




Preface

This book is intended as required reading material for my course, Experimental
Design for the Behavioral and Social Sciences, a second level statistics course
for undergraduate students in the College of Humanities and Social Sciences at
Carnegie Mellon University. This course is also cross-listed as a graduate level
course for Masters and PhD students (in fields other than Statistics), and
supplementary material is included for this level of study.

Over the years the course has grown to include students from dozens of majors
beyond Psychology and the Social Sciences
and from all of the Colleges of the University. This is appropriate because
Experimental Design is fundamentally the same for all fields. This book
tends towards examples from behavioral and social sciences, but includes
a full range of examples.

In truth, a better title for the course is Experimental Design
and Analysis, and that is the title of this book. Experimental Design and
Statistical Analysis
go hand in hand, and neither can be understood without the other. Only
a small fraction of the myriad statistical analytic methods are covered
in this book, but my
rough guess is that these methods cover
60%-80% of what you will read in the literature and what is needed
for analysis of your own experiments. In other words, I am
guessing that the first 10%
of all methods available are applicable to about 80% of analyses.
Of course, it is well known that 87% of statisticians make up probabilities
on the spot when they don’t know the true values. :)

Real examples are usually better than contrived ones, but real experimental
data is of limited availability. Therefore, in addition to some
contrived examples and some real examples, the majority of the examples
in this book are based on simulation of data designed to match real
experiments.

I need to say a few things about the difficulties of learning about
experimental design and analysis. A practical working knowledge requires
understanding many concepts and their relationships. Luckily much
of what you need to learn agrees with common sense, once you sort out
the terminology. On the other hand, there is no ideal logical order
for learning what you need to know, because everything relates to,
and in some ways depends on, everything else. So be aware: many
concepts are only loosely defined when first mentioned, then further
clarified later when you have been introduced to other related
material. Please try not to get frustrated with some incomplete
knowledge as the course progresses. If you work hard, everything
should tie together by the end of the course.


In that light, I recommend that you create your own “concept maps”
as the course progresses. A concept map is
usually drawn as a set of ovals with the names of various concepts
written inside and with arrows showing relationships among
the concepts. Often it helps to label the arrows.
Concept maps are a great learning tool that help
almost every student who tries them. They are particularly useful
for a course like this for which the main goal is to learn the relationships
among many concepts so that you can learn to carry out specific
tasks (design and analysis in this case). A second best alternative
to making your own concept maps is to further annotate the ones
that I include in this text.

This book is on the world wide web at

http://www.stat.cmu.edu/∼hseltman/309/Book/Book.pdf
and any associated data files are at
http://www.stat.cmu.edu/∼hseltman/309/Book/data/.

One key idea in this course is that you cannot really learn
statistics without doing statistics. Even if you will never
analyze data again, the hands-on experience you will gain from analyzing
data in labs, homework and exams will take your understanding
of and ability to read about other peoples experiments and
data analyses to a whole new level. I don’t think it makes
much difference which statistical package you use for your
analyses, but for practical reasons we must standardize
on a particular package in this course, and that is SPSS,
mostly because it is one of the packages most likely to be available
to you in your future schooling and work. You will find a chapter
on learning to use SPSS in this book. In addition, many of
the other chapters end with “How to do it in SPSS” sections.

There are some typographical conventions you should know about.
First, in a non-standard way, I use capitalized versions of
Normal and Normality because I don’t want you to think that
the Normal distribution has anything to do with the ordinary
conversational meaning of “normal”.

Another convention is that optional material has a gray background:



I have tried to use only the minimally required theory and
mathematics for a reasonable understanding of the material,
but many students want a deeper understanding of what they
are doing statistically. Therefore material in a gray box
like this one should be considered optional extra theory
and/or math.



Periodically I will summarize key points (i.e., that
which is roughly sufficient to achieve a B in the course) in a box:







Key points are in boxes. They may be useful
at review time to help you decide which parts of the material
you know well and which you should re-read.

 



Less often I will sum up a larger topic to make sure you
haven’t “lost the forest for the trees”. These are
double boxed and start with “In a nutshell”:







In a nutshell: You can make better use of the text by paying
attention to the typographical conventions.

 







Chapter 1 is an overview of what you should expect to learn
in this course. Chapters 2 through 4 are a review of
what you should have learned in a previous course. Depending
on how much you remember, you should skim it or read through
it carefully. Chapter 5 is a quick start to SPSS. Chapter
6 presents the statistical foundations of experimental design
and analysis in the case of a very simple experiment, with
emphasis on the theory that needs to be understood to
use statistics appropriately in practice. Chapter 7 covers
experimental design principles in terms of preventable threats to
the acceptability of your experimental conclusions.
Most of the remainder of the book discusses specific experimental
designs and corresponding analyses, with continued emphasis
on appropriate design, analysis and interpretation. Special
emphasis chapters include those on power, multiple comparisons,
and model selection.





You may be interested in my background. I obtained my M.D. in 1979 and
practiced clinical pathology for 15 years before returning to school to
obtain my PhD in Statistics in 1999. As an undergraduate and as an
academic pathologist, I carried out my own experiments and analyzed the
results of other people’s experiments in a wide variety of settings.
My hands on experience ranges from techniques such as cell culture,
electron auto-radiography, gas chromatography-mass spectrometry, and
determination of cellular enzyme levels to topics such as evaluating
new radioimmunoassays, determining predictors of success in in-vitro
fertilization and evaluating the quality of care in clinics vs.
doctor’s offices, to name a few. Many of my opinions and hints
about the actual conduct of experiments come from these experiences.


As an Associate Research Professor in Statistics, I continue to analyze data for
many different clients as well as trying to expand the frontiers of statistics.
I have also tried hard to understand the spectrum of causes of confusion
in students as I have taught this course repeatedly over the years.
I hope that this experience will benefit you. I know that I continue
to greatly enjoy teaching, and I am continuing to learn from my students.

Howard Seltman

August 2008
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Chapter 1 The Big Picture



Why experimental design matters.




Much of the progress in the sciences comes from performing experiments.
These may be of either an exploratory or a confirmatory nature.
Experimental evidence can be contrasted with evidence obtained from other
sources such as observational studies, anecdotal evidence, or
“from authority”. This book focuses on design and analysis of experiments.
While not denigrating the roles of anecdotal and observational evidence,
the substantial benefits of experiments (discussed below) make them one
of the cornerstones of science.




Contrary to popular thought, many of the most important parts of experimental
design and analysis require little or no mathematics. In many instances
this book will present concepts that have a firm underpinning in statistical
mathematics, but the underlying details are not given here. The reader may
refer to any of the many excellent textbooks of mathematical statistics
listed in the appendix for those details.




This book presents the two main topics of experimental design and statistical
analysis of experimental results in the context of the large concept of
scientific learning. All concepts will be illustrated with realistic examples,
although sometimes the general theory is explained first.





Scientific learning is always an iterative process, as represented in
Figure 1.1.
If we start at Current State of Knowledge, the next step is choosing a current
theory to test or explore (or proposing a new theory). This step is
often called “Constructing a Testable Hypothesis”. Any hypothesis must
allow for different possible conclusions or it is pointless.
For an exploratory goal, the different possible conclusions may be only
vaguely specified. In contrast, much
of statistical theory focuses on a specific, so-called “null hypothesis”
(e.g., reaction time is not affected by background noise) which often
represents “nothing interesting going on” usually in terms of some
effect being exactly equal to zero, as opposed to a more general,
“alternative hypothesis”
(e.g., reaction time changes as the level of background noise changes),
which encompasses any amount of change other than zero.
The next step in the cycle is to “Design an Experiment”,
followed by “Perform the Experiment”, “Perform Informal and Formal Statistical
Analyses”, and finally “Interpret and Report”, which leads to possible
modification of the “Current State of Knowledge”.



Figure 1.1: The circular flow of scientific learning


Many parts of the “Design an Experiment” stage, as well
as most parts of the “Statistical Analysis” and “Interpret and Report” stages,
are common across many fields of science, while the other stages have many
field-specific components. The focus of this book on the common stages is
in no way meant to demean the importance of the other stages. You will
learn the field-specific approaches in other courses, and the common topics here.





1.1 The importance of careful experimental design



Experimental design is a careful balancing of several features including “power”,
generalizability, various forms of “validity”, practicality and cost.
These concepts will be defined and discussed thoroughly in the next chapter.
For now, you need to know that often an improvement in one of these
features has a detrimental effect on other features.
A thoughtful balancing of these features in advance will result in an experiment
with the best chance of providing useful evidence to modify the current state
of knowledge in a particular scientific field. On the other hand, it is
unfortunate that many experiments are designed with avoidable flaws. It is
only rarely in these circumstances that statistical analysis can rescue
the experimenter. This is an example of the old maxim “an ounce of
prevention is worth a pound of cure”.









	Our goal is always to actively design an experiment that
has the best chance to produce meaningful, defensible evidence, rather than
hoping that good statistical analysis may be able to correct for defects
after the fact.










1.2 Overview of statistical analysis



Statistical analysis of experiments starts with graphical and non-graphical

exploratory data analysis  (EDA). EDA is useful for



	
• 

detection of mistakes





	
• 

checking of assumptions





	
• 

determining relationships among the explanatory variables





	
• 

assessing the direction and rough size of relationships
between explanatory and outcome variables, and





	
• 

preliminary selection of appropriate models of the relationship
between an outcome variable and one or more explanatory variables.















	EDA always precedes formal (confirmatory) data analysis.








Most formal (confirmatory) statistical analyses are based on
 models.
Statistical models are ideal, mathematical
representations of observable characteristics. Models are best
divided into two components.
 



The structural component of the model (or structural model) specifies
the relationships between explanatory variables and the mean (or other
key feature) of the outcome variables. The “random” or “error”
component of the model (or error model)
 


characterizes the deviations of the individual
observations from the mean. (Here, “error” does not indicate “mistake”.)
The two model components are also called “signal” and “noise” respectively.
Statisticians realize that no mathematical models are perfect representations
of the real world, but
some are close enough to reality to be useful. A full description of a model
should include all assumptions being made because statistical inference is
impossible without assumptions, and sufficient deviation of reality from
the assumptions will invalidate any statistical inferences.




A slightly different point of view says that models describe how the
distribution of the outcome varies with changes in the
explanatory variables.









	Statistical models have both a structural component and a random
component which describe means and the pattern of deviation from the
mean, respectively.








A statistical test is always based on certain model assumptions
about the population from which our sample comes. For example,
a t-test includes
the assumptions that the individual measurements are independent of
each other, that the two groups being compared each have a
Gaussian distribution, and that the standard deviations of the
groups are equal. The farther the truth is from these assumptions,
the more likely it is that the t-test will give a misleading result.
We will need to learn methods for assessing the truth of the assumptions,
and we need to learn how “robust”  each test
is to assumption violation, i.e., how far the assumptions can
be “bent” before misleading conclusions are likely.










	Understanding the assumptions behind every statistical analysis we learn
is critical to judging whether or not the statistical conclusions are believable.








Statistical analyses can and should be framed and reported in different ways
in different circumstances. But all statistical statements should at least
include information about their level of uncertainty. The main reporting
mechanisms you will learn
about here are confidence intervals for unknown quantities and p-values and
power estimates for specific hypotheses.




Here is an example of a situation where different ways of reporting give
different amounts of useful information.
Consider three different studies of the
effects of a treatment on improvement on a memory test for which most
people score between 60 and 80 points. First look at what
we learn when the results are stated as 95% confidence intervals
(full details of this concept are in later chapters)
of [-20,40] points, [-0.5,+0.5], and [5,7] points respectively. A statement that
the first study showed a mean improvement of 10 points, the second of 0 points,
and the third of 6 points (without accompanying information on uncertainty)
is highly misleading!
The third study lets us know that the treatment
is almost certainly beneficial by a moderate amount,
while from the first we conclude that the treatment
may be quite strongly beneficial or strongly detrimental; we
don’t have enough information to draw a valid conclusion. And from the
second study, we conclude that the effect is near zero.
For these same three studies, the p-values might be, e.g., 0.35, 0.35 and 0.01 respectively.
From just the p-values, we learn nothing about the magnitude or direction of any
possible effects, and we cannot distinguish between the very different results of
the first two studies.
We only know that we have sufficient evidence to draw a conclusion that the
effect is different from zero in the third study.









	p-values are not the only way to express inferential conclusions, and
they are insufficient or even misleading in some cases.










1.3 What you should learn here



My expectation is that many of you, coming into the course, have a “concept-
map” similar to figure 1.2. This is typical of
what students remember from a first course in statistics.



[image: ]
Figure 1.2: An oversimplified concept map.


By the end of the book and course you should learn many things.
You should be able to speak and write clearly using the appropriate technical
language of statistics and experimental design. You
should know the definitions of the key terms and understand the
sometimes-subtle differences between the meanings of these terms in the
context of experimental design and analysis as opposed to their meanings
in ordinary speech. You should understand a host of concepts and their
interrelationships. These concepts form a “concept-map” such as
the one in figure 1.3 that shows the relationships

between many of the main concepts stressed in this course.
The concepts and their relationships are the
key to the practical use of statistics in
the social and other sciences. As a bonus to the creation of your
own concept map, you will find that these maps will stick
with you much longer than individual facts.




[image: ]
Figure 1.3: A reasonably complete concept map for this course.


By actively working with
data, you will gain the experience that becomes “data-sense”.
This requires learning to
use a specific statistical computer package. Many excellent packages exist
and are suitable for this purpose. Examples here come from SPSS, but this is
in no way an endorsement of SPSS over other packages.




You should be able to
design an experiment and discuss the choices that can be made and their
competing positive and negative effects on the quality and feasibility
of the experiment. You should know some of the pitfalls of carrying out
experiments. It is critical to learn how to perform exploratory data analysis,
assess data quality, and consider data transformations. You should also
learn how to choose and perform the most common statistical analyses. And
you should be able to assess whether the assumptions of the analysis are appropriate
for the given data. You should know how to consider and compare alternative
models. Finally, you should be able to interpret and report your results correctly
so that you can assess how your experimental results may have changed the
state of knowledge in your field.





























Chapter 2 Defining and Classifying Data Variables







The link from scientific concepts to data quantities.




A key component of design of experiments is 
operationalization, which is the formal
procedure that links scientific concepts to data collection.
Operationalizations define 
measures or  variables which are quantities
of interest or which serve as the practical substitutes for the
concepts of interest. For example, if you have a theory about what affects
people’s anger level, you need to operationalize the concept of anger. You
might measure
anger as the loudness of a person’s voice in decibels, or some summary feature(s)
of a spectral analysis of a recording of their voice, or where the person places
a mark on a visual-analog “anger scale”, or their total score on a brief
questionnaire, etc. Each of these is an example of an operationalization of
the concept of anger.




As another example, consider the concept of manual dexterity. You could devise a
number of tests of dexterity, some of which might be “unidimensional”
(producing one number)
while others might be ‘multidimensional”‘ (producing two or more numbers). Since your
goal should be to convince both yourself and a wider audience that your final
conclusions should be considered an important contribution to the body of
knowledge in your field, you will need to make the choice carefully. Of course
one of the first things you should do is investigate whether standard, acceptable
measures already exist. Alternatively you may need to define your own measure(s)
because no standard ones exist or because the existing ones do not meet your needs (or
perhaps because they are too expensive).




One more example is cholesterol measurement. Although this seems totally
obvious and objective, there is a large literature on various factors that
affect cholesterol, and enumerating some of these may help you understand
the importance of very clear and detailed operationalization. Cholesterol
may be measured as “total” cholesterol or various specific forms (e.g., HDL).
It may be measured on whole blood, serum, or plasma, each of which gives
somewhat different answers. It also varies with the time and quality of the
last meal and the season of the year. Different analytic methods may also
give different answers. All of these factors must be specified carefully
to achieve the best measure.






2.1 What makes a “good” variable?



Regardless of what we are trying to measure, the qualities that make a good
measure of a scientific concept are high reliability, absence of bias, low cost,
practicality, objectivity, high acceptance, and high concept validity.
Reliability is  essentially the inverse of the statistical
concept of variance, and a rough equivalent is “consistency”. Statisticians
also use the word “precision”.






Bias refers to the difference between
the measure and some “true” value. A difference between an
individual measurement and the true value is called an
“error” (which implies the practical impossibility of perfect precision,
rather than the making of mistakes). The bias is the average difference over many measurements.
Ideally the bias of a measurement
process should be zero. For example, a measure of weight that is made
with people wearing their street clothes and shoes has a positive bias equal
to the average weight of the shoes and clothes across all subjects.









	Precision or reliability refers to the reproducibility of repeated measurements, while
bias refers to how far the average of many measurements is from the true value.








All other things being equal, when two measures are available, we will choose
the less expensive and easier to obtain (more practical) measures. Measures
that have a greater degree of subjectivity are generally less preferable.
Although devising your own measures may improve upon existing measures, there
may be a trade off with acceptability, resulting in reduced impact of your
experiment on the field as a whole.




Construct validity is a key criterion for variable definition. Under ideal
conditions, after completing your experiment you will be able to make a strong
claim that changing your explanatory variable(s) in a certain way (e.g., doubling
the amplitude of a background hum) causes a corresponding change in your
outcome (e.g., score on an irritability scale). But if you want to convert
that to meaningful statements about the effects of auditory environmental
disturbances on the psychological trait or construct called “irritability”,
you must be able to argue that the scales have good construct validity for the
traits, namely that the operationalization of background noise as an electronic
hum has good construct validity for auditory environmental disturbances, and
that your irritability scale really measures what people call irritability.
Although construct validity is critical to the impact of your experimentation,
its detailed understanding belongs separately to each field of study, and
will not be discussed much in this book beyond the discussion in Chapter 3.









	Construct validity is the link from practical measurements to
meaningful concepts.










2.2 Classification by role



There are two different independent systems of classification of variables that
you must learn in order to understand the rest of this book. The first system is based
on the role of the variable in the experiment and the analysis. The general
terms used most frequently in this text are explanatory variables vs. outcome
variables.
 

 
An experiment is designed to test the effects of some
intervention on one or more measures, which are therefore designated as outcome
variables. Much of this book deals with the most common type of experiment in
which there is only a single outcome variable measured on each experimental unit
(person, animal, factory, etc.) A synonym for outcome variable is dependent
variable, often abbreviated DV.




The second main role a variable may play is that of an explanatory variable.
Explanatory variables include



variables purposely manipulated in an experiment and variables
that are not purposely manipulated, but are thought to possibly affect the outcome.
Complete or partial synonyms include independent variable (IV), covariate,
blocking factor, and predictor variable. Clearly, classification of the role
of a variable is dependent on the specific experiment, and variables that are
outcomes in one experiment may be explanatory variables in another experiment.
For example, the score on a test of working memory may be the
outcome variable in a study
of the effects of an herbal tea on memory, but it is a possible explanatory
factor in a study of the effects of different mnemonic techniques on learning
calculus.









	Most simple experiments have a single dependent or outcome variable plus
one or more independent or explanatory variables.








In many studies, at least part of the interest is on how the effects of one
explanatory variable on the outcome depends on the level of another explanatory
variable. In statistics this phenomenon is called interaction.

In some areas of science, the term moderator variable
 
is used to describe the role of the
secondary explanatory variable. For example, in the effects of the herbal tea
on memory, the effect may be stronger in young people than older people, so age
would be considered a moderator of the effect of tea on memory.





In more complex studies there may potentially be an intermediate variable in a
causal chain of variables. If the chain is written A⇒B⇒C,
then interest may focus on whether or not it is true that A can cause its effects
on C only by changing B. If that is true, then we define the role of B as a
mediator of the effect of A on C. An example is the effect of herbal tea on
learning calculus. If this effect exists but operates only through herbal
tea improving working memory, which then allows better learning of calculus
skills, then we would call working memory a mediator of the effect.
 







2.3 Classification by statistical type



A second classification of variables is by their statistical type. It is
critical to understand the type of a variable for three reasons. First, it
lets you know what type of information is being collected; second it defines
(restricts) what types of statistical models are appropriate; and third, via those
statistical model restrictions, it helps you choose what analysis is appropriate
for your data.









	Warning: SPSS uses “type” to refer to the storage mode (as in computer
science) of a variable. In a somewhat non-standard way it uses
“measure” for what we are calling statistical type here.








Students often have difficulty knowing “which statistical test to use”. The
answer to that question always starts with variable classification:









	Classification of variables by their roles and by their statistical types
are the first two and the most important steps to choosing a correct analysis
for an experiment.








There are two main types of variables, each of which has two subtypes
according to this classification system:




Quantitative Variables 

          Discrete Variables 

          Continuous Variables 

     Categorical Variables 

          Nominal Variables 

          Ordinal Variables 






Both categorical and quantitative variables are often recorded as numbers,
so this is not a reliable guide to the major distinction between categorical
and quantitative variables. Quantitative variables are those for which the
recorded numbers encode magnitude information based on a true quantitative scale.
The best way to check if a measure is quantitative is to use the subtraction test.
If two experimental units (e.g., two people) have different values for a
particular measure, then you should subtract the two values, and ask yourself
about the meaning of the difference. If the difference can be interpreted as
a quantitative measure of difference between the subjects, and if the meaning of each
quantitative difference is the same for any pair of values with the same
difference (e.g., 1 vs. 3 and 10 vs. 12),
then this is a quantitative variable. Otherwise, it is a
categorical variable.





For example, if the measure is age of the subjects in years, then for all
of the pairs 15 vs. 20, 27 vs. 33, 62 vs. 67, etc., the difference of 5 indicates
that the subject in the pair with the large value has lived 5 more years than the subject
with the smaller value, and this is a quantitative variable. Other examples that
meet the subtraction test for quantitative variables are age in months or seconds,
weight in pounds or ounces or grams, length of index finger, number of jelly beans
eaten in 5 minutes, number of siblings, and number of correct answers on an exam.




Examples that fail the subtraction test, and are therefore categorical, not
quantitative, are eye color coded 1=blue, 2=brown, 3=gray, 4=green, 5=other;
race where 1=Asian, 2=Black, 3=Caucasian, 4=Other; grade on an exam coded 4=A,
3=B, 2=C, 1=D, 0=F; type of car where 1=SUV, 2=sedan, 3=compact and 4=subcompact;
and severity of burn where 1=first degree, 2=second degree, and 3=third degree.
While the examples of eye color and race would only fool the most careless
observer into incorrectly calling them quantitative, the latter three examples
are trickier. For the coded letter grades, the average
difference between an A and a B may be 5 correct questions, while the average
difference between a B and a C may be 10 correct questions, so this is not a
quantitative variable. (On the other hand, if we call the variable quality
points, as is used in determining grade point average, it can be used as
a quantitative
variable.) Similar arguments apply for the car type and burn severity examples,
e.g., the size or weight difference between SUV and sedan is not the same as
between compact and subcompact. (These three variables are discussed further
below.)




Once you have determined that a variable is quantitative, it is often worthwhile
to further classify it into discrete (also called counting) vs. continuous. Here
the test is the midway test. If, for every pair of values of a quantitative
variable the value midway between them is a meaningful value, then the variable
is continuous, otherwise it is discrete. Typically discrete variables can only
take on whole numbers (but all whole numbered variables are not necessarily discrete).
For example, age in years
is continuous because midway between 21 and 22 is 21.5 which is a meaningful age,
even if we operationalized age to be age at the last birthday or age at the
nearest birthday.




Other examples of continuous variables include weights, lengths, areas, times, and speeds
of various kinds. Other examples of discrete variables include number of jelly
beans eaten, number of siblings, number of correct questions on an exam, and
number of incorrect turns a rat makes in a maze. For none of these does an answer of, say, 312, make sense.




There are examples of quantitative variables that are not clearly categorized as
either discrete or continuous. These generally have many possible values and
strictly fail the midpoint test, but are practically considered to be continuous
because they are well approximated by continuous probability distributions. One
fairly silly example is mass; while we know that you can’t have half of a
molecule, for all practical purposes we can have a mass half-way
between any two masses of practical size, and no one would even think of calling
mass discrete. Another example is the ratio of teeth to forelimb digits across
many species; while only certain possible values actually occur and many midpoints
may not occur, it is practical to consider this to be a continuous variable.
One more
example is the total score on a questionnaire which is comprised of, say, 20
questions each with a score of 0 to 5 as whole numbers. The total score is a
whole number between 0 and 100, and technically is discrete, but it may be more
practical to treat it as a continuous variable.




It is worth noting here that as a practical matter most models and analyses do
not distinguish between discrete and continuous explanatory variables, while
many do distinguish between discrete and continuous quantitative outcome
variables.









	Measurements with meaningful magnitudes are called quantitative. They
may be discrete (only whole number counts are valid) or continuous (fractions
are at least theoretically meaningful).








Categorical variables simply place explanatory or outcome variable
characteristics into (non-quantitative) categories. The different values
taken on by a categorical variable are often called levels.
 If the levels
simply have arbitrary names then the variable is nominal. But if there are at
least three levels, and if every reasonable person would place those levels in
the same (or the exact reverse) order, then the variable is ordinal. The above
examples of eye color and race are nominal categorical variables. Other nominal
variables include car make or model, political party, gender, and personality type.
The above examples of exam grade, car type, and burn severity are ordinal
categorical variables. Other examples of ordinal variables
include liberal vs. moderate vs.
conservative for voters or political parties;
severe vs. moderate vs. mild vs. no itching after application
of a skin irritant; and disagree vs. neutral vs. agree on a policy question.




It may help to understand ordinal variables better if you realize that most
ordinal variables, at least theoretically, have an underlying quantitative variable.
Then the ordinal variable is created (explicitly or implicitly) by choosing
“cut-points” of the quantitative variable between which the ordinal categories
are defined. Also, in some sense, creation of ordinal variables is a kind
of “super-rounding”, often with different spans of the underlying
quantitative variable for the different categories. See Figure 2.1
for an example based on the old IQ categorizations. Note that the categories
have different widths and are quite wide (more than one would typically
create by just rounding).



Figure 2.1: Old IQ categorization


It is worth noting here that the best-known statistical tests for categorical
outcomes do not take the ordering of ordinal variables into account,
although there certainly are good tests that do so. On the other hand,
when used as explanatory variables in most
statistical tests, ordinal variables are usually either “demoted” to nominal or
“promoted” to quantitative.






2.4 Tricky cases



When categorizing variables, most cases are clear-cut, but some may not be.
If the data are recorded directly as categories rather than numbers, then you
only need to apply the “reasonable person’s order” test to distinguish
nominal from ordinal. If the results are recorded as numbers, apply the
subtraction test to distinguish quantitative from categorical. When trying
to distinguish discrete quantitative from continuous quantitative variables,
apply the midway test and ignore the degree of rounding.




An additional characteristic that is worth paying attention to
for quantitative variables is
the range, i.e., the minimum and maximum possible values. Variables that
are limited to between 0 and 1 or 0% and 100% often need special consideration,
as do variables that have other arbitrary limits.




When a variable meets the definition of quantitative, but it is an
explanatory variable for which only two or three levels are being used,
it is usually better to treat this variable as categorical. 




Finally we should note that there is an additional type of variable called
an “order
statistic” or “rank” which counts the placement of a variable in an
ordered list of all observed values, and while strictly an ordinal categorical
variable, is often treated differently in statistical procedures.





























Chapter 3 Review of Probability



A review of the portions of probability useful for understanding experimental design and analysis.


The material in this section is intended as a review of the topic of probability
as covered in the prerequisite course (36-201 at CMU). The material in gray
boxes is beyond what you may have previously learned, but may help the
more mathematically minded reader to get a deeper understanding of the
topic. You need not memorize any formulas or even have a firm
understanding of this material at the start of the class. But I
do recommend that you at least skim through the material early
in the semester. Later, you can use this chapter to
review concepts that arise as the class progresses.


For the earliest course material, you should have a basic idea of what a
random variable and a probability distribution are,
and how a probability distribution defines event probabilities.
You also need to have an understanding of the concepts of
parameter, population, mean, variance, standard deviation,
and correlation.



3.1 Definition(s) of probability








We could choose one of several technical definitions for 
probability, but for our
purposes it refers to an assessment of the likelihood of the various possible
outcomes in an experiment or some other situation with a “random” outcome.




Note that in probability theory the term “outcome” is used in a more
general sense than the outcome vs. explanatory variable terminology that is
used in the rest of this book. In probability theory the term “outcome”
applies not only to the “outcome variables” of experiments but also to
“explanatory variables” if their values are not fixed. For example, the dose
of a drug is normally fixed by the experimenter, so it is not an outcome
in probability theory, but the age of a randomly chosen subject, even
if it serves as an explanatory variable in an experiment, is not “fixed”
by the experimenter, and thus can be an “outcome” under probability theory.




The collection of all possible outcomes of a particular random experiment
(or other well defined random situation) is called the 
sample space, usually abbreviated as S or Ω (omega). The
outcomes in this set (list) must be exhaustive (cover all possible outcomes)
and mutually exclusive (non-overlapping), and should be as simple as possible.




For a simple example consider an experiment consisting of the
tossing of a six sided die. One possible outcome is that the die lands
with the side with one dot facing up. I will abbreviate this outcome
as 1du (one dot up), and use similar abbreviations for the other five possible
outcomes (assuming it can’t land on an edge or corner).
Now the sample space is the set {1du, 2du, 3du, 4du, 5du, 6du}.
We use the term  event to represent any
subset of the sample space.
For example {1du}, {1du, 5du}, and {1du, 3du, 5du}, are
three possible events, and most people would call the third
event “odd side up”. One
way to think about events is that they can be defined before the experiment
is carried out, and they either occur or do not occur when the
experiment is carried out. In probability theory we learn to compute
the chance that events like “odd side up” will occur based on assumptions about
things like the probabilities of the elementary outcomes in the
sample space.




Note that the “true” outcome of most experiments is not a number, but
a physical situation, e.g., “3 dots up” or “the subject chose
the blue toy”.
For convenience sake, we often “map” the physical outcomes of an experiment
to integers or real numbers, e.g., instead of referring
to the outcomes 1du to 6du, we
can refer to the numbers 1 to 6. Technically, this mapping is called a
 random variable, but more commonly and informally
we refer to the unknown numeric outcome itself (before the experiment is run)
as a “random variable”. Random variables commonly are represented as
upper case English letters towards the end of the
alphabet, such as Z, Y or X.
Sometimes the lower case equivalents are used to represent the actual
outcomes after the experiment is run.




Random variables are maps from the sample space to the real numbers, but
they need not be one-to-one maps. For example, in the die experiment we
could map all of the outcomes in the set {1du, 3du, 5du} to the
number 0 and all of the outcomes in the set {2du, 4du, 6du} to the
number 1, and call this random variable Y. If we call the random variable
that maps to 1 through 6 as X, then random variable Y could also be thought
of as a map from X to Y where the odd numbers of X map to 0 in Y
and the even numbers to 1. Often the term 
transformation is used
when we create a new random variable out of an old one in this way.
It should now be obvious that many, many different random variables can be
defined/invented for a given experiment.




A few more basic definitions are worth learning at this point. A random
variable that takes on only the numbers 0 and 1 is commonly referred
to as an  indicator (random) variable.
It is usually named to match the set that corresponds to the number 1.
So in the previous example, random variable Y is an indicator for
even outcomes. For any random variable, the term 
support is used to refer to the set of possible real numbers
defined by the mapping from the physical experimental outcomes to
the numbers. Therefore, for random variables we use the term “event”
to represent any subset of the support.





Ignoring certain technical issues, probability theory is used
to take a basic set of assigned (or assumed) probabilities
and use those probabilities
(possibly with additional assumptions about something called independence)
to compute the probabilities of various more complex events.









	The core of probability theory is making predictions about the
chances of occurrence of events
based on a set of assumptions about the underlying probability processes.








One way to think about probability is that it quantifies how much we can know
when we cannot know something exactly. Probability theory is deductive, in
the sense that it involves making assumptions about a random (not completely
predictable) process, and then deriving valid statements about what is
likely to happen based on mathematical principles. For this course a
fairly small number of probability definitions, concepts, and skills will suffice.





For those students who are unsatisfied with the loose definition
of probability above, here is a brief descriptions of three different
approaches to
probability, although it is not necessary to understand this material to
continue through the chapter. If you want even more detail, I
recommend Comparative Statistical Inference by Vic Barnett.
Valid probability statements do not claim what events will happen, but rather
which are likely to happen. The starting point is sometimes a judgment that
certain events are a priori equally likely. Then using only the additional
assumption that the occurrence of one event has no bearing on the occurrence
of another separate event (called the assumption of independence), the
likelihood of various complex combinations of events can be worked out
through logic and mathematics. This approach has logical consistency,
but cannot be applied to situations where it is unreasonable to assume
equally likely outcomes and independence.
A second approach to probability is to define the probability of an outcome
as the limit of the long-term fraction of times that outcome occurs in an
ever-larger number of independent trials. This allows us to work with basic
events that are not equally likely, but has a disadvantage that probabilities
are assigned through observation. Nevertheless this approach is sufficient
for our purposes, which are mostly to figure out what would happen if certain
probabilities are assigned to some events.
A third approach is subjective probability, where the probabilities of various
events are our subjective (but consistent) assignments of probability. This
has the advantage that events that only occur once, such as the next presidential
election, can be studied probabilistically. Despite the seemingly bizarre
premise, this is a valid and useful approach which may give different answers
for different people who have different beliefs, but still helps calculate your
rational but personal probability of future uncertain events, given your prior
beliefs.




Regardless of which definition of probability you use, the calculations we
need are basically
the same. First we need to note that probability applies to some well-defined
unknown or future situation in which some outcome will occur, the list of
possible outcomes is well defined, and the exact outcome is unknown. If the
outcome is categorical or discrete quantitative (see section 2.3),
then each possible outcome
gets a probability in the form of a number between 0 and 1 such that the sum
of all of the probabilities is 1. This indicates that impossible outcomes
are assigned probability zero, but assigning a probability zero to an event
does not necessarily mean that that outcome is impossible (see below). (Note
that a probability is technically written as a number from 0 to 1, but is
often converted to a percent from 0% to 100%. In case you have forgotten,
to convert to a percent multiply by 100, e.g., 0.25 is 25% and 0.5 is 50%
and 0.975 is 97.5%.)









	Every valid probability must be a number between 0 and 1 (or a percent
between 0% and 100%).








We will need to distinguish two types of random variables. Discrete random
variables correspond to the categorical variables plus the discrete quantitative
variables of chapter 2.
Their support is a (finite or infinite) list of numeric outcomes, each of
which has a non-zero probability. (Here we will loosely use the
term “support” not only for the numeric outcomes of the random variable
mapping, but also for the sample space when we do not explicitly
map an outcome to a number.)
Examples of discrete random variables include the result of a coin toss
(the support using curly brace set notation is {H,T}),
the number of tosses out
of 5 that are heads ({0,1,2,3,4,5}),
the color of a random person’s eyes
({blue, brown, green, other}), and the number of coin tosses until a
head is obtained ({1,2,3,4,5,…}). Note that the last example
has an infinite sized support.




Continuous random variables correspond to the continuous quantitative
variables of chapter 2.
Their support is a continuous range of real numbers (or rarely several
disconnected ranges) with no gaps.
When working with continuous random variables in probability theory we think
as if there is no rounding, and each value has an infinite number of decimal
places. In practice we can only measure things to a certain number of
decimal places, actual measurement of the continuous variable “length”
might be 3.14, 3.15, etc., which does have gaps. But we
approximate this with a continuous random variable rather than
a discrete random variable because more precise measurement is possible
in theory.




A strange aspect of working with continuous random variables is that
each particular outcome in the support has probability zero, while none
is actually impossible.
The reason each outcome value has probability zero is that otherwise
the probabilities of
all of the events would add up to more than 1. So for continuous random
variables we usually work with intervals of outcomes to say, e.g, that the
probability that an outcome is between 3.14 and 3.15 might be 0.02 while each
real number in that range, e.g., π (exactly), has zero probability. Examples
of continuous random variables include ages, times, weights, lengths, etc.
All of these can theoretically be measured to an infinite number of
decimal places.




It is also possible for a random variable to be a mixture of discrete and
continuous random variables, e.g., if an experiment is to flip a coin and
report 0 if it is heads and the time it was in the air if it is tails,
then this variable is a mixture of the discrete and continuous types
because the outcome “0” has a non-zero (positive) probability, while all positive
numbers have a zero probability (though intervals between two positive
numbers would have probability greater than zero.)






3.2 Probability mass functions and density functions



.




A probability mass function 
(pmf)  is just a full
description of the possible outcomes and their probabilities for some discrete
random variable. In some situations it is written in simple list form, e.g.,








	
	f⁢(x)={0.25 if x=10.35 if x=20.40 if x=3
	







where f(x) is the probability that random variable X takes on value x,
with f(x)=0 implied for all other x values. We can see that this is a valid
probability distribution because each probability is between 0 and 1 and the sum
of all of the probabilities is 1.00. In other cases we can use a formula for
f(x), e.g.







	
	f⁢(x)=(4!(4-x)!⁢x!)⁢px⁢(1-p)4-x⁢ for ⁢x=0,1,2,3,4
	







which is the so-called binomial distribution with parameters 4 and p.




It is not necessary to understand the mathematics of this formula for
this course, but if you want to try you will need to know that
the exclamation mark symbol is pronounced “factorial” and r! represents
the product of all the integers from 1 to r. As an exception, 0!=1.




This particular pmf represents the probability distribution for getting x
“successes” out of 4 “trials” when each trial has a success probability of p
independently. This formula is a shortcut for the five different possible
outcome values.
If you prefer you can calculate out the five different probabilities and use the
first form for the pmf. Another example is the so-called geometric distribution,
which represents the outcome for an experiment in which we count the number of
independent trials until the first success is seen. The pmf is:







	
	f⁢(x)=p⁢(1-p)x-1⁢ for ⁢x=1,2,3,…
	







and it can be shown that this is a valid distribution with the sum of
this infinitely long series equal to 1.00 for any value of p between 0 and 1.
This pmf cannot be written in the list form. (Again the mathematical
details are optional.)




By definition a random variable takes on numeric values (i.e., it maps
real experimental outcomes to numbers). Therefore it is easy and natural
to think about the pmf of any discrete continuous experimental variable,
whether it is explanatory or outcome. For categorical experimental variables,
we do not need to assign numbers to the categories, but we always can do
that, and then it is easy to consider that variable as a random variable
with a finite pmf. Of course, for nominal categorical variables the
order of the assigned numbers is meaningless, and for ordinal categorical
variables it is most convenient to use consecutive integers for the
assigned numeric values.









	Probability mass functions apply to discrete outcomes.
A pmf is just a list of all possible outcomes for a
given experiment and the probabilities for each outcome.








For continuous random variables, we use a somewhat different method for
summarizing all of the information in a probability distribution. This is
the probability density function 
(pdf), usually represented as “f(x)”,

which does not represent probabilities
directly but from which the probability that the outcome falls in a certain
range can be calculated using integration from calculus. (If you don’t
remember integration from calculus, don’t worry, it is OK to skip
over the details.)






One of the simplest
pdf’s is that of the uniform distribution, where all real numbers between
a and b are equally likely and numbers less than a or greater than b are
impossible. The pdf is:




f⁢(x)=1/(b-a)⁢ for ⁢a≤x≤b


The general probability formula for any continuous random variable is




Pr(t≤X≤u)=∫tuf(x)dx.


In this formula ∫⋅d⁢x means that we must use calculus to
carry out integration.
Note that we use capital X for the random variable in the probability
statement because this refers to the potential outcome of an experiment
that has not yet been conducted, while the formulas for pdf and pmf
use lower case x because they represent calculations done for
each of several possible outcomes of the experiment. Also note that,
in the pdf but not the pmf, we could
replace either or both ≤ signs with <
signs because the probability that the outcome is exactly equal to
t or u (to an infinite number of decimal places) is zero.
So for the continuous uniform distribution, for
any a≤t≤u≤b,




Pr(t≤X≤u)=∫tu1b-adx=u-tb-a.


You can check that this always gives a number between 0 and 1, and
the probability of any individual outcome (where u=t) is zero, while the
probability that the outcome is some number between a and b is 1 (u=a, t=b).
You can also see that, e.g., the probability that X is in the middle
third of the interval from a to b is 13, etc.
Of course, there are many interesting and useful continuous distributions
other than the continuous uniform distribution. Some other
examples are given below. Each is fully characterized by its probability density
function.





3.2.1 Reading a pdf



In general, we often look at a plot of the probability density
function, f(x), vs. the possible outcome values, x. This
plot is high in the regions
of likely outcomes and low in less likely regions. The well-known standard
Gaussian distribution (see 3.2) has a bell-shaped graph
centered at zero with about two
thirds of its area between x = -1 and x = +1 and about 95% between x = -2
and x = +2. But a pdf can have many different shapes.




It is worth understanding that many pdf’s come in “families” of similarly
shaped curves. These various curves are named or “indexed” by one or more
numbers called parameters (but there are other uses of the term parameter;
see section 3.5).
For example that family of Gaussian (also called Normal) distributions is indexed
by the mean and variance (or standard deviation) of the distribution. The
t-distributions, which are all centered at 0, are indexed by a single parameter
called the degrees of freedom. The chi-square family of distributions is also
indexed by a single degree of freedom value. The F distributions are indexed
by two degrees of freedom numbers designated numerator and denominator
degrees of freedom.




In this course we will not do any integration. We will use tables
or a computer
program to calculate probabilities for continuous random variables. We
don’t even need to know the formula of the pdf because the most
commonly used formulas are known to the computer by name. Sometimes
we will need to specify degrees of freedom or other parameters so that
the computer will know which pdf of a family of pdf’s to use.




Despite our heavy reliance on the computer, getting a feel for the
idea of a probability density function is critical to the level of
understanding of data analysis and interpretation required in this course.
At a minimum you should realize that a pdf is a curve with outcome
values on the horizontal axis and the vertical height of the curve
tells which values are likely and which are not. The total area
under the curve is 1.0, and the under the curve between any two
“x” values is the probability that the outcome will fall between
those values.









	For continuous random variables, we calculate the probability
that the outcome falls in some interval, not that the outcome exactly
equals some value. This calculation is normally done by a computer
program which uses integral calculus on a “probability density function.”











3.3 Probability calculations



This section reviews the most basic probability calculations.
It is worthwhile, but not essential to become familiar with these
calculations. For many readers, the boxed material may be
sufficient. You won’t need to memorize any of these formulas
for this course.




Remember that in probability theory we don’t worry about where probability
assignments (a pmf or pdf) come from. Instead we are concerned with how
to calculate other probabilities given the assigned probabilities. Let’s
start with calculation of the probability of a “complex” or “compound”
event that is constructed from the simple events of a discrete random variable.




For example, if we have a discrete random variable that is the number of correct
answers that a student gets on a test of 5 questions, i.e. integers in the
set {0,1,2,3,4,5}, then we could be interested in the probability that
the student gets an even number of questions correct, or less than 2, or more
than 3, or between 3 and 4, etc. All of these probabilities are for outcomes
that are subsets of the sample space of all 6 possible “elementary” outcomes,
and all of these are the union (joining together) of some of the 6 possible
“elementary” outcomes. In the case of any complex outcome that can be written
as the union of some other disjoint (non-overlapping) outcomes, the probability
of the complex outcome is the sum of the probabilities of the disjoint outcomes.
To complete this example look at Table 3.1 which shows assigned
probabilities for the elementary outcomes of the random variable we will call
T (the test outcome) and for several complex events.








	Event
	Probability
	Calculation





	T=0
	0.10
	Assigned



	T=1
	0.26
	Assigned



	T=2
	0.14
	Assigned



	T=3
	0.21
	Assigned



	T=4
	0.24
	Assigned



	T=5
	0.05
	Assigned



	T∈{0,2,4}

	0.48
	0.10+0.14+0.24



	T<2
	0.36
	0.10+0.26



	T≤2
	0.50
	0.10+0.26+0.14



	T≤4
	0.29
	0.24+0.05



	T≥0
	1.00
	0.10+0.26+0.14+0.21+0.24+0.05





Table 3.1: Disjoint Addition Rule


You should think of the probability of a complex event such as T<2, usually
written as Pr(T<2) or P(T<2), as being the chance that, when we carry out a
random experiment (e.g., test a student), the outcome will be any one of the
outcomes in the defined set (0 or 1 in this case). Note that (implicitly)
outcomes not mentioned are impossible, e.g., Pr(T=17) = 0. Also something
must happen: Pr(T≥0) = 1.00 or Pr(T ∈{0,1,2,3,4,5}) = 1.00. It is
also true that the probability that nothing happens is zero: Pr(T∈ϕ) = 0,
where ϕ means the “empty set”.









	Calculate the probability that any of several non-overlapping events
occur in a single experiment by adding the probabilities of the individual
events.








The addition rule for disjoint unions is really a special case of the general
rule for the probability that the outcome of an experiment will fall in a set
that is the union of two other sets. Using the above 5-question test example,
we can define event E as the set {T:1≤T≤3} read as all values of
outcome T such that 1 is less than or equal to T and T is less than or equal to 3. Of course E = {1,2,3}. Now define F = {T:2≤T≤4} or F = {2,3,4}. The union of these sets, written E∪F is equal to the set of
outcomes {1,2,3,4}. To find Pr(E∪F) we could try adding Pr(E) + Pr(F),
but we would be double counting the elementary events in common to the two sets,
namely {2} and {3}, so the correct solution is to add first, and then
subtract for the double counting. We define the intersection of two sets as
the elements that they have in common, and use notation like E∩F={2,3}
or, in situations where there is no chance of confusion,
just E⁢F={2,3}. Then the rule for the probability of the union of
two sets is:







	
	Pr⁢(E∪F)=Pr⁢(E)+Pr⁢(F)-Pr⁢(E∩F).
	







For our example, Pr(E F) = 0.61 + 0.59 - 0.35 = 0.85, which matches the direct
calculation Pr({1,2,3,4}) = 0.26 + 0.14 + 0.21 + 0.24. It is worth pointing
out again that if we get a result for a probability that is not between 0 and 1,
we are sure that we have made a mistake!




Note that it is fairly obvious that Pr⁡A∩B=Pr⁡B∩A because
A∩B=B∩A, i.e., the two events are equivalent sets. Also
note that there is a complicated general formula for the probability
of the union of three or more events, but you can just apply the
two event formula, above, multiple times to get the same answer.









	If two events overlap, calculate the probability that either
event occurs as the sum of the individual event probabilities minus
the probability of the overlap.








Another useful rule is based on the idea that something in the sample space
must happen and on the definition of the complement of a set. The complement
of a set, say E, is written Ec and is a set made of all of the elements of
the sample space that are not in set E. Using the set E above, Ec={0,4,5}.
The rule is:







	
	Pr⁡(Ec)=1-Pr⁡(E).
	







In our example, Pr⁡{0,4,5}=1-Pr⁡{1,2,3}=1-0.61=0.39.










	Calculate the probability that an event will not occur
as 1 minus the probability that it will occur.








Another important concept is



conditional probability. At its core, conditional
probability means reducing the pertinent sample space. For instance we might
want to calculate the probability that a random student gets an odd number of
questions correct while ignoring those students who score over 4 points. This
is usually described as finding the probability of an odd number given T≤4.
The notation is Pr⁡(T is odd|T≤4) , where the vertical bar is
pronounced “given”. (The word “given” in a probability statement is usually
a clue that conditional probability is being used.) For this example
we are excluding the 5% of students
who score a perfect 5 on the test. Our new sample space must be
“renormalized” so that its probabilities add up to 100%. We can do this
by replacing each probability by the old probability divided by the probability
of the reduced sample space, which in this case is (1-0.05)=0.95.
Because the old probabilities of the elementary outcomes in the new set of
interest, {0,1,2,3,4}, add up to 0.95, if we divide each by 0.95 (making
it bigger), we get a new set of 5 (instead of 6) probabilities that add up to
1.00. We can then use these new probabilities to find that the probability
of interest is 0.26/0.95 + 0.21/0.95 = 0.495.




Or we can use a new probability rule:







	
	Pr⁡(E|F)=Pr⁢(E∩F)Pr⁢(F).
	







In our current example, we have







	
	Pr⁡(T∈{1,3,5}|T≤4)
	=
	Pr(T∈{1,3,5}∩T≤4)Pr(T≤4)
	



	
	
	=
	Pr⁢(T)∈{1,3}1-Pr(T=5)=0.26+0.210.95=0.495
	












	If we have partial knowledge of an outcome or are only interested
in some selected outcomes, the appropriate calculations require
use of the conditional probability formulas, which are based on
using a new, smaller sample space.








The next set of probability concepts relates to 
independence of events.
(Sometimes students confuse disjoint and independent; be sure to keep these
concepts separate.) Two events, say E and F, are independent if the
probability that event E happens, Pr(E), is the same whether or not we condition
on event F happening. That is Pr⁡(E)=Pr⁡(E|F). If this is true then it
is also true that Pr⁡(F)=Pr⁡(F|E). We use the term marginal probability


to distinguish a probability like Pr(E) that is not conditional on some other
probability. The marginal probability of E is the probability of E ignoring
the outcome of F (or any other event). The main idea behind independence
and its definition is that
knowledge of whether or not F occurred does not change what we know about
whether or not E will occur. It is in this sense that they are independent
of each other.




Note that independence of E and F also means that Pr(E∩F) = Pr(E)Pr(F), i.e.,
the probability that two independent events both occur is the product of the
individual (marginal) probabilities.




Continuing with our five-question test example, let event A be the event that
the test score, T, is greater than or equal to 3, i.e., A={3,4,5}, and
let B be the event that T is even. Using the union rule (for disjoint elements
or sets) Pr(A) = 0.21 + 0.24 + 0.05 = 0.50, and Pr(B) = 0.10 + 0.14 + 0.24 = 0.48.
From the conditional probability formula







	
	Pr⁡(A|B)=Pr⁡(A∩B)Pr⁡(B)=Pr⁡(T=4)Pr⁡(B)=0.240.48=0.50
	







and







	
	Pr(B|A)=Pr⁢(B∩A)Pr⁢(A)=Pr(T=4)Pr⁢(A)=0.240.50=0.48.
	







Since Pr(A|B)=Pr(A) and Pr(B|A)=Pr(B), events A and B are independent.
We therefore can calculate that
Pr(AB) = Pr(T=4) = Pr(A) Pr(B) = 0.50 (0.48) = 0.24 (which we happened to
already know in this example).




If A and B are independent events, then we can calculate the probability of
their intersection as the product of the marginal probabilities. If they are
not independent, then we can calculate the probability of the intersection
from an equation that is a rearrangement of the conditional probability formula:







	
	Pr(A∩B)=Pr(A|B)Pr(B) or Pr(A∩B)=Pr(B|A)Pr(A).
	







For our example, one calculation we can make is







	
	Pr(T is even∩T<2)
	=
	Pr(T is even|T<2)Pr(T<2)
	



	
	
	=
	[0.10/(0.10+0.26)]⋅(0.10+0.26)=0.10.
	




