(cd)

= Gθ,d(
σ√
n
δd)Hθ,d(cd)

≤ αd.

By approximation, can reduce the δd feasible computation.

Not rate adaptive but produces good, smooth bands.



Pre-testing Band Examples
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Pre-testing Band Examples (cont’d)
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Pre-testing Band Examples (cont’d)
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