Although this is not the
easiest way to calculate Pr(T is even|T<2) for this problem, the
small bag of tricks described in the chapter come in very handy for making
certain calculations when only certain pieces of information are conveniently
obtained.




A contrasting example is to define event G={0,2,4}, and
let H={2,3,4}. Then G∩H={2,4}. We can see that
Pr(G)=0.48 and Pr(H)=0.59 and Pr⁡(G∩H)=0.38.
From the conditional probability formula







	
	Pr(G|H)=Pr⁢(G∩H)Pr⁢(H)=0.380.59=0.644.
	







So, if we have no knowledge of the random outcome, we should say there
is a 48% chance that T is even. But if we have the partial outcome
that T is between 2 and 4 inclusive, then we revise our probability
estimate to a 64.4% chance that T is even. Because these probabilities
differ, we can say that event G is not independent of event
H. We can “check” our conclusion by verifying that the probability
of G∩H (0.38) is not the product of the marginal probabilities,
0.48⋅0.59=0.2832.




Independence also applies to random variables. Two random variables
are independent if knowledge of the outcome of one does not change
the (conditional) probability of the other. In technical terms,
if Pr⁡(X|Y=y)=Pr⁡(X) for all values of y, then X and Y are
independent random variables. If two random variables are independent,
and if you consider any event that is a subset of the X outcomes and
any other event that is a subset of the Y outcomes, these events will
be independent.









	At an intuitive level, events are independent if knowledge
that one event has or has not occurred does not provide new information
about the probability of the other event. Random variables are
independent if knowledge of the outcome of one does not provide
new information about the probabilities of the various
outcomes of the other. In most experiments it is reasonable to
assume that the outcome for any one subject is independent of the
outcome of any other subject. If two events are independent, the
probability that both occur is the product of the individual
probabilities.










3.4 Populations and samples



In the context of experiments, observational studies, and surveys,
we make our actual measurements on individual
observational units 
. These
are commonly people (subjects, participants, etc.) in
the social sciences, but can also be schools, social groups,
economic entities, archaeological sites, etc. (In some complicated
situations we
may make measurements at multiple levels, e.g., school size and
students’ test scores, which makes the definition of experimental
units more complex.)




We use the term population  to refer
to the entire set of actual or potential observational units.
So for a study of working memory, we might define the population
as all U.S. adults, as all past present and future human
adults, or we can use some other definition. In the case of,
say, the U.S. census, the population is reasonably well defined
(although there are problems, referred to in the census literature
as “undercount”) and is large, but finite.
For experiments, the definition of population
is often not clearly defined, although such a definition can be
very important. See section 8.3 for
more details. Often we consider such a population to be
theoretically infinite, with no practical upper limit on the
number of potential subjects we could test.




For most studies (other than a census), only a subset of all
of the possible experimental units of the population are
actually selected for study, and this is called the sample
 (not to be confused with sample space).
An important part of the understanding of the idea of a sample
is to realize that each experiment is conducted on a particular
sample, but might have been conducted on many other different
samples.
For theoretically correct inference, the sample should
be randomly selected from the population. If this is
not true, we call the sample a convenience sample,
 and we lose many of the
theoretical properties required for correct inference.





Even though we must use samples in science, it is very important
to remember that we are interested in learning about populations,
not samples. Inference from samples to populations
is the goal of statistical analysis.






3.5 Parameters describing distributions



As mentioned above, the probability distribution of a random variable (pmf for a
discrete random variable or pdf for a continuous random variable)
completely describes its behavior in terms of the chances that various
events will occur. It is also useful to work with certain fixed
quantities that either completely characterize a distribution
within a family of distributions or otherwise convey useful information about
a distribution. These are called  parameters.
Parameters are fixed quantities that characterize theoretical
probability distributions. (I am using the term “theoretical distribution”
to focus on the fact that we are assuming a particular mathematical
form for the pmf or pdf.)




The term parameter may be somewhat confusing because it is used in several
slightly different ways. Parameters may refer to the fixed constants
that appear in a pdf or pmf. Note that these are somewhat arbitrary
because the pdf or pmf may often be rewritten (technically, re-parameterized)
in several equivalent forms. For example, the binomial distribution
is most commonly written in terms of a probability, but can just as
well be written in terms of odds.




Another related use of the term parameter is for a summary measure of
a particular (theoretical) probability distribution. These are most
commonly in the form of  expected values.
Expected values can be thought of as long-run averages of a random
variable or some computed quantity that includes the random variable.
For discrete random variables, the expected value is just a
probability weighted average, i.e., the 
 population mean.
For example, if a random variable takes
on (only) the values 2 and 10 with probabilities 5/6 and 1/6 respectively,
then the expected value of that random variable is 2(5/6)+10(1/6)=20/6.
To be a bit more concrete, if someone throws a die each day and
gives you $10 if 5 comes up and $2 otherwise, then over n
days, where n is a large number, you will end up with very close
to $20⋅n6, or about $3.67(n).




The notation for expected value is E⁢[⋅] or E⁢(⋅)
where, e.g., E⁢[X] is
read as “expected value of X” and represents the population mean of X.
Other parameters such as variance, skewness and kurtosis are
also expected values, but of expressions involving X rather than
of X itself.





The more general formula for expected value is




E⁢[g⁢(X)]=∑i=1kg⁢(xi)⁢pi=∑i=1kg⁢(xi)⁢f⁢(xi)


where E⁢[⋅] or E⁢(⋅) represents “expected value”, g⁢(X) is
any function of the random variable X, k (which may be infinity) is
the number of values of X with non-zero probability, the xi values are
the different values of X, and the pi values (or equivalently, f⁢(xi))
are the corresponding probabilities.
Note that it is possible to define g⁢(X)=X, i.e., g⁢(xi)=xi, to find E⁢(X) itself.
The corresponding formula for expected value of a continuous random
variable is




E⁢[g⁢(X)]=∫-∞∞g⁢(x)⁢f⁢(x)⁢𝑑x.


Of course if the support is smaller than the entire real
line, the pdf is zero outside of the support, and it is equivalent
to write the integration limits as only over the support.
To help you think about this concept, consider a discrete random
variable, say W, with values -2, -1, and 3 with probabilities 0.5, 0.3, 0.2
respectively. E⁢(W)=-2⁢(0.5)-1⁢(0.3)+3⁢(0.2)=-0.7. What is E⁢(W2)?
This is equivalent to letting g⁢(W)=W2 and finding E⁢(g⁢(W))=E⁢(W2).
Just calculate W2 for each W and take the weighted average:
E⁢(W2)=4⁢(0.5)+1⁢(0.3)+9⁢(0.2)=4.1. It is also equivalent to
define, say, U=W2. Then we can express f⁢(U) as U has
values 4, 1, and 9 with probabilities 0.5, 0.3, and 0.2 respectively.
Then E⁢(U)=4⁢(0.5)+1⁢(0.3)+9⁢(0.2)=4.1, which is the same answer.
Different parameters are generated by using different forms of
g⁢(x).







	Name
	Definition
	Symbol





	mean
	E⁢[X]
	μ



	variance
	E⁢[(X-μ)2]
	σ2



	standard deviation
	σ2
	σ



	skewness
	E⁢[(X-μ)3]/σ3
	γ1



	kurtosis
	E⁢[(X-μ)4]/σ4-3
	γ2





Table 3.2: Common parameters and their definitions as expected values.


You will need to become familiar with several parameters
that are used to characterize theoretical population distributions.
Technically, many of these are defined using the expected
value formula (optional material) with the expressions
shown in table 3.2. You only need to become
familiar with the names and symbols and their general meanings,
not the “Definition” column.
Note that the symbols shown are the most commonly used ones,
but you should not assume that these symbol always represents the corresponding
parameters or vice versa.





3.5.1 Central tendency: mean and median



The  central tendency refers to ways
of specifying where the “middle” of a probability distribution
lies. Examples include the mean and median parameters. The mean
(expected value) of a random variable can be thought of as the
“balance point” of the distribution if the pdf is
cut out of cardboard. Or if the outcome is some monetary
payout, the mean is the appropriate amount to bet to
come out even in the long term. Another interpretation of
mean is the “fair distribution of outcome” in the sense
that if we sample many values and think of them as one
outcome per subject, the mean is result of a fair redistribution
of whatever the outcome represents among all of the subjects.
On the other hand, the median is the value that splits the
distribution in half so that there is a 50/50 chance of a
random value from the distribution occurring above or below the median.




The median has a more technical definition that applies even in some
less common situations such as when a distribution does not have
a single unique median. The median is any m such that
P(X≤m)≥12 and P(X≥m)≥12.






3.5.2 Spread: variance and standard deviation



The  spread of a distribution most
commonly refers to the variance or standard deviation parameter,
although other quantities such as interquartile range are
also measures of spread.




The 

population variance is the mean squared distance of any value from
the mean of the distribution, but you only need to think
of it as a measure of spread on a different scale from
standard deviation.
The 

standard deviation is defined as the square root of
the variance. It is not as useful in
statistical formulas and derivations as the variance, but it has
several other useful properties, so both variance and standard
deviation are commonly calculated in practice. The standard
deviation is in the same units as the original measurement from
which it is derived. For each theoretical distribution, the intervals
[μ-σ,μ+σ],[μ-2⁢σ,μ+2⁢σ],and⁢[μ-3⁢σ,μ+3⁢σ] include fixed known
amounts of the probability. It is worth memorizing that
for Gaussian distributions only these
fractions are 0.683, 0.954, and 0.997 respectively. (I usually
think of this as approximately 2/3, 95% and 99.7%.) Also
exactly
95% of the Gaussian distribution is in [μ-1.96σ,μ+1.96σ]




When the
standard deviation of repeated measurements is proportional
to the mean, then instead of using standard deviation,
it often makes more sense to measure variability in terms of the
  coefficient of variation, which is the s.d. divided
by the mean.




There is a special statistical theorem 
(called Chebyshev’s inequality)
that applies to any
shaped distribution and that states that
at least (1-1k2)×100% of the values are within
k standard deviations from the mean. For example,
the interval [μ-1.41⁢σ,μ+1.41⁢σ] holds at least
50% of the values, [μ-2⁢σ,μ+2⁢σ] holds at least
75% of the values, and [μ-3⁢σ,μ+3⁢σ] holds at least
89% of the values.






3.5.3 Skewness and kurtosis



The 

population skewness of a distribution is a measure of
asymmetry (zero is symmetric) and the population kurtosis
is a measure of peakedness or flatness compared to a Gaussian distribution,
which has γ2=0. If a distribution is “pulled out”
towards higher values (to the right), then it has
positive skewness. If it is pulled out toward lower
values, then it has negative skewness. A symmetric
distribution, e.g., the Gaussian distribution, has
zero skewness.




The 

population kurtosis of
a distribution measures how far away a distribution is
from a Gaussian distribution in terms of peakedness vs.
flatness. Compared to a Gaussian distribution, a distribution
with negative kurtosis has “rounder shoulders” and “thin tails”,
while a distribution with a positive kurtosis has
more a more sharply shaped peak and “fat tails”.






3.5.4 Miscellaneous comments on distribution parameters



Mean, variance, skewness and kurtosis are called moment estimators.
They are respectively the 1s⁢t through 4t⁢h (central) moments.
Even simpler are the non-central moments: the rt⁢h non-central
moment of X is the expected value of Xr. There are formulas
for calculating central moments from non-central moments. E.g.,
σ2=E⁢(X2)-E⁢(X)2.




It is important to realize that for any particular distribution (but not family
of distributions) each parameter is a fixed constant. Also, you will recognize
that these parameter names are the same as the names of statistics that can
be calculated for and used as descriptions of samples rather than
probability distributions (see next chapter).
The prefix “population” is sometimes used as
a reminder that we are talking about the fixed numbers for a given
probability distribution rather than the corresponding sample values.




It is worth knowing that any formula applied to one or more
parameters creates a new parameter. For example, if μ1 and
μ2 are parameters for some population, say, the mean
dexterity with the subjects’ dominant and non-dominant hands, then
log(μ1), μ22, μ1-μ2 and (μ1+μ2)/2 are
also parameters.




In addition to the parameters in the above table, which are the most common
descriptive parameters that can be calculated for any distribution, fixed
constants in a pmf or pdf, such as degrees of freedom (see below) or the n in the
binomial distribution are also (somewhat loosely) called parameters.




Technical note: For some distributions, parameters such as the mean
or variance may be infinite.









	Parameters such as (population) mean and (population) variance are
fixed quantities that characterize a given probability distribution.
The (population) skewness characterizes symmetry, and (population) kurtosis
characterizes symmetric deviations from Normality. Corresponding
sample statistics can be thought of as sample estimates of the
population quantities.










3.5.5 Examples


[image: ]
Figure 3.1: Various probability density function


As a review of the concepts of theoretical population distributions
(in the continuous random variable case) let’s consider a few examples.




Figure 3.1 shows five different pdf’s representing
the (population) probability distributions of five different continuous random
variables. By the rules of pdf’s, the area under each of the five
curves equals exactly 1.0, because that represents the probability
that a random outcome from a distribution is between -infinity and
+infinity. (The area shown, between -2 and +5 is slightly less than
1.0 for each distribution because there is a small chance that these
variables could have an outcome outside of the range shown.)
You can see that distribution A is a unimodal (one peak)
symmetric distribution, centered around 2.0. Although you cannot
see it by eye, it has the perfect bell-shape of a Gaussian distribution.
Distribution B is also Gaussian in shape, has
a different central tendency (shifted higher or rightward), and
has a smaller spread. Distribution C is bimodal (two peaks) so
it cannot be a Gaussian distribution.
Distribution D has the lowest center and is asymmetric
(skewed to the right), so it cannot be Gaussian. Distribution E
appears similar to a Gaussian distribution, but while
symmetric and roughly bell-shaped, it has “tails” that are too
fat to be a true bell-shaped, Gaussian distribution.




So far we have been talking about the parameters of a given, known, theoretical
probability distribution. A slightly different context for the use of the term
parameter is in respect to a real world population, either finite (but usually
large) or infinite. As two examples, consider the height of all people living
on the earth at 3:57 AM GMT on September 10, 2007, or the birth weights of
all of the Sprague-Dawley breed of rats that could possibly be bred. The
former is clearly finite, but large. The latter is perhaps technically
finite due to limited resources, but may also be thought of as (practically)
infinite. Each of these must follow some true distribution with fixed
parameters, but these are practically unknowable. The best we can do
with experimental data is to
make an estimate of the fixed, true, unknowable parameter value. For this reason,
I call parameters in this context “secrets of nature” to remind you that
they are not random and they are not practically knowable.







3.6 Multivariate distributions: joint, conditional, and marginal



The concepts of this section are fundamentals of probability, but for
the typical user of statistical methods, only a passing knowledge
is required. More detail is given here for the interested reader.




So far we have looked at the distribution of a single random variable
at a time. Now we proceed to look at the 
 joint distribution
of two (or more) random variables. First consider the case of
two categorical random variables. As an example, consider the population
of all cars produced in the world in 2006. (I’m just making up
the numbers here.) This is a large finite population from which
we might sample cars to do a fuel efficiency experiment. If we focus
on the categorical variable “origin” with levels “US”,”Japanese”,
and “Other”, and the categorical variable “size” with categorical
variable “Small”, “Medium” and “Large”, then table
3.3 would represent the joint distribution of
origin and size in this population.







	origin / size
	Small
	Medium
	Large
	Total



	US
	0.05
	0.10
	0.15
	



	Japanese
	0.20
	0.10
	0.05
	



	Other
	0.15
	0.15
	0.05
	



	Total
	
	
	
	1.00





Table 3.3: Joint distribution of car origin and size.


These numbers come from categorizing all cars,
then dividing the total in each combination of categories
by the total cars produced in the world in 2006, so they
are “relative frequencies”. But because we are considering
this the whole population of interest, it is better to consider
these numbers to be the probabilities of a (joint) pmf.
Note that the total of all of the probabilities is 1.00.
Reading this table we can see, e.g., that 20% of all 2006
cars were small Japanese cars, or equivalently, the probability
that a randomly chosen 2006 car is a small Japanese car
is 0.20.




The joint distribution of X and Y is summarized in
the joint pmf, which can be tabular or in formula form,
but in either case is similar to the one variable pmf
of section 3.2 except that it defines
a probability for each combination of levels of X and Y.




This idea of a joint distribution, in which probabilities
are given for the combination of levels of two categorical
random variables, is easily extended to three or more
categorical variables.









	The joint distribution of a pair of categorical
random variables represents the probabilities of combinations
of levels of the two individual random variables.











	origin / size
	Small
	Medium
	Large
	Total



	US
	0.05
	0.10
	0.15
	0.30



	Japanese
	0.20
	0.10
	0.05
	0.35



	Other
	0.15
	0.15
	0.05
	0.35



	Total
	0.40
	0.35
	0.25
	(1.00)





Table 3.4: Marginal distributions of car origin and size.


Table 3.4 adds the obvious margins to
the previous table, by adding the rows and columns and
putting the sums in the margins (labeled “Total”).
Note that both the right vertical and bottom horizontal
margins add to 1.00, and so they each represent
a probability distribution, in this case of
origin and size respectively. These distributions
are called the 

marginal distributions and each represents the
pmf of one of the variable ignoring the other
variable. That is, a marginal distribution is
the distribution of any particular variable when
we don’t pay any attention to the other variable(s).
If we had only studied car origins, we would have
found the population distribution to be 30%
US, 35% Japanese and 35% other.




It is important to understand that every variable we
measure is marginal with respect to all of the
other variables that we could measure on the same
units or subjects, and which we do not in any way
control (or in other words, which we let vary
freely).










	The marginal distribution of any variable with
respect to any other variable(s) is just the distribution
of that variable ignoring the other variable(s).











	origin / size
	Small
	Medium
	Large
	Total



	US
	0.167
	0.333
	0.400
	1.000



	Japanese
	0.571
	0.286
	0.143
	1.000



	Other
	0.429
	0.429
	0.142
	1.000





Table 3.5: Conditional distributions of car size given its origin.


The third and final definition for describing distributions
of multiple characteristics of a population of units
or subjects is the 

conditional distribution which relates to conditional
probability (see page 3.1). As shown
in table 3.5, the conditional distribution
refers to fixing the level of one variable, then “re-normalizing”
to find the probability level of the other variable when
we only focus on or consider those units or subjects
that meeting the condition of interest.




So if we focus on Japanese cars only (technically, we condition
on cars being Japanese) we see that 57.1% of those cars
are small, which is very different from either the marginal
probability of a car being small (0.40) or the joint
probability of a car being small and Japanese (0.20).
The formal notation here is
Pr(size=small|origin=Japanese)=0.571,
which is read “the probability of a car being small given that
the car is Japanese equals 0.571”.




It is important to realize that there is another set of
conditional distributions for this example that we have
not looked at. As an exercise, try to find the conditional
distributions of “origin” given “size”, which differ
from the distributions of “size” given “origin” of table
3.5.




It is interesting and useful to note that an equivalent alternative to
specifying the complete joint distribution of two categorical
(or quantitative) random variables is to specify the marginal
distribution of one variable, and the conditional distributions
for the second variable at each level of the first variable.
For example, you can reconstruct the joint distribution for
the cars example from the marginal distribution of “origin”
and the three conditional distributions of “size given origin”.
This leads to another way to think about marginal distributions
as the distribution of one variable averaged over the
distribution of the other.









	The distribution of a random variable conditional on a
particular level of another random variable is the distribution
of the first variable when the second variable is fixed to
the particular level.








The concepts of joint, marginal and conditional distributions
transfer directly to two continuous distributions, or one
continuous and one joint distribution, but the details will
not be given here. Suffice it to say the the joint pdf of
two continuous random variables, say X and Y is a formula
with both xs and ys in it.





3.6.1 Covariance and Correlation



For two quantitative variables, the basic parameters describing
the strength of their relationship are  covariance and
 correlation. For both, larger absolute
values indicate a stronger relationship, and positive numbers
indicate a direct relationship while negative numbers indicate
an indirect relationship. For both, a value of zero is called
uncorrelated. Covariance depends on the scale of measurement,
while correlation does not. For this reason, correlation is easier to
understand, and we will focus on that here, although if you look at the
gray box below, you will see that covariance is used as in intermediate
in the calculation of correlation.
(Note that here we are concerned with the “population”
or “theoretical” correlation. The sample version is covered
in the EDA chapter.)




Correlation describes both the strength and
direction of the (linear) relationship between two variables.
Correlations run from -1.0 to +1.0. A negative correlation indicates
an “inverse” relationship such that population units that are
low for one variable tend to be
high for the other (and vice versa), while a positive correlation
indicates a “direct” relationship such that
population units that are low in one variable tend to be
low in the other (also high with high). A zero correlation
(also called  uncorrelated) indicates
that the “best fit straight line” (see the chapter on Regression)
for a plot of X vs. Y is horizontal, suggesting
no relationship between the two random variables. Technically,
independence of two variables (see above) implies that they
are uncorrelated, but the reverse is not necessarily true.




For a correlation of +1.0 or -1.0, Y can be perfectly predicted
from X with no error (and vice versa) using a linear equation.
For example if X is temperature of a rat in degrees C and
Y is temperature in degrees F, then Y=9/5*C+32, exactly,
and the correlation is +1.0.
And if X is height in feet of a person from the floor of a
room with an 8 foot ceiling and Y is distance from the top
of the head to the ceiling, then Y=8-X, exactly, and
the correlation is -1.0. For other variables like height
and weight, the correlation is positive, but less than 1.0.
And for variables like I⁢Q and length of the index finger,
the correlation is presumably 0.0.




It should be obvious that the correlation of any variable
with itself is 1.0. Let us represent the population correlation
between random variable Xi and random variable Xj
as ρi,j. Because the correlation of X with Y is
the same as Y with X, it is true that ρi,j=ρj,i.
We can compactly represent
the relationships between multiple variables with a
 correlation matrix which
shows all of the pairwise correlations in a square table
of numbers (square matrix). An example is given in table 3.6
for the case of 4 variables. As with all correlations matrices,
the matrix is symmetric with a row of ones on the main diagonal.
For some actual population and variables, we could put numbers
instead of symbols in the matrix, and then make statements
about which variables are directly vs. inversely vs. not
correlated, and something about the strengths of the correlations.







	Variable
	X1
	X2
	X3
	X4





	X1
	1
	ρ1,2
	ρ1,3
	ρ1,4



	X2
	ρ2,1
	1
	ρ2,3
	ρ2,4



	X3
	ρ3,1
	ρ3,2
	1
	ρ3,4



	X4
	ρ4,1
	ρ4,2
	ρ4,3
	1





Table 3.6: Population correlation matrix for four variables.



There are several ways to measure “correlation” for categorical
variables and choosing among them can be a source of controversy
that we will not cover here. But for quantitative random variables
covariance and correlation are mathematically straightforward.
The population covariance of two quantitative random variables, say
X and Y, is calculated by computing the
expected value (population mean) of the quantity
(X-μX)⁢(Y-μY) where μX is the population mean of X
and μY is the population mean of Y across all combinations
of X and Y. For continuous random variables this
is the double integral




CovX,Y=∫-∞∞∫-∞∞(x-μX)⁢(y-μY)⁢f⁢(x,y)⁢𝑑x⁢𝑑y


where f⁢(x,y) is the joint pdf of X and Y.
For discrete random variables we have the simpler form




CovX,Y=∑x∈𝒳∑y∈𝒴(x-μX)⁢(y-μY)⁢f⁢(x,y)


where f⁢(x,y) is the joint pmf, and 𝒳
and 𝒴 are the respective supports of X and Y.
As an example consider a population consisting of all of the
chickens of a particular breed (that only lives 4 years)
belonging to a large multi-farm poultry company in January of 2007.
For each chicken in this population
we have X equal to the number of eggs laid in the first week of
January and Y equal to the age of the chicken in years.
The joint pmf of X and Y is given in table 3.7.
As usual, the joint pmf gives the probabilities that a random subject
will fall into each combination of categories from the
two variables.
We can calculate the (marginal) mean number of eggs from the
marginal distribution of eggs as
μX=0⁢(0.35)+1⁢(0.40)+2⁢(0.25)=0.90 and the mean
age as μY=1⁢(0.25)+2⁢(0.40)+3⁢(0.20)+4⁢(0.15)=2.25 years.
The calculation steps for the covariance are shown in
table 3.8. The population covariance of X and
Y is 0.075 (exactly). The (weird) units are “egg years”.
Population correlation can be calculated from population
covariance and the two individual standard deviations using
the formula




ρX,Y=Cov⁢(X,Y)σx⁢σy.


In this case
σX2=(0-0.9)2⁢(0.35)+(1-0.9)2⁢(0.40)+(2-0.9)2⁢(0.25)=0.59.
Using a similar calculation for σY2 and taking
square roots to get standard deviation from variance, we get




ρX,Y=0.0750.7681⋅0.9937=0.0983


which indicates a weak positive correlation: older
hens lay more eggs.







	Y (year) / X (eggs)
	0
	1
	2
	Margin



	1
	0.10
	0.10
	0.05
	0.25



	2
	0.15
	0.15
	0.10
	0.40



	3
	0.05
	0.10
	0.05
	0.20



	4
	0.05
	0.05
	0.05
	0.15



	Margin
	0.35
	0.40
	0.25
	1.00





Table 3.7: Chicken example: joint population pmf.





	X
	Y
	X-0.90
	Y-2.25
	Pr
	Pr⋅(X-0.90)(Y-2.25)



	0
	1
	-0.90
	-1.25
	0.10
	0.11250



	1
	1
	0.10
	-1.25
	0.10
	-0.00125



	2
	1
	1.10
	-1.25
	0.05
	-0.06875



	0
	2
	-0.90
	-0.25
	0.15
	0.03375



	1
	2
	0.10
	-0.25
	0.15
	-0.00375



	2
	2
	1.10
	-0.25
	0.10
	-0.02750



	0
	3
	-0.90
	0.75
	0.05
	-0.03375



	1
	3
	0.10
	0.75
	0.10
	0.00750



	2
	3
	1.10
	0.75
	0.05
	0.04125



	0
	4
	-0.90
	1.75
	0.05
	-0.07875



	1
	4
	0.10
	1.75
	0.05
	0.00875



	2
	4
	1.10
	1.75
	0.05
	0.09625



	Total
	1.00
	0.07500





Table 3.8: Covariance calculation for chicken example.







	In a nutshell: When dealing with two (or more) random variables simultaneously
it is helpful to think about joint vs. marginal vs. conditional
distributions. This has to do with what is fixed vs. what is free to
vary, and what adds up to 100%. The parameter that describes
the strength of relationship between two random variables is the
correlation, which ranges from -1 to +1.











3.7 Key application: sampling distributions



In this course we will generally be concerned with analyzing
a  
simple random sample of size n which indicates that we
randomly and independently choose n subjects from a large or infinite
population for our experiment. (For practical issues, see
section 8.3.) Then we make one or more
measurements, which are the realizations of some random variable.
Often we combine these values into one or more 
statistics. A statistic is defined as any formula or “recipe”
that can be explicitly calculated from observed data.
Note that the formula for a statistic must not
include unknown parameters. When thinking about a statistics
always remember that this is only one of many possible values
that we could have gotten for this statistic, based on the
random nature of the sampling.




If we think about random variable X for a sample of size n it
is useful to consider this a multivariate situation, i.e., the
outcome of the random trial is X1 through Xn and there
is a probability distribution for this multivariate outcome.
If we have simple random sampling, this n-fold pmf or pdf is calculable
from the distribution of the original random variable and the
laws of probability with independence. Technically we say
that X1 through Xn are  iid which stands
for independent and identically distributed, which indicates
that distribution of the outcome for, say, the third subject,
is the same as for any other subject and is independent of
(does not depend on the outcome of) the outcome for every other subject.




An example should make this clear. Consider a simple random sample
of size n=3 from a population of animals. The random variable
we will observe is gender, and we will call this X in general
and X1, X2 and X3 in particular. Lets say that we know
the parameter that represent the true probability that an animal
is male is equal to 0.4. Then the probability that an animal is
female is 0.6. We can work out the multivariate pmf case by
case as is shown in table 3.9. For example,
the chance that the outcome is FMF in that order is (0.6)(0.4)(0.6)=0.144.







	X1
	X2
	X3
	Probability



	F
	F
	F
	0.216



	M
	F
	F
	0.144



	F
	M
	F
	0.144



	F
	F
	M
	0.144



	F
	M
	M
	0.096



	M
	F
	M
	0.096



	M
	M
	F
	0.096



	M
	M
	M
	0.064



	Total
	





Table 3.9: Multivariate pmf for animal gender.


Using this multivariate pmf, we can easily calculate the pmf
for derived random variables (statistics) such as Y=the number of
females in the sample: Pr(Y=0)=0.064, Pr(Y=1)=0.288, Pr(Y=2)=0.432,
and Pr(Y=3)=0.216.




Now think carefully about what we just did. We found the probability
distribution of random variable Y, the number of females in a sample
of size three. This is called the 
sampling distribution of Y,
which refers to the fact that Y is a random
quantity which varies from sample to sample over many possible samples
(or experimental runs) that could be carried out if we had enough resources.
We can find the sampling distribution of various sample quantities
constructed from the data of a random sample. These quantities
are  sample statistics, and
can take many different forms. Among these are the
sample versions of mean, variance, standard deviation, etc. Quantities
such as the sample mean or sample standard deviation (see section
4.2) are often used as estimates of the corresponding population
parameters. The sampling distribution of a sample statistic
is then the key way to evaluate how good of an estimate a
sample statistic is. In addition, we use various sample statistics
and their sampling distributions to make probabilistic conclusions
about statistical hypotheses, usually in the form of statements
about population parameters.









	Much of the statistical analysis of experiments is grounded
in calculation of a sample statistic, computation of its sampling
distribution (using a computer), and using the sampling distribution
to draw inferences about statistical hypotheses.










3.8 Central limit theorem



The Gaussian (also called bell-shaped or Normal)
distribution is a very common one. The central limit theorem (CLT) explains why
many real-world variables follow a Gaussian distribution.




It is worth reviewing here what “follows a particular distribution” really
means. A random variable follows a particular distribution if the
observed probability of each outcome for a discrete random variable or
the the observed probabilities of a reasonable set of intervals for
a continuous random variable are well approximated by the corresponding
probabilities of some named distribution (see Common Distributions, below).
Roughly, this means that a histogram of the actual random outcomes is
quite similar to the theoretical histogram of potential outcomes defined
by the pmf (if discrete) or pdf (if continuous). For example, for any
Gaussian distribution with mean μ and standard deviation σ,
we expect 2.3% of values to fall below μ-2⁢σ, 13.6% to fall
between μ-2⁢σ and μ-σ, 34.1% between μ-σ and μ,
34.1% between μ and μ+σ, 13.6% between μ+σ
and μ+2⁢σ, and 2.3% above μ+2⁢σ. In practice we would
check a finer set of divisions and/or compare the shapes of the actual
and theoretical distributions either using histograms or a special
tool called the quantile-quantile plot.




In non-mathematical language, the “CLT” says that whatever the pmf or pdf
of a variable is, if we randomly sample a “large” number (say k) of
independent values from that random variable, the sum or mean of those k
values, if collected repeatedly, will have a Normal distribution. It takes some
extra thought to understand what is going on here. The process I am describing
here takes a sample of (independent) outcomes, e.g., the weights of all
of the rats chosen for an experiment, and calculates the mean weight (or sum of
weights). Then we consider the less practical process of repeating the
whole experiment many, many times (taking a new sample of rats each time).
If we would do this, the CLT says that
a histogram of all of these mean weights across all of these experiments would
show a Gaussian shape, even if the histogram of the individual weights of
any one experiment were not following a Gaussian distribution. By the way,
the distribution of the means across many experiments is usually called
the “sampling distribution of the mean”.




For practical
purposes, a number as small as 20 (observations per experiment)
can be considered “large” when invoking the CLT if the original
distribution is not very bizarre in shape and if we only want a reasonable
approximation to a Gaussian curve. And for almost all original distributions,
the larger k is, the closer the distribution of the means or sums are
to a Gaussian shape.




It is usually fairly easy to find the mean and variance
of the sampling distribution (see section 3.7) of a statistic
of interest (mean or otherwise),
but finding the shape of this sampling distribution is more difficult.
The Central Limit Theorem lets us predict the (approximate) shape of the sampling
distribution for sums or means. And this additional shape information is
usually all that is needed to construct valid confidence intervals and/or
p-values.




But wait, there’s more! The central limit theorem also applies to the
sum or mean of many different independent random variables as long
as none of them strongly dominates the others. So we can invoke the
CLT as an explanation for why many real-world variables happen to have
a Gaussian distribution. It is because they are the result of many
small independent effects. For example, the weight of 12-week-old rats
varies around the mean weight of 12-week-old rats due
to a variety of genetic factors, differences in food availability,
differences in exercise, differences in health, and
a variety of other environmental factors, each of which adds or
subtracts a little bit relative to the overall mean.




See one of the theoretical statistics texts listed in the bibliography
for a proof of the CLT.










	The Central Limit Theorem is the explanation why many real-world
random variables tend to have a Gaussian distribution. It is also
the justification for assuming that if we could repeat an experiment
many times, any sample mean that we calculate once per experiment would
follow a Gaussian distribution over the many experiments.










3.9 Common distributions



A brief description of several useful and commonly used probability
distributions is given here. The casual reader will
want to just skim this material, then use it as reference material
as needed.




The two types of distributions are discrete and continuous
(see above), which are fully characterized by their pmf or pdf
respectively. In the notation section of each distribution
we use “X∼” to mean “X is distributed as”.




What does it mean for a random variable to follow a certain
distribution? It means that the pdf or pmf of that distribution
fully describes the probabilities of events for that
random variable. Note that each of the named distributions
described below are a family of related individual distributions
from which a specific distribution must be specified using
an index or pointer into the family usually called a
parameter (or sometimes using 2 parameters). For a theoretical
discussion, where we assume
a particular distribution and then investigate what properties
follow, the pdf or pmf is all we need.




For data analysis, we usually need to choose a theoretical distribution
that we think will well approximate our measurement for the population from which
our sample was drawn. This can be done using information about
what assumptions lead to each distribution, looking at the support
and shape of the sample distribution, and using prior knowledge of similar
measurements. Usually we choose a family of distributions, then
use statistical techniques to estimate the parameter that
chooses the particular distribution that best matches our data.
Also, after carrying out a statistical test that assumes a particular
family of distributions, we use model checking, such as residual analysis,
to verify that our choice was a good one.





3.9.1 Binomial distribution



The  binomial distribution
is a discrete distribution that represents
the number of successes in n independent trials, each of which
has success probability p. All of the (infinite) different values
of n and p define a whole family of different binomial distributions.
The outcome of a random variable that follows a binomial distribution
is a whole number from 0 to n (i.e., n+1 different possible values).
If n=1, the special name 
Bernoulli distribution may be used.
If random variable X follows a Bernoulli distribution with
parameter p, then stating that Pr(X=1)=p and Pr(X=0)=1-p
fully defines the distribution of X.




If we let X represent the random outcome of a binomial random
variable with parameters n and p, and let x represent any
particular outcome (as a whole number from 0 to n), then the
pmf of a binomial distribution tells us the probability that the
outcome will be x:







	
	Pr(X=x)=f(x)=(n!(n-x)!⁢x!)px(1-p)n-x.
	







As a reminder, the exclamation mark symbol is pronounced “factorial” and r! represents
the product of all the integers from 1 to r. As an exception, 0!=1.




The true, theoretical mean of a binomial distribution is n⁢p and the variance is
n⁢p⁢(1-p). These refer to the ideal for an infinite population. For a
sample, the sample mean and variance will be similar to the theoretical
values, and the larger the sample, the more sure we are that the sample
mean and variance will be very close to the theoretical values.




As an example, if you buy a lottery ticket for a daily lottery
choosing your lucky number each of 5 different days in a lottery
with a 1/500 chance of winning each time, then knowing that these
chances are independent, we could call the number of times (out of 5)
that you win Y, and state that Y is distributed according to
a binomial distribution with n=5 and p=0.002. We now know that
if many people each independently buy 5 lottery tickets they will each
have an outcome between 0 and 5, and the mean of all of those outcomes
will be (close to) n⁢p=5⁢(0.002)=0.01 and the variance will be (close to)
n⁢p⁢(1-p)=5⁢(0.002)⁢(0.998)=0.00998 (with sd=0.0098=0.0999.)




In this example we can calculate n!=5⋅4⋅3⋅2⋅1=120, and
for x=2, (n-x)!=3!=3⋅2⋅1=6 and x!=2!=2⋅1=2. So




	
	Pr(X=2)=(1206⋅2)0.0022(0.998)3=0.0000398.
	




Roughly 4 out of 100,000 people will win twice in 5 days.




It is sometimes useful to know that with large n a binomial random
variable with parameter p approximates a Normal distribution
with mean n⁢p and variance n⁢p⁢(1-p) (except that there are gaps
in the binomial because it only takes on whole numbers).




Common notation is X∼bin⁢(n,p).







3.9.2 Multinomial distribution



The  multinomial distribution
is a discrete distribution that
can be used to model situations where a subject has n trials
each of which independently can result in one of k different values
which occur with probabilities (p1,p2,…,pk), where
p1+p2+…+pk=1. The outcome of a multinomial is a
list of k numbers adding up to n, each of which represents the number
of times a particular value was achieved.




For random variable X following the multinomial distribution,
the outcome is the list of values (x1,x2,…,xk)
and the pmf is:




	
	Pr(X1=x1,X2=x2,…,Xk=xk)=(n!x1!⋅x2!⁢⋯⁢xk!)p1x1p2x2⋯pkxk.
	







For example, consider
a kind of candy that comes in an opaque bag and has three
colors (red, blue, and green) in different amounts in each bag.
If 30% of the bags have red as the most common color,
20% have green, and 50% have blue, then we could imagine an
experiment consisting of opening n randomly chosen
bags and recording for each bag which color was most common.
Here k=3 and p1=0.30,p2=0.20, and p3=0.50. The outcome
is three numbers, e.g., x1=number of times (out of 2) that
red was most common, x2=number of times blue is most common,
and x3=number of times green is most common. If
we choose n=2, one calculation we can make is




	
	Pr(x1=1,x2=1,x3=0)=(2!1!⋅1!⋅0!)0.301 0.201 0.500=0.12
	




and the whole pmf can be represented in this tabular form
(where “# of Reds” means number of bags where red was most common,
etc.):







	
x1 (# of Reds)
	
x2 (# of Blues)
	
x3 (# of Greens)
	Probability



	2
	0
	0
	0.09



	0
	2
	0
	0.04



	0
	0
	2
	0.25



	1
	1
	0
	0.12



	1
	0
	1
	0.30



	0
	1
	1
	0.20








Common notation is X∼MN⁢(n,p1,…,pk).







3.9.3 Poisson distribution



The  Poisson distribution
is a discrete distribution whose support
is the non-negative integers (0,1,2,…). Many measurements
that represent counts which have no theoretical upper limit, such as
the number of times a subject clicks on a moving target on a computer
screen in one minute, follow a Poisson distribution. A Poisson
distribution is applicable when the chance of a countable event
is proportional to the time (or distance, etc.) available,
when the chances of events in non-overlapping intervals is independent,
and when
the chance of two events in a very short interval is essentially zero.




A Poisson distribution has one parameter, usually represented as
λ (lambda). The pmf is:




	
	Pr(X=x)=f(x)=e-λ⁢λxx!
	




The mean is λ and the variance is also λ.
From the pmf, you can see that the probability of no events,
Pr(X=0), equals e-λ.




If the data show a substantially larger variance than the mean,
then a Poisson distribution is not appropriate. A common
alternative is the 
negative binomial distribution which
has the same support, but has two parameters often denoted
p and r. The negative binomial distribution can be thought
of as the number of trials until the rt⁢h success when
the probability of success is p for each trial.




It is sometimes useful to know that with large λ a Poisson random
variable approximates a Normal distribution
with mean λ and standard deviation λ (except that there are gaps
in the Poisson because it only takes on whole numbers).




Common notation is X∼Pois⁢(λ).






3.9.4 Gaussian distribution



The  Gaussian or Normal distribution
 is a continuous distribution
with a symmetric, bell-shaped pdf curve as shown in
Figure 3.2. The members of this family are
characterized by two parameters, the mean and the variance (or
standard deviation) usually written as μ and σ2 (or
σ). The support is all of the real numbers, but the “tails”
are very thin, so the probability that X is more than 4 or 5
standard deviations from the mean is extremely small. The
pdf of the Normal distribution is:




	
	f⁢(x)=12⁢σ⁢e-(x-μ)22⁢σ2.
	






[image: ]
Figure 3.2: Gaussian bell-shaped probability density function


Among the family of Normal distributions, the standard normal distribution,
the one with μ=0 and σ2=1 is special. It is the one
for which you will find information about the probabilities of
various intervals in textbooks. This is useful because the probability
that the outcome will fall in, say, the interval from minus infinity to
any arbitrary number x for a non-standard normal distribution,
say, X, with mean μ≠0 and
standard deviation σ≠1 is the same as the probability that
the outcome of a standard normal random variable, usually called Z,
will be less than z=x-μσ, where the formula for
z is the “z-score” formula.





Of course, there is not really anything “normal” about the Normal
distribution, so I always capitalize “Normal” or use Gaussian to remind you that
we are just talking about a particular probability distribution,
and not making any judgments about normal vs. abnormal.
The Normal distribution is a very commonly used distribution (see CLT, above).
Also the Normal distribution is quite flexible in that the center
and spread can be set to any values independently. On the other
hand, every distribution that subjectively looks “bell-shaped”
is not a Normal distribution.
Some distributions are flatter than Normal, with “thin tails” (negative
kurtosis). Some distributions are more
“peaked” than a true Normal distribution and thus have
“fatter tails” (called positive kurtosis).
An example of this is the t-distribution (see below).




Common notation is X∼N⁢(μ,σ2).






3.9.5 t-distribution



The  t-distribution
is a continuous distribution with a symmetric,
unimodal pdf centered at zero that has a single parameter called
the 
“degrees of freedom” (df). In this context you can think
of df as just an index or pointer which selects a single distribution
out of a family of related distributions. For other ways
to think about df see section 4.6. The support is all of the
real numbers. The t-distributions have fatter tails
than the normal distribution, but approach the shape of the
normal distribution as the df increase. The t-distribution
arises most commonly when evaluating how far a sample mean is
from a population mean when the standard deviation
of the sampling distribution is estimated from the data rather than
known. It is the
fact that the standard deviation is an estimate (i.e., a
standard error) rather than the true value that causes the
widening of the distribution from Normal to t.




Common notation is X∼td⁢f.






3.9.6 Chi-square distribution



A  chi-square distribution
is a continuous distribution with
support on the positive real numbers whose family is indexed
by a single “degrees of freedom” parameter. A chi-square
distribution with df equal to a, commonly arises from the
sum of squares of
a independent N(0,1) random variables. The mean is equal
to the df and the variance is equal to twice the df.




Common notation is X∼χd⁢f2.






3.9.7 F-distribution



The  F-distribution is a continuous
distribution with support on the positive real numbers. The
family encompasses a large range of unimodal, asymmetric shapes determined
by two parameters which are usually called numerator and
denominator degrees of freedom. The
F-distribution is very commonly used in analysis of experiments.
If X and Y are two independent chi-square random variables with
r and s df respectively, then X/rY/s defines a
new random variable that follows the F-distribution with r and s
df. The mean is ss-2 and the variance is a complicated
function of r and s.




Common notation is X∼F⁢(r,s).





























Chapter 4 Exploratory Data Analysis



A first look at the data.




As mentioned in Chapter 1, exploratory data analysis or “EDA” is
a critical first step in analyzing the data from an experiment.
Here are the main reasons we use EDA:





	
• 

detection of mistakes





	
• 

checking of assumptions





	
• 

preliminary selection of appropriate models





	
• 

determining relationships among the explanatory variables, and





	
• 

assessing the direction and rough size of relationships
between explanatory and outcome variables.










Loosely speaking, any method of looking at data that does not
include formal statistical modeling and inference falls under
the term exploratory data analysis.





4.1 Typical data format and the types of EDA



The data from an experiment are generally collected into a
rectangular array (e.g., spreadsheet or database), most commonly
with one row per experimental subject and one column for each
subject identifier, outcome variable, and explanatory variable.
Each column contains the numeric values for a particular
quantitative variable or the levels for a categorical variable.
(Some more complicated experiments require a more complex
data layout.)




People are not very good at looking at a column of numbers or a
whole spreadsheet and then determining important characteristics
of the data. They find looking at numbers to be tedious, boring,
and/or overwhelming. Exploratory data analysis techniques have been
devised as an aid in this situation. Most of these techniques work in
part by hiding certain aspects of the data while making other
aspects more clear.




Exploratory data analysis is generally cross-classified in
two ways. First, each method is either non-graphical or
graphical. And second, each method is either univariate
or multivariate (usually just bivariate).




Non-graphical methods generally involve calculation of summary
statistics, while graphical methods obviously summarize the
data in a diagrammatic or pictorial way. Univariate methods
look at one variable (data column) at a time, while multivariate
methods look at two or more variables at a time to explore
relationships. Usually our multivariate EDA will be bivariate
(looking at exactly two variables), but occasionally it will involve
three or more variables. It is almost always a good idea
to perform univariate EDA on each of the components of a
multivariate EDA before performing the multivariate EDA.




Beyond the four categories created by the above cross-classification,
each of the categories of EDA have further divisions based
on the role (outcome or explanatory) and type (categorical
or quantitative) of the variable(s) being examined.




Although there are guidelines about which EDA techniques
are useful in what circumstances, there is an important
degree of looseness and art to EDA. Competence and confidence
come with practice,
experience, and close observation of others. Also, EDA
need not be restricted to techniques you have seen before;
sometimes you need to invent a new way of looking at your
data.









	The four types of EDA are univariate non-graphical,
multivariate non-graphical, univariate graphical, and multivariate
graphical.








This chapter first discusses the non-graphical and graphical methods
for looking at single variables, then moves on to looking at multiple
variables at once, mostly to investigate the relationships between
the variables.






4.2 Univariate non-graphical EDA



The data that come from making a particular measurement on all of
the subjects in a sample represent our observations for
a single characteristic such as age, gender, speed at a task,
or response to a stimulus. We should think of these measurements
as representing a “sample distribution” of the variable, which
in turn more or less represents the “population distribution”
of the variable. The usual goal of univariate non-graphical
EDA is to better appreciate the “sample distribution” and
also to make some tentative conclusions about what population
distribution(s) is/are compatible with the sample distribution.
Outlier detection is also a part of this analysis.





4.2.1 Categorical data



The characteristics of interest for a categorical variable are
simply the range of values and the frequency (or relative frequency)
of occurrence for each value. (For ordinal variables it is
sometimes appropriate to treat them as quantitative variables
using the techniques in the second part of this section.) Therefore
the only useful univariate non-graphical techniques for categorical
variables is some form
of  tabulation of the 
frequencies, usually
along with calculation of the fraction (or percent) of data that falls in
each category. For example if we categorize subjects by College at
Carnegie Mellon University as H&SS, MCS, SCS and “other”, then
there is a true population of all students enrolled in the 2007
Fall semester. If we take a random sample of 20 students for the purposes of
performing a memory experiment, we could list the sample “measurements”
as H&SS, H&SS, MCS, other, other, SCS, MCS, other, H&SS, MCS, SCS, SCS,
other, MCS, MCS, H&SS, MCS, other, H&SS, SCS. Our EDA would look like this:








	Statistic/College
	H&SS
	MCS
	SCS
	other
	Total





	Count
	5
	6
	4
	5
	20



	Proportion
	0.25
	0.30
	0.20
	0.25
	1.00



	Percent
	25%
	30%
	20%
	25%
	100%








Note that it is useful to have the total count (frequency) to verify
that we have an observation for each subject that we recruited. (Losing
data is a common mistake, and EDA is very helpful for finding mistakes.).
Also, we should expect that the proportions add up to 1.00 (or 100%)
if we are calculating them correctly (count/total).
Once you get used to it, you won’t need both proportion (relative frequency)
and percent, because they will be interchangeable in your mind.









	A simple tabulation of the frequency of each category
is the best univariate non-graphical EDA for categorical data.










4.2.2 Characteristics of quantitative data








	Univariate EDA for a quantitative variable is a way to
make preliminary assessments about the population distribution of the
variable using the data of the observed sample.








The characteristics of the population distribution of
a quantitative variable are its center, spread, modality (number
of peaks in the pdf), shape (including “heaviness of the tails”),
and outliers. (See section 3.5.)
Our observed data represent just one sample out of an infinite
number of possible samples. The characteristics of our
randomly observed sample are not inherently interesting, except
to the degree that they represent the population that it came from.




What we observe in the  sample of measurements
for a particular variable that we select for our particular experiment
is the “sample distribution”. We need to recognize that this would be
different
each time we might repeat the same experiment, due to selection
of a different random sample, a different treatment randomization,
and different random (incompletely controlled) experimental conditions.
In addition we can calculate “sample statistics” from the data,
such as sample mean, sample variance, sample standard deviation,
sample skewness and sample kurtosis. These again would vary
for each repetition of the experiment, so they don’t represent
any deep truth, but rather represent some uncertain information
about the underlying population distribution and its parameters,
which are what we really care about.




Many of the sample’s distributional characteristics are seen qualitatively
in the univariate graphical EDA technique of a histogram (see 4.3.1).
In most situations it is worthwhile to think of univariate
non-graphical EDA as telling you about aspects of the histogram
of the distribution of the variable of interest. Again, these aspects
are quantitative, but because they refer to just one of many
possible samples from a population, they are best thought of
as random (non-fixed) estimates of the fixed, unknown parameters
(see section 3.5) of the distribution of the population
of interest.




If the quantitative variable does not have too many distinct values,
a tabulation, as we used for categorical data, will be a worthwhile
univariate, non-graphical technique. But mostly, for quantitative variables
we are concerned here with the quantitative numeric
(non-graphical) measures which are the various 
sample statistics.
In fact, sample statistics are generally thought of as
estimates of the corresponding population parameters.



[image: ]
Figure 4.1: Histogram from distribution C.


Figure 4.1 shows a histogram of a sample of size 200
from the infinite population characterized by distribution C
of figure 3.1 from
section 3.5. Remember that in that section
we examined the parameters that characterize theoretical
(population) distributions. Now we are interested in learning
what we can (but not everything, because parameters are
“secrets of nature”) about these parameters from measurements
on a (random) sample of subjects out of that population.




The bi-modality is visible, as is an
 outlier at X=-2. There is no generally
recognized formal definition for outlier, but roughly it means
values that are outside of the areas of a distribution
that would commonly occur. This can also be thought of as
sample data values which correspond to areas of the population
pdf (or pmf) with low density (or probability). The definition
of “outlier” for standard boxplots is described below (see 4.3.3).
Another common definition
of “outlier” consider any point more than a fixed
number of standard deviations from the mean to be an “outlier”, but
these and other definitions are arbitrary and vary from situation to situation.




For quantitative variables (and possibly for ordinal variables) it
is worthwhile looking at the central tendency, spread, skewness,
and kurtosis of the data for a particular variable from an experiment.
But for categorical variables, none of these make any sense.






4.2.3 Central tendency



The  central tendency or “location”
of a distribution has to do with typical or middle
values. The common, useful measures of central tendency are the statistics
called (arithmetic) mean, median, and sometimes mode.
Occasionally other means such as geometric, harmonic, truncated,
or Winsorized means are used as measures of centrality.
While most authors use
the term  “average” as a synonym for arithmetic mean, some use
average in a broader sense to also include geometric, harmonic, and other
means.





Assuming
that we have n data values labeled x1 through xn, the
formula for  calculating the sample (arithmetic) mean is




	
	x¯=∑i=1nxin.
	




The arithmetic mean is simply the sum of all of the data
values divided by the number of values. It can be thought of as
how much each subject gets in a “fair” re-division of whatever the
data are measuring. For instance, the mean amount of money that
a group of people have is the amount each would get if all of the
money were put in one “pot”, and then the money was redistributed
to all people evenly. I hope you can see that this is the same as
“summing then dividing by n”.




For any symmetrically shaped distribution (i.e., one with a
symmetric histogram or pdf or pmf) the mean is the point around which
the symmetry holds. For non-symmetric distributions, the mean is the
“balance point”: if the histogram is cut out of some homogeneous
stiff material such as cardboard, it will balance on a fulcrum
placed at the mean.




For many descriptive quantities, there are both a sample and a population version.
For a fixed finite population or for a theoretic infinite population
described by a pmf or pdf, there is a single population mean
which is a fixed, often unknown, value called the mean 
parameter (see section 3.5).
On the other hand, the “sample mean” will vary from
sample to sample as different samples are taken, and so is a random
variable. The probability distribution of the sample mean
is referred to as its  sampling
distribution. This term expresses the idea that any experiment
could (at least theoretically, given enough resources) be repeated
many times and various statistics such as the sample mean can
be calculated each time. Often we can use probability theory to
work out the exact distribution of the sample statistic, at least
under certain assumptions.




The  median is another measure of
central tendency.
The sample median is the middle value after all of
the values are put in an ordered list. If there are
an even number of values, take the average of the
two middle values. (If there are ties at the middle,
some special adjustments are made by the statistical
software we will use. In unusual situations for discrete random variables,
there may not be a unique median.)




For symmetric distributions, the mean and the median
coincide. For unimodal skewed (asymmetric) distributions, the
mean is farther in the direction of the “pulled out tail”
of the distribution than the median is. Therefore, for
many cases of skewed distributions, the median is preferred
as a measure of central tendency. For example,
according to the US Census Bureau 2004 Economic Survey,
the median income of US families, which
represents the income above and below which half of families
fall, was $43,318. This seems a better measure of central tendency
than the mean of $60,828, which indicates how much each family would
have if we all shared equally. And the difference between
these two numbers is quite substantial. Nevertheless, both
numbers are “correct”, as long as you understand their meanings.




The median has a very special property called 
robustness. A sample statistic is “robust” if moving
some data tends not to change the value of the statistic. The
median is highly robust, because you can move nearly all of
the upper half and/or lower half of the data values any distance
away from the median without changing the median. More practically,
a few very high values or very low values usually have no effect on the median.




A rarely used measure of central tendency is the 
mode, which is the most likely or frequently occurring
value. More commonly we simply use the term “mode” when
describing whether a distribution has a single peak (unimodal)
or two or more peaks (bimodal or multi-modal).
In symmetric, unimodal distributions, the mode
equals both the mean and the median. In unimodal,
skewed distributions the mode is on the other side of the
median from the mean. In multi-modal distributions there
is either no unique highest mode, or the highest mode may
well be unrepresentative of the central tendency.









	The most common measure of central tendency is the mean.
For skewed distribution or when there is concern about outliers,
the median may be preferred.










4.2.4 Spread



Several statistics are commonly used as a measure of the
 spread of a distribution, including variance, standard
deviation, and interquartile range. Spread is an indicator
of how far away from the center we are still likely to find
data values.




The  variance is a standard measure of
 spread. It is calculated for
a list of numbers, e.g., the n observations of a particular
measurement labeled x1 through xn, based on the n
 sample deviations (or just
“deviations”). Then for any data value, xi, the corresponding
deviation is (xi-x¯), which is the signed (- for lower
and + for higher) distance of the data value from the mean of
all of the n data values. It is not hard to prove that the
sum of all of the deviations of a sample is zero.




The variance
of a population is defined as the mean squared deviation
(see section 3.5.2).
The sample formula for the variance of observed data conventionally
has n-1 in the denominator instead of n to achieve the
property of “unbiasedness”, which roughly
means that when calculated for many different random samples
from the same population, the average should match the corresponding
population quantity (here, σ2). The most commonly used
symbol for sample variance is s2, and the formula is





	
	s2=∑i=1n(xi-x¯)2(n-1)
	




which is essentially the average of the squared
deviations, except for dividing by n-1 instead of n.
This is a measure of spread, because the bigger the deviations
from the mean, the bigger the variance gets. (In most cases,
squaring is better than taking the absolute value because it
puts special emphasis on highly deviant values.)
As usual, a sample statistic like s2 is best thought of
as a characteristic of a particular sample (thus varying
from sample to sample) which is used as an estimate of the
single, fixed, true corresponding parameter value from
the population, namely σ2.




Another (equivalent) way to write the variance formula, which is particularly
useful for thinking about ANOVA is




	
	s2=SSdf
	




where SS is “sum of squared deviations”, often loosely
called “sum of squares”, and df is “degrees of freedom” (see
section 4.6).




Because of the square, variances are always non-negative, and
they have the somewhat unusual property of having squared units
compared to the original data. So if the random variable of interest
is a temperature in degrees, the variance has units “degrees
squared”, and if the variable is area in square kilometers,
the variance is in units of “kilometers to the fourth power”.




Variances have the very important property that they are additive
for any number of different independent sources of variation.
For example, the variance of a measurement which has subject-to-subject
variability, environmental variability, and quality-of-measurement
variability is equal to the sum of the three variances. This
property is not shared by the “standard deviation”.




The  standard deviation
is simply the square root of the variance. Therefore it has
the same units as the original data, which helps make it
more interpretable.
The sample standard deviation is usually represented by the symbol s.
For a theoretical Gaussian distribution, we learned in the previous chapter
that mean plus or minus 1, 2 or 3 standard deviations holds 68.3, 95.4 and
99.7% of the probability respectively, and this should be approximately true
for real data from a Normal distribution.









	The variance and standard deviation are two useful measures
of spread. The variance is the mean of the squares of the individual deviations.
The standard deviation is the square root of the variance. For
Normally distributed data, approximately 95% of the values lie within 2 sd
of the mean.








A third measure of spread is the 
 interquartile range.
To define IQR, we first need to define the concepts of
 quartiles. The quartiles of
a population or a sample are the three values which divide
the distribution or observed data into even fourths. So
one quarter of the data fall below the first quartile, usually
written Q1; one half fall below the second quartile (Q2); and
three fourths fall below the third quartile (Q3). The astute
reader will realize that half of the values fall above Q2,
one quarter fall above Q3, and also that Q2 is a synonym for
the median. Once the quartiles are defined, it is easy
to define the IQR as I⁢Q⁢R=Q⁢3-Q⁢1. By definition, half of
the values (and specifically the middle half)
fall within an interval whose width equals the IQR. If the
data are more spread out, then the IQR tends to increase,
and vice versa.




The IQR is a more robust measure of spread than the variance or
standard deviation. Any number of values in the top or bottom
quarters of the data can be moved any distance from the median
without affecting the IQR at all. More practically, a few
extreme outliers have little or no effect on the IQR.





In contrast to the IQR, the  range of the
data is not very robust at all. The range of a sample is
the distance from the minimum value to the maximum value:
range = maximum - minimum. If you collect repeated samples
from a population, the minimum, maximum and range tend to change
drastically from sample to sample, while the variance and
standard deviation change less, and the IQR least of all.
The minimum and maximum of a sample may be useful for
detecting outliers, especially if you know something about
the possible reasonable values for your variable. They
often (but certainly not always) can detect data entry
errors such as typing a digit twice or transposing digits (e.g.,
entering 211 instead of 21 and
entering 19 instead of 91 for data that represents ages
of senior citizens.)




The IQR has one more property worth knowing: for normally
distributed data only, the IQR approximately equals
4/3 times the standard deviation. This means that
for Gaussian distributions, you can approximate the sd
from the IQR by calculating 3/4 of the IQR.









	The interquartile range (IQR) is a robust measure
of spread.










4.2.5 Skewness and kurtosis



Two additional useful univariate descriptors are the
skewness and kurtosis of a distribution. Skewness is
a measure of asymmetry. Kurtosis is a measure of
“peakedness” relative to a Gaussian shape. Sample
estimates of skewness and kurtosis are taken as estimates
of the corresponding population parameters (see section
3.5.3). If the sample skewness
and kurtosis are calculated along with their standard errors,
we can roughly make conclusions according to the following
table where e is an estimate of skewness and u is an
estimate of kurtosis,
and S⁢E⁢(e) and S⁢E⁢(u) are the corresponding standard errors.







	Skewness (e) or kurtosis (u)
	Conclusion





	-2⁢SE(e)<e<2⁢SE(e)
	not skewed



	e≤-2⁢SE(e)
	negative skew



	e≥2⁢SE(e)
	positive skew



	-2⁢SE(u)<u<2⁢SE(u)
	not kurtotic



	u≤-2⁢SE(u)
	negative kurtosis



	u≥2⁢SE(u)
	positive kurtosis








For a positive skew, values far above the mode are more common
than values far below, and the reverse is true for a negative skew.
When a sample (or distribution) has positive kurtosis, then compared
to a Gaussian distribution with the same variance or standard
deviation, values far from the mean (or median or mode) are
more likely, and the shape of the histogram is peaked in the
middle, but with fatter tails. For a negative kurtosis,
the peak is sometimes described has having “broader shoulders”
than a Gaussian shape, and the tails are thinner, so
that extreme values are less likely.









	Skewness is a measure of asymmetry. Kurtosis is a more
subtle measure of peakedness compared to a
Gaussian distribution.











4.3 Univariate graphical EDA



If we are focusing on data from observation of a single variable
on n subjects, i.e., a sample of size n, then in addition
to looking at the various sample statistics discussed in the
previous section, we also need to look graphically at the distribution
of the sample. Non-graphical and graphical methods complement
each other. While the non-graphical methods are quantitative and
objective, they do not give a full picture of the data; therefore,
graphical methods, which are more qualitative and involve a
degree of subjective analysis, are also required.





4.3.1 Histograms



The only one of these techniques that makes sense for categorical
data is the histogram (basically just a barplot of the tabulation
of the data). A pie chart is equivalent, but not often used.
The concepts of central tendency, spread and
skew have no meaning for nominal categorical data. For ordinal
categorical data, it sometimes makes sense to treat the data as
quantitative for EDA purposes; you need to use your judgment here.




The most basic graph is the  histogram, which
is a barplot in which each bar represents the frequency (count) or
proportion (count/total count) of cases for a range of values. Typically
the bars run vertically with the count (or proportion) axis
running vertically. To manually construct a histogram, define the
range of data for each bar (called a  bin),
count how many cases fall in each bin, and draw the bars high enough
to indicate the count. For the simple data set found
in EDA1.dat
the histogram is shown in figure 4.2. Besides
getting the general impression of the shape of the distribution,
you can read off facts like “there are two cases with data values
between 1 and 2” and “there are 9 cases with data values between
2 and 3”. Generally values that fall exactly on the boundary
between two bins are put in the lower bin, but this rule is not
always followed.



[image: ]
Figure 4.2: Histogram of EDA1.dat.


Generally you will choose between about 5 and 30 bins, depending
on the amount of data and the shape of the distribution. Of
course you need to see the histogram to know the shape of the
distribution, so this may be an iterative process. It is often
worthwhile to try a few different bin sizes/numbers because,
especially with small samples, there may sometimes be a different
shape to the histogram when the bin size changes. But usually
the difference is small. Figure 4.3 shows three
histograms of the same sample from a bimodal population using
three different bin widths (5, 2 and 1). If you want to try on
your own, the data are in EDA2.dat.
The top panel appears
to show a unimodal distribution. The middle panel correctly shows
the bimodality. The bottom panel incorrectly suggests many
modes. There is some art to choosing bin widths, and although
often the automatic choices of a program like SPSS are pretty
good, they are certainly not always adequate.



[image: ]
Figure 4.3: Histograms of EDA2.dat with different bin widths.


It is very instructive to look at multiple samples from the same
population to get a feel for the variation that will be found in
histograms. Figure 4.4 shows histograms from
multiple samples of size 50 from the same population as
figure 4.3, while 4.5 shows samples of
size 100. Notice that the variability is quite high, especially
for the smaller sample size, and that an incorrect impression
(particularly of unimodality) is quite possible, just by the
bad luck of taking a particular sample.



[image: ]
Figure 4.4: Histograms of multiple samples of size 50.

[image: ]
Figure 4.5: Histograms of multiple samples of size 100.







	With practice, histograms are one of the best ways to quickly
learn a lot about your data, including central tendency, spread,
modality, shape and outliers.










4.3.2 Stem-and-leaf plots



A simple substitute for a histogram is a 
stem and leaf plot. A stem and leaf plot is sometimes easier
to make by hand than a histogram, and it tends not to hide
any information. Nevertheless, a histogram is generally considered
better for appreciating the shape of a sample distribution than
is the stem and leaf plot. Here is a stem and leaf plot for
the data of figure 4.2:




The decimal place is at the "|".
1|000000
2|00
3|000000000
4|000000
5|00000000000
6|000
7|0000
8|0
9|00





Because this particular stem and leaf plot has the decimal place at the stem,
each of the 0’s in the first line represent 1.0, and each zero in the second line
represents 2.0, etc. So we can see that there are six 1’s, two 2’s etc. in
our data.









	A stem and leaf plot shows all data values and the shape of the
distribution.










4.3.3 Boxplots



Another very useful univariate graphical technique is the 
boxplot. The boxplot will be described here in its vertical format,
which is the most common, but a horizontal format also is possible.
An example of a boxplot is shown in figure 4.6, which again
represents the data in EDA1.dat.



[image: ]
Figure 4.6: A boxplot of the data from EDA1.dat.


Boxplots are very good at presenting information about the central tendency,
symmetry and skew, as well as outliers, although they can be misleading about
aspects such as multimodality. One of the best uses of boxplots is
in the form of side-by-side boxplots (see multivariate graphical analysis
below).



[image: ]
Figure 4.7: Annotated boxplot.


Figure 4.7 is an annotated version of figure 4.6.
Here you can see that the boxplot consists of a rectangular box
bounded above and below by “hinges” that represent the 
quartiles Q3 and Q1 respectively, and with a horizontal “median”
line through it. You can also see the upper and lower “whiskers”,
and a point marking an “outlier”. The vertical axis is in the units
of the quantitative variable.





Let’s assume that the subjects for
this experiment are hens and the data represent the number of
eggs that each hen laid during the experiment. We can read
certain information directly off of the graph. The median (not mean!)
is 4 eggs,
so no more than half of the hens laid more than 4 eggs and no
more than half of the hens laid less than 4 eggs. (This is
based on the technical definition of median; we would usually claim
that half of the hens lay more or half less than 4, knowing
that this may be only approximately correct.) We can also
state that one quarter of the hens lay less than 3 eggs and
one quarter lay more than 5 eggs (again, this may not be exactly
correct, particularly for small samples or a small number of different
possible values). This leaves half of the hens, called the
“central half”, to lay between 3 and 5 eggs, so the interquartile
range (IQR) is Q3-Q1=5-3=2.




The interpretation of the whiskers and outliers is just a bit more
complicated. Any data value more than 1.5 IQRs beyond
its corresponding hinge in either direction is considered an “outlier”
and is individually plotted. Sometimes values beyond 3.0 IQRs are
considered “extreme outliers” and are plotted with a different
symbol. In this boxplot, a single outlier is plotted corresponding
to 9 eggs laid, although we know from figure 4.2 that
there are actually two hens that laid 9 eggs. This demonstrates a general
problem with plotting whole number data, namely that multiple points may
be superimposed, giving a wrong impression. (Jittering, circle plots,
and starplots are examples of ways to correct this problem.) This
is one reason why, e.g., combining a tabulation and/or a histogram with
a boxplot is better than either alone.




Each whisker is drawn out to the most extreme data point that is
less than 1.5 IQRs beyond the corresponding hinge. Therefore,
the whisker ends correspond to the minimum and maximum values of
the data excluding the “outliers”.




Important: The term  “outlier” is not well
defined in statistics, and the definition varies depending on the
purpose and situation. The “outliers” identified by a boxplot,
which could be called “boxplot outliers” are defined as any points
more than 1.5 IQRs above Q3 or more than 1.5 IQRs below Q1.
This does not by itself indicate a problem with those data
points. Boxplots are an exploratory technique, and you should
consider designation as a boxplot outlier as just a suggestion that
the points might be mistakes or otherwise unusual. Also, points
not designated as boxplot outliers may also be mistakes. It is
also important to realize that the number of boxplot outliers
depends strongly on the size of the sample. In fact, for data
that is perfectly Normally distributed, we expect 0.70 percent
(or about 1 in 150 cases) to be “boxplot outliers”,
with approximately half in either direction.




The boxplot information described above could be appreciated
almost as easily if given in non-graphical format. The boxplot
is useful because, with practice, all of the above and more
can be appreciated at a quick glance. The additional things you
should notice on the plot are the symmetry of the distribution
and possible evidence of “fat tails”. Symmetry is appreciated
by noticing if the median is in the center of the box and if
the whiskers are the same length as each other. For this
purpose, as usual,
the smaller the dataset the more variability you will see
from sample to sample, particularly for the whiskers. In a skewed
distribution we expect to see the median pushed in the direction
of the shorter whisker. If the longer whisker is the top one,
then the distribution is positively skewed (or skewed to the right,
because higher values are on the right in a histogram). If the
lower whisker is longer, the distribution is negatively skewed
(or left skewed.) In cases where the median is closer to the
longer whisker it is hard to draw a conclusion.




The term  fat tails is used to describe
the situation where a histogram has a lot of values far from
the mean relative to a Gaussian distribution. This corresponds
to positive kurtosis. In a boxplot, many outliers (more than
the 1/150 expected for a Normal distribution) suggests fat tails
(positive kurtosis), or possibly many data entry errors. Also,
short whiskers suggest negative kurtosis, at least if the sample
size is large.




Boxplots are excellent EDA plots because they rely on robust statistics
like median and IQR rather than more sensitive ones such as mean
and standard deviation. With boxplots it is easy to compare distributions
(usually for one variable at different levels of another; see
multivariate graphical EDA, below) with a high degree of
reliability because of the use of these robust statistics.




It is worth noting that some (few) programs produce boxplots that do
not conform to the definitions given here.









	Boxplots show robust measures of location and spread as well
as providing information about symmetry and outliers.










4.3.4 Quantile-normal plots
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Figure 4.8: A quantile-normal plot.


The final univariate graphical EDA technique is the most complicated. It is
called the  
quantile-normal or QN plot or
more generality the 

quantile-quantile or QQ plot.
It is used to see how well a particular sample follows a particular
theoretical distribution. Although it can be used for any theoretical
distribution, we will limit our attention to seeing how well a sample
of data of size n matches a Gaussian distribution with mean and variance
equal to the sample mean and variance. By examining the quantile-normal
plot we can detect left or right skew, positive or negative kurtosis,
and bimodality.




The example shown in figure 4.8 shows 20 data points
that are approximately normally distributed. Do not confuse
a quantile-normal plot with a simple scatter plot of two variables.
The title and axis labels are strong indicators that this is a
quantile-normal plot. For many computer programs, the word
“quantile” is also in the axis labels.




Many statistical tests have the assumption that the outcome for any fixed set
of values of the explanatory variables is approximately normally distributed,
and that is why QN plots are useful: if the assumption is grossly violated,
the p-value and confidence intervals of those tests are wrong.
As we will see in the ANOVA and regression chapters,
the most important situation where we use a QN plot is not
for EDA, but for examining
something called “residuals” (see section 9.4).
For basic interpretation of the QN plot you just need to
be able to distinguish the two situations of “OK” (points fall randomly around
the line) versus “non-normality” (points follow a strong curved pattern
rather than following the line).





If you are still curious, here is a description of how the QN plot is created.
Understanding this
will help to understand the interpretation, but is not required in this course.
Note that some programs swap the x and y axes from the way described
here, but the interpretation is similar for all versions of QN plots.
Consider the 20 values observed in this study.
They happen to have an observed mean of 1.37 and a standard deviation of 1.36.
Ideally, 20 random values drawn from a distribution that has a true mean of 1.37
and sd of 1.36 have a perfect bell-shaped distribution and will be spaced so
that there is equal area (probability) in the area around each value in the bell
curve.
In figure 4.9 the dotted lines divide the bell curve up into 20 equally
probable zones, and the 20 points are at the probability mid-points of each zone.
These 20 points, which are more tightly packed near the middle than in the ends,
are used as the “Expected Normal Values” in the QN plot of our actual data.
In summary, the sorted actual data values are plotted against
“Expected Normal Values”, and some kind of diagonal line
is added to help direct the eye towards a perfect straight line
on the quantile-normal plot that represents
a perfect bell shape for the observed data.
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Figure 4.9: A way to think about QN plots.


The interpretation of the QN plot is given here. If the axes are reversed
in the computer package you are using, you
will need to correspondingly change your interpretation.
If all of the points fall on or nearly on the diagonal line (with a random pattern),
this tells us that a histogram of the variable will show a bell shaped (Normal or Gaussian)
distribution.




Figure 4.10 shows all of the points basically on the reference line,
but there are several vertical bands of points. Because the x-axis is “observed
values”, these bands indicate ties, i.e., multiple points with the same values.
And all of the observed values are at whole numbers. So either the data are
rounded or we are looking at a discrete quantitative (counting) variable.
Either way, the data appear to be nearly normally distributed.



[image: ]
Figure 4.10: Quantile-normal plot with ties.


In figure 4.11 note that we have many points in a row that are on the same
side of the line (rather than just bouncing around to either side), and that
suggests that there is a real (non-random) deviation from Normality.
The best way to think about these QN plots is to look at the low and high ranges of the
Expected Normal Values. In each area, see how the observed values deviate from what is
expected, i.e., in which “x” (Observed Value) direction the points appear to have
moved relative to the “perfect normal” line. Here we observe values that are
too high in
both the low and high ranges. So compared to a perfect bell shape, this distribution
is pulled asymmetrically towards higher values, which indicates positive skew.




Also note that if you just shift a distribution to the right
(without disturbing its symmetry) rather than skewing it, it will maintain its
perfect bell shape, and the points remain on the diagonal reference line of
the quantile-normal curve.




Of course, we can also have a distribution that is skewed to the left, in which case
the high and low range points are shifted (in the Observed Value direction) towards
lower than expected values.
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Figure 4.11: Quantile-normal plot showing right skew.


In figure 4.12 the high end points are shifted too high and the low end
points are shifted too low. These data show a positive kurtosis (fat tails).
The opposite pattern is a
negative kurtosis in which the tails are too “thin” to be bell shaped.
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Figure 4.12: Quantile-normal plot showing fat tails.


In figure 4.13 there is a single point that is off the reference line,
i.e. shifted to the right of where it should be.
(Remember that the pattern of locations on the Expected Normal Value axis is
fixed for any sample size, and only the position on the Observed axis varies depending on
the observed data.) This pattern shows nearly Gaussian data with one “high outlier”.



[image: ]
Figure 4.13: Quantile-normal plot showing a high outlier.


Finally, figure 4.14 looks a bit similar to the “skew left” pattern,
but the most extreme points tend to return to
the reference line. This pattern is seen in bi-modal data, e.g. this is
what we would see if we would mix strength
measurements from controls and muscular dystrophy patients.



[image: ]
Figure 4.14: Quantile-normal plot showing bimodality.







	Quantile-Normal plots allow detection of non-normality and diagnosis
of skewness and kurtosis.











4.4 Multivariate non-graphical EDA



Multivariate non-graphical EDA techniques generally show the relationship
between two or more variables in the form of either cross-tabulation or
statistics.





4.4.1 Cross-tabulation



For categorical data (and quantitative data with only a few different values)
an extension of tabulation called  cross-tabulation
is very useful. For two variables, cross-tabulation is performed by making
a two-way table with column headings that match the levels of one variable
and row headings that match the levels of the other variable, then filling
in the counts of all subjects that share a pair of levels. The two variables
might be both explanatory, both outcome, or one of each. Depending on
the goals, row percentages (which add to 100% for each row), column
percentages (which add to 100% for each column) and/or cell percentages
(which add to 100% over all cells) are also useful.




Here is an example of a cross-tabulation. Consider the data in table
4.1. For each subject we observe sex and age as categorical
variables.







	Subject ID
	Age Group
	Sex





	GW
	young
	F



	JA
	middle
	F



	TJ
	young
	M



	JMA
	young
	M



	JMO
	middle
	F



	JQA
	old
	F



	AJ
	old
	F



	MVB
	young
	M



	WHH
	old
	F



	JT
	young
	F



	JKP
	middle
	M





Table 4.1: Sample Data for Cross-tabulation


Table 4.2 shows the cross-tabulation.







	Age Group / Sex
	Female
	Male
	Total





	young
	2
	3
	5



	middle
	2
	1
	3



	old
	3
	0
	3



	Total
	7
	4
	11





Table 4.2: Cross-tabulation of Sample Data


We can easily see that the total number of young females is 2,
and we can calculate,
e.g., the corresponding cell percentage
is 2/11×100=18.2%, the row percentage is 2/5×100=40.0%, and
the column percentage is 2/7×100=28.6%.




Cross-tabulation can be extended to three (and sometimes more) variables
by making separate two-way tables for two variables at each level of
a third variable. For example, we could make separate age by gender
tables for each education level.









	Cross-tabulation is the basic bivariate non-graphical EDA technique.










4.4.2 Correlation for categorical data



Another statistic that can be calculated for two categorical variables
is their correlation. But there are many forms of correlation for
categorical variables, and that material is currently beyond the scope
of this book.






4.4.3 Univariate statistics by category



For one categorical variable (usually explanatory) and one quantitative variable
(usually outcome), it is common to produce some of the standard
univariate non-graphical statistics for the quantitative variables separately
for each level of the categorical variable, and then compare the statistics
across levels of the categorical variable. Comparing the means is
an informal version of ANOVA. Comparing medians is a robust informal
version of one-way ANOVA. Comparing measures of spread is a good informal
test of the assumption of equal variances needed for valid analysis
of variance.









	Especially for a categorical explanatory variable and a quantitative
outcome variable, it is useful to produce a variety of univariate
statistics for the quantitative variable at each level of the categorical
variable.










4.4.4 Correlation and covariance



For two quantitative variables, the basic statistics of
interest are the sample covariance and/or sample correlation,
which correspond to and are estimates of the corresponding
population parameters from section 3.5. The sample covariance
is a measure of how much two variables “co-vary”, i.e.,
how much (and in what direction) should we expect one variable
to change when the other changes.




Sample covariance is calculated by computing
(signed) deviations of each measurement from the average of all measurements
for that variable. Then the deviations for the two measurements
are multiplied together separately for each subject. Finally these
values are averaged (actually summed and divided by n-1, to keep
the statistic unbiased). Note that the units on sample covariance are
the products of the units of the two variables.




Positive covariance values
suggest that when one measurement is above the mean the other
will probably also be above the mean, and vice versa. Negative
covariances suggest that when one variable is above its mean,
the other is below its mean. And covariances near zero suggest
that the two variables vary independently of each other.




Technically, independence implies zero correlation, but the
reverse is not necessarily true.




Covariances tend to be hard to interpret, so we often use correlation
instead. The correlation has the nice property that it is
always between -1 and +1,
with -1 being a “perfect” negative linear correlation, +1 being
a perfect positive linear correlation and 0 indicating that X and Y
are uncorrelated.
The symbol r or rx,y is often
used for sample correlations.






The general formula for sample covariance is




Cov⁢(X,Y)=∑i=1n(xi-x¯)⁢(yi-y¯)n-1


It is worth noting that Cov⁢(X,X)=Var⁢(X).
If you want to see a “manual example” of calculation
of sample covariance and correlation consider an example
using the data in table
4.3. For each subject we observe age and
a strength measure.
Table 4.4 shows the calculation of covariance. The mean
age is 50 and the mean strength is 19, so we calculate the deviation
for age as age-50 and deviation for strength and strength-19. Then
we find the product of the deviations and add them up. This total
is 1106, and since n=11, the covariance of x and y is -1106/10=-110.6.
The fact that the covariance is negative indicates that
as age goes up strength tends to go down (and vice versa).
The formula for the sample correlation is




Cor⁢(X,Y)=Cov⁢(X,Y)sx⁢sy


where sx is the standard deviation of X and sy is the
standard deviation of Y.
In this example, sx=18.96, sy=6.39, so
r=-110.618.96⋅6.39=-0.913. This is a strong negative correlation.







	Subject ID
	Age
	Strength





	GW
	38
	20



	JA
	62
	15



	TJ
	22
	30



	JMA
	38
	21



	JMO
	45
	18



	JQA
	69
	12



	AJ
	75
	14



	MVB
	38
	28



	WHH
	80
	9



	JT
	32
	22



	JKP
	51
	20





Table 4.3: Covariance Sample Data





	Subject ID
	Age
	Strength
	Age-50
	Str-19
	product



	GW
	38
	20
	-12
	+1
	-12



	JA
	62
	15
	+12
	-4
	-48



	TJ
	22
	30
	-28
	+11
	-308



	JMA
	38
	21
	-12
	+2
	-24



	JMO
	45
	18
	-5
	-1
	+5



	JQA
	69
	12
	+19
	-7
	-133



	AJ
	75
	14
	+25
	-5
	-125



	MVB
	38
	28
	-12
	+9
	-108



	WHH
	80
	9
	+30
	-10
	-300



	JT
	32
	22
	-18
	+3
	-54



	JKP
	51
	20
	+1
	+1
	+1



	Total
	
	
	0
	0
	-1106





Table 4.4: Covariance Calculation




4.4.5 Covariance and correlation matrices



When we have many quantitative variables the most common non-graphical
EDA technique is to calculate all of the pairwise covariances and/or
correlations and assemble them into a matrix. Note that the
covariance of X with X is the variance of X and the correlation
of X with X is 1.0. For example the covariance matrix of
table 4.5
tells us that the variances of X, Y, and Z are 5, 7, and 4
respectively, the covariance of X and Y is 1.77, the covariance
of X and Z is -2.24, and the covariance of Y and Z is
3.17.







	
	X
	Y
	Z





	X
	5.00
	1.77
	-2.24



	Y
	1.77
	7.0
	3.17



	Z
	-2.24
	3.17
	4.0





Table 4.5: A Covariance Matrix


Similarly the correlation matrix in figure 4.6
tells us that the correlation of X and Y is 0.3, the correlation
of X and Z is -0.5. and the correlation of Y and Z is
0.6.







	
	X
	Y
	Z





	X
	1.0
	0.3
	-0.5



	Y
	0.3
	1.0
	0.6



	Z
	-0.5
	0.6
	1.0





Table 4.6: A Correlation Matrix







	The correlation between two random variables is a number that runs
from -1 through 0 to +1 and indicates a strong inverse relationship, no
relationship, and a strong direct relationship, respectively.











4.5 Multivariate graphical EDA



There are few useful techniques for graphical EDA of two categorical
random variables. The only one used commonly is a grouped barplot
with each group representing one level of one of the variables and
each bar within a group representing the levels of the other variable.





4.5.1 Univariate graphs by category



When we have one categorical (usually explanatory) and one quantitative
(usually outcome) variable, graphical EDA usually takes the form of
“conditioning” on the categorical random variable. This simply
indicates that we focus on all of the subjects with a particular
level of the categorical random variable, then make plots of the
quantitative variable for those subjects. We repeat this for
each level of the categorical variable, then compare the plots.
The most commonly used of these are 
side-by-side boxplots, as in figure 4.15. Here
we see the data from EDA3.dat, which consists of
strength data for each of three age groups.
You can see the downward trend in the median as the ages increase.
The spreads (IQRs) are similar for the three groups. And all three
groups are roughly symmetrical with one high strength outlier in the
youngest age group.



[image: ]
Figure 4.15: Side-by-side Boxplot of EDA3.dat.







	Side-by-side boxplots are the best graphical EDA technique for
examining the relationship between a categorical variable and a
quantitative variable, as well as the distribution of the quantitative
variable at each level of the categorical variable.










4.5.2 Scatterplots



For two quantitative variables, the basic graphical EDA technique
is the scatterplot which has one variable on the x-axis, one on
the y-axis and a point for each case in your dataset. If
one variable is explanatory and the other is outcome, it is
a very, very strong convention to put the outcome on the y (vertical)
axis.




One or two additional categorical variables can be accommodated on
the scatterplot by encoding the additional information in the
symbol type and/or color. An example is shown in figure 4.16.
Age vs. strength is shown, and different colors and symbols
are used to code political party and gender.



[image: ]
Figure 4.16: scatterplot with two additional variables.







	In a nutshell: You should always perform appropriate EDA before further
analysis of your data. Perform whatever steps are necessary to
become more familiar with your data, check for obvious mistakes,
learn about variable distributions, and learn about relationships
between variables. EDA is not an exact science – it is a very
important art!











4.6 A note on degrees of freedom



Degrees of freedom are numbers that characterize specific
distributions in a family of distributions. Often we find
that a certain family of distributions is needed in a
some general situation, and then we need to calculate
the degrees of freedom to know which specific distribution
within the family is appropriate.




The most common situation is when we have a particular statistic
and want to know its sampling distribution. If the sampling
distribution falls in the “t” family as when performing a
t-test, or in the “F” family when performing an ANOVA,
or in several other families, we need to find the number
of degrees of freedom to figure out which
particular member of the family actually represents the
desired sampling distribution. One way to think about
degrees of freedom for a statistic is that they represent
the number of independent pieces of information that go into
the calculation of the statistic,




Consider 5 numbers with a mean of 10. To calculate the
variance of these numbers we need to sum the squared
deviations (from the mean). It really doesn’t matter whether
the mean is 10 or any other number:
as long as all five deviations are the same, the
variance will be the same. This make sense because
variance is a pure measure of spread, not affected
by central tendency. But by mathematically
rearranging the definition of mean, it is not too hard
to show that the sum of the deviations (not squared)
is always zero. Therefore, the first four deviations
can (freely) be any numbers, but then the last one
is forced to be the number that makes the deviations
add to zero, and we are not free to choose it.
It is in this sense that five numbers used for
calculating a variance or standard deviation have only
four degrees of freedom (or independent useful pieces
of information). In general, a variance or standard
deviation calculated from n data values and one mean
has n-1 df.




Another example is the “pooled” variance from
k independent groups. If the sizes of the groups
are n1 through nk, then each of the k individual
variance estimates is based on deviations from
a different mean, and each has one less degree of freedom
than its sample size, e.g., ni-1 for group i.
We also say that each numerator of a variance estimate,
e.g., SSi, has ni-1 df. The pooled
estimate of variance is




	
	spooled2=SS1+⋯+SSkdf1+⋯+dfk
	




and we say that both the numerator SS and the entire
pooled variance has df1+⋯+dfk degrees
of freedom,
which suggests how many independent pieces of information
are available for the calculation.



































Chapter 5 Learning SPSS: Data and EDA



An introduction to SPSS with emphasis on EDA.


SPSS (now called PASW Statistics, but still referred to in this
document as SPSS) is a perfectly adequate tool for entering data, creating new
variables, performing EDA, and performing formal statistical
analyses. I don’t have any special endorsement for SPSS, other
than the fact that its market dominance in the social sciences
means that there is a good chance that it will be available to you wherever you
work or study in the future. As of 2009, the current version
is 17.0, and class datasets stored in native SPSS format in version 17.0
may not be usable with older versions of SPSS. (Some screen
shots shown here are not updated from previous versions, but all
changed procedures have been updated.)






For very large datasets, SAS tends to be the
best program. For creating custom graphs and analyses R, which is
free, or the commercial version, S-Plus, are best, but R is not
menu-driven. The one program I strongly advise against is Excel
(or any other spreadsheet). These programs have quite limited
statistical facilities, discourage structured storage of data,
and have no facility for documenting your work. This latter
deficit is critical! For any serious analysis you must have
a complete record of how you created new variables and produced
all of your graphical and statistical output.




It is very
common that you will find some error in your data at some point.
So it is highly likely that you will need to repeat all of your
analyses, and that is painful without exact records, but easy
or automatic with most good software. Also, because it takes
a long time from analysis to publishing, you will need these
records to remind yourself of exactly which steps you performed.




As hinted above, the basic steps you will take with most
experimental data are:


	
1. 

Enter the data into SPSS, or load it into SPSS after entering it
into another program.





	
2. 

Create new variables from old variables, if needed.





	
3. 

Perform exploratory data analyses.





	
4. 

Perform confirmatory analyses (formal statistical procedures).





	
5. 

Perform model checking and model comparisons.





	
6. 

Go back to step 4 (or even 2), if step 5 indicates any problems.





	
7. 

Create additional graphs to communicate results.










Most people will find this chapter easier to read when
SPSS is running in front of them. There is a lot of detail
on getting started and basic data management. This is followed
by a brief compilation of instructions for EDA. The details
of performing other statistical analyses are at the end of the
appropriate chapters throughout this book.




Even if you are someone who is good at jumping in to a
computer program without reading the instructions, I urge
you to read this chapter because otherwise you are likely
to miss some of the important guiding principles of SPSS.




Additional SPSS resources may be found at 

http://www.stat.cmu.edu/∼hseltman/SPSSTips.html.






5.1 Overview of SPSS



SPSS is a multipurpose data storage, graphical, and statistical
system. At (almost) all times there are two window types available, the
Data Editor window(s) which each hold a single data “spreadsheet”, and
the Viewer window from which analyses are carried out and results are
viewed.




The Data Editor has two views, selected by tabs at the bottom of the
window. The Data View is a spreadsheet which holds the data
in a rectangular format with cases as rows and variables as
columns. Data can be directly entered or imported from another
program using menu commands. (Cut-and-paste is possible,
but not advised.) Errors in data entry can also
be directly corrected here.




You can also use menu commands in the Data View to create
new variables, such as the log of an existing variable or the
ratio of two variables.




The Variable View tab of the Data Editor is used to customize
the information about each variable and the way it is displayed,
such as the number of decimal places for numeric variables, and the
labels for categorical variables coded as numbers.




The Viewer window shows the results of EDA, including graph
production, formal statistical analyses, and model checking.
Most data analyses can be carried out using the menu system
(starting in either window),
but some uncommon analyses and some options for common analyses
are only accessible through “Syntax” (native SPSS commands).

Often a special
option is accessed by using the Paste button found
in most main dialog boxes, and then typing in
a small addition. (More details on these variations is given
under the specific analyses that require them.)




All throughout SPSS, each time you carry out a task through a
menu, the underlying non-menu syntax of that command is stored
by SPSS, and can be examined, modified and saved for documentation
or reuse. In many situations, there is a “Paste” button which
takes you to a “syntax window” where you can see the underlying
commands that would have been executed had you pressed OK.




SPSS also has a complete help system and an advanced scripting
system.




You can save data, syntax, and graphical and statistical output
separately, in various formats whenever you wish. (Generally
anything created in an earlier program version is readable by later
versions, but not vice versa.) Data is normally saved in
a special SPSS format which few other programs can understand,
but universal formats like “comma separated values” are also
available for data interchange. You will be warned if you
try to quit without saving changes to your data, or if
if you forget to save the output from data analyses.




As usual with large, complex programs, the huge number of menu
items available can be overwhelming. For most users, you
will only need to learn the basics of interaction with
the system and a small subset of the menu options.




Some commonly used menu items can be quickly accessed from
a toolbar, and learning these will make you more efficient
in your use of SPSS.




SPSS has a few quirks; most notably there are several places
where you can make selections, and then are supposed to click
Change before clicking OK. If you forget to click Change
your changes are often silently forgotten. Another
quirk that is well worth remembering is this: SPSS uses
the term Factor to refer to any categorical explanatory
variable. One good “quirk”
is the Dialog Recall toolbar button.
 It is a quick way to re-access previous
data analysis dialogs instead of going through the menu
system again.







5.2 Starting SPSS



Note: SPSS runs on Windows and Mac operating systems, but the focus
of these notes is Windows. If you are unfamiliar with Windows,
the link 

Top 10 tips for Mac users getting started with Windows may help.
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Figure 5.1: SPSS intro screen.


Assuming that SPSS is already installed on your computer system, just
choose it from the Windows Start menu or
double click its icon to begin. The first screen you will see
is shown in figure 5.1 and
gives several choices including a tutorial and three choices that we
will mainly use: “Type in data”, “Open an existing data source”,
and “Open another type of file”. “Type in data” is useful for analyzing
small data sets not available in electronic form. “Open an existing data
source” is used for opening data files created in SPSS.
“Open another type of file” is used for importing data stored in files
not created by SPSS. After making your choice, click OK. Clicking
Cancel instead of OK is the same as choosing “Type in data”.




Use Exit from the File menu whenever you are ready to quit SPSS.






5.3 Typing in data



To enter your data directly into SPSS, choose “Type in data” from the
opening screen, or, if you are not at the opening screen, choose
New then Data from the File menu.
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Figure 5.2: Data Editor window: Data View.
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Figure 5.3: Data Editor window: Variable View.


The window titled “Untitled SPSS Data Editor” is the Data Editor window
which is used to enter, view and modify data. You
can also start statistical analyses from this window. Note the
tabs at the bottom of the window labeled “Data View” and “Variable View”.
In Data View (5.2), you can view, enter,
and edit data for all of your cases, while in Variable View (5.3),
you can view,
enter, and edit information about the variables themselves (see below).
Also note the menu and toolbar at the top of the window. You will use
these to carry out various tasks related to data
entry and analysis. There are many more choices than needed by a
typical user, so don’t get overwhelmed! You can hover the mouse
pointer over any toolbar button to get
a pop-up message naming its function. This chapter will mention useful
toolbar items as we go along. (Note: Toolbar items that are inappropriate
for the current context are grayed out.)




Before manually entering data, you should tell SPSS
about the individual variables, which means that you should think
about variable types
and coding before entering the data. Remember that the two
data types are categorical and quantitative and their respective
subtypes are nominal and ordinal, and discrete and continuous.

These data type correspond to the Measure column in the Variable
View tab. SPSS does not distinguish between discrete and continuous,
so it calls all quantitative variables “scale”. Ordinal and
nominal variables are the other options for Measure. In many parts
of SPSS, you will see a visual reminder of the Measure of your
variables in the form of icons. A small diagonal yellow rule
indicates a “scale” variable (with a superimposed calendar
or clock if the data hold dates or times). A small three
level bar graph with increasing bar heights indicates an “ordinal”
variable. Three colored balls with one on top and two below
indicates nominal data (with a superimposed “a” if the data are
stored as “strings” instead of numbers).





Somewhat
confusingly SPSS Variable View has a column called Type which
is the “computer science” type rather than the “statistics”
data type. The choices are basically numeric, date and string
with various numeric formats. This course does not cover time
series, so we won’t use the “date” Type. Probably the only
use for the “string” Type is for alphanumeric subject identifiers
(which should be assigned “nominal” Measure). All standard
variables should be entered as numbers (quantitative variables)
or numeric codes (categorical variables). Then, for categorical
variables, we always want to use the Values column to assign
meaningful labels to the numeric codes.




Note that, in general, to set or change something in the Data Editor,
you first click in the cell whose row and column correspond to what
you want to change, then type the new information.
To modify, rather than fully re-type an entry,
press the key labeled “F2”.




When entering a variable name, note that periods and underscores are allowed
in variable names, but spaces and most other punctuation marks are not.
The variable name must start with a letter, may contain digits,
and must not end with a period. Variable names can be at most
64 characters long, are not case sensitive, and must be
unique. The case that you enter is preserved, so it may be useful
to mix case, e.g., hotDogsPerHour to improve readability.




In either View of the Data Editor, you can neaten your work by dragging
the vertical bar between columns to adjust column widths.




After entering the variable name, change whichever other column(s)
need to be changed in the Variable View. For many variables this
includes entering a Label, which is a human-readable alternate name
for each variable. It may be up to 255 characters long with no
restrictions on what you type. The labels replace the variable
names on much of the output, but the names are still used for
specifying variables for analyses.
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Figure 5.4: Values dialog box.


For categorical variables, you will almost always enter the data
as numeric codes (Type “numeric”), and then enter Labels
for each code. The Value Labels dialog box (5.4) is typical of many
dialog boxes in SPSS. To enter Values for a variable, click
in the box at the intersection of the variable’s row and
the Value column in the Variable View. Then click on the
“…” icon that appears. This will open the “Value Labels”
dialog box, into which you enter the words or phrases that
label each level of your categorical variable. Value labels
can contain anything you like up to 255 characters long. Enter
a level code number in the Value box, press Tab, then enter
the text for that level in the Value Label box. Finally
you must click the Add button for your entry to
be registered. Repeat the process as many times as needed
to code all of the levels of the variable. When you are
finished, verify that all of the information in the large
unlabeled box is correct, then click
OK to complete the process. At any time while in the
Value Label box (initially or in the future), you can
add more labels; delete old labels by clicking on the variable
in the large box, then clicking the Delete button;
or change level values or labels by selecting
the variable in the large box, making the change, then clicking
the Change button. Version 16 has a spell check button, too.




If your data has missing values, you should use the Missing
column of the Variable View to let SPSS know the missing
value code(s) for each variable.




The only other commonly used column in Variable View is
the Measure column mentioned above. SPSS uses the
information in the column sporadically. Sometimes, but
certainly not always, you will not be able carry out
the analysis you want if you enter the Measure incorrectly
(or forget to set it). In addition, setting the Measure
assures that you appropriately think about the type of
variable you are entering, so it is a really, really
good idea to always set it.




Once you have entered all of the variable information
in Variable View, you will switch to Data View to
enter the actual data. At it’s simplest, you can
just click on a cell and type the information, possibly
using the “F2” key to edit previously entered information.
But there are several ways to make data entry easier
and more accurate. The tab key moves you through
your data case by case, covering all of the variables
of one case before moving on to the next. Leave a
cell blank (or delete its contents) to indicate “missing
data”; missing data are displayed with a dot
in the spreadsheet (but don’t type a dot).




The Value Labels setting, accessed either through
its toolbar button (which looks like a gift tag) or
through the View menu, controls both whether
columns with Value Labels display the value or the
label, and the behavior of those columns during
data entry. If Value Labels is turned on, a “…”
button appears when you enter a cell in the
Data View spreadsheet that has Value Labels.
You can click the button to select labels
for entry from a drop down box. Also, when
Value Labels is on, you can enter data either
as the code or by typing out the label.
(In any case the code is what is stored.)




You should use Save (or Save as) from the File
menu to save your data after every data entry
session and after any edits to your data. Note that in the
“Save Data As” dialog box (5.5)
you should be careful that the “Save in:” box is
set to save your data in the location you want (so that
you can find it later). Enter a file name and click
“Save” to save your data for future use. Under
“Save as type:” the default is “SPSS” with a “.sav”
extension. This is a special format that can be read
quickly by SPSS, but not at all by most other programs.
For data exchange between programs, several other
export formats are allowed, with Excel with “Comma
separated values” being the most useful.
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Figure 5.5: Save Data As dialog box.




5.4 Loading data



To load in data when you first start SPSS, your can
select a file in one of the two lower boxes of the
“Intro Screen”. At any other time you can load data
from the File menu by selecting Open, then Data. This
opens the “Open File” dialog box (5.6).



[image: ]
Figure 5.6: Open File dialog box.


It’s a good idea to save any changes to any open data set before
opening a new file.
In the Open File dialog box, you need to find the file
by making appropriate choices for “Look in:” and “Files
of type:”. If your file has a “.txt” extension and
you are looking for files of type “.dat”, you will
not be able to find your file. As a last resort,
try looking for files of type “all files(*.*)”. Click
Open after finding your file.




If your file is a native SPSS “.sav” file, it will open
immediately. If it is of another type, you will have to
go through some import dialogs. For example, if you
open an Excel file (.xls), you will see the “Opening
Excel Data Source” dialog box (5.7).

Here you use a check box to tell SPSS whether or not
your data has variable names in the first row. If
your Excel workbook has multiple worksheets you must
select the one you want to work with. Then, optionally
enter a Range of rows and columns if your data does
not occupy the entire range of used cells in the worksheet.
Finish by clicking OK.
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Figure 5.7: Open Excel Data Source dialog box.


The other useful type of data import is one of the simple
forms of human-readable text such as space or tab delimited
text (usually .dat or .txt) or comma separated values
(.csv). If you open one of these files, the “Text Import Wizard”
dialog box will open. The rest of this section describes
the use of the text import wizard.
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Figure 5.8: Text Import Wizard - Step 1 of 6.


In “Step 1 of 6” (5.8) you will see
a question about predefined formats which we will
skip (as being beyond the scope of this course),
and below you will see some form of the first four
lines of your file (and you can scroll down or
across to see the whole file). (If you see strange characters,
such as open squares, your file probably has non-printable
characters such as tab character in it.) Click Next to continue.
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Figure 5.9: Text Import Wizard - Step 2 of 6.


In “Step 2 of 6” (5.9) you will see
two very important questions that you must answer
accurately. The first is whether your file is arranged
so that each data column always starts in exactly the
same column for every line of data (called “Fixed width”)
or whether there are so-called delimiters between
the variable columns (also called “fields”). Delimiters
are usually either commas, tab characters or one or more spaces,
but other delimiters occasionally are seen. The
second question is “Are variable names include at the
top of the file?” Answer “no” if the first line
of the file is data, and “yes” if the first line is
made of column headers. After answering
these questions, click Next to continue.
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Figure 5.10: Text Import Wizard - Step 3 of 6.


In “Step 3 of 6” (5.10) your first
task is to input the line number of the file that
has the first real data (as opposed to header lines or
blank lines). Usually this is line 2 if there is
a header line and line 1 otherwise. Next is
“How are your cases represented?” Usually the
default situation of “Each line represents a
case” is true. Under “How many cases do you
want to import?” you will usually use the default
of “All of the cases”, but occasionally, for
very large data sets, you may want to play around
with only a subset of the data at first.
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Figure 5.11: Text Import Wizard - Step 4 of 6.


In “Step 4 of 6” (5.11) you must
answer the questions in such a way as to make the
“Data preview” correctly represent your data.
Often the defaults are OK, but not always. Your
main task is to set the delimiters between the
data fields. Usually you will make a single
choice among “Tab”, “Space”, “Comma”, and
“Semicolon”. You may also need to specify
what sets off text, e.g. there may be quoted
multi-word phrases in a space separated file.
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Figure 5.12: Text Import Wizard - Alternate Step 4 of 6.


If your file has fixed width format instead
of delimiters, “Step 4 of 6” has an alternate
format (5.12). Here you
set the divisions between data columns.
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Figure 5.13: Text Import Wizard - Step 5 of 6.


In “Step 5 of 6” (5.13) you will have the
chance to change the names of variables and/or the data
format (numeric, data or string). Ordinarily you don’t
need to do anything at this step.
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Figure 5.14: Text Import Wizard - Step 6 of 6.


In “Step 6 of 6” (5.14) you will have
the chance to save all of your previous choices to
simplify future loading of a similar file. We won’t
use this feature in this course, so you can just click
the Finish button.




The most common error in loading data is forgetting
to specify the presence of column headers in step 2.
In that case the column header (variable names)
appear as data rather than variable names.






5.5 Creating new variables



Creating new variables (data transformation) is commonly needed, and
can be somewhat complicated. Depending
on what you are trying to do, one of several
menu options starts the process.
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Figure 5.15: Compute Variable dialog box.


For creating of a simple data 
transformation, which is the result of applying
a mathematical formula to one or more existing
variables, use the ComputeVariable item on the Transform menu
of the Data Editor. This open the Compute
Variable dialog box (5.15). First enter a new variable
name in the Target Variable box (remembering the
naming rules discussed above). Usually you
will want to click the “Type & Label” box
to open another dialog box which allows you to
enter a longer, more readable Label for the
variable. (You will almost never want to change
the type to “String”.) Click Continue after
entering the Label. Next you will enter the
“Numeric Expression” in the Compute Variable
dialog box. Two typical expressions are
“log(weight)” which creates the new variable
by the taking the log of the existing variable
“weight”, and “weight/height**2” which computes
the body mass index from height and weight by
dividing weight by the square (second power) of
the height. (Don’t enter the quotation marks.)




To create a transformation,
use whatever method you can to get the required
Numeric Expression into the box. You can
either type a variable name or double click it
in the variable list to the left, or single
click it and click the right arrow. Spaces
don’t matter (except within variable names),
and standard order of operations are used, but
can be overridden with parentheses as needed.
Numbers, operators (including * for times),
and function names can be entered by clicking
the mouse, but direct typing is usually faster.
In addition to the help system, the list of
functions may be helpful for finding the
spelling of a function, e.g., sqrt for square
root.




Comparison operators (such as =, <. and >) can
be used with the understanding that the result
of any comparison is either “true”, coded as 1,
or “false”, coded as 0. E.g., if one variable
called “vfee” has numbers indicating the
size of a fee, and a variable called “surcharge”
is 0 for no surcharge and 1 for a $25 surcharge,
then we could create a new variable called “total”
with the expression “vfee+25*(surcharge=1)”. In
that case either 25 (25*1) or 0 (25*0) is added to
“vfee” depending of the value of “surcharge”.




Advanced: To transform only some cases and leave others
as “missing data” use the “If” button to
specify an expression that is true only for
the cases that need to be transformed.




Some other functions worth knowing about are
ln, exp, missing, mean, min, max, rnd, and sum.
The function ln() takes the natural log, as opposed
to log(), which is common log. The function
exp() is the anti-log of the natural log, as opposed
to 10**x which is the common log’s anti-log.
The function missing() returns 1 if the variable has
missing data for the case in question or 0 otherwise.
The functions min(), max(), mean() and sum(), used with several
variables separated with commas inside the parentheses,
computes a new value for each case from several
existing variables for that case. The function
rnd() rounds to a whole number.





5.5.1 Recoding



In addition to simple transformations, we often
need to create a new variable that is a  recoding
of an old variable. This is usually used either to
“collapse” categories in a categorical variable
or to create a categorical version of a quantitative
variable by “binning”. Although it is possible to
over-write the existing variable with the new one,
I strongly suggest that you always preserve the old variable
(for record keeping and in case you make an error
in the encoding),
and therefore you should use the ’into Different Variables”
item under “Recode” on the “Transform” menu, which
opens the “Recode into Different Variables” dialog box (5.16).
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Figure 5.16: Recode into Different Variables Dialog Box.


First enter the existing variable name into the
“Numeric Variable -> Output Variable” box. If you
have several variables that need the same recoding
scheme, enter each of them before proceeding.
Then, for each existing variable, go to the “Output
Variable” box and enter a variable Name and Label
for the new recoded variable, and confirm the
entry with the Change button.
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Figure 5.17: Recode into Different Variables: Old and New Values Dialog Box.


Then click the “Old and New Values” button to open
the “Recode into Different Variables: Old and New Values”
dialog box (5.17). Your goal is to specify
as many “rules” as needed to create a new value for
every possible old value so that the “Old–>New” box is
complete and correct. For each one or several old
values that will be recoded to a particular new value,
enter the value or range of values on the left side
of the dialog box, then enter the new value that
represents the recoding of the old value(s) in
the “New Value” box. Click Add to register
each particular recoding, and repeat until finished.
Often the “All other value” choice is the last
choice for the “Old value”. You can also use
the Change and Remove buttons as needed to get
a final correct “Old–>New” box. Click
Continue to finalize the coding scheme and return
to the “Recode into Different Values” box. Then
click OK to create the new variable(s). If you
want to go directly on to recode another variable,
I strongly suggest that you click the Reset button
first to avoid confusion.






5.5.2 Automatic recoding



Automatic recode is used in SPSS when you have strings
(words) as the actual data levels and you want to
convert to numbers (usually with Value labels). Among
other reasons, this conversion saves computer memory
space.
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Figure 5.18: Automatic Recode Dialog Box.


From the Transform menu of the Data Editor menu, select
“Automatic Recode” to get the “Automatic Recode”
dialog box as shown in figure 5.18.
Choose a variable, enter a new variable name in the
“New Name” box and click “Add New Name”. Repeat
if desired for more variables. If there are missing
data values in the variable and they are coded as
blanks, click “Treat blank string values as user-missing”.
Click OK to create the new variable. You will get some
output in the Output window showing the recoding scheme.
A new variable will appear in the Data Window. If you
click the Value Labels toolbar button, you will see that
the new variable is really numeric with automatically
created value labels.






5.5.3 Visual binning



SPSS has a option called “Visual Binning”, accessed
through the Visual Binning item on the Transformation
menu, which allows you to interactively choose how
to create a categorical variable from a quantitative
(scale) variable. In the “Visual Binning” dialog
box you select one or more quantitative (or ordinal)
variables to work with, then click Continue. The
next dialog box is also called “Visual Binning”
and is shown in figure 5.19. Here
you select a variable from the one(s) you previously
chose, then enter a new name for the categorical
variable you want to create in the “Binned Variable”
box (and optionally change its Label). A histogram
of the variable appears. Now you have several choices
for creating the “bins” that define the categories.
One choice is to enter numbers in the Value column
(and optionally Labels). For the example in the
figure, I entered 33 as Value for line 1 and 50 for
line 2, and the computer entered HIGH for line 3.
I also entered the labels. When I click “OK”
the quantitative variable “Age” will be recoded into
a three level categorical variable based on my
cutpoints.
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Figure 5.19: Visual Binning dialog box: Entered interval cutpoints.


The alternative to directly entering interval cutpoints is
to click “Make Cutpoints” to open the “Make Cutpoints”
dialog box shown in figure 5.20. Here
your choices are to define some equal width intervals,
equal percent intervals, or make cutpoints at fixed standard
deviation intervals around the mean. After defining your
cutpoints, click Apply to return to the histogram, which is
now annotated based on your definition. (If you don’t like
the cutpoints edit them manually or return to Make Cutpoints.)
You should manually enter meaningful labels for the bins
you have chosen or click “Make Labels” to get some computer
generated labels. Then click OK to make your new variable.
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Figure 5.20: Visual Binning dialog box: Make cutpoints.





5.6 Non-graphical EDA



To tabulate a single categorical variable, i.e.,
get the numbers and percent of cases at each level of the
variable, use the Frequencies subitem under the Descriptive Statistics item
of the Analyze menu. This is also useful for quantitative
variables with not too many unique values. When you choose your variable(s)
and click OK, the Frequency table will appear in the Output Window.
The default output (e.g., figure 5.21)
shows each unique value, and its frequency and percent.
The “Valid Percent” column calculates percents for only the non-missing
data, while the “Percent” column only adds to 100% when you include
the percent missing. Cumulative Percent can be useful for ordinal
data. It adds all of the Valid Percent numbers for any row plus
all rows above in the table, i.e. for any data value it shows
what percent of cases are less than or equal to that value.
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Figure 5.21: SPSS frequency table.


To cross-tabulate two or more categorical variables use
the Crosstabs subitem under the Descriptive Statistics item
of the Analyze menu. This is also useful for quantitative
variables with not too many unique values. Enter one variable
under “Rows” and one under “Columns”. If you have a third
variable, enter it under “Layer”. (You can use the “Next”
Layer button if you have more than three variables to cross-tabulate,
but that may be too hard to interpret. Click OK to get
the cross-tabulation of the variables. The default is to
show only the counts for each combination of levels of the
variables. If you want percents, click the “Cells” button
before clicking OK; this gives the “Crosstabs: Cell Display”
dialog box from which you can select percentages that add
to 100% across each Row, down each “Column” or in “Total”
across the whole cross-tabulation. Try to think about
which of these makes the most sense for understanding your
dataset it each particular case. Example output is shown
in figure 5.22.
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Figure 5.22: SPSS cross-tabulation.


For various univariate quantitative variable sample statistics
use the Descriptives subitem under the Descriptive Statistics item
of the Analyze menu. Ordinarily you should use “Descriptives”
for quantitative and possibly ordinal variables. (It words,
but rarely makes sense for nominal variables.)
The default is to calculate the sample mean,
sample “Std. deviation”, sample minimum and sample maximum.
You can click on “Options” to access other sample statistics
such as sum, variance, range, kurtosis, skewness, and standard
error of the mean. Example output is show in figure 5.23.
The sample size (and indication of any
missing values) is always given. Note that for skewness and kurtosis
standard errors are given. The rough rule-of-thumb for interpreting
the skewness and kurtosis statistics is to see if the absolute
value of the statistic is smaller than twice the standard error
(labeled Std. Error) of the corresponding statistic. If so,
there is no good evidence of skewness (asymmetry) or kurtosis.
If the absolute value is large (compared to twice the standard error),
then a positive number indicates right skew or positive kurtosis
respectively, and a negative number indicates left skew or
negative kurtosis.









	Rule of thumb: Interpret skewness and kurtosis sample statistics by
comparing the absolute value of the statistic to twice the
standard error of the statistic. Small statistic value
are consistent with the zero skew and kurtosis of a Gaussian
distribution.
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Figure 5.23: SPSS descriptive statistics.


To get the correlation of two quantitative variables
in SPSS, from the Analyze menu item choose Correlate/Bivariate.
Enter two (or more) quantitative variables into the Variables
box, then click OK. The output will show correlations and
a p-value for the test of zero correlation for each
pair of variables. You may also want to turn on calculation
of means and standard deviations using the Options button.Example output is show in
figure 5.24. The “Pearson Correlation” statistic is the one
that best estimates the population correlation of two
quantitative variables discussed in section 3.5.
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Figure 5.24: SPSS correlation.


(To calculate the various types of correlation for
categorical variables, run the crosstabs, but click on the “Statistics” button
and check “Correlations”.)




To calculate median or quartiles for a quantitative variable (or possibly an
ordinal variable) use Analyze/Frequencies (which is normally used just for
categorical data), click the Statistics button, and click median
and/or quartiles. Normally you would also uncheck “Display
frequency tables” in the main Frequencies dialog box to avoid
voluminous, unenlightening output. Example output is show in
figure 5.25.
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Figure 5.25: SPSS median and quantiles.




5.7 Graphical EDA




5.7.1 Overview of SPSS Graphs



The Graphs menu item in SPSS version 16.0 has two sub-items: ChartBuilder
and LegacyDialogs. As you might guess, the legacy dialogs item access older
ways to create graphs. Here we will focus on the interactive Chart Builder
approach. Note that graph, chart, and plot are interchangeable terms.




There is a great deal of flexibility in building graphs, so only
the principles are given here.




When you select the Chart Builder menu item, it will bring up the
Chart Builder dialog box. Note the three main areas: the variable box at
top left, the chart preview area (also called the “canvas”) at top right,
and the (unnamed) lower area
from which you can select a tab out of this group of tabs:
Gallery, Basic Elements, Groups/PointID, and Titles/Footnotes.




A view of the (empty) Chart Builder is shown in 5.26.
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Figure 5.26: SPSS Empty Chart Builder.


To create a graph, go to the Gallery tab, select a graph type on the
left, then choose a suitable template on the right, i.e. one that
looks roughly like the graph you want to create. Note that the
templates have names that appear as pop-up labels if you hover the
mouse over them. Drag the appropriate template onto the
canvas at top right. A preview of your graph (but not
based on your actual data) will appear on the canvas.




The use of the Basic Elements tab is beyond the scope of this chapter.




The Groups/PointsID tab (5.27)
serves both to add additional information from
auxiliary variables (Groups) and to aid in labeling outliers or other
interesting points (Point ID). After placing your template on the
canvas, select the Groups/PointID tab. Sex check boxes
are present in this tab. The top five choices
refer to grouping, but only the ones appropriate for the chosen
plot will be active.
Check whichever ones might be appropriate. For each checked box,
a “drop zone” will be added to the canvas, and adding an auxiliary
variable into the drop zone (see below) will, in some way that
is particular
to the kind of graph you are creating, cause the graphing to
be split into groups based on each level of the auxiliary variable.
The “Point ID label” check box (where appropriate)
adds a drop zone which hold the
name of the variable that you want to use to label outliers or other
special points. (If you don’t set this, the row number
in the spreadsheet is used for labeling.)



[image: ]
Figure 5.27: SPSS Groups/Point ID tab of Chart Builder.


The Titles/Footnotes tab (5.28)
has check boxes for titles and footnotes.
Check any that you need to appropriately annotate your graph.
When you do so, the Element Properties dialog box
(5.29) will open. (You
can also open and close this box with the Element Properties button.)
In the Element Properties box, select each title and/or footnote,
then enter the desired annotation in the “Content” box.
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Figure 5.28: SPSS Titles/Footnote tab of Chart Builder.
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Figure 5.29: SPSS Element Properties dialog box.


Next you will add all of the variables that participate in the
production of your graph to the appropriate places
on the canvas. Note that when you click on any
categorical variable
in the Variables box, its categories are listed below the variable
box. Drag appropriate variables into the pre-specified drop
boxes (which vary with the type of graph chosen,
and may include things like the x-axis and y-axis), as well as
the drop boxes you created from the Groups/PointID tab.




You may want to revisit the Element Properties box and click
through each element of the “Edit Properties of” box to see
if there are any properties you might want to alter (e.g.,
the order of appearance of the levels of a categorical variable,
or the scale for a quantitative variable). Be sure to click
the Apply button after making any changes and before selecting
another element or closing the Element Properties box.




Finally click OK in the Chart Builder dialog box to create
your plot. It will appear at the end of your results in the
SPSS Viewer window.





When you re-enter the Chart Builder, the old information will
still be there, and that is useful to tweak the appearance
of a plot. If you want to create a new plot unrelated to
the previous plot, you
will probably find it easiest to use the Reset button to
remove all of the old information.






5.7.2 Histogram



The basic univariate histogram for quantitative or categorical
data is generated by using the Simple Histogram template, which is
the first one under Histogram in the Gallery. Simply drag your
variable onto the x-axis to define your histogram (“Histogram”
will appear on the y-axis.). For optionally grouping
by a second variable, check “Grouping/stacking variable” in the
Groups/PointID tab, then drag the second variable to the “Stack:set color”
drop box. The latter is equivalent to choosing the “Stacked Histogram”
in the gallery.




A view of the Chart Builder after setting up a histogram is
shown in 5.30.
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Figure 5.30: SPSS histogram setup.


The “Population Pyramid” template (on the right side
of the set of Histogram templates) is a nice way to display
histograms of one variable at all levels of another (categorical)
variable.




To change the binning of a histogram, double click on the histogram
in the SPSS Viewer, which opens the Chart Editor
(5.31), then double
click on a histogram bar in the Chart Editor to open the
Properties dialog box (5.32).
Be sure that the Binning tab is active. Under “X Axis” change
from Automatic to Custom, then enter either the desired number
of intervals of the desired interval width. Click apply to see
the result. When you achieve the best result, click Close in the
Properties window, then close the Chart Editor window.
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Figure 5.31: SPSS Chart Editor.
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Figure 5.32: Binning in the SPSS Chart Editor.


An example of a histogram produced in SPSS
is shown in figure 5.33.
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Figure 5.33: SPSS histogram.


For histograms or any other graphs, it is a good idea to use the
Titles/Footnote tab to set an appropriate title, subtitle and/or footnote.






5.7.3 Boxplot



A boxplot for quantitative random variables is generated
in SPSS by using one of the three boxplot templates in the Gallery
(called simple, clustered, and 1-D, from left to right).
The 1-D boxplot shows the distribution of a single variable.
The simple boxplot shows the distribution a one (quantitative) variable at
each level of another (categorical) variable. The clustered
boxplot shows the distribution a one (quantitative) variable
at each level of two other categorical variables.




An example of the Chart Builder setup for a simple boxplot
with ID labels is shown in figure 5.34.
The corresponding plot is in figure 5.35.
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Figure 5.34: SPSS boxplot setup in Chart Builder.
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Figure 5.35: SPSS boxplot.


Other univariate graphs, such as pie charts and bar charts are
also available through the Chart Builder Gallery.






5.7.4 Scatterplot



A scatterplot is the best EDA for examining the relationship
between two quantitative variables, with a “point” on
the plot for each subject. It is constructed using
templates from the Scatter/Dot section of the Chart Builder Gallery.
The most useful ones are the first two: Simple Scatter and Grouped Scatter.
Grouped Scatter adds the ability to show additional information from
some categorical variable, in the form of color or symbol shape.




Once you have placed the template on the canvas, drag the appropriate
quantitative variables onto the x- and y-axes.
If one variable is outcome and the other explanatory, be sure
to put the outcome on the vertical axis. A simple example is shown
in figure 5.36. The corresponding
plot is in figure 5.37.
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Figure 5.36: SPSS scatterplot setup in Chart Builder.
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Figure 5.37: SPSS simple scatterplot.


You can further modify a scatter plot by adding a best-fit straight line or
a “non-parametric” smooth curve. This is done using the Chart Editor
rather than the Chart Builder, so it is an addition to a scatterplot already
created. Open the Chart Editor by double clicking
on the scatterplot in the SPSS Viewer window.
Choose “Add Fit Line at Total” by clicking on the
toolbar button that looks like a scatterplot with a fit line through it,
or by using the menu option Elements/FitLineAtTotal. This brings up
the a Properties box with a “Fit Line” tab (5.38).
The “Linear” Fit Method adds the best fit linear regression line.
The “Loess” Fit Method adds a “smoother” line to your scatterplot.
The smoother line is useful for detecting
whether there is a non-linear relationship. (Technically it is
a kernel smoother.) There is a degree of subjectivity in the
overall smoothness vs. wiggliness of the smoother line, and you
can adjust the “% of points to fit” to change this. Also
note that if you have groups defined with separate point
colors for each group, you can substitute “Add Fit Line at Subgroups”
for “Add Fit Line at Total” to have separate
lines for each subgroup.
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Figure 5.38: SPSS Fit Line tab of Chart Editor.





5.8 SPSS convenience item: Explore



The Analyze/DescriptiveStatistics/Explore menu item in SPSS is a
convenience menu item that performs several reasonable EDA
steps, both graphical and non-graphical for a quantitative outcome
and a categorical explanatory variable (factor). “Explore” is not
a standard statistical term; it is only an SPSS menu item.
So don’t use the term in any formal setting!




In the Explore dialog box you can enter one or more quantitative
variables in the “Dependent List” box and one or
more categorical variables in the “Factor List”
box. For each variable in the “Factor List”, a complete section
of output will be produced. Each section of output examines
each of the variables on the “Dependent List” separately.
For each outcome variable, graphical and non-graphical EDA
are produced that examine the outcome broken down into
groups determined by the levels of the “factor”. A partial
example is given in figure 5.39. In addition
to the output shown in the figure, stem-and-leaf plots and
side-by-side boxplots are produced by default. The choice
of plots and statistics can be changed in the Explore dialog box.
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Figure 5.39: SPSS “Explore” output.


This example has “strength” as the outcome and “sex” as the
explanatory variable (factor). The “Case Processing Summary” tells us
the number of cases and information about missing data separately
for each level of the explanatory variable. The “Descriptives”
section gives a variety of statistics for the strength outcome
broken down separately for males and females. These statistics
include mean and confidence interval on the mean (i.e., the
range of means for which we are 95% confident that the true
population mean parameter falls in). (The CI is constructed
using the “Std. Error” of the mean.) Most of the other
statistics should be familiar to you except for the “5% trimmed
mean”; this is a “robust” measure of central tendency equal to
the mean of the data after throwing away the highest and lowest 5% of the
data. As mentioned on page 5.6,
standard errors are calculated for the sample skewness and kurtosis,
and these can be used to judge whether the observed values are
close or far from zero (which are the expected skewness and kurtosis
values for Gaussian data).



































Chapter 6 The t-test and Basic Inference Principles



The t-test is used as an example of the basic principles of statistical inference.


One of the simplest situations for which we might design an experiment is the
case of a nominal two-level explanatory variable and a quantitative outcome
variable. Table 6.1 shows several examples.
For all of these experiments, the treatments have two levels, and the treatment
variable is nominal. Note in the table the
various experimental units to which the two levels
of treatment
are being applied for these examples.. If we randomly assign
the treatments to these units this will be a randomized experiment rather than
an observational study, so we will be able to apply the word
“causes” rather than just “is associated with” to any statistically
significant result.
This chapter only discusses so-called “between subjects” explanatory
variables, which means that we are assuming that each experimental
unit is exposed to only
one of the two levels of treatment (even though that is not necessarily
the most obvious way to run the fMRI experiment).





Experimental units
Explanatory variable
Outcome variable



people
placebo vs. vitamin C
time until the first cold symptoms

hospitals
control vs. enhanced hand washing
number of infections in the next six months

people
math tutor A vs. math tutor B
score on the final exam

people
neutral stimulus vs. fear stimulus
ratio of fMRI activity in the amygdala to activity in the hippocampus


Table 6.1: Some examples of experiments with a quantitative outcome and a
nominal 2-level explanatory variable






This chapter shows one way to perform statistical inference for the
two-group, quantitative outcome experiment, namely the independent samples
t-test. More importantly, the t-test is used as an example for
demonstrating the basic principles of statistical inference that will
be used throughout the book. The understanding of these principles,
along with some degree of theoretical underpinning, is key to using statistical
results intelligently. Among other things, you need to really understand
what a p-value and a confidence interval tell us, and when they can
and cannot be trusted.




An alternative inferential procedure is
one-way ANOVA, which always gives the same results as the t-test,
and is the topic of the next chapter.




As mentioned in the preface, it is hard to find a linear path for
learning experimental design and analysis because so many of the
important concepts are interdependent. For this chapter we will
assume that the subjects chosen to participate in the
experiment are representative,
and that each subject is randomly assigned to exactly one treatment.
The reasons we should do these things and the consequences of
not doing them are postponed until the Threats chapter. For now
we will focus on the EDA and confirmatory analyses for a
two-group between-subjects experiment with a quantitative outcome.
This will give you a general picture of statistical analysis of an
experiment and a good foundation in the underlying theory. As
usual, more advanced material, which will enhance your understanding
but is not required for a fairly good understanding of the concepts,
is shaded in gray.






6.1 Case study from the field of Human-Computer Interaction (HCI)



This (fake) experiment is designed to determine which of two
background colors for computer text is easier to read, as determined
by the speed with which a task described by the text is performed.
The study randomly assigns 35 university students to one of
two versions of a computer program that presents text describing which
of several icons the user should click on. The program
measures how long it takes until the correct icon is clicked. This
measurement is called “reaction time” and is measured in milliseconds (ms).
The program
reports the average time for 20 trials per subject. The two versions of the
program differ in the background color for the text (yellow or cyan).




The data can be found in the file
background.sav on this book’s
web data site. It is tab delimited with no header line
and with columns for subject identification, background color,
and response time in milliseconds. The coding for the color
column is 0=yellow, 1=cyan. The data look like this:







	Subject ID
	Color
	Time (ms)





	NYP
	0
	859



	⋮
	⋮
	⋮



	MTS
	1
	1005








Note that in SPSS if you enter the “Values” for the two colors
and turn on “Value labels”, then the color words rather than
the numbers will be seen in the second column. Because this
data set is not too large, it is possible to examine it to
see that 0 and 1 are the only two values for Color and
that the time ranges from 291 to 1005 milliseconds
(or 0.291 to 1.005 seconds). Even for a dataset this
small, it is hard to get
a good idea of the differences in response time across the two
colors just by looking at the numbers.




Here are some basic univariate exploratory data analyses. There
is no point in doing EDA for the subject IDs. For the categorical
variable Color, the only useful non-graphical EDA is a tabulation of the
two values.




Frequencies




Background Color







	
	
	
	Percent
	
	Cumulative



	
	
	Frequency
	Valid
	Percent
	Percent



	Valid
	yellow
	17
	48.6
	48.6
	48.6



	
	cyan
	18
	51.4
	51.4
	100.0



	
	Total
	35
	100.0
	100.0
	








The “Frequency” column gives the basic tabulation of the variable’s
values. Seventeen subjects were shown a yellow background, and 18 were
shown cyan for a total of 35 subjects.
The “Percent Valid” vs. “Percent” columns in SPSS differ only
if there are missing values. The Percent Valid column always adds to 100%
across the categories given, while the Percent column will include
a “Missing” category if there are missing data. The Cumulative Percent
column accounts for each category plus all categories on prior
lines of the table; this is not very useful for nominal data.




This is non-graphical EDA. Other non-graphical exploratory analyses
of Color, such as calculation of
mean, variance, etc. don’t make much sense because Color is a
categorical variable. (It is possible to interpret the mean in this
case because yellow is coded as 0 and cyan is coded as 1. The mean, 0.514,
represents the fraction of cyan backgrounds.)
For graphical EDA of the color variable you could make a pie or bar chart,
but this really adds nothing to the simple 48.6 vs 51.4 percent numbers.




For the quantitative variable Reaction Time, the non-graphical EDA
would include statistics like these:







	
	N
	Minimum
	Maximum
	Mean
	Std. Deviation





	Reaction Time (ms)
	35
	291
	1005
	670.03
	180.152








Here we can see that there are 35 reactions times that range
from 291 to 1005 milliseconds, with a mean of 670.03 and a
standard deviation of 180.152. We can calculate that the
variance is 180.1522=32454, but we need to look further
at the data to calculate the median or IQR. If we were to
assume that the data follow a Normal distribution, then we could
conclude that about 95% of the data fall within mean plus
or minus 2 sd, which is about 310 to 1030. But such
an assumption is is most
likely incorrect, because if there is a difference in
reaction times between the two colors, we would expect
that the distribution of reaction times ignoring color
would be some bimodal distribution that is a mixture
of the two individual reaction time distributions for the two colors..




A histogram and/or boxplot of reaction time will further help
you get a feel for the data and possibly find errors.




For bivariate EDA, we want graphs and descriptive statistics
for the quantitative outcome (dependent) variable
Reaction Time broken down by the levels of the categorical
explanatory variable (factor) Background Color. A convenient
way to do this in SPSS is with the “Explore” menu option.
Abbreviated results are shown in this table and
the graphical EDA (side-by-side boxplots)
is shown in figure 6.1.







	
	Background
	
	
	
	Std.Error



	
	Color
	
	
	Statistics
	Std.Error





	Reaction
	Yellow
	Mean
	
	679.65
	38.657



	Time
	
	95% Confidence
	Lower Bound
	587.7
	



	
	
	Interval for Mean
	Upper Bound
	761.60
	



	
	
	Median
	
	683.05
	



	
	
	Std. Deviation
	
	159.387
	



	
	
	Minimum
	
	392
	



	
	
	Maximum
	
	906
	



	
	
	Skewness
	
	-0.411
	0.550



	
	
	Kurtosis
	
	-0.875
	1.063



	
	Cyan
	Mean
	
	660.94
	47.621



	
	
	95% Confidence
	Lower Bound
	560.47
	



	
	
	Interval for Mean
	Upper Bound
	761.42
	



	
	
	Median
	
	662.38
	



	
	
	Std. Deviation
	
	202.039
	



	
	
	Minimum
	
	291
	



	
	
	Maximum
	
	1005
	



	
	
	Skewness
	
	0.072
	0.536



	
	
	Kurtosis
	
	-0.897
	1.038
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Figure 6.1: Boxplots of reaction time by color.


Very briefly, the mean reaction times for the subjects
shown cyan backgrounds is about 19 ms shorter than
the mean for those shown yellow backgrounds. The
standard deviation of the reaction times is somewhat
larger for the cyan group than it is for the yellow group.









	EDA for the two-group quantitative outcome experiment
should include examination of sample statistics for
mean, standard deviation, skewness, and kurtosis separately
for each group, as well as boxplots and histograms.








We should follow up on this EDA with formal statistical testing.
But first we need to explore some important concepts
underlying such analyses.






6.2 How classical statistical inference works



In this section you will see ways to think about the state of
the real world at a level appropriate for scientific study, see
how that plays out in experimentation, and learn how we match
up the real world to the theoretical constructs of probability
and statistics. In the next section you will see the
details of how formal inference is carried out and interpreted.




How should we think about the real world with respect to
a simple two group experiment with a continuous outcome?
Obviously, if we were to repeat the entire experiment on a
new set of subjects, we would (almost surely) get different results.
The reasons that we would get different results are many,
but they can be broken down into several main groups (see
section 8.5) such as measurement variability,
environmental variability, treatment application variability,
and subject-to-subject variability. The understanding
of the concept that our experimental results are just
one (random) set out of many possible sets of results is
the foundation of statistical inference.









	The key to standard (classical)
statistical analysis is to consider what types of results
we would get if specific conditions are met and if we were to repeat an
experiment many times, and then to compare the observed result
to these hypothetical results and characterize how “typical”
the observed result is.









6.2.1 The steps of statistical analysis



Most formal statistical analyses work like this:


	
1. 

Use your judgement to choose a model (mean and error components) that
is a reasonable match for the data from the experiment. The model
is expressed in terms of the population from which the subjects
(and outcome variable) were drawn. Also, define parameters of interest.





	
2. 

Using the parameters, define a (point) null hypothesis
and a (usually complex) alternative hypothesis which correspond to the scientific
question of interest.





	
3. 

Choose (or invent) a statistic which has different
distributions under the null and alternative hypotheses.





	
4. 

Calculate the null sampling distribution of the statistic.





	
5. 

Compare the observed (experimental) statistic to the
null sampling distribution of that statistic to calculate a p-value
for a specific null hypothesis (and/or use similar techniques to
compute a confidence interval for a quantity of interest).





	
6. 

Perform some kind of assumption checks to validate
the degree of appropriateness of the model assumptions.





	
7. 

Use your judgement to interpret the statistical inference
in terms of the underlying science.










Ideally there is one more step, which is the power calculation.
This involves calculating the distribution of the statistic
under one or more specific (point) alternative hypotheses
before conducting the experiment so that we can assess
the likelihood of getting a “statistically significant”
result for various “scientifically significant” alternative
hypotheses.




All of these points will now be discussed in more detail,
both theoretically and using the HCI example. Focus is on
the two group, quantitative outcome case, but the general
principles apply to many other situations.









	Classical statistical inference involves multiple steps
including definition of a model, definition of statistical
hypotheses, selection of a statistic, computation of the sampling
distribution of that statistic, computation of a p-value and/or
confidence intervals, and interpretation.










6.2.2 Model and parameter definition



We start with definition of a model and parameters.
We will assume that
the subjects are representative of some population of interest.
In our two-treatment-group example, we most commonly consider
the parameters of interest to be the population means of the
outcome variable (true value without measurement error)
for the two treatments, usually designated with the Greek
letter mu (μ) and two subscripts. For now let’s use μ1
and μ2, where in the HCI example μ1 is the population
mean of reaction time for subjects shown the yellow background
and μ2 is the population mean for those shown the cyan background.
(A good alternative is to use μY and μC, which are
better mnemonically.)




It is helpful to think about the relationship between
the treatment randomization and the population parameters
in terms of 
counterfactuals. Although we have the measurement for
each subject for the treatment (background color) to which
they were assigned, there is also “against the facts” a
theoretical “counterfactual” result for the treatment they did not get.
A useful way to visualize this is to draw each member of the
population of interest in the shape of a person.
Inside this shape for each actual person (potential subject)
are many numbers which are their true values for various
outcomes under many different possible conditions (of
treatment and environment). If we write the reaction time
for a yellow background near the right ear and the reaction time for
cyan near the left ear, then the parameter μ1 is the
mean of the right ear numbers over the entire population.
It is this parameter, a fixed, unknown “secret of nature”
that we want to learn about, not the corresponding
(noisy) sample quantity for the random sample of subjects
randomly assigned to see a yellow background. Put another
way, in essentially every experiment that we run, the sample
means of the outcomes for the treatment groups differ, even if there is really no true difference between the outcome mean
parameters for the two treatments in the population, so focusing on those
differences is not very meaningful.




Figure 6.2 shows a diagram demonstrating this way
of thinking. The first two subjects of the population are
shown along with a few of their attributes. The population
mean of any attribute is a parameter that may be of interest
in a particular experiment. Obviously we can define
many parameters (means, variances, etc.) for many different
possible attributes, both marginally and conditionally on
other attributes, such as age, gender, etc. (see section
3.6).
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Figure 6.2: A view of a population and parameters.







	It must be strongly emphasized that statistical
inference is all about learning what we can about the (unknowable)
population parameters and not about the sample statistics
per se.








As mentioned in section 1.2 a statistical model
has two parts, the  structural model and
the   error model.
The structural model refers to defining the pattern of means
for groups of subjects defined by explanatory variables, but
it does not state what values these means take.
In the case of the two group experiment, simply defining
the population means (without making any claims about their
equality or non-equality) defines the structural model. As
we progress through the course, we will have more complicated
structural models.




The error model (noise model) defines the variability
of subjects “in the same group” around the mean for that
group. (The meaning of “in the same group” is obvious
here, but is less so, e.g., in regression models.)
We assume that we cannot predict the deviation
of individual measurements from the group mean more
exactly than saying that they randomly follow the
probability distribution of the error model.




For continuous outcome variables, the most
commonly used error model is that for each treatment
group the distribution of outcomes in the population is
normally distributed, and furthermore that the population variances
of the groups are equal. In addition, we assume that
each error (deviation of an individual value from the
group population mean) is statistically independent of
every other error.
The normality assumption is often
approximately correct because (as stated in the CLT) the
sum of many small non-Normal random variables will be
normally distributed, and most outcomes of interest can
be thought of as being affected in some additive way by
many individual factors. On the other hand, it is not
true that all outcomes are normally distributed, so
we need to check our assumptions before interpreting
any formal statistical inferences (step 5). Similarly,
the assumption of equal variance is often but not always true.









	The structural component of a statistical model
defines the means of groups, while the error component
describes the random pattern of deviation from those
means.










6.2.3 Null and alternative hypotheses



The null and alternative hypotheses are
statements about the population parameters that
express different possible characterizations of the population
which correspond to different scientific hypotheses.
 
Almost always the null hypothesis is a
so-called point hypothesis
in the sense that it defines a specific case (with an equal
sign), and the alternative is a complex hypothesis in
that it covers many different conditions with less than (<),
greater than (>), or unequal (≠) signs.
 





In the two-treatment-group case, the usual 
null hypothesis is that the two population means are
equal, usually written as H0:μ1=μ2, where the
symbol H0, read “H zero” or “H naught”
indicates the null hypothesis. Note that the null
hypothesis is usually interpretable as “nothing interesting
is going on,” and that is why the term null is used.





In the two-treatment-group case, the usual 
alternative hypothesis is that the two population
means are unequal, written as H1:μ1≠μ2 or HA:μ1≠μ2
where H1 or HA are interchangeable symbols for the alternative hypothesis.
(Occasionally we use an alternative hypothesis that states that
one population mean is less than the other, but in my opinion
such a “one-sided hypothesis” should only
be used when the opposite direction is truly impossible.)
Note that there are really an infinite number of
specific alternative hypotheses, e.g., |μ0-μ1|=1,
|μ0-μ1|=2, etc. It is in this sense that the alternative
hypothesis is complex, and this is an important consideration
in power analysis.









	The null hypothesis specifies patterns of mean parameters
corresponding to no interesting effects, while the alternative
hypothesis usually covers everything else.










6.2.4 Choosing a statistic



The next step is to find (or invent) a statistic
that has a different distribution for the null and alternative
hypotheses and for which we can calculate the
null sampling distribution (see below). It is important to realize
that the sampling distribution of the chosen statistic differs
for each specific alternative, that there is almost
always overlap between the null and alternative distributions
of the statistic,
and that the overlap is large for alternatives that reflect
small effects and smaller for alternatives that reflect large
effects.




For the two-treatment-group experiment with a quantitative outcome
a commonly used statistic is the so-called “t” statistic
which is the difference between the sample means (in either direction)
divided by the (estimated) standard error (see below)
of that difference. Under certain
assumptions it can be shown that this statistic is “optimal”
(in terms of power), but a valid test does not require optimality and
other statistics are possible. In fact we will encounter situations
where no one statistic is optimal, and different researchers
might choose different statistics for their formal statistical analyses.









	Inference is usually based on a single statistic whose
choice may or may not be obvious or unique.









The standard error of the difference between two sample means is the
the standard deviation of the sampling
distribution of the difference between the sample means. Statistical
theory shows that under the assumptions of the t-test, the
standard error of the difference is




SE(diff)=σ⁢1n1+1n2


where n1 and n2 are the group sample sizes. Note that this
simplifies to 2⁢σ/n when the sample sizes are equal.
In practice the estimate of the SE that uses an appropriate averaging of
the observed sample variances is used.




estimated SE(diff)=s12⁢(d⁢f1)+s22⁢(d⁢f2)d⁢f1+d⁢f2⁢(1n1+1n2)


where d⁢f1=n1-1 and d⁢f2=n2-1.
This estimated standard error has n1+n2-2=d⁢f1+d⁢f2 degrees
of freedom.






6.2.5 Computing the null sampling distribution



The next step in the general scheme of formal
(classical) statistical analysis is to compute the


null sampling distribution of the chosen statistic.
The null sampling distribution of a statistic is the
probability distribution of the statistic calculated
over repeated experiments under the conditions defined
by the model assumptions and the null hypothesis.
For our HCI example, we
consider what would happen if the truth is that
there is no difference in reaction times between the
two background colors, and we repeatedly sample
35 subjects and randomly assign yellow to 17 of them and
cyan to 18 of them, and then calculate the t-statistic
each time. The distribution of the t-statistics under
these conditions is the null sampling distribution
of the t-statistic appropriate for this experiment.




For the HCI example, the null sampling distribution
of the t-statistic can be shown to match a well
known, named continuous probability distribution
called the “t-distribution” (see section 3.9).
Actually there are an infinite number of t-distributions
(a family of distributions) and these are named (indexed) by their
“degrees of freedom” (df). For the two-group
quantitative outcome experiment, the df of the
t-statistic and its corresponding null sampling distribution
is (n1-1)+(n2-1), so we will use the t-distribution
with n1+n2-2 df to make our inferences. For
the HCI experiment, this is 17+18-2=33 df.





The calculation of the mathematical form (pdf) of
the null sampling distribution of any chosen statistic
using the assumptions of a given model
is beyond the scope of this book, but the general
idea can be seen in section 3.7.









	Probability theory (beyond the scope of this book) comes into
play in computing the null sampling distribution of
the chosen statistic based on the model assumptions.








You may notice that the null hypothesis of equal
population means is in some sense “complex” rather
than “point” because the two means could be both
equal to 600, 601, etc. It turns out that the
t-statistic has the same null sampling
distribution regardless of the exact value of
the population mean (and of the population variance),
although it does depend on the sample sizes,
n1 and n2.






6.2.6 Finding the p-value



Once we have the null sampling distribution
of a statistic, we can see whether or not the observed
statistic is “typical” of the kinds of
values that we would expect to see when the null
hypothesis is true (which is the basic interpretation
of the null sampling distribution of the statistic).
If we find that the observed (experimental) statistic
is typical, then we conclude that our experiment has
not provided evidence against the null hypothesis, and
if we find it to be atypical, we conclude that we
do have evidence against the null hypothesis.




The formal language we use is to either “reject”
the null hypothesis (in favor of the alternative)
or to “retain” the null hypothesis. The word
“accept” is not a good substitute for retain (see
below). The inferential conclusion to “reject” or
“retain” the null hypothesis is simply a conjecture
based on the evidence. But whichever inference we make,
there is an
underlying truth (null or alternative) that we can never
know for sure, and there is always a chance that we will
be wrong in our conclusion even if we use all of our
statistical tools correctly.




Classical statistical inference
focuses on controlling the chance that we reject
the null hypothesis incorrectly when the underlying
truth is that the null hypothesis is correct.
We call the erroneous conclusion that the null
hypothesis is incorrect when it is actually correct
a Type 1 error. 

(But because the true state of the null hypothesis
is unknowable, we never can be sure whether or not we
have made a Type 1 error in any specific actual situation.)
A synonym for Type 1 error
is “false rejection” of the null hypothesis.





The usual way that we make a formal, objective reject
vs. retain decision is to calculate a p-value.

Formally, a p-value is the probability that
any given experiment will produce a value of the
chosen statistic equal to the observed
value in our actual experiment or something more extreme
(in the sense of less compatible with the null hypotheses),
when the null
hypothesis is true and the model assumptions are
correct. Be careful: the latter half of this definition
is as important as the first half.









	A p-value is the probability that
any given experiment will produce a value of the
chosen statistic equal to the observed
value in our actual experiment or something more extreme, when the null
hypothesis is true and the model assumptions are
correct.








For the HCI example, the numerator of the t-statistic
is the difference between the observed sample means.
Therefore values near zero support the null hypothesis
of equal population means, while values far from zero
in either direction support the alternative hypothesis
of unequal population means. In our specific experiment
the t-statistic equals 0.30. A value of -0.30 would
give exactly the same degree of evidence for or against
the null hypothesis (and the direction of subtraction
is arbitrary). Values smaller in absolute value than
0.30 are more suggestive that the underlying truth
is equal population means, while larger values support
the alternative hypothesis. So the p-value for
this experiment is the probability of getting a t-statistic
greater than 0.30 or less than -0.30 based on
the null sampling distribution of the t-distribution
with 33 df. As explained in chapter 3,
this probability is equal to the corresponding area
under the curve of the pdf of the null sampling
distribution of the statistic.
As shown in figure 6.3 the chance that
a random t-statistic is less than -0.30 if the
null hypothesis is true is 0.382, as is the chance
that it is above +0.30. So the p-value equals
0.382+0.382=0.764, i.e. 76.4% of null experiments would
give a t-value this large or larger (in absolute value).
We conclude that the observed
outcome (t=0.30) is not uncommonly far from zero when the null
hypothesis is true, so we have no reason to believe
that the null hypothesis is false.
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Figure 6.3: Calculation of the p-value for the HCI example


The usual convention (and it is only a convention, not anything
stronger) is to reject the null hypothesis if the p-value is
less than or equal to 0.05 and retain it otherwise. Under some circumstances
it is more appropriate to use numbers bigger or smaller than 0.05
for this  decision rule. We call
the cutoff value the 
significance level of a test, and use the symbol 
alpha (α), with the conventional alpha being 0.05.
We use the phrase  statistically
significant at the 0.05 (or some other) level, when the p-value
is less than or equal to 0.05 (or some other value). This indicates that
if we have used a correct model, i.e., the model assumptions mirror
reality and if the null hypothesis happens to be correct, then
a result like ours or one even more “un-null-like” would happen
at most 5% of the time. It is reasonable to say that
because our result is atypical for the null hypothesis, then
claiming that the alternative hypothesis is true is appropriate.
But when we get a p-value of less than or equal to 0.05 and we
reject the null hypothesis,
it is completely incorrect to claim that there is only a
5% chance that we have made an error. For more details
see chapter 12.




You should never use the word “insignificant” to indicate a
large p-value. Use “not significant” or “non-significant”
because “insignificant” implies no substantive significance rather
than no statistical significance.









	The most common decision rule is to reject the null
hypothesis if the p-value is less than or equal to 0.05 and
to retain it otherwise.








It is important to realize that the p-value is a random quantity.
If we could repeat our experiment (with no change in the underlying
state of nature), then we would get a different p-value. What
does it mean for the p-value to be “correct”?
For one thing it means that we have made the calculation correctly,
but since the computer is doing the calculation we have no reason to doubt that.
What is more important is to ask whether the p-value that we
have calculated is giving us appropriate information. For one
thing, when the null hypothesis is really true (which we
can never know for certain) an appropriate p-value will be less
than 0.05 exactly 5% of the time over repeated experiments.
So if the null hypothesis is true, and if you and 99 of your
friends independently conduct experiments, about five of you will
get p-values less than or equal to 0.05 causing you to incorrectly reject
the null hypothesis. Which five people this happens to has
nothing to do with the quality of their research; it just
happens because of bad luck!





And if an alternative hypothesis is true, then all we know
is that the p-value will be less than or equal to 0.05 at least 5% of
the time, but it might be as little 6% of the time.
So a “correct” p-value does not protect you from
making a lot of  
Type 2 errors which happen when you incorrectly retain
the null hypothesis. With Type 2 errors, something interesting
is going on in nature, but you miss it. See section 6.2.10
for more on this “power” problem.




We talk about an “incorrect” p-value mostly with regard
to the situation where the null hypothesis is the underlying truth.
It is really the behavior of the p-value over repeats of the
experiment that is incorrect, and we want to identify what
can cause that to happen even though we will usually see only
a single p-value for an experiment. Because the p-value for
an experiment is computed as an area under the pdf
of the null sampling distribution of a statistic, the main reason
a p-value is “incorrect” (and therefore misleading) is that
we are not using the appropriate null sampling distribution.
That happens when the model assumptions used in the
computation of the null sampling distribution of the statistic
are not close to the reality of nature. For the t-test, this
can be caused by non-normality of the distributions (though
this is not a problem if the sample size is large due to
the CLT), unequal variance of the outcome measure for
the two-treatment-groups, confounding of treatment
group with important unmeasured explanatory variables,
or lack of independence of the
measures (for example if some subjects are accidentally
measured in both groups). If any of these “assumption violations”
are sufficiently large, the p-value loses its meaning, and
it is no longer an interpretable quantity.









	A p-value has meaning only if the correct null sampling
distribution of the statistic has been used, i.e.,
if the assumptions of
the test are (reasonably well) met. Computer programs generally
give no warnings when they calculate incorrect p-values.










6.2.7 Confidence intervals



Besides p-values, another way to express what the
evidence of an experiment is telling us is to compute
one or more
 confidence intervals,
 often abbreviated CI.
We would like to make a statement like “we are
sure that the difference between μ1 and μ2 is
no more than 20 ms. That is not possible! We can
only make statements such as, “we are 95% confident that
the difference between μ1 and μ2 is
no more than 20 ms.” The choice of the percent confidence number
is arbitrary; we can choose another number like 99% or
75%, but note that when we do so, the width of the
interval changes (high confidence requires wider intervals).




The actual computations are usually done by computer,
but in many instances the idea of the calculation is
simple.




If the underlying data are normally distributed,
or if we are looking at a sum or mean with a large
sample size (and can therefore invoke the CLT), then
a confidence interval for a quantity (statistic)
is computed as the statistic plus or minus the
appropriate “multiplier” times the estimated standard error
of the quantity. The multiplier used depends on
both the desired confidence level (e.g., 95% vs.
90%) and the degrees of freedom for the standard error (which
may or may not have a simple formula). The multiplier
is based on the t-distribution which takes into account
the uncertainty in the standard deviation used to
estimate the standard error. We can use a computer
or table of the t-distribution to find the multiplier
as the value of the t-distribution for which plus or
minus that number covers the desired percentage
of the t-distribution with the correct degrees of freedom.
If we call the quantity 1-(confidence percentage)/100
as alpha (α), then the multiplier is the
1-α/2 quantile of the appropriate t-distribution.




For our HCI example the 95% confidence interval for
the fixed, unknown, “secret-of-nature” that equals
μ1-μ2 is [-106.9, 144.4]. We are 95% confident
that the mean reaction time is between 106.9 ms shorter and 144.4 ms longer
for the yellow background compared to cyan. The meaning of this
statement is that if all of the assumptions are met,
and if we repeat the experiment many times, the random
interval that we compute each time will contain the
single, fixed, true parameter value 95% of the time.
Similar to the interpretation a p-value,
if 100 competent researchers independently
conduct the same experiment, by bad luck about five of
them will unknowingly be incorrect if they claim that
the 95% confidence
interval that they correctly computed actually contains
the true parameter value.




Confidence intervals are in many ways more informative
than p-values. Their greatest strength is that they
help a researcher focus on 
substantive significance in addition to
statistical significance. Consider a bakery that does
an experiment to see if an additional complicated step
will reduce waste due to production of unsaleable,
misshapen cupcakes. If the amount
saved has a 95% CI of [0.1, 0.3] dozen per month with
a p-value of 0.02, then even though this would be statistically
significant, it would not be substantively significant.




In contrast, if we had a 95% CI of [-30, 200] dozen
per month with p=0.15, then even though this not
statistically significant, the inclusion of substantively
important values like 175 dozen per month tells us
that the experiment has not provided enough information
to make a good, real world conclusion.




Finally, if we had a 95% CI of [-0.1, 0.2] dozen
per month with p=0.15, we would conclude that even
if a real non-zero difference exists, its magnitude
is not enough to add the complex step to our cupcake
making.









	Confidence intervals can add a lot of important
real world information to p-values and help us complement
statistical significance with substantive significance.








The slight downside to CIs and substantive significance
is that they are hard to interpret if you don’t know
much about your subject matter. This is usually only a problem
for learning exercises, not for real experiments.






6.2.8 Assumption checking



We have seen above that the p-value
can be misleading or “wrong” if the model assumptions
used to construct the statistic’s sampling distribution
are not close enough to the reality of the situation. To
protect against being mislead, we usually perform
some assumption checking after conducting an analysis
but before considering its conclusions.




Depending on the model, assumption checking can take several
different forms. A major role is played by examining
the model  residuals. Remember that our standard model
says that for each treatment group the best guess (the expected or predicted
value) for each observation is defined by the means of
the structural model.
Then the observed value for each outcome observation
is deviated higher or lower than the true mean.
The error component of our model describes
the distribution of these deviations, which are called
 errors. The residuals, which are
defined as observed minus expected value for
each outcome measurement, are our best estimates of the
unknowable, true errors for each subject. We will examine the distribution of
the residuals to allow us to make a judgment about
whether or not the distribution of the errors is consistent
with the error model.









	Assumption checking is needed to verify that
the assumptions involved in the initial model construction were
good enough to allow us to believe our inferences.








Defining groups among which all subjects have
identical predictions may be complicated for some models, but is
simple for the 2-treatment-group model. For this
situation, all subjects in either one of the two treatment
groups appear to be identical in the model, so they must
have the same prediction based on the model. For
the t-test, the observed group means are the two
predicted values
from which the residuals can be computed. Then we can
check if the residuals for each group follow a Normal distribution
with equal variances for the two groups (or more commonly,
we check the equality of the variances and check
the normality of the combined set of residuals).




Another important assumption is the independence of
the errors. There should be nothing
about the subjects that allows us to predict the sign
or the magnitude of one subject’s error just by knowing the value of
another specific subject’s error. As a trivial example,
if we have identical twins in a study, it may well be
true that their errors are not independent. This might also
apply to close friends in some studies. The worst
case is to apply both treatments to each subject, and
then pretend that we used two independent samples of subjects.
Usually there is no way to check the independence assumption
from the data;
we just need to think about how we conducted the experiment
to consider whether the assumption might have been violated.
In some cases, because the residuals can be looked upon as a
substitute for the true unknown errors, certain residual analyses
may shed light on the independent errors assumption.




You can be sure that the underlying reality of nature
is never perfectly captured by our models. This is why
statisticians say “all models are wrong, but some are
useful.” It takes some experience to judge how badly
the assumptions can be bent before the inferences are
broken. For now, a rough statement can be made about
the independent samples t-test: we need to worry about
the reasonableness of the inference if the normality
assumption is strongly violated, if the equal variance
assumption is moderately violated, or if the independent
errors assumption is mildly violated. We say that a
statistical test is  robust
to a particular model violation if the p-value remains
approximately “correct” even when the assumption
is moderately or severely violated.









	All models are wrong, but some are useful. It
takes experience and judgement to evaluate model
adequacy.










6.2.9 Subject matter conclusions



Applying subject matter knowledge to the confidence
interval is one key form of relating statistical conclusions
back to the subject matter of the experiment. For p-values,
you do something similar with the reject/retain result of
your decision rule. In either case, an analysis is incomplete
if you stop at reporting the p-value and/or CI without
returning to the original scientific question(s).






6.2.10 Power



The  power of an experiment is defined for
specific alternatives, e.g., |μ1-μ2|=100, rather
than for the entire, complex alternative hypothesis.
The power of an experiment for a given alternative hypothesis
is the chance that we will get a statistically significant
result (reject the null hypothesis) when that alternative
is true for any one realization of the experiment. Power varies
from α to 1.00 (or 100⁢α% to 100%). The concept of
power is related to 
Type 2 error, which is the error we make when we retain
the null hypothesis when a particular alternative is true. Usually
the rate of making Type 2 errors is symbolized by beta (β).
Then power is 1-β or 100-100β%. Typically people
agree that 80% power (β=20%) for some substantively important
 effect size (specific magnitude
of a difference as opposed to the zero difference of the
null hypothesis) is a minimal value for good power.




It should be fairly obvious that for any given experiment you
have more power to detect a large effect than a small one.




You should use the methods of chapter 12 to estimate
the power of any experiment before running it. This is only
an estimate or educated guess because some needed information is
usually not known. Many, many experiments are performed which
have insufficient power, often in the 20-30% range. This
is horrible! It means that even if you are studying effective
treatments, you only have a 20-30% chance of getting a
statistically significant result. Combining power analysis
with intelligent experimental design to alter the conduct
of the experiment to maximize its power is a quality of
a good scientist.









	Poor power is a common problem. It cannot be fixed by
statistical analysis. It must be dealt with before running your
experiment.








For now, the importance of power is how it applies to inference.
If you get a small p-value, power becomes irrelevant, and
you conclude that you should reject the null hypothesis, always
realizing that there is a chance that you might be making a Type 1
error. If you get a large p-value, you “retain” the null
hypothesis. If the power of the experiment is small, you
know that a true null hypothesis and a Type 2 error are
not distinguishable. But if you have good power for some
reasonably important sized effect, then a large p-value
is good evidence that no important sized effect exists,
although a Type 2 error is still possible.









	A non-significant p-value and a low power combine
to make an experiment totally uninformative.













	In a nutshell: All classical statistical inference is based
on the same set of steps in which a sample statistic
is compared to the kinds of values we would expect
it to have if nothing interesting is going on, i.e., if the
null hypothesis is true.











6.3 Do it in SPSS



Figure 6.4 shows the Independent Samples
T-test dialog box.
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Figure 6.4: SPSS “Explore” output.


Before performing the t-test, check that your outcome variable
has Measure “scale” and that you know the
numeric codes for the two levels of your categorical
(nominal) explanatory variable.




To perform an independent samples t-test in SPSS, use the menu item
”Independent Samples T-Test” found under Analyze/CompareMeans.
Enter the
outcome (dependent) variable into the Test Variables box. Enter
the categorical explanatory variable into the Grouping Variable box.
Click “Define Groups” and enter the numeric codes for
the two levels of the explanatory variable and click Continue.
Then click OK to
produce the output. (The t-statistic will
be calculated in the direction that subtracts the level you enter
second from the level you enter first.)




For the HCI example, put Reaction Time in the Test Variables box, and
Background Color in the Grouping Variable box. For Define Groups
enter the codes 0 and 1.






6.4 Return to the HCI example



The SPSS output for the independent samples (two-sample) t-test
for the HCI text background color example is shown in figure
6.5.




The group statistics are very important. In addition to verifying
that all of the subjects were included in the analysis, they
let us see which group did better. Reporting a statistically
significant difference without knowing in which direction the
effect runs is a cardinal sin in statistics! Here we
see that the mean reaction time for the “yellow” group is
680 ms while the mean for the “cyan” group is 661 ms. If we
find a statistically significant difference, the direction
of the effect is that those tested with a cyan background
performed better (faster reaction time). The sample standard
deviation tells us about the variability of
reaction times: if the reaction times are roughly Normal
in distribution, then approximately 2/3 of the people when shown a
yellow background score within 159 ms of the mean of 680 ms
(i.e., between 521 and 839 ms),
and approximately 95% of the people shown a
yellow background score within 2*159=318 ms of 680 ms. Other
than some uncertainty in the sample mean and standard
deviation, this conclusion is unaffected by changing the
size of the sample.
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Figure 6.5: t-test for background experiment.







	The means from “group statistics” show the direction
of the effect
and the standard deviations tell us about the inherent variability of what we are
measuring.








The standard error of the mean (SEM) for a sample tells us about how well
we have “pinned down” the population
mean based on the inherent variability of the outcome and the
sample size.
It is worth knowing that the estimated SEM is equal to
the standard deviation of the sample divided by the square root
of the sample size. The less variable a measurement
is and the bigger we make our sample, the better we can “pin
down” the population mean (what we’d like to know)
using the sample (what we can practically study). I am using “pin down
the population mean” as a way of saying that we want to quantify
in a probabilistic sense in what possible interval our evidence places
the population mean and how confident we are that it really falls
into that interval. In other words we want to construct
 confidence intervals for
the group population means.




When the statistic of interest is the sample mean, as we are
focusing on now, we can use the central limit theorem to
justify claiming that the (sampling) distribution of the
sample mean is normally distributed with standard deviation
equal to σn where σ is the
true population standard deviation of the measurement.
The standard deviation of the sampling distribution of
any statistic is called its 

standard error.
If we happen to know the value of σ, then we are 95% confident
that the interval x¯±1.96⁢(σn)
contains the true mean, μ. Remember that the meaning
of a confidence interval is that if we could repeat the
experiment with a new sample many times, and construct
a confidence interval each time, they would all be
different and 95% (or whatever percent we choose for
constructing the interval) of those intervals will
contain the single true value of μ.




Technically, if the original distribution of the data is
normally distributed, then the sampling distribution of the mean is
normally distributed regardless of the sample size
(and without using the CLT). Using the CLT, if certain weak
technical conditions are met, as the sample size increases,
the shape of the sampling distribution of the mean approaches
the Normal distribution regardless of the shape of the
data distribution. Typically, if the data distribution
is not too bizarre, a sample size of at least 20 is enough
to cause the sampling distribution of the mean to be
quite close to the Normal distribution.




Unfortunately, the value of σ is not usually known,
and we must substitute the sample estimate, s, instead of
σ into the standard error formula, giving an
estimated standard error. Commonly the word “estimated”
is dropped from the phrase “estimated standard error”,
but you can tell from the context that σ is not
usually known and s is taking its place.
For example,
the estimated standard deviation of the (sampling) distribution
of the sample mean is called the standard error of the mean
(usually abbreviated SEM), without explicitly using the
word “estimated”.




Instead of using 1.96 (or its rounded value, 2) times
the standard deviation of the sampling distribution
to calculate the “plus or minus” for a confidence
interval, we must use a different multiplier when
we substitute the estimated SEM for the true SEM.
The multiplier we use is
the value (quantile) of a t-distribution that defines
a central probability of 95% (or some other value we choose).
This value is calculated by the computer (or read off of
a table of the t-distribution), but it does depend on
the number of degrees of freedom of the standard deviation
estimate, which in the simplest case is n-1 where n
is the number of subjects in the specific experimental
group of interest. When calculating 95% confidence
intervals, the multiplier can be as large as 4.3
for a sample size of 3, but shrinks towards 1.96 as the sample
size grows large. This makes sense: if we are more uncertain
about the true value of σ, we need to make a less
well defined (wider) claim about where μ is.




So practically we interpret the SEM this way: we are roughly 95%
certain that the true mean (μ) is within about 2 SEM of
the sample mean (unless the sample size is small).









	The mean and standard error of the mean from “group statistics”
tell us about how well we have “pinned down” the population
mean based on the inherent variability of the measure and the
sample size.








The “Independent Samples Test” box shows the actual t-test results
under the row labeled “Equal variances assumed”.
The columns labeled “Levene’s Test for Equality of Variances”
are not part of the
t-test; they are part of a supplementary test of the assumption of
equality of variances for the two groups. If the Levene’s
Test p-value (labeled “Sig” , for “significance”, in SPSS output)
is less than or equal to 0.05
then we would begin to worry that the equal variance assumption is
violated, thus casting doubt on the validity of the t-test’s p-value.
For our example, the Levene’s test p-value of 0.272 suggests that
there is no need for worry about that particular assumption.




The seven columns under “t-test for Equality of Means” are the actual
t-test results. The t-statistic is given as 0.30. It is negative when
the mean of the second group entered is larger than that of the first.
The degrees of freedom are given under “df”. The p-value is given
under “Sig. (2-tailed)”. The actual difference of the means is
given next. The standard error of that difference is given next.
Note that the t-statistic is computed from the difference of
means and the SE of that difference as difference/(SE of difference).
Finally a 95% confidence interval is given for the difference
of means. (You can use the Options button to compute a different
sized confidence interval.)




SPSS (but not many other programs) automatically gives a second line
labeled “Equal variances not assumed”. This is from one of the
adjusted formulas to correct for unequal group variances. The
computation of a p-value in the unequal variance case is quite
an unsettled and contentious problem (called the Behrens-Fisher problem)
and the answer given by SPSS is reasonably good, but not generally
agreed upon. So if the p-value of the Levene’s test is less than or
equal to 0.05, many people would use the second line to compute an adjusted
p-value (“Sig. (2-tailed)”), SEM, and CI based on a different null sampling
distribution for the t-statistic in which the df are adjusted an
appropriate amount downward. If there is no evidence of unequal
variances, the second line is just ignored.




For model assumption checking, figure 6.6
shows separate histograms of
the residuals for the two groups with overlaid Normal pdfs.
With such a small sample size, we cannot expect perfectly
shaped Normal distributions, even if the Normal error model
is perfectly true.
The histograms of the residuals in this figure look reasonably
consistent with Normal distributions with
fairly equal standard deviation, although normality is
hard to judge with such a small sample. With
the limited amount of information available, we cannot
expect to make definite conclusions about the model assumptions
of normality or equal variance, but we can at least say
that we do not see evidence of the kind of gross violation of these
assumptions that would make us conclude that the p-value is
likely to be highly misleading.
In more complex models, we
will usually substitute a “residual vs. fit” plot and
a quantile-normal plot of the residuals for these assumption
checking plots.
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Figure 6.6: Histograms of residuals.







	In a nutshell: To analyze a two-group quantitative outcome experiment,
first perform EDA to get a sense of the direction and size of the effect,
to assess the normality and equal variance assumptions, and to
look for mistakes. Then perform a t-test (or equivalently, a one-way
ANOVA). If the assumption checks are OK, reject or retain the
null hypothesis of equal population means based on a small or large
p-value, respectively.





































Chapter 7 One-way ANOVA



One-way ANOVA examines equality of population means
for a quantitative outcome and a single categorical
explanatory variable with any number of levels.




The t-test of Chapter 6
looks at quantitative outcomes with a
categorical explanatory variable that has only two levels.
The one-way Analysis of Variance (ANOVA) can be used
for the case of a quantitative outcome with a
categorical explanatory variable that has
two or more levels of treatment.
The term one-way, also called one-factor, indicates
that there is a single explanatory variable (“treatment”)
with two or more levels, and only one level of treatment
is applied at any time for a given subject. In this
chapter we assume that each subject is exposed to
only one treatment, in which case the treatment
variable is being applied “between-subjects”. For
the alternative in which each subject is exposed to
several or all levels of treatment (at different times)
we use the term “within-subjects”, but that is
covered Chapter 14. We use the term two-way
or two-factor ANOVA, when the levels of two different
explanatory variables are being assigned, and
each subject is assigned to one level of each factor.




It is worth noting that the situation for which
we can choose between
one-way ANOVA and an independent samples t-test is
when the explanatory variable has exactly two levels.
In that case we always come to the same conclusions
regardless of which method we use.




The term “analysis of variance” is a bit of a misnomer.
  

In ANOVA we use variance-like quantities to study
the equality or non-equality of population means.
So we are analyzing means, not variances.
There are some unrelated methods, such as “variance
component analysis” which have variances as
the primary focus for inference.






7.1 Moral Sentiment Example



As an example of application of one-way ANOVA
consider the research reported in
“Moral sentiments and cooperation: Differential influences of shame and guilt”
by de Hooge, Zeelenberg, and M. Breugelmans
(Cognition & Emotion,21(5): 1025-1042, 2007).




As background you need to know that there is a well-established
theory of Social Value Orientations or SVO
(see Wikipedia
for a brief introduction and references).
SVOs represent characteristics of people with
regard to their basic motivations. In this study
a questionnaire called the Triple Dominance Measure was used
to categorize subjects into “proself” and “prosocial”
orientations. In this chapter we will examine
simulated data based on the results for the proself
individuals.




The goal of the study was to investigate the effects of emotion
on cooperation.
The study was carried out using undergraduate economics and psychology
students in the Netherlands.




The sole explanatory variable is “induced emotion”. This
is a nominal categorical variable with three levels: control,
guilt and shame. Each subject was randomly assigned to one of
the three levels of treatment. Guilt and shame were induced in
the subjects by asking them to write about a personal experience where
they experienced guilt or shame respectively. The control condition consisted
of having the subject write about what they did on a recent weekday.
(The validity of the emotion induction was tested by asking
the subjects to rate how strongly they were feeling a variety
of emotions towards the end of the experiment.)




After inducing one of the three emotions, the experimenters
had the subjects participate in a one-round computer game
that is designed to test cooperation.
Each subject initially had ten coins, with each coin worth 0.50 Euros
for the subject but 1 Euro for their “partner” who is presumably
connected separately to the computer. The subjects were told that
the partners also had ten coins, each worth 0.50 Euros for themselves
but 1 Euro for the subject. The subjects decided how many coins to
give to the interaction partner, without knowing how many coins the
interaction partner would give. In this game, both participants would earn
10 Euros when both offered all coins to the interaction partner
(the cooperative option). If a cooperator gave all 10 coins but
their partner gave none, the cooperator could end up with nothing,
and the partner would end up with the maximum of 15 Euros.
Participants could avoid the possibility of earning nothing by
keeping all their coins to themselves which is worth 5 Euros
plus 1 Euro for each coin their partner gives them
(the selfish option). The number of coins offered was the measure
of cooperation.





The number of coins offered (0 to 10) is the outcome variable,
and is called “cooperation”. Obviously this outcome
is related to the concept of “cooperation” and is in
some senses a good measure of cooperation, but just as
obviously, it is not a complete measure of the concept.




Cooperation as defined here is a discrete quantitative
variable with a limited range of possible values.
As explained below, the Analysis of Variance statistical
procedure, like the t-test, is based on the assumption of a Gaussian distribution
of the outcome at each level of the (categorical)
explanatory variable. In this case, it is judged to be a reasonable
approximation to treat “cooperation” as
a continuous variable. There is no hard-and-fast rule,
but 11 different values might be considered borderline,
while, e.g., 5 different values would be hard to justify as
possibly consistent with a Gaussian distribution.




Note that this is a randomized experiment.
The levels of “treatment” (emotion induced)
are randomized and assigned by the experimenter.
If we do see evidence that “cooperation” differs among the groups,
we can validly claim that induced emotion causes different
degrees of cooperation. If we had only measured the subjects’
current emotion rather than manipulating it,
we could only
conclude that emotion is associated with cooperation.
Such an association could have other explanations than a causal
relationship. E.g., poor sleep the night before could cause
more feelings of guilt and more cooperation, without the
guilt having any direct effect on cooperation.
(See section 8.1 for more on causality.)




The data can be found in MoralSent.dat. The data look like this:







	emotion
	cooperation





	Control
	3



	Control
	0



	Control
	0








Typical exploratory data analyses include a tabulation of the
frequencies of the levels of a categorical
explanatory variable like “emotion”. Here we see
39 controls, 42 guilt subjects, and 45 shame subjects. Some
sample statistics of cooperation broken down by each level
of induced emotion are shown in table 7.1,
and side-by-side boxplots shown in figure 7.1.







	
	Induced emotion
	
	
	Statistic
	Std.Error





	Cooperation
	Control
	Mean
	
	3.49
	0.50



	score
	
	95% Confidence
	Lower Bound
	2.48
	



	
	
	Interval for Mean
	Upper Bound
	4.50
	



	
	
	Median
	
	3.00
	



	
	
	Std. Deviation
	
	3.11
	



	
	
	Minimum
	
	0
	



	
	
	Maximum
	
	10
	



	
	
	Skewness
	
	0.57
	0.38



	
	
	Kurtosis
	
	-0.81
	0.74



	
	Guilt
	Mean
	
	5.38
	0.50



	
	
	95% Confidence
	Lower Bound
	4.37
	



	
	
	Interval for Mean
	Upper Bound
	6.39
	



	
	
	Median
	
	6.00
	



	
	
	Std. Deviation
	
	3.25
	



	
	
	Minimum
	
	0
	



	
	
	Maximum
	
	10
	



	
	
	Skewness
	
	-0.19
	0.36



	
	
	Kurtosis
	
	-1.17
	0.72



	
	Shame
	Mean
	
	3.78
	0.44



	
	
	95% Confidence
	Lower Bound
	2.89
	



	
	
	Interval for Mean
	Upper Bound
	4.66
	



	
	
	Median
	
	4.00
	



	
	
	Std. Deviation
	
	2.95
	



	
	
	Minimum
	
	0
	



	
	
	Maximum
	
	10
	



	
	
	Skewness
	
	0.71
	0.35



	
	
	Kurtosis
	
	-0.20
	0.70





Table 7.1: Group statistics for the moral sentiment experiment.
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Figure 7.1: Boxplots of cooperation by induced emotion.


Our initial impression is that cooperation is higher for
guilt than either shame or the control condition. The
mean cooperation for shame is slightly lower than for
the control. In terms of pre-checking model assumptions,
the boxplots show fairly symmetric distributions with
fairly equal spread (as demonstrated by the comparative
IQRs). We see four high outliers for the shame group, but
careful thought suggests that this may be unimportant
because they are just one unit of measurement (coin) into
the outlier region and that region may be “pulled in’ a
bit by the slightly narrower IQR of the shame group.






7.2 How one-way ANOVA works




7.2.1 The model and statistical hypotheses



One-way ANOVA is appropriate when the following model holds.
We have a single “treatment” with, say, k levels. “Treatment” may
be interpreted in the loosest possible sense as
any categorical explanatory variable. There is a population
of interest for which there is a true quantitative outcome
for each of the k levels of treatment. The population
outcomes for each group have mean parameters that we
can label μ1 through
μk with no restrictions on the pattern of means.
The population variances for the outcome for each of
the k groups defined by the levels of the explanatory
variable all have
the same value, usually called σ2, with no restriction
other than that σ2>0. For treatment i, the
distribution of the outcome is assumed to follow
a Normal distribution with mean μi and variance
σ2, often written N⁢(μi,σ2).




Our model assumes that the true deviations of
observations from their corresponding group mean
parameters, called the “errors”, are independent.
In this context, independence indicates that
knowing one true deviation would not help us
predict any other true deviation. Because it is common
that subjects who have a high outcome when given
one treatment tend to have a high outcome when
given another treatment, using the same subject
twice would violate the independence assumption.




Subjects are randomly
selected from the population, and then randomly assigned
to exactly one treatment each. The number of subjects
assigned to treatment i (where 1≤i≤k) is called
ni if it differs between treatments or just n if
all of the treatments have the same number of subjects.
For convenience, define N=∑i=1kni, which is
the total sample size.




(In case you have forgotten,
the Greek capital sigma (Σ) stands for summation,
i.e., adding. In this case, the notation says that we should
consider all values of ni where i is set to 1,  2,…,k, and then add them all up. For example,
if we have k=3 levels of treatment, and the group
samples sizes are 12, 11, and 14 respectively, then
n1=12,n2=11,n3=14 and
N=∑i=1kni=n1+n2+n3=12+11+14=37.)




Because of the random treatment assignment, the sample
mean for any treatment group is representative of the
population mean for assignment to that group
for the entire population.




Technically, the sample group means are unbiased estimators
of the population group means when treatment is randomly
assigned. The meaning of unbiased here is that the true mean of the
sampling distribution of any group sample mean equals
the corresponding population mean. Further, under the
Normality, independence and equal variance assumptions
it is true that the sampling distribution of Yi¯
is N⁢(μi,σ2/ni), exactly.









	The statistical model for which one-way ANOVA is appropriate
is that the (quantitative) outcomes for each group are
normally distributed with a common variance (σ2). The
errors (deviations of individual outcomes from the
population group means) are assumed to be independent. The
model places no restrictions on the population group means.








The term  assumption in statistics
refers to any specific part of a statistical model. For
one-way ANOVA, the assumptions are normality, equal variance,
and independence of errors. Correct assignment of individuals
to groups is sometimes considered to be an implicit assumption.




The null hypothesis is a point hypothesis stating that
“nothing interesting is happening.” For one-way
ANOVA, we use H0:μ1=⋯=μk, which states
that all of the population means are equal, without
restricting what the common value is. The alternative
must include everything else, which can be expressed
as “at least one of the k population means differs
from all of the others”. It is definitely wrong
to use HA:μ1≠⋯≠μk because some
cases, such as μ1=5,μ2=5,μ3=10, are
neither covered by H0 nor this incorrect HA.
You can write the alternative hypothesis as “HA: Not
μ1=⋯=μk or “the population means are not all equal”.




One way to correctly
write HA mathematically is HA:∃i,j:μi≠μj.




This null hypothesis is called the “overall” null hypothesis
and is the hypothesis tested by ANOVA, per se. If we have
only two levels of our categorical explanatory variable, then
retaining or rejecting the overall null hypothesis, is
all that needs to be done in terms of hypothesis testing.
But if we have 3 or more levels (k≥3), then we usually
need to followup on rejection of the overall null hypothesis
with more specific hypotheses to determine for which population
group means we have evidence of a difference. This
is called contrast testing and discussion of it will
be delayed until chapter 13.









	The overall null hypothesis for one-way ANOVA with
k groups is H0:μ1=⋯=μk. The alternative
hypothesis is that “the population means are not all equal”.










7.2.2 The F statistic (ratio)



The next step in standard inference is to select a statistic
for which we can compute the null sampling distribution
and that tends to fall in a different region for the alternative
than the null hypothesis. For ANOVA, we use the “F-statistic”.
The single formula for the F-statistic that is shown
in most textbooks is quite complex and hard
to understand. But we can build it up in small understandable
steps.




Remember that a sample variance is calculated as SS/df where
SS is “sum of squared deviations from the mean” and df is
“degrees of freedom” (see page 4.2.4).
In ANOVA we work with variances and also
“variance-like quantities” which are not really the variance
of anything, but are still calculated as SS/df. We will
call all of these quantities mean squares or MS. i.e.,
M⁢S=S⁢S/d⁢f, which is a key formula that you should memorize.
 
Note that these are not really means, because the denominator
is the df, not n.





For one-way ANOVA we will work with two different MS values
called “mean square within-groups”, MSwithin,
and “mean square between-groups”, MSbetween.
We know the general formula for any MS, so we really just need to find
the formulas for SSwithin and SSbetween,
and their corresponding df.




The F statistic denominator: MSwithin




MSwithin is a “pure” estimate of
σ2 that is unaffected by whether the null or alternative
hypothesis is true. Consider figure 7.2 which
represents the within-group deviations used in the calculation
of MSwithin for
a simple two-group experiment with 4 subjects in
each group. The extension to more groups and/or different
numbers of subjects is straightforward.



Figure 7.2: Deviations for within-group sum of squares


The deviation for subject j of group i in figure 7.2
is mathematically equal to Yi⁢j-Y¯i where Yi⁢j
is the observed value for subject j of group i
and Y¯i is the sample mean for group i.




I hope you can see that the deviations shown (black horizontal lines
extending from the colored points to the colored group mean lines)
are due to the underlying variation of subjects within a group.
The variation has standard deviation σ, so that, e.g., about 2/3
of the times the deviation lines are shorter than σ.
Regardless of the truth of the null hypothesis, for each individual
group, MSi=SSi/dfi is a good estimate of σ2.
The value of MSwithin comes from a
statistically appropriate formula for combining
all of the k separate group estimates of σ2. It is
important to know that MSwithin has N-k df.





For an individual group, i, SSi=∑j=1ni(Yi⁢j-Y¯i)2
and dfi=ni-1.
We can use some statistical theory beyond the scope of this course
to show that in general, MSwithin is a good (unbiased)
estimate of σ2 if it is defined as




MSwithin=SSwithin/dfwithin


where SSwithin=∑i=1kS⁢Si, and
dfwithin=∑i=1kdfi=∑i=1k(ni-1)=N-k.









	
𝐌𝐒𝐰𝐢𝐭𝐡𝐢𝐧 is a good estimate of σ2 (from our
model) regardless of the truth of H0. This is due to
the way 𝐒𝐒𝐰𝐢𝐭𝐡𝐢𝐧 is defined. 𝐒𝐒𝐰𝐢𝐭𝐡𝐢𝐧 (and therefore
𝐌𝐒𝐰𝐢𝐭𝐡𝐢𝐧) has N-k degrees of freedom with ni-1 coming
from each of the k groups.










The F statistic numerator: MSbetween



Figure 7.3: Deviations for between-group sum of squares


Now consider figure 7.3 which
represents the between-group deviations used in the calculation
of MSbetween for the same little 2-group 8-subject experiment
as shown in figure 7.2. The single vertical black line is
the average of all of the outcomes values in all of the treatment
groups, usually called either the overall mean or the grand mean.

The colored vertical lines are still the group means.
The horizontal black lines are the deviations used for the
between-group calculations. For each subject
we get a deviation equal to the distance (difference) from
that subject’s group mean to the overall (grand) mean.
These deviations are squared and summed to get SSbetween,
which is then divided by the between-group
df, which is k-1, to get MSbetween.




MSbetween is a good estimate of
σ2 only when the null hypothesis is true. In this case
we expect the group means to be fairly close together and
close to the grand mean. When the alternate hypothesis is true,
as in our current example,
the group means are farther apart and the value of
MSbetween tends to be larger than
σ2. (We sometimes write this as “MSbetween is an
inflated estimate of σ2”.)






SSbetween is the sum of the N squared between-group
deviations, where the deviation is the same for all subjects
in the same group. The formula is




SSbetween=∑i=1kni⁢(Y¯i-Y¯¯)2


where Y¯¯ is the grand mean. Because the k
unique deviations add up to zero, we are free to choose only
k-1 of them, and then the last one is fully determined by
the others, which is why dfbetween=k-1
for one-way ANOVA.









	Because of the way 𝐒𝐒𝐛𝐞𝐭𝐰𝐞𝐞𝐧 is defined,
𝐌𝐒𝐛𝐞𝐭𝐰𝐞𝐞𝐧 is a good estimate of σ2
only if H0 is true. Otherwise it tends to be larger.
𝐒𝐒𝐛𝐞𝐭𝐰𝐞𝐞𝐧 (and therefore
𝐌𝐒𝐛𝐞𝐭𝐰𝐞𝐞𝐧) has k-1 degrees of freedom.









The F statistic ratio



It might seem that we only need MSbetween
to distinguish the null from the alternative hypothesis, but
that ignores the fact that we don’t usually know the value
of σ2. So instead we look at the ratio




	
	F=MSbetweenMSwithin
	




to evaluate the null hypothesis. Because the denominator
is always (under null and alternative hypotheses) an estimate
of σ2 (i.e., tends to have a value near σ2),
and the numerator is either another estimate of σ2
(under the null hypothesis) or is inflated (under the
alternative hypothesis), it is clear that the (random)
values of the F-statistic (from experiment to experiment)
tend to fall around 1.0 when the null hypothesis is true
and are bigger when the alternative is true. So
if we can compute the sampling distribution of the F
statistic under the null hypothesis, then we will
have a useful statistic for distinguishing the null
from the alternative hypotheses, where large values of
F argue for rejection of H0.









	The F-statistic,
defined by F=𝐌𝐒𝐛𝐞𝐭𝐰𝐞𝐞𝐧𝐌𝐒𝐰𝐢𝐭𝐡𝐢𝐧,
tends to be larger if the alternative hypothesis is
true than if the null hypothesis is true.











7.2.3 Null sampling distribution of the F statistic



Using the technical condition that
the quantities MSbetween and
MSwithin are independent, we can
apply probability and statistics techniques (beyond the
scope of this course) to show that the null sampling
distribution of the F statistic is that of the
“F-distribution” (see section 3.9.7).
The F-distribution is indexed by two numbers called the
numerator and denominator degrees of freedom. This
indicates that there are (infinitely) many F-distribution
pdf curves, and we must specify these two numbers
to select the appropriate one for any given situation.




Not surprisingly the null sampling distribution of
the F-statistic for any given one-way ANOVA is
the F-distribution with numerator degrees of freedom
equal to dfbetween=k-1 and denominator
degrees of freedom equal to dfwithin=N-k.
Note that this indicates that the kinds of F-statistic
values we will see if the null hypothesis is true depends
only on the number of groups and the numbers of subjects,
and not on the values of the population variance or the
population group means. It is worth mentioning
that the degrees of freedom are measures of
the “size” of the experiment,
where bigger experiments (more groups or more
subjects) have bigger df.









	We can quantify “large” for the F-statistic,
by comparing it to its null sampling distribution which
is the specific F-distribution which has degrees of
freedom matching the numerator and denominator of
the F-statistic.








The F-distribution is a non-negative distribution in the sense
that F values, which are squares, can never be negative numbers.
The distribution is skewed to the right and continues to
have some tiny probability no matter how large F gets.
The mean of the distribution is s/(s-2), where s is
the denominator degrees of freedom. So if s is
reasonably large then the mean is near 1.00, but if s is
small, then the mean is larger (e.g., k=2, n=4 per group
gives s=3+3=6, and a mean of 6/4=1.5).



[image: ]
Figure 7.4: A variety of F-distribution pdfs.


Examples of F-distributions with different numerator
and denominator degrees of freedom are shown in figure
7.4. These curves are probability
density functions, so the regions on the x-axis where the
curve is high are the values most likely to occur.
And the area under the curve between any two F values
is equal to the probability that a random variable following
the given distribution will fall between those values.
Although very low F values are more likely for, say,
the F(1,10) distribution than the F(3,10) distribution,
very high values are also more common for the F(1,10)
than the F(3,10) values, though this may be hard to
see in the figure. The bigger the numerator and/or
denominator df, the more concentrated the F values
will be around 1.0.






7.2.4 Inference: hypothesis testing



There are two ways to use the null sampling distribution
of F in one-way ANOVA: to calculate a p-value or to
find the “critical value” (see below).



[image: ]
Figure 7.5: The F(3,10) pdf and the p-value for F=2.0.


A close up of the F-distribution with 3 and 10 degrees of freedom
is shown in figure 7.5. This is the appropriate
null sampling distribution of an F-statistic for an experiment
with a quantitative outcome and one categorical explanatory
variable (factor) with k=4 levels
(each subject gets one of four different possible treatments)
and with 14 subjects divided among the 4 groups. A vertical line
marks an F-statistic of 2.0 (the observed value from some
experiment). The p-value for this result is the chance of getting
an F-statistic greater than or equal to 2.0 when the
null hypothesis is true, which is the shaded area. The
total area is always 1.0, and the shaded area is 0.178
in this example, so the p-value is 0.178 (not significant
at the usual 0.05 alpha level).



[image: ]
Figure 7.6: The F(3,10) pdf and its alpha=0.05 critical value.


Figure 7.6 shows another close up of the
F-distribution with 3 and 10 degrees of freedom. We will
use this figure to define and calculate the 
F-critical value. For a given alpha (significance level),
usually 0.05, the F-critical value is the F value above which
100⁢α% of the null sampling distribution occurs.
For experiments with 3 and 10 df, and using α=0.05,
the figure shows that the F-critical value is 3.71. Note
that this value can be obtained from a computer before the experiment
is run, as long as we know how many subjects will be studied
and how many levels the explanatory variable has. Then
when the experiment is run, we can calculate the observed
F-statistic and compare it to F-critical. If the statistic
is smaller than the critical value, we retain the null
hypothesis because the p-value must be bigger than α,
and if the statistic is equal to or bigger than the critical value,
we reject the null hypothesis because the p-value must be equal
to or smaller than α.






7.2.5 Inference: confidence intervals



It is often worthwhile to express what we have learned from
an experiment in terms of confidence intervals. In one-way
ANOVA it is possible to make confidence intervals for
population group means or for differences in pairs
of population group means (or other more complex comparisons).
We defer discussion of the latter to chapter 13.




Construction of a confidence interval for a population group means
is usually done as an appropriate “plus or minus” amount
around a sample group mean. We use MSwithin as an estimate
of σ2, and then for group i, the standard error of
the mean is MSwithin/ni. As discussed in section
6.2.7, the multiplier for the standard error
of the mean is the so called “quantile of the t-distribution”
which defines a central area equal to the desired confidence
level. This comes from a computer or table of t-quantiles.
For a 95% CI this is often symbolized as t0.025,d⁢f where
df is the degrees of freedom of MSwithin, (N-k).
Construct the CI as the sample mean plus or minus (SEM times
the multiplier).









	In a nutshell: In one-way ANOVA we calculate the F-statistic
as the ratio 𝐌𝐒𝐛𝐞𝐭𝐰𝐞𝐞𝐧/𝐌𝐒𝐰𝐢𝐭𝐡𝐢𝐧. Then the
p-value is calculated as the area under the appropriate
null sampling distribution of F that is bigger than
the observed F-statistic. We reject the null hypothesis
if p≤α.











7.3 Do it in SPSS



To run a one-way ANOVA in SPSS, use the Analyze menu,
select Compare Means, then One-Way ANOVA. Add the quantitative
outcome variable to the “Dependent List”, and the
categorical explanatory variable to the “Factor” box.
Click OK to get the output. The dialog box for One-Way ANOVA
is shown in figure 7.7.




You can also use the Options button to perform descriptive
statistics by group, perform a variance homogeneity test,
or make a means plot.




You can use the Contrasts button to specify particular
planned contrasts among the levels or you
can use the Post-Hoc button to make unplanned contrasts
(corrected for multiple comparisons), usually
using the Tukey procedure for all pairs or the Dunnett
procedure when comparing each level to a control level.
See chapter 13 for more
information.



[image: ]
Figure 7.7: One-Way ANOVA dialog box.




7.4 Reading the ANOVA table



The  ANOVA table is the main
output of an ANOVA analysis. It always has the “source
of variation” labels in the first column, plus additional columns
for “sum of squares”, “degrees of freedom”, “means square”,
F, and the p-value (labeled “Sig.” in SPSS).




For one-way ANOVA, there are always rows for “Between Groups”
variation and “Within Groups” variation, and often a row
for “Total” variation. In one-way ANOVA there is
only a single F statistic (MSbetween/MSwithin), and
this is shown on the “Between Groups” row. There
is also only one p-value, because there is only one (overall)
null hypothesis, namely H0:μ1=⋯=μk,
and because the p-value comes from comparing the (single)
F value to its null sampling distribution.
The calculation of MS for the total row is optional.







	
	Sum of Squares
	df
	Mean Square
	F
	Sig.





	Between Groups
	86.35
	2
	43.18
	4.50
	0.013



	Within Groups
	1181.43
	123
	9.60
	
	



	Total
	1267.78
	125
	
	
	





Table 7.2: ANOVA for the moral sentiment experiment.


Table 7.2 shows the results for the moral
sentiment experiment. There are several important aspects to
this table that you should understand. First,
as discussed above, the “Between Groups”
lines refer to the variation of the group means around the
grand mean, and the “Within Groups” line refers to the
variation of the subjects around their group means.
The “Total” line refers to variation of the individual
subjects around the grand mean. The Mean Square for
the Total line is exactly the same as the variance of
all of the data, ignoring the group assignments.




In any ANOVA table, the df column refers to the number
of degrees of freedom in the particular SS defined on
the same line. The MS on any line is always equal
to the SS/df for that line. F-statistics are given
on the line that has the MS that is the numerator
of the F-statistic (ratio). The denominator comes from
the MS of the “Within Groups” line for one-way ANOVA,
but this is not always true for other types of ANOVA.
It is always true that there is a p-value for each F-statistic,
and that the p-value is the area under the null sampling
distribution of that F-statistic that is above the
(observed) F value shown in the table. Also, we
can always tell which F-distribution is the appropriate
null sampling distribution for any F-statistic, by
finding the numerator and denominator df in the table.




An ANOVA is a breakdown of the total variation of the
data, in the form of SS and df, into smaller independent
components. For the one-way ANOVA, we break down the
deviations of individual values from the overall mean
of the data into deviations of the group means from
the overall mean, and then deviations of the individuals
from their group means. The independence of these
sources of deviation results in additivity of the
SS and df columns (but not the MS column). So
we note that SSTotal=SSBetween+SSWithin
and dfTotal=dfBetween+dfWithin. This
fact can be used to reduce the amount of calculation,
or just to check that the calculation were done and
recorded correctly.




Note that we can calculate MSTotal=1267.78/125=10.14
which is the variance of all of the data (thrown together
and ignoring the treatment groups). You can see that
MSTotal is certainly not equal to MSBetween+MSWithin.




Another use of the ANOVA table is to learn about an
experiment when it is not full described (or to check
that the ANOVA was performed and recorded correctly).
Just from this one-way ANOVA table, we can see that
there were 3 treatment groups (because dfBetween
is one less than the number of groups). Also, we
can calculate that
there were 125+1=126 subjects in the experiment.




Finally, it is worth knowing that MSwithin is
an estimate of σ2, the variance of
outcomes around their group mean. So we can take
the square root of MSwithin to get an estimate
of σ, the standard deviation. Then
we know that the majority (about 23) of the measurements
for each group are within σ of the group mean
and most (about 95%) are within 2⁢σ, assuming
a Normal distribution. In this example the
estimate of the s.d. is 9.60=3.10, so
individual subject cooperation values more than
2(3.10)=6.2 coins from their group means would
be uncommon.









	You should understand the structure of the
one-way ANOVA table including that MS=SS/df for
each line, SS and df are additive, F is the ratio
of between to within group MS, the p-value comes from
the F-statistic and its presumed (under model assumptions)
null sampling distribution, and the number of
treatments and number of subjects can be calculated from
degrees of freedom.










7.5 Assumption checking



Except for the skewness of the shame group,
the skewness and kurtosis statistics
for all three groups are within 2SE of zero
(see Table 7.1), and
that one skewness is only slightly beyond 2SE
from zero. This suggests
that there is no evidence against the Normality
assumption. The close similarity of the three
group standard deviations suggests that the
equal variance assumption is OK. And hopefully
the subjects are totally unrelated, so the
independent errors assumption is OK. Therefore
we can accept that the F-distribution used to
calculate the p-value from the F-statistic is
the correct one, and we “believe” the p-value.






7.6 Conclusion about moral sentiments



With p=0.013<0.05, we reject the null
hypothesis that all three of the group population
means of cooperation are equal. We
therefore conclude that differences in mean cooperation
are caused by the induced emotions, and that
among control, guilt, and shame, at least two
of the population means differ. Again,
we defer looking at which groups
differ to chapter 13.




(A complete analysis would also include examination of
residuals for additional evaluation of possible
non-normality or unequal spread.)









	The F-statistic of one-way ANOVA is easily calculated
by a computer. The p-value is calculated from the
F null sampling distribution with matching degrees
of freedom. But only if we believe that the assumptions of the
model are (approximately) correct should we believe
that the p-value was
calculated from the correct sampling distribution,
and it is then valid.









































Chapter 8 Threats to Your Experiment



Planning to avoid criticism.




One of the main goals of this book is to encourage you to think from the point
of view of an experimenter, because other points of view, such as that of a
reader of scientific articles or a consumer of scientific ideas, are easy to
switch to after the experimenter’s point of view is understood, but the
reverse is often not true. In other words, to enhance the usability of
what you learn, you should pretend that you are a researcher,
even if that is not your ultimate goal.




As a researcher, one of the key skills you should be developing is to try,
in advance, to think of all of the possible criticisms of your experiment that
may arise from the reviewer of an article you write or the reader of an
article you publish. This chapter discusses possible complaints about
internal validity, external validity, construct validity, Type 1 error, and power.









	We are using “threats” to mean things that will reduce the impact of your
study results on science, particularly those things that we have some
control over.
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8.1 Internal validity



In a well-constructed experiment in its simplest form we manipulate variable
X and observe the effects on variable Y. For example, outcome Y could be number
of people who purchase a particular item in a store over a certain week, and X
could be some characteristics of the display for that item, such as
use of pictures of people of different “status” for an
in-store advertisement (e.g., a celebrity vs. an unknown model).
Internal validity 
is the degree to which we can
appropriately conclude that the changes in X caused the changes in Y.




The study of causality goes back thousands of years, but there has been a
resurgence of interest recently.
For our purposes we can define causality  as the state
of nature in which an active change in one variable directly changes the
probability distribution of another variable. It does not mean that
a particular “treatment” is always followed by a particular
outcome, but rather that some probability is changed,
e.g. a higher outcome is more likely with a particular treatment compared
to without.
A few ideas about causality are worth thinking about now. First,
 association, which is equivalent
to non-zero correlation (see section 3.6.1)
in statistical terms, means that we observe
that when one variable changes, another one tends to change. We cannot have
causation without association, but just finding an association is
not enought to justify a claim of causation.









	Association does not necessarily imply causation.








If variables X and Y (e.g., the number of televisions (X) in various countries
and the infant mortality rate (Y) of those countries) are found to be associated,
then there are three
basic possibilities. First X could be causing Y (televisions lead to more
health awareness, which leads to better prenatal care) or Y could be causing
X (high infant mortality leads to attraction of funds from richer countries,
which leads to more televisions) or unknown factor Z could be causing both X
and Y (higher wealth in a country leads to more televisions and more prenatal
care clinics). It is worth memorizing these three cases, because they should
always be considered when association is found in an observational study
as opposed to a randomized experiment.
(It is also possible that X and Y are related in more complicated
ways including in
large networks of variables with feedback loops.)




Causation (“X causes Y”)
can be logically claimed if X and Y are associated, and X precedes Y, and no
plausible alternative explanations can be found, particularly those of the form
“X just happens to vary along with some real cause of changes in Y” (called
confounding).




Returning to the advertisement example, one stupid thing to do is to place all
of the high status pictures in only the wealthiest neighborhoods or the largest
stores, while the low status pictures are only shown in impoverished
neighborhoods or those with smaller stores. In that case a higher average
number of items purchased for the stores with high status ads may be either
due to the effect of socio-economic status or store size or perceived status
of the ad. When more than one thing is different on average between the groups
to be compared, the problem is called confounding 
and confounding is a fatal threat to internal validity.





Notice that the definition of confounding mentions “different on average”.
This is because it is practically impossible to have no differences between
the subjects in different groups (beyond the differences in treatment). So
our realistic goal is to have no difference on average. For example if we
are studying both males and females, we would like the gender ratio to be
the same in each treatment group. For the store example, we want the average
pre-treatment total sales to be the same in each treatment group. And we want the
distance from competitors to be the same, and the socio-economic status (SES)
of the neighborhood, and the racial makeup, and the age distribution of the
neighborhood, etc., etc. Even worse, we want all of the unmeasured variables,
both those that we thought of and those we didn’t think of, to be similar in
each treatment group.




The sine qua non of internal validity is

 random assignment of treatment to
experimental units (different stores in our ad example). Random treatment
assignment (also called randomization) is usually the best way to assure that
all of the potential confounding variables are equal on average (also called
balanced) among the treatment groups. Non-random assignment will usually lead
to either consciously or unconsciously unbalanced groups. If one or a few
variables, such as gender or SES, are known to be critical factors affecting
outcome, a good alternative is 
block randomization, in which randomization among
treatments is performed separately for each level of the critical
(non-manipulated) explanatory factor. This helps to assure that the
level of this explanatory factor is balanced (not confounded) across
the levels of the treatment variable.




In current practice randomization is normally done using computerized
random number generators. Ideally all subjects are identified before
the experiment begins and assigned numbers from 1 to N (the total number
of subjects), and then a computer’s random number generator is used to
assign treatments to the subjects via these numbers. For block randomization
this can be done separately for each block. If all subjects cannot be
identified before the experiment begins, some way must be devised to assure
that each subject has an equal chance of getting each treatment (if equal
assignment is desired). One way to do this is as follows. If there are
k levels of treatment, then collect the subjects until k (or 2k or 3k, etc)
are available, then use the computer to randomly assign treatments among the
available subjects. It is also acceptable to have the computer individually
generate a random number from 1 to k for each subject, but it must be
assured that the subject and/or researcher cannot re-run the process if
they don’t like the assignment.




Confounding can occur because we purposefully, but stupidly, design our
experiment such that two or more things differ at once, or because we assign
treatments non-randomly, or because the randomization “failed”. As an
example of designed confounding, consider the treatments “drug plus
psychotherapy” vs. “placebo” for treating depression. If a difference is
found, then we will not know whether the success of the treatment is due
to the drug, the psychotherapy or the combination. If no difference is
found, then that may be due to the effect of drug canceling out the effect
of the psychotherapy. If the drug and the psychotherapy are known to
individually help patients with depression and we really do want to study
the combination, it would probably better to have a study with the three
treatment arms of drug, psychotherapy, and combination (with or without
the placebo), so that we could assess the specific important questions of
whether drug adds a benefit to psychotherapy and vice versa. As another
example, consider a test of the effects of a mixed herbal supplement on
memory. Again, a success tells us that something in the mix helps memory,
but a follow-up trial is needed to see if all of the components are necessary.
And again we have the possibility that one component would cancel another out
causing a “no effect” outcome when one component really is helpful. But we
must also consider that the mix itself is effective while the individual
components are not, so this might be a good experiment.




In terms of non-random assignment of treatment, this should only be done
when necessary, and it should be recognized that it strongly, often fatally,
harms the internal validity of the experiment. If you assign treatment in
some pseudo-random way, e.g. alternating treatment levels, you or the subjects
may purposely or inadvertently introduce confounding factors into your
experiment.




Finally, it must be stated that although randomization cannot perfectly balance
all possible explanatory factors, it is the best way to attempt this,
particularly for unmeasured or unimagined factors that might affect the
outcome. Although there is always a small chance that important factors
are out of balance after random treatment assignment (i.e., failed randomization),
the degree of
imbalance is generally small, and gets smaller as the sample size gets larger.









	In experiments, as opposed to observational studies, the assignment of
levels of the explanatory variable to study units is under the control
of the experimenter.








Experiments differ from observational studies in that in an experiment
at least the main explanatory variables of interest are applied to the units
of observation (most commonly subjects) under the control of the experimenter.
Do not be fooled into thinking that just because a lot of careful work has gone
into a study, it must therefore be an experiment. In contrast to experiments,
in observational studies the subjects choose which treatment they receive.
For example, if we perform magnetic resonance imaging (MRI) to study the
effects of string instrument playing on the size of Broca’s area of the brain,
this is an observational study because the natural proclivities of the subjects
determine which “treatment” level (control or string player) each subject has.
The experimenter did not control this variable. The main advantage of an
experiment is that the experimenter can randomly assign treatment, thus
removing nearly all of the confounding. In the absence of confounding, a
statistically significant change in the outcome provides good evidence for
a causal effect of the explanatory variable(s) on the outcome. Many people
consider internal validity to be not applicable to observational studies, but
I think that in light of the availability of techniques to adjust for some
confounding factors in observational studies, it is reasonable to discuss
the internal validity of observational studies.









	Internal validity is the ability to make causal conclusions.
The huge advantage of randomized experiments over
observational studies, is that causal conclusions are a natural
outcome of the former, but difficult or impossible to justify
in the latter.








Observational studies are always open to the possibility that the effects
seen are due to confounding factors, and therefore have low internal validity.
(As mentioned above, there are a variety of statistical techniques, beyond
the scope of this book, which provide methods that attempt to “correct for”
some of the confounding in observational studies.) As another example
consider the effects of vitamin C on the common cold. A study that
compares people who choose to take vitamin C versus those who choose not
to will have many confounders and low internal validity. A study that
randomly assigns vitamin C versus a placebo will have good internal
validity, and in the presence of a statistically significant difference
in the frequency of colds, a causal effect can be claimed.




Note that confounding is a very specific term relating to the presence of a
difference in the average level of any explanatory variable
across the treatment groups. It should not be used
according to its general English meaning of “something confusing”.




Blinding (also called masking) is another key factor in internal validity.
Blinding indicates that the subjects are prevented from knowing which
(level of) treatment they have received.
If subjects know
which treatment they are receiving and believe that it will affect the outcome,
then we may be measuring the effect of the belief rather than the effect of
the treatment. In psychology this is called the 
Hawthorne effect. In medicine it is called the
 placebo effect.
As an example, in a test of the causal effects of acupuncture
on pain relief, subjects may report reduced pain because they believe the
acupuncture should be effective. Some researchers have made comparisons
between acupuncture with needles placed in the “correct” locations versus
similar but “incorrect” locations. When using subjects who are not
experienced in acupuncture, this type of experiment has much better internal
validity because patient belief is not confounding the effects of the
acupuncture treatment. In general, you should attempt to prevent subjects
from knowing which treatment they are receiving, if that is possible and
ethical, so that you can avoid the placebo effect (prevent confounding
of belief in effectiveness of treatment with the treatment itself), and
ultimately prevent valid criticisms about the interval validity of your
experiment. On the other hand, when blinding is not possible, you must
always be open to the possibility that any effects you see are due to
the subjects’ beliefs about the treatments.




Double blinding refers to blinding the subjects and also
assuring that the experimenter does not know
which treatment the subject is receiving. For example, if the treatment is
a pill, a placebo pill can be designed such that neither the subject nor
the experimenter knows what treatment has been randomly assigned to each
subject. This prevents confounding in the form of difference in treatment
application (e.g., the experimenter could subconsciously be more encouraging
to subjects in one of the treatment groups) or in assessment (e.g, if there
is some subjectivity in assessment, the experimenter might subconsciously
give better assessment scores to subjects in one of the treatment groups).
Of course, double blinding is not always possible, and when it is not used
you should be open to the possibility that that any effects you see are
due to differences in treatment application or assessment by the experimenter.





Triple blinding refers to not letting the person doing the statistical
analysis know which treatment labels correspond to which actual treatments.
Although rarely used, it is actually a good idea because there are several
places in most analyses where there is subjective judgment involved, and a
biased analyst may subconsciously make decisions that push the results
toward a desired conclusion. The label “triple blinding” is also applied
to blinding of the rater of the outcome in addition to the subjects
and the experimenters (when the rater is a separate person).




Besides lack of randomization and lack of blinding, omission of a control group
is a cause of poor internal validity. A  control group
is a treatment group
that represents some appropriate baseline treatment. It is hard to describe
exactly what “appropriate baseline treatment” means, and this often requires
knowledge of the subject area and good judgment. As an example, consider an
experiment designed to test the effects of “memory classes” on short-term
memory performance. If we have two treatment groups and are comparing
subjects receiving two vs. five classes, and we find a “statistically
significant difference”, then we only know that adding three classes causes
a memory improvement, but not if two is better than none. In some contexts
this might not be important, but in others our critics will claim that there
are important unanswered causal questions that we foolishly did not attempt
to answer. You should always think about using a good control group, although
it is not strictly necessary to always use one.









	In a nutshell: It is only in blinded, randomized experiments that we can assure
that the treatment precedes the outcome, and that there is little chance of
confounding which would allow alternative explanations. It is these two
conditions, along with statistically significant association, which allow a
claim of causality.










8.2 Construct validity



Once we have made careful operational definitions of our variables and
classified their types, we still need to think about how useful they will be
for testing our hypotheses. Construct validity 
is a characteristic of
devised measurements that describes how well the measurement can stand in for
the scientific concepts or “constructs” that are the real targets of scientific
learning and inference.





Construct validity addresses criticisms like “you have shown that changing
X causes a change in measurement Y, but I don’t think you can justify the
claims you make about the causal relationship between concept W and concept Z”,
or “Y is a biased and/or unreliable measure of concept Z”.




The classic paper
on construct validity is Construct Validity in Psychological Tests
by Lee J. Cronbach and Paul E. Meehl, first published in Psychological
Bulletin, 52, 281-302 (1955). Construct validity
in that article is discussed in the context of four types of validity. For
the first two, it is assumed that there is a “gold standard” against which
we can compare the measure of interest. The simple correlation (see section
3.6.1)
of a measure with the gold standard for a construct is called either
concurrent validity if the gold standard is measured at the same time as the
new measure to be tested or predictive validity if the gold standard is
measured at some future time. Content validity is a bit ambiguous but
basically refers to picking a representative sample of items on a multi-item
test. Here we are mainly concerned with construct validity, and Cronbach
and Meehl state that it is pertinent whenever the attribute or quality of
interest is not “operationally defined”. That is, if we define happiness
to be the score on our happiness test, then the test is a valid measure of
happiness by definition. But if we are referring to a concept without a
direct operational definition, we need to consider how well our test stands
in for the concept of interest. This is the construct validity. Cronbach
and Meehl discuss the theoretical basis of construct validity for psychology,
and this should be applicable to other social sciences. They also emphasize
that there is no single measure of construct validity, because it is a complex,
often judgment-laden set of criteria.




Among other things, to assess contruct validity you should be sure
that your measure correlates with other measures for which it should correlate
if it is a good measure of the concept of interest. If there
is a “gold standard”, then your measure should have a high correlation
with that test, at least in the kinds of situations where you will be
using it. And it should not be correlated with measures of other unrelated
concepts.




It is worth noting that good construct validity doesn’t mean much if
your measure is not also reliable. A good measure should not depend
strongly on who is administering the test
(called high inter-rater reliability), and repeat measurements should
have a small statistical “variance” (called test-retest reliability).




Most of what you will be learning about construct validity must be left to
reading and learning in your specific field, but a few examples are given
here. In public health studies, a measure of obesity is often desired.
What is needed for a valid definition? First it should be recognized that
circular logic applies here: as long as a measure is in some form that we
would recognize as relating to obesity (as opposed to, say, smoking), then
if it is a good predictor of health outcomes we can conclude that it is a
good measure of obesity by definition. The United States Center for
Disease Control (CDC) has classifications for obesity based on the Body
Mass Index (BMI), which is a formula involving only height and weight.
The BMI is a simple substitute that has reasonably good concurrent
validity for more technical definitions of body fat such as percent
total body fat which can be better estimated by more expensive and time
consuming methods such as a buoyancy method. But even total body fat
percent may be insufficient because some health outcomes may be better
predicted by information about amount of fat at specific locations.
Beyond these problems, the CDC assigns labels (underweight, health
weight, at risk of overweight, and overweight) to specific ranges of BMI
values. But the cutoff values, while partially based on scientific methods
are also partly arbitrary. Also these cutoff values and the names and number
of categories have changed with time. And surely the “best” cutoff for
predicting outcomes will vary depending on the outcome, e.g., heart attack,
stroke, teasing at school, or poor self-esteem. So although there is some
degree of validity to these categories (e.g., as shown by different levels
of disease for people in different categories and correlation with buoyancy
tests) there is also some controversy about the construct validity.




Is the Stanford-Binet “IQ” test a good measure of “intelligence”? Many gallons
of ink have gone into discussion of this topic. Low variance for individuals
tested multiple times shows that the test has high test-retest validity, and as
the test is self-administered and objectively scored there is no issue with
inter-rater reliability. There have been numerous studies showing good
correlation of IQ with various outcomes that “should” be correlated with intelligence
such as future performance on various tests. In addition, “factor analysis”
suggests a single underlying factor (called “G” for general
intelligence). On the other hand, the test has been severely criticized for
cultural and racial bias. And other critics claim there are multiple dimensions
to intelligence, not just a single “intelligence” factor. In summation, the IQ
test as a measure of the construct “intelligence” is considered by many
researchers to have low construct validity.









	Construct validity is important because it makes us think
carefully whether the measures we use really stand in well for the
concepts that label them.










8.3 External validity



External validity 
is synonymous with generalizability. When we
perform an ideal experiment, we randomly choose subjects (in addition to randomly
assigning treatment) from a population of interest. Examples of populations of
interest are all college students, all reproductive aged women, all teenagers
with type I diabetes, all 6 month old healthy Sprague-Dawley rats, all workplaces
that use Microsoft Word, or all cities in the Northeast with populations over
50,000. If we randomly select our experimental units from the population such
that each unit has the same chance (or with special statistical techniques, a
fixed but unequal chance) of ending up in our experiment, then we may
appropriately claim that our results apply to that population. In many
experiments, we do not truly have a random sample of the population of interest.
In so-called “convenience samples”, e.g., “as many of my classmates as I could
attract with an offer of a free slice of pizza”, the population these subjects
represent may be quite limited.




After you complete your experiment, you will need to write a discussion of your
conclusions, and one of the key features of that discussion is your set of claims
about external validity. First, you need to consider what population your
experimental units truly represent. In the pizza example, your subjects
may represent Humanities upperclassmen at top northeastern universities who like
free food and don’t mind participating in experiments. Next you will want to use
your judgment (and powers of persuasion) to consider ever expanding “spheres” of
subjects who might be similar to your subjects. For example, you could widen the
population to all northeastern students, then to all US students, then to all US
young adults, etc. Finally you need to use your background knowledge and judgment
to make your best arguments whether or not (or to what degree) you expect your
findings to apply to these larger populations. If you cannot justify enlarging
your population, then your study is likely to have little impact on scientific
knowledge. If you enlarge too much, you may be severely criticized for
over-generalization.





Three special forms of non-generalizability (poor external validity) are worth
more discussion. First is non-participation. If you randomly select subjects,
e.g., through phone records, or college e-mail, then some subjects may decline
to participate. You should always consider the very real possibility that the
decliners are different in one or more ways from the participators, and thus your
results do not really apply to the population of interest.
A second problem is dropout, which is when subject who start a study
do not complete it. Dropout can affect both internal and
external validity, but the simplest
form affecting external validity is when subjects who are too busy or less
committed drop out only because of the length or burden of the experiment rather
than in some way related to response to treatment. This type of dropout reduces
the population to which generalization can be made, and in experiments such as
those studying the effects of ongoing behavioral therapy on adjustment to a
chronic disease, this can be a critical blow to external validity.
The third special form of non-generalizability relates to the terms efficacy and
effectiveness in the medical literature. Here the generalizability refers to the
environment and the details of treatment application rather than the subjects. If
a well-designed clinical trial is carried out under high controlled conditions in
a tertiary medical center, and finds that drug X cures disease Y with 80% success
(i.e., it has high efficacy), then we are still unsure whether we can generalize
this to real clinical practice in a doctor’s office (i.e, whether the treatment
has high effectiveness). Even outside the medical setting, it is important to
consider expanding spheres of environmental and treatment application
variability.









	External validity (generalizability) relates to the breadth of the
population we have sampled and how well we can justify extending our
results to an even broader population.










8.4 Maintaining Type 1 error



Type 1 error 
is related to the statistical concept that in the real world of
natural variability we cannot be certain about our conclusions from an
experiment. A Type 1 error is a claim that a treatment is effective,
i.e., we decide to reject the null hypothesis, when that
claim is actually false, i.e. the null hypothesis really is true.
Obviously in any single real situation, we cannot
know whether or not we have made a Type 1 error: if we knew the absolute truth,
we would not make the error. Equally obvious after a little thought is the
idea that we cannot be making a Type 1 error when we decide to retain
the null hypothesis.





As explained in more detail in several other chapters, statistical inference
is the process of making appropriately qualified claims in the face of uncertainty.
Type 1 error deals with the probabilistic validity of those claims. When we make
a statement such as “we reject the hypothesis that the mean outcome is the same
for both the placebo and the active treatments with alpha equal to 0.05” we are
claiming that the procedure we used to arrive at our conclusion only leads to
false positive conclusions 5% of the time
when the truth happens to be that there is no difference in the
effect of treatment on outcome. This is not at all the
same as the claim that there is only a 5% chance that any “reject the
null hypothesis decision” will be the wrong decision!
Another example of a statistical statement is “we are 95% confident
that the true difference in mean outcome between the placebo and active treatments
is between 6.5 and 8.7 seconds”. Again, the exact meaning of this statement is a
bit tricky, but understanding that is not critical for the current
discussion (but see 6.2.7 for more details).




Due to the inherent uncertainties of nature we can never make definite,
unqualified claims from our experiments. The best we can do is set
certain limits
on how often we will make certain false claims
(but see the next section, on power, too).
The conventional (but not logically necessary) limit on the rate of false
positive results out of all experiments in which the null hypothesis
really is true is 5%.
The terms Type 1 error, false positive rate, and “alpha”
(α) are basically synonyms for this limit.




Maintaining Type 1 error means doing all we can to assure that the false
positive rate really is set to whatever nominal level (usually 5%) we have
chosen. This will be discussed much more fully in future chapters, but it
basically involves choosing an appropriate statistical procedure and assuring
that the assumptions of our chosen procedure are reasonably met. Part of
the latter is verifying that we have chosen an appropriate model for
our data (see section 6.2.2).




A special case of not maintaining Type 1 error is “data snooping”.
E.g., if you perform many different analyses of your data, each with
a nominal Type 1 error rate of 5%, and then report just the one(s) with
p-values less than 0.05, you are only fooling yourself and others
if you think you have appropriately analyzed your experiment. As
seen in the Section 13.3, this approach to data
analysis results in a much larger chance of making false conclusions.









	Using models with broken assumptions and/or data snooping tend to
result in an increased chance of making false claims in the presence
of ineffective treatments.










8.5 Power



The power of an experiment refers to the probability that we will correctly
conclude that the treatment caused a change in the outcome. If some particular
true non-zero difference in outcomes is caused by the active treatment,
and you have low power to detect that
difference, you will probably make a Type 2 error (have a “false negative”
result) in which you conclude that the treatment was ineffective, when it really
was effective. The Type 2 error rate, often called “beta” (β), is the
fraction of the time that a conclusion of “no effect”
will be made (over repeated similar
experiments) when some true non-zero effect is really present. The power is equal
to 1-β.




Before the experiment is performed, you have some control over the power of your
experiment, so you should estimate the power for various reasonable effect sizes
and, whenever possible, adjust your experiment to achieve reasonable power (e.g.,
at least 80%). If you perform an experiment with low power, you are just wasting
time and money! See Chapter 12 for details on how to calculate and
increase the power of an experiment.









	The power of a planned experiment is the chance of getting a statistically
significant result when a particular real treatment effect exists. Studying
sufficient numbers of subjects is the most well known way to assure sufficient power.








In addition to sample size, the main (partially) controllable experimental
characteristic that affects power is variability. If you can reduce
variability, you can increase power. Therefore it is worthwhile to
have a mnemonic device for helping you categorize and think about
the sources of variation.

 One reasonable categorization is this:






	
• 

Measurement





	
• 

Environmental






	
• 

Treatment application





	
• 

Subject-to-subject










(If you are a New York baseball fan, you can remember the acronym METS.)
It is not
at all important to “correctly categorize” a particular source of
variation. What is important is to be able to generate a list of
the sources of variation in your (or someone else’s) experiment so
that you can think about whether you are able (and willing) to
reduce each source of variation in order to improve the power of
your experiment.




Measurement variation refers to differences in repeat measurement
values when they should be the same. (Sometimes repeat measurements
should change, for example the diameter of a balloon with a small hole in
it in an experiment of air leakage.) Measurement variability is
usually quantified as the standard deviation of many measurements of the
same thing. The term  precision applies
here, though technically precision is 1/variance. So a high precision
implies a low variance (and thus standard deviation). It is worth
knowing that a simple and usually a cheap way to improve measurement precision is
to make repeated measurements and take the mean; this mean
is less variable than an individual measurement. Another inexpensive
way to improve precision, which should almost always be used,
is to have good explicit procedures for making the measurement
and good training and practice for whoever is making the measurements.
Other than possibly increased cost and/or experimenter time, there is no
down-side to improving measurement precision, so it is an excellent
way to improve power.




Controlling environmental variation is another way to reduce the
variability of measurements, and thus increase power. For each
experiment you should consider what aspects of the environment
(broadly defined) can and should be controlled (fixed or reduced
in variation) to reduce variation in the outcome measurement.
For example, if we want to look at the effects of a hormone
treatment on rat weight gain, controlling the diet, the
amount of exercise, and the amount of social interaction (such
as fighting) will reduce the variation of the final weight
measurements, making any differences in weight gain due to
the hormone easier to see.
Other examples of environmental sources of variation include
temperature, humidity, background noise, lighting conditions,
etc. As opposed to reducing measurement variation, there is
often a down-side to reducing environmental variation. There
is usually a trade-off between reducing environmental variation
which increases power but may reduce external validity (see above).




The trade-off between power and external validity also applies
to treatment application variation. While some people include
this in environmental variation, I think it is worth separating
out because otherwise many people forget that it is something
that can be controlled in their experiment. Treatment application
variability is differences in the quality or quantity of
treatment among subjects assigned to the same (nominal) treatment.
A simple example is when one treatment group gets, say 100 mg
of a drug. If two drug manufacturers have different production
quality such that all of the pills from the first manufacturer
have a mean of 100 mg and s.d. of 5 mg, while the second has
a mean of 100 mg and s.d. of 20 mg, the increased variability
of the second manufacturer will result in decreased power to
detect any true differences between the 100 mg dose and any
other doses studied. For treatments like “behavioral therapy”
decreasing variability is done by standardizing the number of
sessions and having good procedures and training. On the other
hand there may be a concern that too much control
of variation in a treatment like behavioral therapy might
make the experiment unrealistic (reduce external validity).




Finally there is subject-to-subject variability. Remember
that ideally we choose a population from which we
draw our participants for our study (as opposed to using
a “convenience sample”). If we choose a
broad population like “all Americans” there is a lot
of variability in age, gender, height, weight, intelligence,
diet, etc. some of which are likely to affect our outcome
(or even the difference in outcome between the treatment groups).
If we choose to limit our study population for one or several
of these traits, we reduce variability in the outcome measurement
(for each treatment group) and improve power, but always at
the expense of generalizability. As in the case of environmental and
treatment application variability, you should make an intelligent,
informed decision about trade-offs between power and
generalizability in terms of choosing your study population.




For subject-to-subject variation there is a special way to
improve power without reducing generalizability. This is the
use of  a within-subjects
design, in which each subject receives two or more treatments.
This is often an excellent way to improve power, although
it is not applicable in all cases.
See chapter 14 for more details. Remember that
you must change your analysis procedures to ones which do not
assume independent errors if you choose a within-subjects design.




Using the language of section 3.6,
it is useful to think of all measurements as being conditional
on whatever environmental and treatment variables we choose
to fix, and marginal over those that we let vary.









	Reducing variability improves power. In some circumstances
this may be at the expense of decreased generalizability. Reducing
measurement error and/or use of within-subjects designs usually
improve power without sacrificing generalizability.








The strength of your treatments (actually the difference in
true outcomes between treatments) strongly affects power. Be
sure that you are not studying very weak treatments, e.g.,
the effects of one ounce of beer on driving skills, or
1 microgram of vitamin C on catching colds, or one treatment
session on depression severity.









	Increasing treatment strength increases power.








Another way to improve power without reducing generalizability
is to employ  blocking. Blocking involves
using subject matter knowledge to select one or more factors
whose effects are not of primary importance, but whose levels
define more homogeneous groups called “blocks”. In an
ANOVA, for example, the block will be an additional factor
beyond the primary treatment of interest, and inclusion
of the block factor tends to improve power if the blocks
are markedly more homogeneous than the whole. If the
variability of the outcome (for each treatment group) is
smaller than the variability ignoring the factor, then
a good blocking factor was chosen. But because a wide
variety of subjects with various levels of the blocking
variable are all included in the study, generalizability
is not sacrificed.




Examples of blocking factors include field in an agricultural
experiment, age in many performance studies, and disease severity
in medical studies. Blocking usually is performed when it
is assumed that there is no differential effect of treatment
across the blocks, i.e., no interaction (see Section 10.2).
Ignoring an
interaction when one is present tends to lead to misleading
results, due to an incorrect structural model. Also,
if there is an
interaction between treatment and blocks, that usually becomes
of primary interest.




A natural extension of blocking is some form of more complicated
model with multiple control variables explicitly included in an
appropriate mathematical form in the structural model. Continuous
control variables are also called covariates.










	Blocking and use of control variables are good ways
to improve power without sacrificing generalizability.










8.6 Missing explanatory variables



Another threat to your experiment is not including important
explanatory variables. For example, if the effect of a treatment
is to raise the mean outcome in males and lower it in females, then
not including gender as an explanatory variable (including
its interaction with treatment) will give misleading results. (See
chapters 10 and 11 for more
on interaction.) In other cases, where there is no interaction,
ignoring important explanatory variables decreases power rather
than directly causing misleading results.




An extreme case of a missing variable is 
Simpson’s paradox. Described by Edward H. Simpson and others,
this term describes the situation where the observed effect
is in opposite directions for all subjects as a single group (defined
based on a variable other than treatment) vs.
separately for each group. It only occurs when the
fraction of subjects in each group differs markedly between
the treatment groups. A nice medical example comes
comes from the 1986 article Comparison of treatment of renal calculi
by operative surgery, percutaneous nephrolithotomy, and extracorporeal
shock wave lithotripsy by C. R. Chang, et al. (Br Med J 292 (6524): 879-882)
as shown in table 8.1.







	
	Small Stones
	Large Stones
	Combined





	Treatment A
	81/87
	0.93
	192/263
	0.79
	273/350
	0.78



	Treatment B
	234/270
	0.87
	55/80
	0.69
	289/350
	0.83





Table 8.1: Simpson’s paradox in medicine


The data show the number of successes divided by the number of times
the treatment was tried for two treatments for gall stones.
The “paradox” is that for “all stones” (combined)
Treatment B is the better treatment (has a higher success rate).
but if the patients gall stones are classified as either “small”
or “large”, then Treatment A is better. There is nothing artificial
about this example; it is based on the actual data. And there
is really nothing “statistical” going on (in terms of randomness);
we are just looking at the definition of “success rate”. If
stone size is omitted as an explanatory variable, then Treatment B
looks to be the better treatment, but for each stone size Treatment A was
the better treatment. Which treatment would you choose? If you
have small stones or if you have large stones (the only two kinds),
you should choose treatment A. Dropping the important explanatory
variable gives a misleading (“marginal”) effect, when the
“conditional” effect is more relevant. Ignoring the confounding
(also called lurking) variable “stone size” leads to
misinterpretation.




It’s worth mentioning that we can go too far in including
explanatory variables. This is both in terms of the “multiple
comparisons” problem and something called “variance vs.bias trade-off”.
The former artificially raises our Type 1 error if uncorrected, or
lowers our power if corrected. The latter, in this context, can
be considered to lower power when too many relatively unimportant
explanatory variables are included.









	Missing explanatory variables can decrease power and/or
cause misleading results.










8.7 Practicality and cost



Many attempts to improve an experiment are limited by cost and practicality.
Finding ways to reduce threats to your experiment that are practical and
cost-effective is an important part of experimental design. In addition,
experimental science is usually guided by the KISS principle, which stands
for Keep It Simple, Stupid. Many an experiment has been ruined because
it was too complex to be carried out without confusion and mistakes.






8.8 Threat summary



After you have completed and reported your experiment, your critics may complain
that some confounding factors may have destroyed the internal validity of your
experiment; that your experiment does not really tell us about the real world
concepts of interest because of poor construct validity; that your experimental
results are only narrowly applicable to certain subjects or environments or
treatment application setting; that your statistical analysis did not
appropriately control Type 1 error (if you report “positive” results); or
that your experiment did not have enough power (if you report “negative”
results). You should consider all of these threats before performing your
experiment and make appropriate adjustments as needed. Much of the rest of
this book discusses how to deal with, and balance solutions to, these threats.









	In a nutshell: If you learn about the various categories of threat to your experiment,
you will be in a better position to make choices that balance competing risk,
and you will design a better experiment.













































Chapter 9 Simple Linear Regression



An analysis appropriate for a quantitative outcome and a single
quantitative explanatory variable.





9.1 The model behind linear regression



When we are examining the relationship between a quantitative outcome and a single
quantitative explanatory variable, simple linear regression is the
most commonly considered analysis method.
(The “simple” part tells us we are only considering
a single explanatory variable.) In linear regression we usually
have many different values
of the explanatory variable, and we usually assume
that values between the observed values of the explanatory variables are also
possible values of the explanatory variables.
We postulate a linear relationship between
the population mean of the outcome and the value of the explanatory variable.
If we let Y be some outcome, and x be some explanatory variable, then
we can express the structural model using the equation




	
	E(Y|x)=β0+β1x
	




where E(), which is read “expected value of”, indicates a population
mean; Y|x, which is read “Y given x”, indicates that we are looking at the
possible values of Y when x is restricted to some single value; β0,
read “beta zero”,
is the intercept parameter; and β1, read “beta one”. is the slope
parameter.
A common term for any parameter or parameter estimate used in an
equation for predicting Y from x is coefficient. 
Often the “1” subscript in β1 is replaced by the name of the
explanatory variable or some abbreviation of it.




So the structural model says that for each value of x the population mean of Y
(over all of the subjects who have that particular value “x” for their
explanatory variable)
can be calculated using the simple linear expression β0+β1⁢x.
Of course we cannot make the
calculation exactly, in practice, because the two parameters are unknown
“secrets of nature”.
In practice, we make estimates of the parameters and substitute the estimates into
the equation.




In real life we know that although the equation makes a
prediction of the true mean of the outcome for any fixed value of the explanatory
variable, it would be unwise to use 
extrapolation to make predictions outside
of the range of x values that we have available for study. On the other hand
it is reasonable to 
interpolate, i.e., to make predictions for unobserved x values in
between the observed x values. The structural model is essentially the
assumption of “linearity”, at least within the range of the observed
explanatory data.






It is important to realize that the “linear” in “linear regression”
does not imply that only linear
relationships can be studied. Technically it only says that the
beta’s must not be in a transformed form. It is OK to transform x or
Y, and that allows many non-linear relationships to be represented on
a new scale that makes the relationship linear.









	The structural model underlying a linear regression analysis is that the
explanatory
and outcome variables are linearly related such that the population mean of the
outcome for any x value is β0+β1⁢x.








The error model that we use is that for each particular x,
if we have or could collect
many subjects with that x value, their distribution around the population mean
is Gaussian with a spread, say σ2, that is the same value for each
value of x (and corresponding population mean of y). Of course, the value
of σ2 is an unknown parameter, and we can make an estimate of it from
the data. The error model described so far includes not only the assumptions of
“Normality” and “equal variance”, but also the assumption of “fixed-x”. The
“fixed-x” assumption is that the explanatory variable is measured without
error. Sometimes this is possible, e.g., if it is a count, such as the number of
legs on an insect, but usually there is some error in the measurement of the
explanatory variable. In practice, we need to be sure that the size of the
error in measuring x is small compared to the variability of Y at any given
x value. For more on this topic, see the section on robustness, below.









	The error model underlying a linear regression analysis includes the
assumptions of fixed-x, Normality, equal spread, and independent errors.








In addition to the three error model assumptions just discussed, we also assume
“independent errors”. This assumption comes down to the idea that the
error (deviation of the true outcome value from the population mean of the
outcome for a given x value) for one observational unit (usually a subject)
is not predictable from knowledge of the error for another observational unit.
For example, in predicting time to complete a task from the dose of a drug
suspected to affect that time, knowing that the first subject took 3 seconds
longer than the mean of all possible subjects with the same dose should not
tell us anything about
how far the next subject’s time should be above or below the mean for their dose.
This assumption can be trivially violated if we happen to have a set of
identical twins
in the study, in which case it seems likely that if one twin has an outcome
that is below the mean for their assigned dose, then the other twin will also
have an outcome that is below the mean for their assigned dose
(whether the doses are the same or different).




A more interesting cause of correlated errors
is when subjects are trained in groups, and the different trainers
have important individual differences that affect the trainees performance.
Then knowing
that a particular subject does better than average gives us reason to believe
that most of the other subjects in the same group will probably perform better
than average because the trainer was probably better than average.




Another important example of non-independent errors is 
serial correlation in which the errors of adjacent observations are
similar. This includes adjacency in both time and space.
For example, if we are studying
the effects of fertilizer on plant growth, then similar
soil, water, and lighting conditions would
tend to make the errors of adjacent plants more similar.
In many task-oriented experiments, if we allow each
subject to observe the previous subject perform the task which is
measured as the outcome, this is likely to induce serial correlation. And
worst of all, if you use the same subject for every observation, just
changing the explanatory variable each time, serial correlation is extremely
likely. Breaking the assumption of independent errors does not
indicate that no analysis is possible, only that linear regression
is an inappropriate analysis. Other methods such as time series methods
or mixed models
are appropriate when errors are correlated.









	The worst case of breaking the independent errors assumption in
regression is when the observations are repeated measurement on the
same experimental unit (subject).








Before going into the details of linear regression, it is worth thinking
about the variable types for the explanatory and outcome variables and the
relationship of ANOVA to linear regression. For both ANOVA and linear
regression we assume a Normal distribution of the outcome for
each value of the explanatory variable. (It is equivalent to say
that all of the errors are Normally distributed.) Implicitly
this indicates that the outcome should be a continuous quantitative variable.
Practically speaking, real measurements are rounded and therefore some of their
continuous nature is not available to us. If we round too much, the variable
is essentially discrete and, with too much rounding, can no longer be
approximated by the smooth Gaussian curve. Fortunately regression and
ANOVA are both quite robust to deviations from the Normality assumption,
and it is OK to use discrete or continuous outcomes that have at least
a moderate number of different values, e.g., 10 or more. It can even be
reasonable in some circumstances to use regression or ANOVA when the
outcome is ordinal with a fairly small number of levels.




The explanatory variable in ANOVA is categorical and nominal. Imagine
we are studying the effects of a drug on some outcome and we first
do an experiment comparing control (no drug) vs. drug
(at a particular concentration).
Regression and ANOVA would give equivalent conclusions about the
effect of drug on the outcome, but regression seems inappropriate. Two
related reasons are that there is no way to check the appropriateness
of the linearity assumption, and that after a regression analysis it
is appropriate to interpolate between the x (dose) values, and that
is inappropriate here.




Now consider another experiment with 0, 50 and
100 mg of drug. Now ANOVA and regression give
different answers because ANOVA makes no
assumptions about the relationships of the three population means,
but regression assumes a linear relationship. If the truth is linearity,
the regression will have a bit more power than ANOVA. If the truth
is non-linearity, regression will make inappropriate predictions, but
at least regression will have a chance to detect the non-linearity.
ANOVA also loses some power because it incorrectly treats the
doses as nominal when they are at least ordinal.
As the number of doses increases, it is more and more appropriate
to use regression instead of ANOVA, and we will be able to
better detect any non-linearity
and correct for it, e.g., with a data transformation.




Figure 9.1 shows a way to think about and remember
most of the regression model assumptions. The four little Normal curves
represent the Normally distributed outcomes (Y values) at each
of four fixed x values. The fact that the four Normal curves
have the same spreads represents the equal variance assumption.
And the fact that the four means of the Normal curves fall
along a straight line represents the linearity assumption. Only
the fifth assumption of independent errors is not shown on
this mnemonic plot.
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Figure 9.1: Mnemonic for the simple regression model.




9.2 Statistical hypotheses



For simple linear regression, the chief null hypothesis is
H0:β1=0, and the corresponding alternative hypothesis
is H1:β1≠0. If this null hypothesis is true,
then, from E⁢(Y)=β0+β1⁢x we can see that
the population mean of Y is β0 for every
x value, which tells us that x has no effect on Y.
The alternative is that changes in x are associated with
changes in Y (or changes in x cause changes in
Y in a randomized experiment).




Sometimes it is reasonable to choose a different null
hypothesis for β1. For example, if x is some
gold standard  for a particular
measurement, i.e., a best-quality measurement often
involving great expense, and y is some cheaper substitute,
then the obvious null hypothesis is β1=1 with
alternative β1≠1. For example, if x is percent
body fat measured using the cumbersome whole body immersion
method, and Y is percent body fat measured using
a formula based on a couple of skin fold thickness
measurements, then we expect either a slope of 1, indicating
equivalence of measurements (on average) or we expect
a different slope indicating that the skin fold method
proportionally over- or under-estimates body fat.




Sometimes it also makes sense to construct a null hypothesis
for β0, usually H0:β0=0. This should only
be done if each of the following is true. There are data
that span x=0, or at least there are data points near
x=0. The statement “the population mean of Y equals zero
when x=0” both makes scientific sense and
the difference between equaling zero and not equaling
zero is scientifically interesting. See the section on
interpretation below for more information.









	The usual regression null hypothesis is H0:β1=0.
Sometimes it is also meaningful to test H0:β0=0 or
H0:β1=1.










9.3 Simple linear regression example



As a (simulated) example, consider an experiment in which corn
plants are grown in pots of soil for 30 days after the addition
of different amounts of nitrogen fertilizer. The data are
in corn.dat, which is a space delimited text file
with column headers. Corn plant final weight is in grams,
and amount of nitrogen added per pot is in mg.





EDA, in the form of a scatterplot is shown in figure 9.2.
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Figure 9.2: Scatterplot of corn data.


We want to use EDA to check that the assumptions are reasonable
before trying a regression analysis. We can see that the
assumptions of linearity seems plausible because we can
imagine a straight line from bottom left to top right going
through the center of the points. Also the assumption of
equal spread is plausible because for any narrow range of
nitrogen values (horizontally), the spread of weight
values (vertically) is fairly similar. These assumptions
should only be doubted at this stage if they are drastically
broken. The assumption of Normality is not something
that human beings can test by looking at a scatterplot.
But if we noticed, for instance, that there were only two
possible outcomes in the whole experiment, we could reject
the idea that the distribution of weights is Normal at
each nitrogen level.




The assumption of fixed-x cannot be seen in the data. Usually
we just think about the way the explanatory variable is
measured and judge whether or not it is measured precisely
(with small spread). Here, it is not too hard to measure
the amount of nitrogen fertilizer added to each pot, so we
accept the assumption of fixed-x. In some cases, we can
actually perform repeated measurements of x on the
same case to see the spread of x and then do the same
thing for y at each of a few values,
then reject the fixed-x assumption if the ratio of x
to y variance is larger than, e.g., around 0.1.




The assumption of independent error is usually not visible in the data
and must be judged by the way the experiment was run. But
if serial correlation is suspected, there are tests such
as the Durbin-Watson test that can be used to detect such
correlation.




Once we make an initial judgement that linear regression is
not a stupid thing to do for our data, based on plausibility
of the model after examining our EDA,
we perform the linear regression analysis, then
further verify the model assumptions with residual checking.







9.4 Regression calculations



The basic regression analysis uses fairly simple formulas
to get estimates of the parameters β0,β1,
and σ2.
These estimates can be derived from either of two basic
approaches which lead to identical results. We will not
discuss the more complicated maximum likelihood approach here.
The least squares approach is fairly straightforward. It
says that we should choose as the best-fit line, that
line which minimizes the sum of the squared residuals, where
the residuals

are the vertical distances from individual
points to the best-fit “regression” line.





The principle is shown in figure 9.3. The plot
shows a simple example with four data points. The diagonal
line shown in black is close to, but not equal to the
“best-fit” line.
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Figure 9.3: Least square principle.


Any line can be characterized by its
intercept and slope.
The intercept is the y value when
x equals zero, which is 1.0 in the example. Be sure
to look carefully at the x-axis scale; if it does not
start at zero, you might read off the intercept incorrectly.
The slope is the change in y for a one-unit change in x.
Because the line is straight, you can read this off anywhere.
Also, an equivalent definition is the change in y divided
by the change in x for any segment of the line. In
the figure, a segment of the line is marked with a small
right triangle. The vertical change is 2 units and the
horizontal change is 1 unit, therefore the slope is 2/1=2.
Using b0 for the intercept and b1 for the slope,
the equation of the line is y=b0+b1⁢x.




By plugging
different values for x into this equation we can find
the corresponding y values that are on the line drawn.
For any given b0 and b1 we get a potential best-fit
line, and the vertical distances of the points from the
line are called the
 residuals. We can use the symbol
y^i, pronounced “y hat sub i”, where “sub” means
subscript, to indicate the
fitted or predicted value of outcome y for subject i.
(Some people also use
the yi′ “y-prime sub i”.) For subject i, who has
explanatory variable xi, the
prediction is y^i=b0+b1⁢xi and the residual is
yi-y^i.
The least square principle says that the best-fit line is
the one with the smallest sum of squared residuals.
It is interesting to note that the sum of the
residuals (not squared) is zero for the least-squares best-fit line.




In practice, we don’t really try every possible line. Instead
we use calculus to find the values of b0 and b1 that
give the minimum sum of squared residuals. You don’t need to
memorize or use these equations, but here they are in case
you are interested.




	
	b1=∑i=1n(xi-x¯)⁢(yi-y¯)(xi-x¯)2
	







	
	b0=y¯-b1⁢x¯
	







Also, the best estimate of σ2 is




	
	s2=∑i=1n(yi-y^i)2n-2.
	







Whenever we ask a computer to perform simple linear regression,
it uses these equations to find the best fit line, then
shows us the parameter estimates. Sometimes the
symbols β^0 and β^1 are used
instead of b0 and b1. Even though these symbols have
Greek letters in them, the “hat” over the beta tells
us that we are dealing with statistics, not parameters.





Here are the derivations of the coefficient estimates. SSR indicates
sum of squared residuals, the quantity to minimize.




S⁢S⁢R
=
∑i=1n(yi-(β0+β1⁢xi))2

(9.1)



=
∑i=1n(yi2-2⁢yi⁢(β0+β1⁢xi)+β02+2⁢β0⁢β1⁢xi+β12⁢xi2)

(9.2)


∂⁡S⁢S⁢R∂⁡β0
=
∑i=1n(-2⁢yi+2⁢β0+2⁢β1⁢xi)

(9.3)


0
=
∑i=1n(-yi+β^0+β^1⁢xi)

(9.4)


0
=
-n⁢y¯+n⁢β^0+β^1⁢n⁢x¯

(9.5)


β^0
=
y¯-β^1⁢x¯

(9.6)


∂⁡S⁢S⁢R∂⁡β1
=
∑i=1n(-2⁢xi⁢yi+2⁢β0⁢xi+2⁢β1⁢xi2)

(9.7)


0
=
-∑i=1nxi⁢yi+β^0⁢∑i=1nxi+β^1⁢∑i=1nxi2

(9.8)


0
=
-∑i=1nxi⁢yi+(y¯-β^1⁢x¯)⁢∑i=1nxi+β^1⁢∑i=1nxi2

(9.9)


β^1
=
∑i=1nxi⁢(yi-y¯)∑i=1nxi⁢(xi-x¯)

(9.10)

A little algebra shows that this formula for β^1 is equivalent to
the one shown above because c⁢∑i=1n(zi-z¯)=c⋅0=0
for any constant c and variable z.
In multiple regression, the matrix formula for the coefficient estimates
is (X′⁢X)-1⁢X′⁢y, where X is the matrix with
all ones in the first column (for the intercept) and the
values of the explanatory variables in subsequent columns.




Because the intercept and slope estimates
are statistics, they have
sampling distributions, and these are determined by the
true values of β0, β1, and σ2, as
well as the positions of the x values and the number
of subjects at each x value. If the model assumptions
are correct, the sampling distributions
of the intercept and slope estimates both have means
equal to the true values, β0 and β1, and
are Normally distributed with variances that can
be calculated according to fairly simple formulas
which involve the x values and σ2.




In practice, we have to estimate σ2 with
s2. This has two consequences. First we talk
about the standard errors of the sampling distributions
of each of the betas instead of the standard deviations,
because, by definition, SE’s are estimates of s.d.’s of sampling
distributions. Second, the sampling distribution
of bj-βj (for j=0 or 1) is now
the t-distribution with n-2 df (see section 3.9.5),
where n is the total number of subjects. (Loosely we say that
we lose two degrees of freedom because they are used up
in the estimation of the two beta parameters.)
Using the null hypothesis of βj=0 this reduces
to the null sampling distribution bj∼tn-2.




The computer will calculate the standard errors of
the betas, the t-statistic values, and the corresponding
p-values (for the usual two-sided alternative hypothesis).
We then compare these p-values to
our pre-chosen alpha (usually α=0.05) to make
the decisions whether to retain or reject the null hypotheses.





The formulas for the standard errors come from the
formula for the variance covariance matrix of the
joint sampling distributions of β^0 and β^1
which is σ2⁢(X′⁢X)-1, where X is the matrix with
all ones in the first column (for the intercept) and the
values of the explanatory variable in the second column.
This formula also works in multiple regression where there
is a column for each explanatory variable. The standard
errors of the coefficients are obtained by substituting
s2 for the unknown σ2 and taking the square
roots of the diagonal elements.
For simple regression this reduces to




S⁢E⁢(b0)=s⁢∑x2n⁢∑(x2)-(∑x)2


and




S⁢E⁢(b1)=s⁢nn⁢∑(x2)-(∑x)2.






The basic regression output is shown in table 9.1 in
a form similar to that produced by SPSS, but somewhat abbreviated.
Specifically, “standardized coefficients” are not included.







	
	Unstandardized
	
	
	



	
	Coefficients
	
	
	95% Confidence Interval for B



	
	B
	Std. Error
	t
	Sig.
	Lower Bound
	Upper Bound



	(Constant)
	84.821
	18.116
	4.682
	.000
	47.251
	122.391



	Nitrogen added
	5.269
	.299
	17.610
	.000
	4.684
	5.889





Table 9.1: Regression results for the corn experiment.


In this table we see the number 84.821 to the right of the “(Constant)”
label and under the labels “Unstandardized Coefficients” and “B”.
This is called the intercept estimate, estimated intercept coefficient,
or estimated constant,
and can be written as b0, β^0 or rarely B0, but
β0 is incorrect, because the parameter value β0 is
a fixed, unknown “secret of nature”. (Usually we should
just say that b0 equals 84.8 because the original data
and most experimental data has at most 3 significant figures.)




The number 5.269 is the slope estimate, estimated slope coefficient,
slope estimate for nitrogen added, or coefficient estimate for nitrogen
added, and can be written as b1, β^1 or rarely B1, but
β1 is incorrect. Sometimes symbols such as
βnitrogen or βN for
the parameter and bnitrogen or bN for the estimates
will be used as better, more meaningful names, especially
when dealing with multiple explanatory variables in multiple
(as opposed to simple) regression.




To the right of the intercept and slope coefficients you will find
their standard errors. As usual, standard errors are estimated
standard deviations of the corresponding sampling distributions.
For example, the SE of 0.299 for BN gives an idea of the scale
of the variability of the estimate BN, which is 5.269 here
but will vary with a standard deviation of approximately 0.299
around the true, unknown value of βN if we repeat the
whole experiment many times. The two t-statistics are calculated by
all computer programs using the default null hypotheses of H0:βj=0
according to the general t-statistic formula




	
	tj=bj-hypothesized value of ⁢βjSE⁢(bj).
	







Then the computer uses the null sampling distributions of the t-statistics,
i.e., the t-distribution with n-2 df, to compute the
2-sided p-values as the areas under the null sampling distribution more
extreme (farther from zero) than the coefficient estimates for this
experiment. SPSS reports this as “Sig.”, and as usual gives the
misleading output “.000” when the p-value is really “<0.0005”.









	In simple regression the p-value for the null hypothesis
H0:β1=0 comes from the t-test for b1.
If applicable, a similar test is made for β0.








SPSS also gives Standardized Coefficients (not shown here). These
are the coefficient estimates obtained when both the explanatory
and outcome variables are converted to so-called Z-scores
by subtracting their
means then dividing by their standard deviations. Under these
conditions the intercept estimate is zero, so it is not shown. The
main use of standardized coefficients is to allow comparison of
the importance of different explanatory variables in multiple regression
by showing the comparative effects of changing the explanatory variables
by one standard deviation instead of by one unit of measurement.
I rarely use standardized coefficients.




The output above also shows the “95% Confidence Interval for B” which is
generated in SPSS by clicking “Confidence Intervals” under the “Statistics”
button. In the given example we can say “we are 95% confident that
βN is between 4.68 and 5.89.” More exactly, we know that
using the method of construction of coefficient estimates and
confidence intervals detailed above, and if the assumptions of
regression are met, then each time we perform an
experiment in this setting we will get a different confidence
interval (center and width), and out of many confidence intervals
95% of them will contain βN and 5% of them will not.









	The confidence interval for β1 gives a meaningful
measure of the location of the parameter and our uncertainty
about that location, regardless of whether or not the null
hypothesis is true. This also applies to β0.










9.5 Interpreting regression coefficients



It is very important that you learn to correctly and completely
interpret the coefficient estimates. From E(Y|x)=β0+β1x
we can see that b0 represents our estimate
of the mean outcome when x=0. Before making an interpretation
of b0, first check the
range of x values covered by the experimental data. If
there is no x data near zero, then the intercept is still needed
for calculating y^ and residual values, but it should
not be interpreted because it is an extrapolated value.




If there are x values near zero, then to interpret the
intercept you must express it in terms of the actual
meanings of the outcome and explanatory variables. For the
example of this chapter, we would say that b0 (84.8) is the
estimated corn plant weight (in grams) when no nitrogen
is added to the pots (which is the meaning of x=0).
This point estimate is of limited value, because it does
not express the degree of uncertainty associated with it.
So often it is better to use the CI for b0. In this case
we say that we are 95% confident that the mean weight
for corn plants with no added nitrogen is between 47 and 122 gm,
which is quite a wide range. (It would be quite misleading to
report the mean no-nitrogen plant weight as 84.821 gm because
it gives a false impression of high precision.)




After interpreting the estimate of b0 and it’s CI, you
should consider whether the null hypothesis, β0=0 makes
scientific sense. For the corn example, the null hypothesis
is that the mean plant weight equals zero when no nitrogen
is added. Because it is unreasonable for plants to weigh
nothing, we should stop here and not interpret the p-value
for the intercept. For another example, consider a regression
of weight gain in rats over a 6 week period as it relates to dose of an
anabolic steroid. Because we might be unsure whether the
rats were initially at a stable weight, it might make sense
to test H0:β0=0. If the null hypothesis is rejected
then we conclude that it is not true that the weight gain is
zero when the dose is zero (control group), so the initial weight
was not a stable baseline weight.









	Interpret the estimate, b0, only if there are data near
zero and setting the explanatory variable to zero makes scientific
sense. The meaning of b0 is the estimate of the mean
outcome when x=0, and should always be stated in terms of
the actual variables of the study. The p-value for the
intercept should be interpreted (with respect to retaining
or rejecting H0:β0=0) only if both the equality
and the inequality of the mean outcome to zero when the
explanatory variable is zero are scientifically plausible.








For interpretation of a slope coefficient, this section
will assume that the setting is a randomized experiment, and
conclusions will be expressed in terms of causation. Be sure to
substitute association if you are looking at an observational
study. The general meaning of a slope coefficient is the
change in Y caused by a one-unit increase in x. It is
very important to know in what units x are measured, so
that the meaning of a one-unit increase can be clearly
expressed. For the corn experiment, the slope is the
change in mean corn plant weight (in grams) caused by a
one mg increase in nitrogen added per pot. If a one-unit
change is not substantively meaningful, the effect of a
larger change should be used in the interpretation. For the
corn example we could say the a 10 mg increase in nitrogen
added causes a 52.7 gram increase in plant weight on average.
We can also interpret the CI for β1 in the corn
experiment by saying that we are 95% confident that the
change in mean plant weight caused by a 10 mg increase in
nitrogen is 46.8 to 58.9 gm.




Be sure to pay attention to the sign of b1. If it is positive
then b1 represents the increase in outcome caused by
each one-unit increase in the explanatory variable. If b1 is
negative, then each one-unit increase in the explanatory
variable is associated with a fall in outcome of magnitude
equal to the absolute value of b1.




A significant p-value indicates that we should reject the
null hypothesis that β1=0. We can express this
as evidence that plant weight is affected by changes in
nitrogen added. If the null hypothesis is retained, we
should express this as having no good evidence that
nitrogen added affects plant weight. Particularly in
the case of when we retain the null hypothesis, the
interpretation of the CI for β1 is better than
simply relying on the general meaning of retain.









	The interpretation of b1 is the change (increase or
decrease depending on the sign) in the average outcome when the
explanatory variable increases by one unit. This should always
be stated in terms of the actual variables of the study.
Retention of the null hypothesis H0:β1=0 indicates
no evidence that a change in x is associated with (or
causes for a randomized experiment) a change in y.
Rejection indicates that changes in x cause changes
in y (assuming a randomized experiment).










9.6 Residual checking



Every regression analysis should include a residual
analysis as a further check on the adequacy of the
chosen regression model. Remember that there is a residual
value for each data point, and that it is computed as the
(signed) difference yi-y^i. A positive residual
indicates a data point higher than expected, and a negative
residual indicates a point lower than expected.









	A residual is the deviation of an outcome from
the predicated mean value for all subjects with the
same value for the explanatory variable.








A plot of all residuals on
the y-axis vs. the predicted values on the x-axis,
called a residual vs. fit plot, is a good
way to check the linearity and equal variance assumptions.

A quantile-normal plot of all of the residuals is
a good way to check the Normality assumption. As
mentioned above, the fixed-x assumption cannot
be checked with residual analysis (or any other data
analysis). Serial correlation can be checked with
special residual analyses, but is not visible
on the two standard residual plots. The other types
of correlated errors are not detected by standard residual
analyses.





To analyze a residual vs. fit plot, such as any of the
examples shown in figure 9.4, you should mentally
divide it up into about 5 to 10 vertical stripes. Then
each stripe represents all of the residuals for a
number of subjects who have a similar predicted values.
For simple regression, when there is only a single
explanatory variable, similar predicted values is equivalent
to similar values of the explanatory variable. But
be careful, if the slope is negative, low x values are
on the right.
(Note that sometimes the x-axis is set to be the values of the
explanatory variable, in which case each stripe directly
represents subjects with similar x values.)




To check the linearity assumption, consider that for
each x value, if the mean of Y falls on a straight
line, then the residuals have a mean of zero. If
we incorrectly fit a straight line to a curve, then some
or most of the predicted means are incorrect, and this
causes the residuals for at least specific ranges of x
(or the predicated Y) to be non-zero on average. Specifically
if the data follow a simple curve, we will tend to have
either a pattern of
high then low then high residuals or the reverse. So
the technique used to detect non-linearity in a residual
vs. fit plot is to find the (vertical) mean of the
residuals for each vertical stripe, then actually or
mentally connect those means, either with straight
line segments, or possibly with a smooth curve. If the
resultant connected segments or curve is close to a horizontal
line at 0 on the y-axis, then we have no reason to
doubt the linearity assumption. If there is a clear
curve, most commonly a “smile” or “frown” shape,
then we suspect non-linearity.
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Figure 9.4: Sample residual vs. fit plots for testing linearity.


Four examples are shown in figure 9.4. In each
band the mean residual is marked, and lines segments connect
these. Plots
A and B show no obvious pattern away from a horizontal line
other that the small amount of expected “noise”. Plots
C and D show clear deviations from normality, because the
lines connecting the mean residuals of the vertical
bands show a clear frown (C) and smile (D) pattern, rather
than a flat line. Untransformed linear regression is
inappropriate for the data that produced plots C and D.
With practice you will get better at reading these plots.




To detect unequal spread, we use the vertical bands in
a different way. Ideally the vertical spread of residual
values is equal in each vertical band. This takes practice
to judge in light of the expected variability of individual
points, especially when there are few points per band.
The main idea is to realize that the minimum and maximum
residual in any set of data is not very robust, and
tends to vary a lot from sample to sample. We need to
estimate a more robust measure of spread such as the
IQR. This can be done by eyeballing the middle 50% of
the data. Eyeballing the middle 60 or 80% of the data
is also a reasonable way to test the equal variance assumption.



[image: ]
Figure 9.5: Sample residual vs. fit plots for testing equal variance.


Figure 9.5 shows four residual vs. fit plots,
each of which shows good linearity. The red horizontal lines
mark the central 60% of the residuals. Plots A and B show
no evidence of unequal variance; the red lines are a
similar distance apart in each band. In plot C you can see
that the red lines increase in distance apart as you move
from left to right. This indicates unequal variance, with
greater variance at high predicted values (high x values
if the slope is positive). Plot D show a pattern with
unequal variance in which the smallest variance is in the
middle of the range of predicted values, with larger variance
at both ends. Again, this takes practice, but you should
at least recognize obvious patterns like those shown in
plots C and D. And you should avoid over-reading the
slight variations seen in plots A and B.









	The residual vs. fit plot can be used to detect non-linearity
and/or unequal variance.







[image: ]
Figure 9.6: Sample QN plots of regression residuals.


The check of normality can be done with a quantile normal plot
as seen in figure 9.6. Plot A shows no
problem with Normality of the residuals because the points
show a random scatter around the reference line (see
section 4.3.4). Plot B is also consistent
with Normality, perhaps showing slight skew to the left.
Plot C shows definite skew to the right, because at both
ends we see that several points are higher than expected.
Plot D shows a severe low outlier as well as heavy tails
(positive kurtosis) because the low values are too low and
the high values are too high.









	A quantile normal plot of the residuals of a
regression analysis can be used to detect non-Normality.










9.7 Robustness of simple linear regression



No model perfectly represents the real world. It is worth
learning how far we can “bend” the assumptions without
breaking the value of a regression analysis.




If the linearity assumption is violated more than a fairly
small amount, the regression loses its meaning. The
most obvious way this happens is in the interpretation
of b1. We interpret b1 as the change in the mean
of Y for a one-unit increase in x. If the relationship
between x and Y is curved, then the change in Y
for a one-unit increase in x varies at different
parts of the curve, invalidating the interpretation.
Luckily it is fairly easy to detect non-linearity through
EDA (scatterplots) and/or residual analysis. If non-linearity
is detected, you should try to fix it by transforming the
x and/or y variables. Common transformations are
log and square root. Alternatively it is
common to add additional new explanatory variables
in the form of a square, cube, etc. of the original x
variable one at a time until the residual vs. fit
plot shows linearity of the residuals. For data that
can only lie between 0 and 1, it is worth knowing
(but not memorizing) that the square root of
the arcsine of y is often a good transformation.




You should not feel that transformations are “cheating”.
The original way the data is measured usually has
some degree of arbitrariness. Also, common measurements
like pH for acidity, decibels for sound, and the
Richter earthquake scale are all log scales. Often
transformed values are transformed back to the
original scale when results are reported (but the
fact that the analysis was on a transformed scale
must also be reported).




Regression is reasonably robust to the equal variance
assumption. Moderate degrees of violation, e.g.,
the band with the widest variation is up to twice
as wide as the band with the smallest variation,
tend to cause minimal problems. For more severe violations,
the p-values are incorrect in the sense that
their null hypotheses tend to be rejected more that
100⁢α% of the time when the null hypothesis
is true. The confidence intervals (and the SE’s
they are based on) are also incorrect.
For worrisome violations of the equal
variance assumption, try transformations of the
y variable (because the assumption applies at
each x value, transformation of x will be
ineffective).




Regression is quite robust to the Normality assumption.
You only need to worry about severe violations. For
markedly skewed or kurtotic residual distributions,
we need to worry that the p-values and confidence
intervals are incorrect. In that case
try transforming the y variable. Also, in the
case of data with less than a handful of different
y values or with severe truncation of the data
(values piling up at the ends of a limited width scale),
regression may be inappropriate due to non-Normality.




The fixed-x assumption is actually quite important
for regression. If the variability of the x
measurement is of similar or larger magnitude to
the variability of the y measurement, then
regression is inappropriate. Regression will tend
to give smaller than correct slopes under these
conditions, and the null hypothesis on the slope
will be retained far too often. Alternate techniques
are required if the fixed-x assumption is broken,
including so-called Type 2 regression or “errors
in variables regression”.




The independent errors assumption is also critically
important to regression. A slight violation, such
as a few twins in the study doesn’t matter, but
other mild to moderate violations destroy the
validity of the p-value and confidence intervals.
In that case, use alternate techniques such as
the paired t-test, repeated measures analysis,
mixed models, or time series analysis, all of which
model correlated errors rather than assume zero
correlation.









	Regression analysis is not very robust to
violations of the linearity, fixed-x, and independent errors
assumptions. It is somewhat robust to violation of
equal variance, and moderately robust to violation of
the Normality assumption.










9.8 Additional interpretation of regression output



Regression output usually includes a few additional
components beyond the slope and intercept estimates
and their t and p-values.




Additional regression output is shown in table 9.2
which has what SPSS labels “Residual Statistics” on top
and what it labels “Model Summary” on the bottom. The
Residual Statistics summarize the predicted (fit) and
residual values, as well as “standardized” values of these.
The standardized values are transformed to Z-scores. You
can use this table to detect possible outliers. If you
know a lot about the outcome variable, use the unstandardized
residual information to see if the minimum, maximum or standard
deviation of the residuals is more extreme than you
expected. If you are less familiar, standardized residuals
bigger than about 3 in absolute value suggest that
those points may be outliers.







	
	Minimum
	Maximum
	Mean
	Std. Deviation
	N



	Predicted Value
	84.8
	611.7
	348.2
	183.8
	24



	Residual
	-63.2
	112.7
	0.0
	49.0
	24



	Std. Predicted Value
	-1.43
	1.43
	0.00
	1.00
	24



	Std. Residual
	-1.26
	2.25
	0.00
	0.978
	24








	
	
	Adjusted
	Std. Error of



	R
	R Square
	R Square
	the Estimate



	0.966
	0.934
	0.931
	50.061





Table 9.2: Additional regression results for the corn experiment.


The “Standard Error of the Estimate”, s, is the best estimate
of σ from our model (on the standard deviation scale).
So it represents how far data will fall from the regression
predictions on the scale of the outcome measurements. For
the corn analysis, only about 5% of the data falls more
than 2(49)=98 gm away from the prediction line. Some programs
report the mean squared error (MSE), which is the estimate
of σ2.
 





The R2 value or multiple correlation coefficient
is equal to the square of the simple correlation of x and
y in simple regression, but not in multiple regression.
In either case, R2 can be interpreted as the fraction
(or percent if multiplied by 100) of the total variation
in the outcome that is “accounted for” by regressing
the outcome on the explanatory variable.




A little math helps here. The total variance, var(Y), in a
regression problem is the sample variance of y
ignoring x, which comes from the squared deviations
of y values around the mean of y. Since the
mean of y is the best guess of the outcome for
any subject if the value of the explanatory variable
is unknown, we can think of total variance as measuring
how well we can predict y without knowing x.




If we perform regression and then focus on the residuals, these
values represent our residual error variance when predicting y
while using knowledge of x. The estimate of this
variance is called mean squared error or MSE and is the
best estimate of the quantity σ2 defined by the regression model.




If we subtract total minus residual error variance
(var(Y)-MSE) we can call the result “explained error”.
It represents the amount of variability in y that
is explained away by regressing on x. Then
we can compute R2 as




	
	R2=explained variancetotal variance=var⁢(Y)-MSEvar⁢(Y).
	







So R2 is the portion of the total variation in Y that
is explained away by using the x information in a regression.
R2 is always between 0 and 1. An R2 of 0 means that
x provides no information about y. An R2 of 1 means
that use of x information allows perfect prediction of
y with every point of the scatterplot exactly on the
regression line. Anything in between represents different levels
of closeness of the scattered points around the regression line.




So for the corn problem we can say the 93.4% of the total
variation in plant weight can be explained by regressing on
the amount of nitrogen added. Unfortunately, there is no clear
general interpretation of the values of R2. While
R2=0.6 might indicate a great finding in social sciences,
it might indicate a very poor finding in a chemistry
experiment.









	
R2 is a measure of the fraction of the total
variation in the outcome that can be explained by
the explanatory variable. It runs from 0 to 1, with 1
indicating perfect prediction of y from x.











9.9 Using transformations



If you find a problem with the equal variance or Normality
assumptions, you will probably want to see if the problem
goes away if you use log⁡(y) or y2 or y or 1/y
instead of y for the outcome. (It never matters whether you choose
natural vs. common log.) For non-linearity problems,
you can try transformation of x, y, or both. If
regression on the transformed scale appears to meet the
assumptions of linear regression, then go with the
transformations. In most cases, when reporting your
results, you will want to back transform point estimates
and the ends of confidence intervals for better interpretability.
By “back transform” I mean do the inverse of the transformation
to return to the original scale. The inverse of common log of
y is 10y; the inverse of natural log of y is ey; the
inverse of y2 is y; the inverse of y is y2;
and the inverse of 1/y is 1/y again. Do not transform
a p-value – the p-value remains unchanged.




Here are a couple of examples of transformation and how the
interpretations
of the coefficients are modified. If the explanatory variable
is dose of a drug and the outcome is log of time to complete a
task, and b0=2 and b1=1.5, then we can say the best estimate
of the log of the task time when no drug is given is 2 or that
the the best estimate of the time is 102=100 or e2=7.39 depending
on which log was used. We also say that for each 1 unit
increase in drug, the log of task time increases by 1.5 (additively).
On the original scale this is a multiplicative increase
of 101.5=31.6 or e1.5=4.48. Assuming natural log, this says
every time the dose goes up by another 1 unit, the mean task time
get multiplied by 4.48.




If the explanatory variable is common log of dose and the
outcome is blood sugar level, and b0=85 and
b1=18 then we can say that when log(dose)=0, blood sugar
is 85. Using 100=1, this tells us that blood sugar
is 85 when dose equals 1. For every 1 unit increase in
log dose, the glucose goes up by 18. But a one unit
increase in log dose is a ten fold increase in dose
(e.g., dose from 10 to 100 is log dose from 1 to 2). So
we can say that every time the dose increases 10-fold
the glucose goes up by 18.









	Transformations of x or y to a different scale
are very useful for fixing broken assumptions.










9.10 How to perform simple linear regression in SPSS



To perform simple linear regression in SPSS, select Analyze/Regression/Linear…
from the menu. You will see the “Linear Regression” dialog box as
shown in figure 9.7. Put the outcome in the “Dependent”
box and the explanatory variable in the “Independent(s)” box.
I recommend checking the “Confidence intervals” box for “Regression
Coefficients” under the “Statistics…” button. Also click
the “Plots…” button to get the “Linear Regression: Plots” dialog
box shown in figure 9.8. From here under “Scatter”
put “*ZRESID” into the “Y” box and “*ZPRED” into the “X” box
to produce the residual vs. fit plot. Also check the “Normal probability
plot” box.



[image: ]
Figure 9.7: Linear regression dialog box.

[image: ]
Figure 9.8: Linear regression plots dialog box.







	In a nutshell: Simple linear regression is used to explore the relationship
between a quantitative outcome and a quantitative explanatory
variable. The p-value for the slope, b1, is a test of
whether or not changes in the explanatory variable really are
associated with changes in the outcome. The interpretation
of the confidence interval for β1 is usually the
best way to convey what has been learned from a study.
Occasionally there is also interest in the intercept.
No interpretations should be given if the assumptions
are violated, as determined by thinking about the
fixed-x and independent errors assumptions, and checking
the residual vs. fit and residual QN plots for the
other three assumptions.

















































Chapter 10 Analysis of Covariance



An analysis procedure for looking at group
effects on a continuous outcome when some other continuous
explanatory variable also has an effect on the outcome.




This chapter introduces several new important
concepts including multiple regression, interaction, and
use of indicator variables, then uses them to
present a model appropriate for the setting
of a quantitative outcome, and two explanatory
variables, one categorical and one quantitative.
Generally the main interest is in the effects
of the categorical variable, and the quantitative
explanatory variable is considered to be a
“control” variable, such that power is improved
if its value is controlled for. Using the principles
explained here, it is relatively easy to extend
the ideas to additional categorical and quantitative
explanatory variables.




The term ANCOVA, analysis of covariance, is commonly used
in this setting, although there is some variation
in how the term is used. In some sense
ANCOVA is a blending of ANOVA and regression.





10.1 Multiple regression



Before you can understand ANCOVA, you need to understand
multiple regression. Multiple regression is a straightforward extension
of simple regression from one to several quantitative
explanatory variables (and also categorical variables
as we will see in the section 10.4). For example,
if we vary water, sunlight, and fertilizer to
see their effects on plant growth, we have three
quantitative explanatory variables. In this
case we write the structural model as




	
	E(Y|x1,x2,x3)=β0+β1x1+β2x2+β3x3.
	




Remember that E(Y|x1,x2,x3) is read as expected (i.e., average)
value of Y (the outcome)
given the values of the explanatory variables x1 through x3.
Here, x1 is the amount of water, x2 is
the amount of sunlight, x3 is the amount of fertilizer,
β0 is the intercept, and the other βs are
all slopes. Of course we can have any number of
explanatory variables as long as we have one β parameter
corresponding to each explanatory variable.




Although the use of numeric subscripts for
the different explanatory variables (x’s) and parameters
(β’s) is quite common, I think that
it is usually nicer to use meaningful mnemonic
letters for the
explanatory variables and corresponding text subscripts
for the parameters
to remove the necessity of remembering which number goes
with which explanatory variable. Unless referring to variables
in a completely generic way, I will avoid using numeric
subscripts here (except for using β0 to refer to
the intercept). So the above structural equation is
better written as




	
	E(Y|W,S,F)=β0+βWW+βSS+βFF.
	







In multiple regression, we still make the fixed-x assumption
which indicates that each of the quantitative explanatory
variables is measured with little or no imprecision.
All of the error model assumptions also apply.
These assumptions state that
for all subjects that have the same levels of all
explanatory variables the outcome is Normally distributed
around the true mean (or that the errors are Normally
distributed with mean zero), and that
the variance, σ2, of the outcome around the
true mean (or of the errors) is the same for every
other set of values of the explanatory variables.
And we assume that the errors are independent of
each other.




Let’s examine what the (no-interaction) multiple
regression structural model is claiming, i.e.,
in what situations it might be plausible. By examining
the equation for the multiple regression structural model
you can see that the meaning of each slope coefficient
is that it is the change in the mean outcome associated
with (or caused by) a one-unit rise in the corresponding
explanatory variable when all of the other
explanatory variables are held constant.




We can see this by taking the approach of writing down
the structural model equation then making it reflect
specific cases. Here is how we find what happens to
the mean outcome when x1 is fixed at, say 5, and
x2 at, say 10, and x3 is allowed to vary.




	
	E(Y|x1,x2,x3)
	=
	β0+β1⁢x1+β2⁢x2+β3⁢x3
	



	
	E(Y|x1=5,x2=10,x3)
	=
	β0+5⁢β1+10⁢β2+β3⁢x3
	



	
	E(Y|x1=5,x2=10,x3)
	=
	(β0+5⁢β1+10⁢β2)+β3⁢x3
	




Because the βs are fixed (but unknown) constants, this
equation tells us that when x1 and x2 are fixed at
the specified values, the relationship between E⁢(Y) and x3
can be represented on a plot with the outcome on the y-axis
and x3 on the x-axis as a straight line
with slope β3 and intercept equal
to the number β0+5⁢β1+10⁢β2. Similarly, we
get the same slope with respect to x3 for any combination
of x1 and x2, and this idea extends to changing any one
explanatory variable when the others are held fixed.




From simplifying the structural model to specific cases we learn that
the no-interaction multiple regression model claims that
not only is there a linear relationship between E⁢(Y) and any x
when the other x’s are held constant, it also implies that
the effect of a given change in an x value does not depend
on what the values of the other x variables are set to,
as long as they are held constant. These relationships
must be plausible
in any given situation for the no-interaction multiple
regression model to be considered. Some of these
restrictions can be relaxed by including interactions
(see below).




It is important to notice that the concept of changing
the value of one explanatory variable while holding the
others constant is meaningful in experiments, but
generally not meaningful in observational studies.
Therefore, interpretation of the slope coefficients
in observational studies is fraught with difficulties
and the potential for misrepresentation.




Multiple regression can occur in the experimental
setting with two or more continuous explanatory variables,
but it is perhaps more common to see one manipulated
explanatory variable and one or more observed control
variables. In that setting, inclusion of the
control variables increases power, while the primary
interpretation is focused on the experimental treatment
variable. Control variables function in the same
way as blocking variables (see 8.5) in
that they affect the outcome but are not of primary
interest, and for any specific value of the control
variable, the variability in outcome associated with each
value of the main experimental explanatory variable is
reduced. Examples of control variables for many
psychological studies include
things like ability (as determined by some
auxiliary information) and age.




As an example of multiple regression with two
manipulated quantitative variables,
consider an analysis of the data
of MRdistract.dat which is from a (fake)
experiment testing the effects of both visual and
auditory distractions on reading comprehension. The outcome
is a reading comprehension test score administered after
each subject reads an article in a room with various
distractions. The test is scored from 0 to 100 with
100 being best. The subjects are exposed to
auditory distractions that consist of recorded construction
noise with the volume randomly set to vary between 10 and 90
decibels from subject to subject. The
visual distraction is a flashing light at a fixed
intensity but with frequency randomly set to between
1 and 20 times per minute.
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Figure 10.1: EDA for the distraction example.


Exploratory data analysis is difficult in the multiple
regression setting because we need more than a
two dimensional graph. For two explanatory variables and
one outcome variable, programs like SPSS have a
3-dimensional plot (in SPSS try Graphs/ChartBuilder and choose
the “Simple 3-D Scatter” template in the Scatter/Dot gallery;
double click on the resulting plot and click the
“Rotating 3-D Plot” toolbar button to make it “live”
which allows you to rotate the plot so as to view it
at different angles). For more than two
explanatory variables, things get even more difficult.
One approach that can help, but has some limitations, is
to plot the outcome separately against each explanatory
variable. For two explanatory variables, one variable can be
temporarily demoted to categories (e.g., using the visual
bander in SPSS), and then a plot like figure 10.1
is produced. Simple regression fit lines are added for each
category. Here we can see that increasing the value
of either explanatory variable tends to reduce the mean
outcome. Although the fit lines are not parallel, with a
little practice you will be able to see that given the
uncertainty in setting their slopes from the data,
they are actually
consistent with parallel lines, which is an indication
that no interaction is needed (see below for details).




The multiple regression
results are shown in tables 10.1
10.2, and 10.3.







	
	Unstandardized
	
	
	



	
	Coefficients
	
	
	95% Confidence Interval for B



	
	B
	Std. Error
	t
	Sig.
	Lower Bound
	Upper Bound



	(Constant)
	74.688
	3.260
	22.910
	
<0.0005
	68.083
	81.294



	db
	-0.200
	0.043
	-4.695
	
<0.0005
	-0.286
	-0.114



	freq
	-1.118
	0.208
	-5.38
	
<0.0005
	-1.539
	-0.697





Table 10.1: Regression results for distraction experiment.





	
	
	Adjusted
	Std. Error of



	R
	R Square
	R Square
	the Estimate



	0.744
	0.553
	0.529
	6.939





Table 10.2: Distraction experiment model summary.





	
	Sum of
	
	
	
	



	
	Squares
	df
	Mean Square
	F
	Sig.



	Regression
	22202.3
	2
	1101.1
	22.9
	
<0.0005



	Residual
	1781.6
	37
	48.152
	
	



	Total
	3983.9
	39
	
	
	





Table 10.3: Distraction experiment ANOVA.







	Really important fact: There is an one-to-one
relationship between the coefficients in the
multiple regression output and the model equation
for the mean of Y given the x’s. There is exactly
one term in the equation for each line in the
coefficients table.








Here is an interpretation of the analysis of this experiment.
(Computer reported numbers are rounded to a smaller,
more reasonable number of decimal places – usually 3 significant
figures.)
A multiple regression analysis (additive model, i.e., with
no interaction) was performed using
sound distraction volume in decibels and visual distraction
frequency in flashes per minute as explanatory variables,
and test score as the outcome. Changes in both distraction
types cause a statistically significant
reduction in test scores. For each 10 db
increase in noise level, the test score drops by 2.00 points
(p<0.0005, 95% CI=[1.14, 2.86]) at any fixed visual
distraction level. For each per minute increase in
the visual distraction blink rate, the test score drops by
1.12 points (p<0.0005, 95%CI=[0.70,1.54]) at any fixed
auditory distraction value. About 53% of the variability
in test scores is accounted for by taking the values
of the two distractions into account. (This comes from
adjusted R2.) The estimate of
the standard deviation of test scores for any fixed combination
of sound and light distraction is 6.9 points.




The validity of these conclusions is confirmed by the
following assumption checks. The quantile-normal plot
of the residuals confirms Normality of errors, the
residual vs. fit plot confirms linearity and equal
variance. (Subject 32 is a mild outlier with standardized
residual of -2.3). The fixed-x assumption is met because
the values of the distractions are precisely set by
the experimenter. The independent errors assumption
is met because separate subjects are used for each
test, and the subjects were not allowed to collaborate.




It is also a good idea to further confirm linearity
for each explanatory variable with plots of each
explanatory variable vs. the residuals. Those
plots also look OK here.




One additional test should be performed before accepting
the model and analysis discussed above for these data.
We should test the “additivity” assumption which
says that the effect (on the outcome) of a one-unit
rise of one explanatory variable is the same at
every fixed value of the other variable (and vice
versa). The violation of this assumption usually
takes the form of “interaction” which is the
topic of the next section. The test needed
is the p-value for the interaction term of
a separate multiple regression model run with an
interaction term.




One new interpretation is for the p-value of <0.0005
for the F statistic of 22.9 in the ANOVA table for
the multiple regression. The p-value is for the null
hypothesis that all of the slope parameters, but
not the intercept parameter, are equal to zero. So
for this experiment we reject H0:βV=βA=0
(or better yet, H0:βv⁢i⁢s⁢u⁢a⁢l=βa⁢u⁢d⁢i⁢t⁢o⁢r⁢y=0









	Multiple regression is a direct extension of
simple regression to multiple explanatory variables.
Each new explanatory variable adds one term to the
structural model.










10.2 Interaction



Interaction is a major concept in statistics
that applies whenever there are two or more explanatory
variables. Interaction is said to exist between
two or more explanatory variables in their effect on
an outcome. Interaction is never between
an explanatory variable and an outcome, or between
levels of a single explanatory variable. The term
interaction applies to both quantitative and categorical
explanatory variables. The definition
of interaction is that the effect of a change
in the level or value of one explanatory variable on the
mean outcome depends on the level or value of
another explanatory variable. Therefore interaction
relates to the structural part of a statistical model.




In the absence of interaction, the effect on the
outcome of any specific
change in one explanatory variable, e.g., a one unit
rise in a quantitative variable or a change from, e.g.,
level 3 to level 1 of a categorical variable, does not
depend on the level or value of the other explanatory
variable(s), as long as they are held constant.
This also tells us that, e.g., the effect on
the outcome of changing from level 1 of explanatory variable
1 and level 3 of explanatory variable 2 to level 4 of
explanatory variable 1 and level 2 of explanatory variable
2 is equal to the sum of the effects on the outcome
of only changing variable 1 from level 1 to 4 plus the effect
of only changing variable 2 from level 3 to 1. For this
reason the lack of an interaction is called additivity.
 The distraction example of the
previous section is an example of a multiple regression
model for which additivity holds (and therefore there
is no interaction of the two explanatory variables in
their effects on the outcome).








	
	
	
	
	difference



	Setting
	xS
	xL
	E(Y)
	from baseline



	1
	2
	4
	100-5(2)-3(4)=78
	



	2
	3
	4
	100-5(3)-3(4)=73
	-5



	3
	2
	6
	100-5(2)-3(6)=72
	-6



	4
	3
	6
	100-5(3)-3(6)=67
	-11





Table 10.4: Demonstration of the additivity of E⁢(Y)=100-5⁢xS-3⁢xL.


A mathematic example may make this more clear. Consider a
model with quantitative explanatory variables “decibels of
distracting sound” and “frequency of light flashing”,
represented by xS and xL respectively. Imagine
that the parameters are actually known, so that we can
use numbers instead of symbols for this example. The
structural model demonstrated here is E⁢(Y)=100-5⁢xS-3⁢xL.
Sample calculations are shown in Table 10.4.
Line 1 shows the arbitrary starting values xS=2,xL=4.
The mean outcome is 78, which we can call the “baseline”
for these calculations. If we
leave the light level the same and change the sound to 3
(setting 2), the mean outcome drops by 5. If we
return to xS=2, but change xL to 6 (setting 3), then the
mean outcome drops by 6. Because this
is a non-interactive, i.e., additive, model we expect
that the effect of simultaneously changing xS from
2 to 3 and xL from 4 to 6 will be a drop of 5+6=11.
As shown for setting 4, this is indeed so. This would not be
true in a model with interaction.




Note that the component explanatory variables
of an interaction and the lines containing
these individual explanatory variables in
the coefficient table of the multiple regression
output, are referred to as main effects.
In the presence of an interaction,
when the signs
of the coefficient estimates of the main effects are
the same, we use the term synergy if the interaction
coefficient has the same sign. This indicates a
“super-additive” effect, where the whole is more
than the sum of the parts. If the interaction coefficient
has opposite sign to the main effects, we use the term
antagonism to indicate a “sub-additive” effects
where simultaneous changes in both explanatory variables
has less effect than the sum of the individual effects.
 





The key to understanding the concept of interaction, how
to put it into a structural model, and how to interpret
it, is to understand the construction of one or more
new interaction variables from the existing explanatory
variables. An interaction variable is created as
the product of two (or more) explanatory variables.
That is why some programs and textbooks use the notation
“A*B” to refer to the interaction of explanatory variables
A and B. Some other programs and textbooks use “A:B”.
Some computer programs can automatically create interaction
variables, and some require you to create them.
(You can always create them yourself, even if the
program has a mechanism for automatic creation.)
Peculiarly, SPSS has the automatic mechanism for some
types of analyses but not others.




The creation, use, and interpretation of interaction
variables for
two quantitative explanatory variables is discussed
next. The extension to more than two variables
is analogous but more complex. Interactions that include
a categorical variable are discussed in the next section.




Consider an example of an experiment testing the effects
of the dose of a drug (in mg) on the induction of lethargy
in rats as measured by number of minutes that the
rat spends resting or sleeping in a 4 hour period.
Rats of different ages are used and age (in months)
is used as a control variable. Data for this
(fake) experiment are found in lethargy.dat.



[image: ]
Figure 10.2: EDA for the lethargy example.


Figure 10.2 shows some EDA. Here the
control variable, age, is again categorized, and
regression fit lines are added to the plot for each
level of the age categories. (Further analysis uses
the complete, quantitative version of the age variable.)
What you should see here is that the slope appears
to change as the control variable changes. It looks
like more drug causes more lethargy, and older
rats are more lethargic at any dose. But what suggests
interaction here is that the three fit lines are
not parallel, so we get the (correct) impression
that the effect of any dose increase on lethargy
is stronger in old rats than in young rats.




In multiple regression with interaction we add the
new (product) interaction variable(s) as additional
explanatory variables. For the case with two
explanatory variable, this becomes




	
	E(Y|x1,x2)=β0+β1x1+β2x2+β12(x1⋅x2)
	




where β12 is the single parameter that
represents the interaction effect and (x1⋅x2)
can either be thought of a the single new interaction
variable (data column) or as the product of the two individual
explanatory variables.




Let’s examine what the multiple regression with
interaction model is claiming, i.e.,
in what situations it might be plausible. By examining
the equation for the structural model
you can see that the effect of a one unit change in either
explanatory variable depends on the value
of the other explanatory variable.




We can understand the details by taking the approach of writing
down the model equation then making it reflect
specific cases. Here, we use more meaningful variable names
and parameter subscripts. Specifically, βd*a is
the symbol for the single interaction parameter.




	
	E(Y|dose,age)
	=
	β0+βdose⁢dose+βage⁢age+βd*a⁢dose⋅age
	



	
	E(Y|dose,age=a)
	=
	β0+βdose⁢dose+a⁢βage+a⁢βd*a⋅dose
	



	
	E(Y|dose,age=a)
	=
	(β0+a⁢βage)+(βdose+a⁢βd*a)⁢dose
	




Because the βs are fixed (unknown) constants, this
equation tells us that when age is fixed at some particular number, a,
the relationship between E⁢(Y) and dose
is a straight line with intercept equal
to the number β0+a⁢βage and slope equal to the number
βdose+a⁢βd*a. The key feature of the interaction
is the fact that the slope with respect to dose is different
for each value of a, i.e., for each age.
A similar equation can be written
for fixed dose and varying age. The conclusion is
that the interaction model is one where the effects of
any one-unit change in one explanatory variable while
holding the other(s) constant is a change in
the mean outcome, but the size (and maybe direction)
of that change depends on the value(s) that the
other explanatory variable(s) is/are set to.




Explaining the meaning of the interaction parameter in a multiple
regression with continuous explanatory variables is difficult.
Luckily, as we will see below, it is much easier in the
simplest version of ANCOVA, where there is one categorical and one
continuous explanatory variable.




The multiple regression
results are shown in tables 10.5
10.6, and 10.7.







	
	Unstandardized
	
	
	



	
	Coefficients
	
	
	95% Confidence Interval for B



	
	B
	Std. Error
	t
	Sig.
	Lower Bound
	Upper Bound



	(Constant)
	48.995
	5.493
	8.919
	
<0.0005
	37.991
	59.999



	Drug dose
	0.398
	0.282
	1.410
	0.164
	-0.167
	0.962



	Rat age
	0.759
	0.500
	1.517
	0.135
	-0.243
	1.761



	DoseAge IA
	0.396
	0.025
	15.865
	
<0.0005
	0.346
	0.446





Table 10.5: Regression results for lethargy experiment.





	
	
	Adjusted
	Std. Error of



	R
	R Square
	R Square
	the Estimate



	0.992
	0.985
	0.984
	7.883





Table 10.6: Lethargy experiment model summary.





	
	Sum of
	
	
	
	



	
	Squares
	df
	Mean Square
	F
	Sig.



	Regression
	222249
	3
	1101.1
	22.868
	
<0.0005



	Residual
	3480
	56
	48.152
	
	



	Total
	225729
	59
	
	
	





Table 10.7: Lethargy experiment ANOVA.


Here is an interpretation of the analysis of this experiment
written in language suitable for an exam answer. A multiple
regression analysis including interaction was performed using
drug dose in mg and rat age in months as explanatory variables,
and minutes resting or sleeping during a 4 hour test period
as the outcome. There is a significant interaction
(t=15.86, p<0.0005)
between dose and age in their effect on lethargy. (Therefore
changes in either or both explanatory variables cause changes in
the lethargy outcome.) Because the coefficient estimate
for the interaction is of the same sign as the signs of the
individual coefficients, it is easy to give a general idea
about the effects of the explanatory variables on the outcome.
Increases in both dose and age are associated with (cause, for
dose) an increase in lethargy, and the effects are “super-additive”
or “synergistic” in the sense that the effect of simultaneous
fixed increases in both variables is more than the sum of the
effects of the same increases made separately for each
explanatory variable.
We can also see that about 98% of the variability
in resting/sleeping time is accounted for by taking the values
of dose and age into account. The estimate of
the standard deviation of resting/sleeping time for any fixed combination
of dose and age is 7.9 minutes.




The validity of these conclusions is confirmed by the
following assumption checks. The quantile-normal plot
of the residuals confirms Normality of errors, the
residual vs. fit plot confirms linearity and equal
variance. The fixed-x assumption is met because
the dose is precisely set by the experimenter and age
is precisely observed. The independent errors assumption
is met because separate subjects are used for each
test, and the subjects were not allowed to collaborate.
Linearity is further confirmed by plots of each
explanatory variable vs. the residuals.




Note that the p-value for the interaction line of the
regression results (coefficient) table tells us
that the interaction is an important part of the
model. Also note that the component explanatory variables
of the interaction (main effects) are almost always
included in
a model if the interaction is included.

In the presence of a significant interaction
both explanatory variables must affect the outcome, so
(except in certain special circumstances) you should
not interpret the p-values of the main effects if
the interaction has a significant p-value. On the
other hand, if the interaction is not significant,
generally the appropriate next step is to perform
a new multiple regression analysis excluding
the interaction term, i.e., run an additive model.




If we want to write prediction equations with
numbers instead of symbols, we should use Y′ or Y^
on the left side, to indicate a “best estimate” rather
than the true but unknowable values represented by E⁢(Y)
which depends on the β values. For this example, the prediction
equation for resting/sleeping minutes for rats of
age 12 months at any dose is




	
	Y^=49.0+0.398⁢(dose)+0.76⁢(12)+0.396⁢(dose⋅12)
	




which is Y^=58.1+5.15⁢(dose).









	Interaction between two explanatory variables is present
when the effect of one on the outcome depends on the value of
the other. Interaction is implemented in multiple regression
by including a new explanatory variable that is the product of two
existing explanatory variables. The model can be explained
by writing equations for the relationship between one explanatory
variable and the outcome for some fixed values of the
other explanatory variable.










10.3 Categorical variables in multiple regression



To use a categorical variable with k levels in multiple
regression we must re-code the data column as k-1 new
columns, each with only two different codes (most commonly
we use 0 and 1).
Variables that only take on the values 0 or 1 are called
indicator or dummy variables.
 
They should be considered as quantitative variables.
and should be named to correspond to their “1” level.










	An indicator variable is coded 0 for any case that
does not match the variable name and 1 for any case that
does match the variable name.








One level of the original categorical variable is designated
the “baseline”. If there is a control or placebo, the
baseline is usually set to that level. The baseline level
does not have a corresponding
variable in the new coding; instead subjects with that level
of the categorical variable have 0’s in all of the new
variables. Each new variable is coded to have a “1” for
the level of the categorical variable that matches its
name and a zero otherwise.




It is very important to realize that when new variables
like these are constructed, they replace the original
categorical variable when entering variables into a multiple
regression analysis, so the original variables are no longer
used at all. (The originals should not be erased, because they
are useful for EDA, and because you want to be able to verify
correct coding of the indicator variables.)




This scheme for constructing new variables insures appropriate
multiple regression analysis of categorical explanatory
variables. As mentioned above, sometimes you need to create
these variables explicitly, and sometime a statistical
program will create them for you, either explicitly or
silently.




The choice of the baseline variable only affects the
convenience of presentation of results and does not
affect the interpretation of the model or the
prediction of future values.




As an example consider a data set with a categorical variable
for favorite condiment. The categories are ketchup, mustard,
hot sauce, and other. If we arbitrarily choose ketchup as
the baseline category we get a coding like this:







	
	Indicator Variable



	Level
	mustard
	hot sauce
	other



	ketchup
	0
	0
	0



	mustard
	1
	0
	0



	hot sauce
	0
	1
	0



	other
	0
	0
	1








Note that this indicates, e.g., that every subject that likes
mustard best has a 1 for their “mustard” variable, and zeros
for their “hot sauce” and “other” variables.




As shown in the next section, this coding flexibly allows
a model to have no restrictions on the relationships of
population means when comparing levels of the categorical
variable. It is important to understand that if we
“accidentally” use a categorical variable, usually with
values 1 through k, in a multiple regression, then
we are inappropriately forcing the mean outcome to be
ordered according to the levels of a nominal variable,
and we are forcing these means to be equally spaced.
Both of these problems are fixed by using indicator
variable recoding.




To code the interaction between a categorical variable and
a quantitative variable, we need to create another k-1
new variables. These variables are the products of the
k-1 indicator variable(s) and the quantitative variable.
Each of the resulting new data columns has zeros for all
rows corresponding to all levels of the categorical
variable except one (the
one included in the name of the interaction variable),
and has the value of the quantitative variable for the
rows corresponding to the named level.




Generally a model includes all or none of a set of indicator
variables that correspond with a single categorical variable.
The same goes for the k-1 interaction variables corresponding
to a given categorical variable and quantitative explanatory
variable.









	Categorical explanatory variables can be incorporated
into multiple regression models by substituting k-1 indicator
variables for any k-level categorical variable. For an
interaction between a categorical and a quantitative
variable k-1 product variables should be created.










10.4 ANCOVA



The term ANCOVA (analysis of covariance) is used somewhat
differently by different analysts and computer programs,
but the most common meaning, and the one we will use
here, is for a multiple regression analysis in which
there is at least one quantitative and one categorical
explanatory variable. Usually the categorical variable
is a treatment of primary interest, and the quantitative
variable is a “control variable” of secondary interest,
which is included to improve power (without sacrificing
generalizability).




Consider a particular quantitative outcome and two or
more treatments that we are comparing
for their effects on the outcome. If we know one or more
explanatory variables are suspected to both affect
the outcome and to define groups of subjects
that are more homogeneous in terms of their outcomes
for any treatment, then we know that we can use
the blocking principle to increase power. Ignoring
the other explanatory variables and performing
a simple ANOVA increases σ2 and makes it harder
to detect any real differences in treatment effects.




ANCOVA extends the idea of blocking to continuous
explanatory variables, as long as a simple mathematical
relationship (usually linear) holds between the
control variable and the outcome.





10.4.1 ANCOVA with no interaction



An example will make this more concrete. The data
in mathtest.dat come from a (fake) experiment
testing the effects of two computer aided instruction (CAI)
programs on performance on a math test. The programs
are labeled A and B, where A is the control, older
program, and B is suspected to be an improved version.
We know that performance
depends on general mathematical ability so the students
math SAT is used as a control variable.




First let’s look at t-test results, ignoring the
SAT score. EDA shows a slightly higher mean
math test score, but
lower median for program B. A t-test shows
no significant difference with t=0.786, p=0.435.
It is worth noting that the CI for the mean
difference between programs is [-5.36, 12.30], so
we are 95% confident that the effect of program B
relative to the old program A is somewhere between
lowering the mean score by 5 points and raising
it by 12 points. The estimate of σ
(square root of MSwithin from an ANOVA) is
17.1 test points.





EDA showing the relationship between math SAT (MSAT) and
test score separately for each program is shown
in figure 10.3.
The steepness of the lines and the fact that the variation
in y at any x is smaller than the overall
variation in y for either program demonstrates the
value of using MSAT as a control variable. The
lines are roughly parallel, suggesting that an
additive, no-interaction model is appropriate. The
line for program B is higher than for program A,
suggesting its superiority.



[image: ]
Figure 10.3: EDA for the math test / CAI example.


First it is a good idea to run an ANCOVA model with interaction
to verify that the fit lines are parallel (the slopes are
not statistically significantly different). This is done
by running a multiple regression model that includes the
explanatory variables ProgB, MSAT, and the interaction
between them (i.e, the product variable). Note that we
do not need to create a new set of indicator variables
because there are only two levels of program, and the
existing variable is already an indicator variable for
program B. We do need to create the interaction variable
in SPSS. The interaction p-value is 0.375 (not shown), so there is
no evidence of a significant interaction (different slopes).




The results of the additive model (excluding the interaction)
are shown in tables 10.8
10.9, and 10.10.







	
	Unstandardized
	
	
	



	
	Coefficients
	
	
	95% Confidence Interval for B



	
	B
	Std. Error
	t
	Sig.
	Lower Bound
	Upper Bound



	(Constant)
	-0.270
	12.698
	-0.021
	0.983
	-25.696
	25.157



	ProgB
	10.093
	4.206
	2.400
	0.020
	1.671
	18.515



	Math SAT
	0.079
	0.019
	4.171
	
<0.0005
	0.041
	0.117





Table 10.8: Regression results for CAI experiment.





	
	
	Adjusted
	Std. Error of



	R
	R Square
	R Square
	the Estimate



	0.492
	0.242
	0.215
	15.082





Table 10.9: CAI experiment model summary.





	
	Sum of
	
	
	
	



	
	Squares
	df
	Mean Square
	F
	Sig.



	Regression
	4138
	2
	2069.0
	0.095
	
<0.0005



	Residual
	12966
	57
	227.5
	
	



	Total
	17104
	59
	
	
	





Table 10.10: CAI experiment ANOVA.


Of primary interest is the estimate of the benefit
of using program B over program A, which is 10 points
(t=2.40, p=0.020) with a 95% confidence interval of
2 to 18 points. Somewhat surprisingly the estimate
of σ, which now refers to the standard deviation
of test score for any combination of program and
MSAT is only slightly reduced from 17.1 to 15.1 points.
The ANCOVA model explains 22% of the variabilty in
test scores (adjusted r-squared = 0.215),
so there are probably some other important
variables “out there” to be discovered.




Of minor interest is the fact that the “control” variable,
math SAT score,
is highly statistically significant (t=4.17, p<0.0005).
Every 10 additional math SAT points is associated with
a 0.4 to 1.2 point rise in test score.




In conclusion, program B improves test scores by
a few points on average for
students of all ability levels (as determined by
MSAT scores).




This is a typical ANOVA story where the power to
detect the effects of a treatment is improved
by including one or more
control and/or blocking variables,
which are chosen by subject
matter experts based on prior knowledge. In this case
the effect of program B compared to control program A
was detectable using MSAT in an ANCOVA, but not when
ignoring it in the t-test.




The simplified model equations are shown here.




	
	E(Y|ProgB,MSAT)
	=
	β0+βProgB⁢ProgB+βMSAT⁢MSAT
	



	
	Program A: E(Y|ProgB=0,MSAT)
	=
	β0+βMSAT⁢MSAT
	



	
	Program B: E(Y|ProgB=1,MSAT)
	=
	(β0+βProgB)+βMSAT⁢MSAT
	







To be perfectly explicit, βMSAT is the slope parameter for
MSAT and βProgB is the parameter for the indicator
variable ProgB. This parameter is technically a “slope”, but really determines
a difference in intercept for program A vs. program B.




For the analysis of the data shown here, the predictions are:




	
	Y^⁢(ProgB,M⁢S⁢A⁢T)
	=
	-0.27+10.09⁢ProgB+0.08⁢MSAT
	



	
	Program A: Y^(ProgB=0,MSAT)
	=
	-0.27+0.08⁢MSAT
	



	
	Program B: Y^(ProgB=1,MSAT)
	=
	9.82+0.08⁢MSAT
	







Note that although the intercept is a meaningless extrapolation
to an impossible MSAT score of 0, we still need to use it
in the prediction equation. Also note, that in this no-interaction
model, the simplified equations for the different treatment
levels have different intercepts, but the same slope.









	ANCOVA with no interaction is used in the case
of a quantitative outcome with both a categorical and
a quantitative explanatory variable. The main use
is for testing a treatment effect while using a
quantitative control variable to gain power.










10.4.2 ANCOVA with interaction



It is also possible that a significant interaction
between a control variable and treatment will occur,
or that the quantitative explanatory variable is a variable of
primary interest that interacts with the categorical
explanatory variable.
Often when we do an ANCOVA, we are “hoping” that there
is no interaction because that indicates a more complicated
reality, which is harder to explain. On the other hand
sometimes a more complicated view of the world is
just more interesting!
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Figure 10.4: EDA for the performance ANCOVA example.


The multiple regression
results shown in tables 10.11 and
10.12 refer to
an experiment testing the effect of three different
treatments (A, B and C) on a quantitative outcome, performance,
which can range from 0 to 200 points, while
controlling for skill variable S, which can range from
0 to 100 points.
The data are available at Performance.dat.
EDA showing the relationship between skill and
performance separately for each treatment is shown
in figure 10.4.
The treatment variable,
called Rx, was recoded to k-1=2 indicator variables,
which we will call RxB and RxC, with level A as the baseline.
Two interaction variables were created by multiplying S by RxB
and S by RxC to create the single, two column interaction of
Rx and S. Because it is logical and customary to consider
the interaction between a continuous explanatory variable
and a k level categorical explanatory variable, where k>2,
as a single interaction with k-1 degrees of freedom
and k-1 lines in a coefficient table, we use a special
procedure in SPSS (or other similar programs) to find a
single p-value for the null hypothesis that model is additive
vs. the alternative that there is an interaction. The SPSS
procedure using the Linear Regression module is to use two
“blocks” of independent variables, placing the main effects
(here RxB, RxC, and Skill) into block 1, and the going to the
“Next” block and placing the two interaction variables
(here, RxB*S and RxC*S) into block 2. The optional statistic
“R Squared Change” must also be selected.




The output that is labeled “Model Summary”
(Table 10.11) and that is produced with the
“R Squared Change” option is explained here. Lines are
shown for two models. The first model is for the
explanatory variables in block 1 only, i.e., the main effects,
so it is for the additive ANCOVA model. The table shows that
this model has an adjusted R2 value of 0.863, and an estimate
of 11.61 for the standard error of the estimate (σ).
The second model adds the single 2 df interaction to produce
the full interaction ANCOVA model with separate slopes for
each treatment. The adjusted R2 is larger suggesting that
this is the better model. One good formal test of the necessity
of using the more complex interaction model over just the
additive model is the “F Change” test. Here the test
has an F statistic of 6.36 with 2 and 84 df and a p-value
of 0.003, so we reject the null hypothesis that the additive
model is sufficient, and work only with the interaction model
(model 2) for further interpretations. (The Model-1 “F Change
test” is for the necessity of the additive model over an
intercept-only model that predicts the intercept for all
subjects.)







	
	
	
	Adjusted R
	Std. Error of



	Model
	R
	R Square
	Square
	the Estimate





	1
	0.931
	0.867
	0.863
	11.61



	2
	0.941
	0.885
	0.878
	10.95








	
	Change Statistics



	
	R Square
	
	
	
	



	Model
	Change
	F Change
	df1
	df2
	Sig. F Change



	1
	0.867
	187.57
	3
	86
	
<0.0005



	2
	0.017
	6.36
	2
	84
	0.003





Table 10.11: Model summary results for generic experiment.





	
	
	Unstandardized
	
	



	
	
	Coefficients
	
	



	Model
	
	B
	Std. Error
	t
	Sig.



	1
	(Constant)
	3.22
	3.39
	0.95
	0.344



	
	RxB
	27.30
	3.01
	9.08
	
<0.0005



	
	RxC
	39.81
	3.00
	13.28
	
<0.0005



	
	S
	1.18
	0.06
	19.60
	
<0.0005



	2
	(Constant)
	14.56
	5.00
	2.91
	0.005



	
	RxB
	17.10
	6.63
	2.58
	0.012



	
	RxC
	17.77
	6.83
	2.60
	0.011



	
	S
	0.92
	0.10
	8.82
	
<0.0005



	
	RxB*S
	0.23
	0.14
	1.16
	0.108



	
	RxC*S
	0.50
	0.14
	3.55
	0.001





Table 10.12: Regression results for generic experiment.


Using mnemonic labels for the parameters, the structural
model that goes with this analysis (Model 2, with interaction) is




	
	E(Y|Rx,S)=β0+βRxBRxB+βRxCRxC+βSS+βRxB*SRxB⋅S+βRxC*SRxC⋅S
	




You should be able to construct this equation directly from the
names of the explanatory variables in Table 10.12.




Using Table 10.12, the parameter estimates are
β0=14.56,βRxB=17.10,βRxC=17.77,βS=0.92,βRxB*S=0.23, and βRxC*S=0.50.




To understand this complicated model, we need to write simplified
equations:




	
	RxA: E(Y|Rx=A,S)
	=
	β0+βS⁢S
	



	
	RxB: E(Y|Rx=B,S)
	=
	(β0+βRxB)+(βS+βRxB*S)⁢S
	



	
	RxC: E(Y|Rx=C,S)
	=
	(β0+βRxC)+(βS+βRxC*S)⁢S
	







Remember that these simplified equations are created by substituting in
0’s and 1’s for RxB and RxC (but not into parameter subscripts), and
then fully simplifying the equations.




By examining these three equations we can fully understand the model.
From the first equation we see that
β0 is the mean outcome for subjects given treatment A and
who have S=0. (It is often worthwhile to “center” a variable
like S by subtracting its mean from every value; then the intercept
will refer to the mean of S, which is never an extrapolation.)




Again using the first equation we see that the
interpretation of βS is the slope of Y vs. S for subjects
given treatment A.




From the second equation, the intercept for treatment B can be seen to be
(β0+βRxB), and this is the mean outcome when S=0 for subjects
given treatment B. Therefore the interpretation of βRxB is
the difference in mean outcome when S=0 when comparing
treatment B to treatment A (a positive parameter value would indicate
a higher outcome for B than A, and a negative parameter value would
indicate a lower outcome). Similarly, the interpretation of
βRxB*S is the change in slope from treatment A to treatment
B, where a positive βRxB*S means that the B slope is steeper
than the A slope and a negative βRxB*S means that the B slope is
less steep than the A slope.




The null hypotheses then have these specific meanings. βRxB=0 is
a test of whether the intercepts differ for treatments A and B.
βRxC=0 is
a test of whether the intercepts differ for treatments A and C.
βRxB*S=0 is
a test of whether the slopes differ for treatments A and B.
And βRxC*S=0 is
a test of whether the slopes differ for treatments A and C.




Here is a full interpretation of the performance ANCOVA example.
Notice that the interpretation can be thought of a description of the EDA plot
which uses ANCOVA results to specify which observations one might
make about the plot that are statistically verifiable.




Analysis
of the data from the performance dataset shows that treatment and skill
interact in their effects on performance. Because skill levels of zero
are a gross extrapolation, we should not interpret the intercepts.




If skill=0 were a meaningful, observed state, then we would say all of the
things in this paragraph. The
estimated mean performance for subjects with zero skill given treatment
A is 14.6 points (a 95% CI would be more meaningful). If it were scientifically
interesting, we could also say that this value of 14.6 is statistically
different from zero (t=2.91, df=84, p=0.005). The intercepts for treatments
B and C (mean performances when skill level is zero) are both statistically
significantly different from the intercept for treatment A (t=2.58,2.60, df=84,
p=0.012, 0.011). The estimates are 17.1 and 17.8 points higher for
B and C respectively compared to A (and again, CIs would be useful here).




We can also say that there is a statistically significant effect of
skill on performance for subjects given treatment A (t=8.82, p<0.0005).
The best estimate is that the mean performance increases by 9.2 points
for each 10 point increase in skill. The slope of performance vs. skill for
treatment B is not statistically significantly different for that of
treatment A (t=1.15, p=0.108). The slope of performance vs. skill for
treatment C is statistically significantly different for that of
treatment A (t=3.55, p=0.001). The best estimate is that the slope
for subjects given treatment C is 0.50 higher than for treatment A (i.e.,
the mean change in performance for a 1 unit increase in skill is
0.50 points more for treatment C than for treatment A). We can
also say that the best estimate for the slope of the effect of
skill on performance for treatment C is 0.92+0.50=1.42.




Additional testing, using methods we have not learned, can be performed
to show that performance is better for treatments B and C than treatment
A at all observed levels of skill.




In summary, increasing skill has a positive effect on performance for
treatment A (of about 9 points per 10 point rise in skill level). Treatment
B has a higher projected intercept than treatment A, and the effect
of skill on subjects given treatment B is not statistically different
from the effect on those given treatment A. Treatment C has a higher
projected intercept than treatment A, and the effect
of skill on subjects given treatment C is statistically different
from the effect on those given treatment A (by about 5 additional points
per 10 unit rise in skill).









	If an ANCOVA has a significant interaction between the categorical
and quantitative explanatory variables, then the slope of the
equation relating the quantitative variable to the outcome differs
for different levels of the categorical variable. The p-values
for indicator variables test intercept differences from the baseline
treatment,
while the interaction p-values test slope differences from the
baseline treatment.











10.5 Do it in SPSS



To create k-1 indicator variables from a k-level categorical
variable in SPSS, run Transform/RecodeIntoDifferentVariables,
as shown in figure 5.16, k-1 times. Each new
variable name should match one of the non-baseline levels of the
categorical variable. Each
time you will set the old and new values (figure 5.17)
to convert the named value to 1 and “all other values” to 0.




To create k-1 interaction variables for the interaction between
a k-level categorical variable and a quantitative variable,
use Transform/Compute k-1 times. Each new variable name
should specify what two variables are being multiplied. A
label with a “*”, “:” or the word “interaction” or abbreviation
“I/A” along with the categorical level and quantitative name
is a really good idea. The “Numeric Expression” (see figure
5.15) is just the product of the two
variables, where “*” means multiply.




To perform multiple regression in any form, use the
Analyze/Regression/Linear menu item (see figure 9.7),
and put the outcome in the Dependent box. Then put
all of the main effect explanatory variables in the Independent(s) box. Do
not use the original categorical variable – use only
the k-1 corresponding indicator variables. If you want to
model non-parallel lines, add the interaction variables as
a second block of independent variables, and turn on the
“R Square Change” option under “Statistics”.
As in simple regression, add the option
for CI’s for the estimates, and graphs of the normal probability plot
and residual vs. fit plot. Generally, if the “F change test” for
the interaction is greater than 0.05, use “Model 1”, the
additive model, for interpretations. If it is ≤0.05, use “Model 2”,
the interaction model.

















































Chapter 11 Two-Way ANOVA



An analysis method for a quantitative outcome
and two categorical explanatory variables.




If an experiment has a quantitative outcome and two
categorical explanatory variables that are
defined in such a way that each experimental unit
(subject) can be exposed to any combination of
one level of one explanatory variable and one level
of the other explanatory variable, then the most
common analysis method is two-way ANOVA. Because
there are two different explanatory
variables the effects on the outcome of a change
in one variable may either not depend on the
level of the other variable (additive model)
or it may depend on the level of the other variable
(interaction model). One common naming convention
for a model incorporating a k-level categorical
explanatory variable and an m-level categorical
explanatory variable is “k by m ANOVA” or
“k x m ANOVA”. ANOVA with more that two explanatory
variables is often called multi-way ANOVA.
If a quantitative explanatory variable is also
included, that variable is usually called a covariate.
 





In two-way ANOVA, the error model is the usual one
of Normal distribution with equal variance for
all subjects that share levels of both (all) of the
explanatory variables. Again, we will call that
common variance σ2. And we assume independent
errors.









	Two-way (or multi-way) ANOVA is an appropriate
analysis method for a study with a quantitative
outcome and two (or more) categorical explanatory
variables. The usual assumptions of Normality,
equal variance, and independent errors apply.








The structural model for two-way ANOVA with
interaction is that each combination of levels of
the explanatory variables has its own population
mean with no restrictions on the patterns. One common
notation is to call the population mean of the outcome
for subjects with level a of the first explanatory
variable and level b of the second explanatory
variable as μa⁢b. The interaction model says that
any pattern of μ’s is possible, and a plot of those
μ’s could show any arbitrary pattern.




In contrast, the no-interaction
(additive) model does have a restriction on the
population means of the outcomes.
For the no-interaction model we can think of the
mean restrictions as saying that the effect on the
outcome of any specific level change for one
explanatory variable is the same for every fixed
setting of the other explanatory variable. This
is called an additive model. Using the
notation of the previous paragraph, the
mathematical form of the additive model is
μa⁢c-μb⁢c=μa⁢d-μb⁢d for any valid
levels a,b,c, and d. (Also,
μa⁢b-μa⁢c=μd⁢b-μd⁢c.)
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Figure 11.1: Population means for a no-interaction
two-way ANOVA example.


A more intuitive presentation of the additive model
is a plot of the population means as shown in
figure 11.1. The same information
is shown in both panels. In each the outcome is
shown on the y-axis, the levels of one factor are
shown on the x-axis, and separate colors are
used for the second factor. The second panel
reverses the roles of the factors from the first
panel. Each point is a population mean of the outcome
for a combination of one level from factor A and one
level from factor B. The lines are shown as dashed
because the
explanatory variables are categorical, so interpolation
“between” the levels of a factor makes no sense.
The parallel nature of the dashed lines is what tells
us that these means have a relationship that can
be called additive. Also the choice of which factor
is placed on the x-axis does not affect the interpretation,
but commonly the factor with more levels is placed
on the x-axis.
Using this figure, you should now
be able to understand the equations of the previous
paragraph. In either panel the change in outcome
(vertical distance) is the same if we move between
any two horizontal points along any dotted line.




Note that the concept of interaction vs. an additive
model is the same for ANCOVA or a two-way ANOVA.
In the additive model the effects of a change in
one explanatory variable on the outcome does not
depend on the value or level of the other explanatory
variable, and the effect of a change in an explanatory
variable can be described while not stating the (fixed)
level of the other explanatory variable.
And for the models underlying
both analyses, if an interaction is present, the
effects on the outcome of changing one explanatory
variable depends on the specific value or level of
the other explanatory variable. Also, the lines
representing the mean of y at all values of quantitative
variable x (in some practical interval)
for each particular level of the categorical variable
are all parallel (additive model) or not all parallel
(interaction) in ANCOVA. In
two-way ANOVA the order of the levels of the
categorical variable represented on the x-axis is
arbitrary and there is nothing between the levels,
but nevertheless, if lines are drawn to aid the
eye, these lines are all parallel if there is no
interaction, and not all parallel if there is
an interaction.









	The two possible means models for two-way ANOVA
are the additive model and the interaction model.
The additive model assumes that the effects on the
outcome of a particular level change for one explanatory
variable does not depend on the level of the other
explanatory variable. If an interaction model is
needed, then the effects of a particular level change
for one explanatory
variable does depend on the level of the other
explanatory variable.








A profile plot, also called an interaction plot,
is very similar to figure 11.1, but instead
the points represent the estimates of the population
means for some data rather than the (unknown) true values.
Because we can fit models with or without an interaction
term, the same data will show different profile plots
depending on which model we use. It is very important
to realize that a profile plot from fitting a model
without an interaction always shows the best possible
parallel lines for the data, regardless of whether
an additive model is adequate for the data, so this
plot should not be used as EDA for choosing between
the additive and interaction models. On the other
hand, the profile plot from a model that includes
the interaction shows the actual sample means, and
is useful EDA for choosing between
the additive and interaction models.









	A profile plot is a way to look at outcome
means for two factors simultaneously. The lines on
this plot are meaningless, and only are an aid
to viewing the plot. A plot drawn with parallel lines
(or for which, given the size of the error, the
lines could be parallel) suggests an additive model,
while non-parallel lines suggests an interaction
model.









11.1 Pollution Filter Example



This example comes from a statement by Texaco, Inc. to the Air and Water Pollution
Subcommittee of the Senate Public Works Committee on June 26, 1973.
Mr. John McKinley, President of Texaco, cited an automobile filter developed
by Associated Octel Company as effective in reducing pollution. However,
questions had been raised about the effects of filters on vehicle performance,
fuel consumption, exhaust gas back pressure, and silencing. On the last
question, he referred to the data in
CarNoise.dat as evidence that the silencing
properties of the Octel filter were at least equal to those of
standard silencers.




This is an experiment in which the treatment “filter type”
with levels “standard” and “octel” are randomly assigned
to the experimental units, which are cars. Three types
of experimental units are used, a small, a medium, or
a large car, presumably representing three specific car models.
The outcome is the quantitative (continuous) variable “noise”.
The categorical experimental variable “size” could best be
considered to be a blocking variable, but it is also
reasonable to consider it to be an additional variable of
primary interest, although of limited generalizability due
to the use of a single car model for each size.




A reasonable (initial) statistical model for these data is that
for any combination of size and filter type the noise outcome
is normally distributed with equal variance. We also can
assume that the errors are independent if there is no
serial trend in the way the cars are driven during the
testing or in possible
“drift” in the accuracy of the noise measurement over
the duration of th experiment.




The means part of the structural model is either the
additive model or the interaction model. We could either
use EDA to pick which model to try first, or we could check
the interaction model first, then switch to the additive
model if the interaction term is not statistically significant.




Some useful EDA is shown in table 11.1 and
figures 11.2 and 11.3.
The cross-tabulation lets us see that each cell of
the experiment, i.e., each set of outcomes that correspond
to a given set of levels of the explanatory variables, has
six subjects (cars tested). This situation where there
are the same number of subjects in all cells is called a
balanced design. One of the key features of this
experiment which tells us that it is OK to use the
assumption of independent errors is that a different
subject (car) is used for each test (row in the data).
This is called a between-subjects design, and is
the same as all of the studies described up to this
point in the book, as contrasted with a within-subjects
design in which each subject is exposed to multiple treatments
(levels of the explanatory variables). For this experiment
an appropriate within-subjects design would be to test each
individual car with both types of filter, in which case
a different analysis called within-subjects ANOVA
would be needed.







	
	
	TYPE
	



	
	
	Standard
	Octel
	Total





	SIZE
	small
	6
	6
	12



	
	medium
	6
	6
	12



	
	large
	6
	6
	12



	Total
	
	18
	18
	36





Table 11.1: Cross-tabulation for car noise example.


The boxplots show that the small and medium sized
cars have more noise than the large cars (although
this may not be a good generalization, assuming that
only one car model was testing in each size class).
It appears that the Octel filter reduces the median
noise level for
medium sized cars and is equivalent to the standard
filter for small and large cars. We also see that,
for all three car sizes, there is less car-to-car variability
in noise when the Octel filter is used.
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Figure 11.2: Side-by-side boxplots for car noise example.


The error bar plot shows mean plus or minus 2 SE. A good
alternative, which looks very similar, is to show the
95% CI around each mean. For this plot, the standard deviations
and sample sizes for each of the six groups are separately
used to construct the error bars, but this is less than
ideal if the equal variance assumption is met, in which
case a pooled standard deviation is better. In this example,
the best approach would be to use one pooled standard
deviation for each filter type.



[image: ]
Figure 11.3: Error bar plot for car noise example.




11.2 Interpreting the two-way ANOVA results



The results of a two-way ANOVA of the car noise
example are shown in tables
11.2 and 11.3.
The ANOVA table is structured just like the one-way
ANOVA table. The SS column represents the sum of
squared deviations for each of several different
ways of choosing which deviations to look at, and
these are labeled “Source (of Variation)” for reasons
that are discussed more fully below. Each SS has
a corresponding df (degrees of freedom) which is
a measure of the number of independent pieces of
information present in the deviations that are
used to compute the corresponding SS (see section
4.6). And each MS is the SS divided by
the df for that line. Each MS is a variance estimate
or a variance-like quantity, and as such its
units are the squares of the outcome units.




Each F-statistic is the ratio of two MS values.
For the between-groups ANOVA discussed in this
chapter, the denominators are all
MSerror (MSE)
which corresponds exactly to
MSwithin of the
one-way ANOVA table. MSE is a “pure” estimate
of σ2, the common group variance, in
the sense that it is unaffected by whether or
not the null hypothesis is true. Just like in
one-way ANOVA, a component of
SSerror
is computed for each treatment cell as deviations
of individual subject outcomes from the sample mean
of all subjects in that cell; the component df
for each cell is ni⁢j-1 (where ni⁢j is the
number of subjects exposed to level i of one
explanatory variable and level j of the other);
and the SS and df are
computed by summing over all cells.








	Source
	Sum of Squares
	df
	Mean Square
	F
	Sig.





	Corrected Model
	27912
	5
	5582
	85.3
	
<0.0005



	SIZE
	26051
	2
	13026
	199.1
	
<0.0005



	TYPE
	1056
	1
	1056
	16.1
	
<0.0005



	SIZE*TYPE
	804
	2
	402
	6.1
	
<0.0005



	Error
	1962
	30
	65
	
	



	Corrected Total
	29874
	35
	
	
	





Table 11.2: ANOVA for the car noise experiment.


Each F-statistic is compared against it’s null sampling
distribution to compute a p-value. Interpretation of
each of the p-values depends on knowing the null hypothesis
for each F-statistic, which corresponds to the
situation for which the numerator MS has an expected
value σ2.









	The ANOVA table has lines for each main
effect, the interaction (if included) and
the error. Each of these lines demonstrates
MS=SS/df. For the main effects and interaction,
there are F values (which equal that line’s
MS value divided by the error MS value) and
corresponding p-values.








The ANOVA table analyzes the total variation of the
outcome in the experiment by decomposing the SS (and df)
into components that add to the total (which only
works because the components are what is called
orthogonal). One decomposition visible in the ANOVA
table is that the SS and df add up for “Corrected
model” + “Error” = “Corrected Total”.
When interaction is included in the model,
this decomposition
is equivalent to a one-way ANOVA where all of the
a⁢b cells in a table with a levels of one factor
and b levels of the other factor are treated as
a⁢b levels of a single factor. In that case
the values for “Corrected Model” correspond to
the “between-group” values of a one-way ANOVA,
and the values for “Error” correspond to the
“within-group” values. The null hypothesis for
the “Corrected Model” F-statistic is that all a⁢b
population cell means are equal, and the deviations
involved in the sum of squares are the deviations
of the cell sample means from the overall mean.
Note that this has a⁢b-1 df.
The “Error” deviations are deviations of the
individual subject outcome values from the group
means. This has N-a⁢b df. In our car noise
example a=2 filter types, b=3 sizes, and
N=36 total noise tests run.




SPSS gives two useless lines in the ANOVA table,
which are not shown in figure 11.2.
These are “Intercept” and “Total”. Note that
most computer programs report what SPSS calls
the “Corrected Total” as the “Total”.




The rest of the ANOVA table is a decomposition
of the “Corrected Model” into main effects for
size and type, as well as the interaction of
size and type (size*type). You can see that the
SS and df add up such that “Corrected Model” =
“size” + “type” + “size*type”. This decomposition
can be thought of as saying that the deviation
of the cell means from the overall mean is equal to
the size deviations plus the type deviations plus
any deviations from the additive model in the
form of interaction.




In the presence of an interaction, the p-value for
the interaction is most important and the main
effects p-values are generally ignored if the
interaction is significant. This is mainly
because if the interaction is significant, then
some changes in both explanatory variables
must have an effect on the outcome, regardless of
the main effect p-values. The null hypothesis
for the interaction F-statistic is that there
is an additive relationship between the two
explanatory variables in their effects on the
outcome. If the p-value for the interaction
is less than alpha, then we have a statistically
significant interaction, and we have evidence
that any non-parallelness
seen on a profile plot is “real” rather than
due to random error.




A typical example of a statistically significant
interaction with statistically non-significant
main effects is where we have three levels of
factor A and two levels of factor B, and the
pattern of effects of changes in factor A
is that the means are in a “V” shape for
one level of B
and an inverted “V” shape for
the other level of B. Then the main effect for
A is a test of whether at all three levels of
A the mean outcome, averaged over both levels of
B are equivalent. No matter how “deep” the
V’s are, if the V and inverted V are the same
depth, then the mean outcomes averaged over
B for each level of A
are the same values, and the main effect of A
will be non-significant. But this is usually
misleading, because changing levels of A
has big effects on the outcome for either level
of B, but the effects differ depending on
which level of B we are looking at. See figure
11.4.
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Figure 11.4: Significant interaction with
misleading non-significant main effect of factor A.


If the interaction p-value is statistically
significant, then we conclude that the effect
on the mean outcome of a change in one factor
depends on the level of the other factor.
More specifically, for at least
one pair of levels of one factor the effect of
a particular change in levels for the other factor
depends on which level of the first pair we
are focusing on. More detailed explanations
require “simple effects testing”, see chapter
13.




In our current car noise example, we explain the
statistically significant interaction as telling
us that the population means for noise differ
between standard and Octel filters for
at least one car size. Equivalently we could say
that the population means for noise differ among
the car sizes for at least one type of filter.







	
	
	
	
	95% Confidence Interval



	SIZE
	TYPE
	Mean
	Std. Error
	Lower Bound
	Upper Bound



	small
	Standard
	825.83
	3.30
	819.09
	832.58



	
	Octel
	822.50
	3.30
	815.76
	829.24



	medium
	Standard
	845.83
	3.30
	839.09
	852.58



	
	Octel
	821.67
	3.30
	814.92
	828.41



	large
	Standard
	775.00
	3.30
	768.26
	781.74



	
	Octel
	770.00
	3.30
	763.26
	776.74





Table 11.3: Estimated Marginal Means for the car noise experiment.


Examination of the plots or the Marginal Means
table suggests (but does not prove) that the
important difference is that the noise level
is higher for the standard filter than the
Octel filter for the medium sized car, but
the filters have equivalent effects for the
small and large cars.




If the interaction p-value is not statistically
significant, then in most situations most analysts
would re-run the ANOVA without the interaction,
i.e., as a main effects only, additive model.
The interpretation of main effects F-statistics
in a non-interaction two-way ANOVA is easy.
Each main effect p-value corresponds to the null
hypothesis that population means of the outcome
are equal for all levels of the factor ignoring
the other factor. E.g.,
for a factor with three levels, the null
hypothesis is that H0:μ1=μ2=μ3,
and the alternative is that at least one population
mean differs from the others. (Because the
population means for one factor are averaged over
the levels of the other factor, unbalanced sample
sizes can give misleading p-values.) If there are
only two levels, then we can and should immediately report
which one is “better” by looking at the
sample means. If there are more than two
levels, we can only say that there are some differences
in mean outcome among the levels, but we need to do
additional analysis in the form of “contrast
testing” as shown in chapter 13 to
determine which levels are statistically significantly different.









	Inference for the two-way ANOVA table
involves first checking the interaction p-value
to see if we can reject
the null hypothesis that the additive
model is sufficient. If that p-value is smaller than
α then the adequacy of the additive model
can be rejected, and you should
conclude that both factors affect the outcome,
and that the effect of changes in one factor depends
on the level of the other factor, i.e., there is
an interaction between the explanatory variables.
If the interaction
p-value is larger than α, then you can conclude
that the additive model is adequate, and you should
re-run the analysis without an interaction term, and
then interpret each of the
p-values as in one-way ANOVA, realizing that
the effects of changes in one factor are the
same at every fixed level of the other factor.








It is worth noting that a transformation, such as
a log transformation of the outcome, would not
correct the unequal variance of the outcome across
the groups defined by treatment combinations for this
example (see figure 11.2). A
log transformation corrects unequal variance only
in the case where the variance is larger for
groups with larger outcome means, which is not the
case here. Therefore, other than using much more
complicated analysis methods which flexibly model
changes in variance, the best solution to the
problem of unequal variance in this example, is
to use the “Keppel” correction which roughly
corrects for moderate degrees if violation of
the equal variance assumption by substituting
α/2 for α. For this problem, we still reject
the null hypothesis of an additive model when we
compare the p-value to 0.025 instead of 0.05, so
the correction does not change our conclusion.




Figure 11.5 shows the 3 by 3
residual plot produced in SPSS by checking the
Option “Residual plot”. The middle panel of the
bottom row shows the usual residual vs. fit plot.
There are six vertical bands of residual because there
are six combinations of filter level and size level,
giving six possible predictions. Check the equal
variance assumption in the same way as for a
regression problem. Verifying that the means for
all of the vertical bands are at zero is a check
that the mean model is OK. For two-way ANOVA
this comes down to checking that dropping the
interaction term was a reasonable thing to do.
In other words, if a no-interaction model shows
a pattern to the means, the interaction is
probably needed. This default plot is poorly designed,
and does not allow checking Normality. I prefer
the somewhat more tedious approach of using the
Save feature in SPSS to save predicted and residual
values, then using these to make the usual full
size residual vs. fit plot, plus a QN plot of the
residuals to check for Normality.
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Figure 11.5: Residual plots for car noise example.







	Residual checking for two-way ANOVA is very
similar to regression and one-way ANOVA.










11.3 Math and gender example



The data in mathGender.dat are from an
observational study carried
out to investigate the relationship between the ACT Math
Usage Test and the explanatory variables gender (1=female,
2=male) and level of mathematics coursework taken
(1=algebra only, 2=algebra+geometry, 3=through calculus)
for 861 high school seniors. The outcome, ACT score, ranges
from 0 to 36 with a median of 15 and a mean of 15.33.
An analysis of these data
of the type discussed in this chapter can be called a
3x2 (“three by two”) ANOVA because those are
the numbers of levels of the two categorical explanatory
variables.




The rows of the data table (experimental units) are
individual students. There is some concern about
independent errors if the 861 students come from just
a few schools, with many students per school, because then
the errors for students from the same school are likely
to be correlated. In that case, the p-values and
confidence intervals will be unreliable, and we should
use an alternative analysis such as mixed models, which
takes the clustering into schools into account. For
the analysis below, we assume that student are randomly
sampled throughout the country so that including two students
from the same school would only be a rare coincidence.




This is an observational study, so our conclusions will
be described in terms of association, not causation.
Neither gender nor coursework was randomized to different
students.




The cross-tabulation of the explanatory variables is shown
in table 11.4.
As opposed to the previous example, this is not
a balanced ANOVA, because it has unequal cell sizes.







	
	
	Gender
	



	
	
	Female
	Male
	Total





	Coursework
	algebra
	82
	48
	130



	
	to geometry
	387
	223
	610



	
	to calculus
	54
	67
	121



	Total
	
	523
	338
	861





Table 11.4: Cross-tabulation for the math and gender example.


Further EDA shows that each of the six cells has roughly
the same variance for the test scores, and none of the
cells shows test score skewness or kurtosis suggestive
of non-Normality.
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Figure 11.6: Cell means for the math and gender
example.


A profile plot of the cell means is shown in figure
11.6. The first impression is
that students who take more courses
have higher scores, males have slightly higher
scores than females, and perhaps the gender difference
is smaller for students who take more courses.








	Source
	Sum of Squares
	df
	Mean Square
	F
	Sig.





	Corrected Model
	16172.8
	5
	3234.6
	132.5
	
<0.0005



	courses
	14479.5
	2
	7239.8
	296.5
	
<0.0005



	gender
	311.9
	1
	311.9
	12.8
	
<0.0005



	courses*gender
	37.6
	2
	18.8
	0.8
	0.463



	Error
	20876.8
	855
	24.4
	
	



	Corrected Total
	37049.7
	860
	43.1
	
	





Table 11.5: ANOVA with interaction for the math and gender example.


The two-way ANOVA with interaction is
shown in table 11.5.




The deviations used in the sums of squared deviations (SS) in a
two-way ANOVA with interaction are just a bit more complicated than
in one-way ANOVA. The main effects deviations are calculated
as in one-way interaction, just ignoring the other factor.
Then the interaction SS is calculated by using the main
effects to construct the best “parallel pattern” means
and then looking at the deviations of the actual cell means
from the best “parallel pattern means”.




The interaction line of the table (courses*gender) has 2 df
because the difference between an additive model (with
a parallel pattern of population means)
and an interaction model (with arbitrary patterns) can be
thought of as taking the parallel pattern, then moving
any two points for any one gender. The formula for
interaction df is (k-1)⁢(m-1) for any k by m ANOVA.




As a minor point, note that the MS is given for the “Corrected
Total” line. Some programs give this value, which equals
the variance of all of the outcomes ignoring the explanatory
variables. The “Corrected Total” line adds up for both the SS
and df columns but not for the MS column, to either “Corrected Model” +
“Error” or to all of the main effects plus interactions
plus the Error.




The main point of this ANOVA table is that the interaction
between the explanatory variables gender and courses is
not significant (F=0.8, p=0.463), so we have no evidence
to reject the additive model, and we conclude that
course effects on the outcome are the same for both genders,
and gender effects on the outcome are the same for
all three levels of coursework. Therefore it is appropriate
to re-run the ANOVA with a different means model, i.e.,
with an additive rather than an interactive model.




The ANOVA table for a two-way ANOVA without interaction is
shown in table 11.6.







	Source
	Sum of Squares
	df
	Mean Square
	F
	Sig.





	Corrected Model
	16135.2
	3
	5378.4
	220.4
	
<0.0005



	courses
	14704.7
	2
	7352.3
	301.3
	
<0.0005



	gender
	516.6
	1
	516.6
	21.2
	
<0.0005



	Error
	20914.5
	857
	24.4
	
	



	Corrected Total
	37049.7
	860
	
	
	





Table 11.6: ANOVA without interaction for the math and gender example.


Our conclusion, using a significance level of α=0.05 is
that both courses and gender affect test score. Specifically,
because gender has only two levels (1 df), we can directly
check the Estimated Means table (table 11.7)
to see that males have a higher mean. Then we can conclude
based on the small p-value that being male is associated with
a higher math ACT score compared to females, for each
level of courses. This is not in conflict with the observation
that some females are better than most males, because it is
only a statement about means. In fact the estimated means table
tells us that the mean difference is 2.6 while the ANOVA table
tells us that the standard deviation in any group is approximately
5 (square root of 24.4), so the overlap between males and
females is quite large.
Also, this kind of study certainly
cannot distinguish differences due to biological factors from
those due to social or other factors.




Looking at the p-value for courses,
we see that at least one level of courses differs from the
other two, and this is true separately for males and females
because the additive model is an adequate model. But we
cannot make further important statements about which
levels of courses are significantly different without additional
analyses, which are discussed in chapter 13.







	
	
	
	95% Confidence Interval





	courses
	Mean
	Std. Error
	Lower Bound
	Upper Bound



	algebra
	10.16
	0.44
	9.31
	11.02



	to geometry
	14.76
	0.20
	14.36
	15.17



	to calculus
	14.99
	0.45
	24.11
	25.87








	
	
	
	95% Confidence Interval





	gender
	Mean
	Std. Error
	Lower Bound
	Upper Bound



	female
	14.84
	0.26
	15.32
	16.36



	male
	17.44
	0.30
	16.86
	18.02





Table 11.7: Estimated means for the math and gender example.


We can also note that the residual (within-group) variance
is 24.4, so our estimate of the population standard
deviation for each group is 24.4=4.9. Therefore
about 95% of test scores for any gender and level of
coursework are within 9.8 points of that group’s mean score.






11.4 More on profile plots, main effects and interactions



Consider an experiment looking at the effects of
different levels of light and sound on some outcome.
Five possible outcomes are shown in
the profile plots of figures
11.7,
11.8,
11.9,
11.10, and
11.11
which include plus or minus
2 SE error bars (roughly 95% CI for the population means).




Table 11.8 shows the p-values from two-way ANOVA’s of these
five cases.







	Case
	light
	sound
	interaction





	A
	
<0.0005
	0.971
	0.802



	B
	0.787
	0.380
	0.718



	C
	
<0.0005
	
<0.0005
	
<0.0005



	D
	
<0.0005
	
<0.0005
	0.995



	E
	0.506
	
<0.0005
	0.250





Table 11.8: P-values for various light/sound experiment cases.
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Figure 11.7: Case A for light/sound experiment.


In case A you can see that it takes very little “wiggle”,
certainly less than the size of the error bars, to
get the lines to be parallel, so an additive model should
be OK, and indeed the interaction p-value is 0.802.
We should re-fit a model without an interaction term.
We see that as we change sound levels (move left or
right), the mean outcome
(y-axis value) does not change much, so sound level does not
affect the outcome and we get a non-significant p-value
(0.971). But changing light levels (moving from one
colored line to another, at any sound level)
does change the mean outcome, e.g., high light gives
a low outcome, so we expect a significant p-value for
light, and indeed it is <0.0005.



[image: ]
Figure 11.8: Case B for light/sound experiment.


In case B, as in case A, the lines are nearly parallel,
suggesting that an additive, no-interaction model is
adequate, and we should re-fit a model without an
interaction term.
We also see that changing sound levels
(moving left or right on the plot) has no effect on
the outcome (vertical position), so sound is not
a significant explanatory variable. Also changing
light level (moving between the colored lines) has
no effect. So all the p-values are non-significant
(>0.05).
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Figure 11.9: Case C for light/sound experiment.


In case C, there is a single cell, low light with sound at
level 4, that must be moved much more than the size of the
error bars to make the lines parallel. This is enough
to give a significant interaction p-value (<0.0005),
and require that we stay with this model that includes
an interaction term, rather than using an additive model.
The p-values for the main effects now have no
real interest. We know that both light and sound affect
the outcome because the interaction p-value is significant.
E.g., although we need contrast testing to be sure, it
is quite obvious that changing from low to high light level
for any sound level lowers the outcome, and changing from
sound level 3 to 4 for any light level lowers the outcome.
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Figure 11.10: Case D for light/sound experiment.


Case D shows no interaction (p=0.995) because on the
scale of the error bars, the lines are parallel.
Both main effects are significant.because for either
factor, at at least one level of the other factor there
are two levels of the first factor for which the
outcome differs.
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Figure 11.11: Case E for light/sound experiment.


Case E shows no interaction. The light factor is not
statistically significant as shown by the fact that
for any sound level, changing light level (moving
between colored lines) does not change the outcome.
But the sound factor is statistically significant
because changing between at least some pairs of
sound levels for any light level does affect the outcome.










	Taking error into account, in most cases you
can get a good idea which p-values will be significant
just by looking at a (no-interaction) profile plot.










11.5 Do it in SPSS



To perform two-way ANOVA in SPSS use
Analyze/GeneralLinearModel/Univariate from
the menus. The “univariate” part means that
there is only one kind of outcome measured for
each subject. In this part of SPSS, you do not
need to manually code indicator variables for
categorical variables, or manually code interactions.




The Univariate dialog box is shown in figure 11.12.
Enter the quantitative outcome in the Dependent Variable box.
Enter the categorical explanatory variables in the Fixed Factors
box. This will fit a model with an interaction.
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Figure 11.12: SPSS Univariate dialog box.


To fit a model without an interaction, click the Model
button to open the Univariate:Model dialog box,
shown in figure 11.13. From here,
choose “Custom” instead of “Full Factorial”, then
do whatever it takes (there are several ways to do this)
to get both factors, but not
the interaction into the “Model” box, then click
Continue.
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Figure 11.13: SPSS Univariate:Model dialog box.


For either model, it is a good idea to go to Options
and turn on “Descriptive statistics”, and “Residual plot”.
The latter is the 3 by 3 plot in which the usual residual
vs. fit plot is in the center of the bottom row.
Also place the individual factors in the “Display Means for”
box if you are fitting a no-interaction model, or
place the interaction of the factors in the box if you are fitting a
model with an interaction.




If you use the Save button to save predicted and residual values
(either standardized or unstandardized), this will create
new columns in you data sheet; then a scatter plot with
predicted on the x-axis and residual on the y-axis gives
a residual vs. fit plot, while a quantile-normal plot of
the residual column allows you to check the Normality assumption.




Under the Plots button, put one factor (usually the one with
more levels) in the “Horizontal Axis” box, and the
other factor in the “Separate Lines” box, then click
Add to make an entry in the Plots box, and click Continue.




Finally, click OK in the main Univariate dialog box to
perform the analysis.





















































Chapter 12 Statistical Power




12.1 The concept



The power of an experiment that you are about to carry out quantifies
the chance that you will correctly reject the null hypothesis
if some alternative hypothesis is really true.




Consider analysis of a k-level one-factor experiment using ANOVA.
We arbitrarily choose α=0.05
(or some other value) as our significance level. We reject the null hypothesis,
μ1=⋯=μk,
if the F statistic is so large as to occur less than 5% of the
time when the null hypothesis is true (and the assumptions are met).




This approach requires computation of the distribution of F values
that we would get if the model assumptions were true, the null hypothesis
were true, and we would repeat the experiment many times, calculating
a new F-value each time. This is called the null sampling distribution
of the F-statistic (see Section 6.2.5).




For any sample size (n per group) and significance level (α)
we can use the null sampling distribution to
find a critical F-value “cutoff”
before running the experiment, and know that we will reject H0 if
Fexperiment≥Fcritical.
If the assumptions are met (I won’t keep repeating this)
then 5% of the time when experiments are run on equivalent treatments,
(i.e. μ1=⋯=μk),
we will falsely reject H0 because our experiment’s F-value happens to fall
above F-critical. This is the so-called Type 1 error
(see Section 8.4). We could lower α to
reduce the chance that we will make such an error, but this will adversely
affect the power of the experiment as explained next.




Under each combination of n, underlying variance (σ2)
and some particular non-zero difference in
population means (non-zero effect size) there is an alternative sampling
distribution of F. An alternative sampling distribution represents
how likely different values of a statistic such as F would be if
we repeat an experiment many times when a particular alternative
hypothesis is true. You can think of this as the histogram that
results from running the experiment many times when the particular
alternative is true and the F-statistic is calculated for
each experiment.
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Figure 12.1: Null and alternative F sampling distributions.


As an example, figure 12.1 shows the null sampling
distribution of the F-statistic for k=3 treatments and n=50 subjects
per treatment (black, solid curve) plus the alternative sampling distribution
of the F-statistic for two specific “alternative hypothesis scenarios”
(red and green curves) labeled “n.c.p.=4” and “n.c.p.=9”. For the moment,
just recognize that n.c.p. stands for something called the “non-centrality
parameter”, that the n.c.p. for the null hypothesis is 0, and that larger
n.c.p. values correspond to less “null-like” alternatives.




Regarding this specific example, we note that
the numerator of the F-statistic
(MSbetween) will have
k-1=2 df, and the denominator(MSwithin)
will have k⁢(n-1)=147 df. Therefore the null sampling distribution for the
F-statistic that the computer has drawn for us is the (central) F-distribution
(see Section 3.9.7) with 2 and 147 df. This is equivalent
to the F-distribution with 2 and 147 df and with n.c.p.=0. The two alternative
null sampling distributions (curves) that the computer has drawn correspond
to two specific alternative scenarios.
The two alternative distributions are called non-central F-distributions.
They also have 2 and 147 df, but in addition have “non-centrality
parameter” values equal to 4 and 9 respectively.




The whole concept of power is explained in this figure. First focus
on the black curve labeled “null is true”. This curve is
the null sampling distribution of F for any experiment with 1)
three (categorical)
levels of treatment; 2) a quantitative outcome for which the assumptions of
Normality (at each level of treatment), equal variance and independent
errors apply; 3) no difference in the three population means; and 4) a total
of 150 subjects. The curve shows the values of the F-statistic
that we are likely (high regions) or unlikely (low regions) to see
if we repeat the experiment many times. The value of
Fcritical of 3.1 separates (for
k=3, n=50) the area under the null sampling
distribution corresponding to the highest 5% of F-statistic values
from the lowest 95% of F-statistic values. Regardless of whether
or not the null hypothesis is in fact true, we will reject H0:μ1=μ2=μ3,
i.e., we will claim that the null hypothesis is false,
if our single observed F-statistic is greater than 3.1. Therefore
it is built into our approach to statistical inference
that among those experiments in which we study treatments
that all have the same effect on the outcome, we will
falsely reject the null hypothesis for about 5% of those experiments.




Now consider what happens if the null hypothesis is not true (but
the error model assumptions hold). There are many ways that
the null hypothesis can be false, so for any experiment, although
there is only one null sampling distribution of F, there are
(infinitely) many alternative sampling distributions of F. Two
are shown in the figure. The information that needs to be
specified to characterize a specific alternative sampling distribution
is the spacing of the population means, the underlying variance
at each fixed combination of explanatory variables (σ2),
and the number of subjects given each treatment (n). The
number of treatments is also implicitly included on this list.
I call all of this information an “alternative scenario”.
The alternative scenario information can be reduced through
a simple formula to a single
number called the non-centrality parameter (n.c.p.), and this
additional parameter value is all that the computer needs to
draw the alternative sampling distribution for an ANOVA F-statistic.
Note that n.c.p.=0 represents the null scenario.




The figure shows alternative sampling distributions for two
alternative scenarios in red (dashed) and blue (dotted). The red
curve represents the scenario where σ=10 and
the true means are 10.0, 12.0, and 14.0, which can be shown to
correspond to n.c.p.=4. The blue curve represents the scenario
where σ=10 and
the true means are 10.0, 13.0, and 16.0, which can be shown to
correspond to n.c.p.=9. Obviously when the mean parameters
are spaced 3 apart (blue) the scenario is more un-null-like than
when they are spaced 2 apart (red).




The alternative sampling distributions of F show how likely
different F-statistic values are if the given alternative
scenario is true. Looking at the red curve, we see that
if you run many experiments when σ2=100 and
μ1=10.0,μ2=12.0, and μ3=14.0, then about 59%
of the time you will get F<3.1 and p>0.05, while the
remaining 41% of the time you will get F≥3.1 and p≤0.05.
This indicates that for the one experiment
that you can really afford to do, you have a 59% chance of
arriving at the incorrect conclusion that the population means
are equal, and a 41% chance of arriving at the correct
conclusion that the population means are not all the same.
This is not a very good situation to be in, because there
is a large chance of missing the interesting finding that
the treatments have a real effect on the outcome.




We call the chance
of incorrectly retaining the null hypothesis
the Type 2 error rate, and we call the chance of correctly
rejecting the null hypothesis for any given alternative
the power. Power is always equal to
1 (or 100%) minus the Type 2 error rate. High power is good, and
typically power greater than 80% is arbitrarily considered
“good enough”.




In the figure, the alternative scenario with population
mean spacing of 3.0
has fairly good power, 76%. If the true mean outcomes
are 3.0 apart, and σ=10 and there are 50 subjects
in each of the three treatment groups, and the Normality,
equal variance, and independent error assumptions are met,
then any given experiment has a 76% chance of producing
a p-value less than or equal to 0.05, which will result
in the experimenter correctly concluding that the population
means differ. But even if the experimenter does a terrific
job of running this experiment, there is still a 24% chance
of getting p>0.05 and falsely concluding that the population
means do not differ, thus making a Type 2 error. (Note
that if this alternative scenario is correct, it is impossible
to make a Type 1 error; such an error can only be made when
the truth is that the population means do not differ.)




Of course, describing
power in terms of the F-statistic in ANOVA is only one
example of a general concept. The same concept applies
with minor modifications for the t-statistic that we learned
about for both the independent samples t-test and the
t-tests of the coefficients in regression and ANCOVA, as
well as other statistics we haven’t yet discussed. In
the cases of the t-statistic, the modification relates to the
fact that “un-null-like” corresponds to t-statistic values
far from zero on either side, rather than just larger values
as for the F-statistic. Although the F-statistic will be used
for the remainder of the power discussion, remember that the
concepts apply to hypothesis testing in general.




You are probably not surprised to learn that
for any given experiment and inference method (statistical test),
the power to correctly reject a given alternative hypothesis
lies somewhere between 5% and (almost) 100%. The next section
discusses ways to improve power.









	For one-way ANOVA, the null sampling distribution
of the F-statistic shows that when the null hypothesis is
true, an experimenter has a 95% chance of obtaining a p-value
greater than 0.05,
in which case she will make the correct conclusion, but
5% of the time she will obtain p≤0.05 and make a Type 1
error. The various alternative sampling distributions of the
F-statistic show that the chance of making a Type 2 error can
range from 95% down to near zero. The corresponding chance of
obtaining p≤0.05 when a particular alternative scenario
is true, called the power of the experiment, ranges from
as low as 5% to near 100%.










12.2 Improving power



For this section we will focus on the two-group continuous
outcome case
because it is easier to demonstrate the effects of various
factors on power in this simple setup. To make things concrete,
assume that the
experimental units are a random selection of news websites,
the outcome is number of clicks (C) between 7 PM and 8 PM
Eastern Standard Time for an associated online ad,
and the two treatments are two fonts for the ads, say Palatino (P) vs.
Verdana (V). We can equivalently analyze data from an
experiment like this using either the independent samples
t-test or one-way ANOVA.




One way to think about this problem is in terms of the
two confidence intervals for the population means.
Anything that reduces the overlap of these confidence
intervals will increase the power. The overlap
is reduced by reducing the common variance (σ2),
increasing the number of subjects in each group (n), or
by increasing the distance between the population means,
|μV-μP|.
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Figure 12.2: Effects of changing variance, sample size, and mean
difference on power. Top row: population distributions of the outcome.
Bottom row: sampling distributions of the sample mean for the given
sample size.


This is demonstrated in figure 12.2.
This figure shows
an intuitive (rather than mathematically rigorous) view of
the process of testing the equivalence of the population means of
ad clicks for treatment P vs. treatment V.
The top row represents population distributions of clicks for
the two treatments. Each curve can be thought of as the
histogram of the actual click outcomes for one font for
all news websites on the World Wide Web. There is a lot of
overlap between the two curves, so obviously it would not
be very accurate to use, say, one website per font to try
to determine if the population means differ.




The bottom row represents the sampling distributions
of the sample means for the two treatments
based on the given sample size (n) for
each treatment. The key idea here is that, although the two curves
always overlap, a smaller overlap corresponds to a greater
chance that we will get a significant p-value for our
one experiment.




Start with the second column of the figure. The upper
panel shows that the truth is that σ2 is 100, and
μV=13, while μP=17. The arrow indicates that
our sample has n=30 websites with each font.
The bottom
panel of the second column shows the sampling distributions
of sample means for the two treatments. The moderate degree
of overlap, best seen by looking
at the lower middle portion of the panel, is suggestive
of less than ideal power.




The leftmost column shows the situation where the true
common variance is now 25 instead of 100 (i.e., the s.d. is
now 5 clicks instead of 10 clicks). This markedly
reduces the overlap, so the power is improved. How
did we reduce the common variance? Either by
reducing some of the four sources of variation or
by using a within-subjects design, or by using a blocking
variable or quantitative control variable. Specific
examples for reducing the sources of variation include
using only television-related websites, controlling the
position of the ad on the website, and using only one
font size for the ad. (Presumably for this experiment
there is no measurement error.) A within-subjects design
would, e.g., randomly present one font from 7:00 to 7:30 and
the other font from 7:30 to 8:00 for each website
(which is considered the “subject” here), but would need
a different analysis than the independent-samples t-test.
Blocking would involve, e.g., using some important
(categorical)
aspect of the news websites, such as television-related
vs. non-television related as a second factor whose
p-value is not of primary interest (in a 2-way
ANOVA). We would guess
that for each level of this second variable the
variance of the outcome for either treatment would
be smaller than if we had ignored the television-relatedness
factor. Finally using a quantitative variable like
site volume (hit count) as an additional explanatory variable
in an ANCOVA setting would similarly reduce variability
(i.e., σ2) at each hit count value.




The third column shows what happens if the sample size
is increased. Increasing the sample size four-fold
turns out to have the same effect on the confidence
curves, and therefore the power, as reducing the
variance four-fold. Of course, increasing sample size
increases cost and duration of the study.




The fourth column shows what happens if the population
mean difference, sometimes called (unadjusted) effect size,
is increased. Although the sampling distributions are not
narrowed, they are more distantly separated, thus reducing
overlap and increasing the power. In this example, it
is hard to see how the difference between the two fonts
can be made larger, but in other experiments it is
possible to make the treatments more different (i.e.,
make the active treatment, but not the control, “stronger”)
to increase power.




Here is a description of another experiment with examples
of how to improve the power. We want to test the effect
of three kinds of fertilizer on plant growth (in grams). First
we consider reducing the common variability
of final plant weight for each fertilizer type. We can reduce
measurement error by using a high quality laboratory
balance instead of a cheap hardware store scale. And
we can have a detailed, careful procedure for washing
off the dirt from the roots and removing excess water
before weighing. Subject-to-subject variation can
be reduced by using only one variety of plant and doing
whatever is possible to ensure that the plants are of
similar size at the start of the experiment. Environmental
variation can be reduced by assuring equal sunlight and
water during the experiment. And treatment application
variation can be reduced by carefully measuring and
applying the fertilizer to the plants. As mentioned
in section 8.5 reduction in
all sources of variation except measurement
variability tends to also reduce generalizability.




As usual, having more plants per fertilizer improves power,
but at the expense of extra cost.
We can also increase population mean differences by using
a larger amount of fertilizer and/or running the experiment
for a longer period of time. (Both of the latter ideas
are based on the assumption that the plants grow
at a constant rate proportional to the amount of
fertilizer, but with different rates per unit time
for the same amount of different fertilizers.)




A within-subjects design is not possible here, because a
single plant cannot be tested on more than one fertilizer
type.




Blocking could be done based on different fields if the
plants are grown outside in several different fields,
or based on a subjective
measure of initial “healthiness” of the plants
(determined before randomizing plants to the different
fertilizers).
If the fertilizer is a source of, say, magnesium in
different chemical forms, and if the plants are grown
outside in natural soil, a possible control variable
is the amount of nitrogen in the soil near each plant.
Each of these blocking/control variables are expected
to affect the outcome, but are not of primary interest.
By including them in the means model, we are creating
finer, more homogeneous divisions of “the set of experimental
units with all explanatory variables set to the same values”.
The inherent variability of each of these sets of units,
which we call σ2 for any model, is smaller
than for the larger, less homogeneous sets that
we get when we don’t include these variables in our model.









	Reducing σ2, increasing n,
and increasing the spacing between population means will
all reduce the overlap of the sampling distributions of
the means, thus increasing power.










12.3 Specific researchers’ lifetime experiences



People often confuse the probability of a Type 1 error and/or
the probability of a Type 2 error with the probability that
a given research result is false. This section attempts to
clarify the situation by looking at several specific (fake) researchers’
experiences over the course of their careers.




Remember that a given null hypothesis, H0, is
either true or false, but we can never know this truth for sure.
Also, for a given experiment, the standard decision rule tells
us that when p≤α we should reject the null hypothesis,
and when p>α we should retain it. But again, we can never
know for sure whether our inference is actually correct or incorrect.




Next we need to clarify the definitions of some common terms.
A “positive” result for an experiment means finding p≤α, which
is the situation for which we reject H0 and claim an interesting finding.
“Negative” means finding p>α, which is the situation for which we retain
H0 and therefore don’t have enough evidence to claim an interesting
finding. “True” means correct (i.e. reject H0 when H0 is false
or retain H0 when H0 is true), and “false” mean incorrect. These
terms are commonly put together, e.g., a false positive refers to the
case where p≤0.05, but the null hypothesis is actually true.




Here are some examples in which we pretend that we have omniscience,
although the researcher in question does not. Let α=0.05
unless otherwise specified.





	
1. 

Neetika Null studies the effects of various chants on blood sugar level.
Every week she studies 15 controls and 15 people who chant a particular word from
the dictionary for 5 minutes. After 1000 weeks (and 1000 words) what is her Type 1
error rate (positives among null experiments), Type 2 error rate (negatives among non-null
experiments) and power (positives among non-null experiments)? What percent of her
positives are true? What percent of her negatives are true?




This description suggests that the null hypothesis is always true, i.e. I assume
that chants don’t change blood sugar level, and certainly not within five minutes.
Her Type 1 error rate is
α=0.05. Her Type 2 error rate (sometimes called β) and power are
not applicable because no alternative hypothesis is ever true.
Out of 1000 experiments, 1000 are null in the sense that the null hypothesis
is true. Because the probability of getting
p≤0.05 in an experiment where the null hypothesis is true is 5%,
she will see about 50 positive and 950 negative experiments.
For Neetika, although she does not know it, every time
she sees p≤0.05 she will mistakenly reject the null hypothesis, for a 100%
error rate. But every time she sees p>0.05 she will correctly retain the
null hypothesis for an error rate of 0%.





	
2. 

Stacy Safety studies the effects on glucose levels
of injecting cats with subcutaneous
insulin at different body locations. She divides the surface
of a cat into 1000 zones and each week studies injection of 10 cats with
water and 10 cats with insulin in a different zone.




This description suggests that the null hypothesis is always false. Because
Stacy is studying a powerful treatment and will have a small
measurement error, her power will be large; let’s use 80%=0.80 as an example.
Her Type 2 error rate will be β=1-power=0.2, or 20%.
Out of 1000 experiments, all 1000 are non-null, so Type 1 error
is not applicable. With a power of 80% we
know that each experiment has an 80% chance of giving p≤0.05 and a 20%
chance of given p>0.05. So we expect around 800 positives and
200 negatives. Although Stacy doesn’t know it, every time
she sees p≤0.05 she will correctly reject the null hypothesis, for a 0%
error rate. But every time she sees p>0.05 she will mistakenly retain the
null hypothesis for an error rate of 100%.





	
3. 

Rima Regular works for a large pharmaceutical firm performing initial screening
of potential new oral hypoglycemic drugs. Each week for 1000 weeks she gives 100
rats a placebo and 100 rats a new drug, then tests blood sugar. To increase power
(at the expense of more false positives) she chooses α=0.10.




For concreteness let’s assume that the null hypothesis is true 90% of the time.
Let’s consider the situation where among the 10% of candidate drugs that work,
half have a strength that corresponds to power equal to 50% (for the given n
and σ2) and the other half correspond to power equal to 70%.




Out of 1000 experiments, 900 are null with around 0.10*900=90 positive
and 810 negative experiments.
Of the 50 non-null experiments with 50% power, we expect around 0.50*50=25 positive
and 25 negative experiments.
Of the 50 non-null experiments with 70% power, we expect around 0.70*50=35 positive
and 15 negative experiments. So among the 100 non-null experiments (i.e., when
Rima is studying drugs that really work) 25+35=60 out of 100 will correctly give
p≤0.05. Therefore Rima’s average power is 60/100 or 60%.





Although Rima doesn’t know it, when she sees p≤0.05 and rejects the
null hypothesis, around 60/(90+60)=0.40=40% of the time she is correctly
rejecting the null hypothesis, and therefore 60% of the time when she
rejects the null hypothesis she is making a mistake. Of the 810+40=850
experiments for which she finds p>0.05 and retains the null hypothesis,
she is correct 810/(810+40)=0.953=95.3% of time and she makes an error 4.7%
of the time. (Note that this value of approximately 95% is only a coincidence,
and not related to α=0.05; in fact α=0.10 for this problem.)




These error rates are not too bad given Rima’s goals,
but they are not very intuitively related to
α=0.10 and power equal to 50 or 70%.
The 60% error rate among drugs that are flagged for further
study (i.e., have p≤0.05) just indicates that some time
and money will be spent to find out which of these drugs are
not really useful. This
is better than not investigating a drug that really works.
In fact, Rima might make even
more money for her company if she raises α to 0.20, causing
more money to be wasted investigating truly useless drugs, but preventing
some possible money-making drugs from slipping through as useless.
By the way, the overall error rate is (90+40)/1000=13%.










Conclusion: For your career, you cannot know the chance that a negative
result is an error or the chance that a positive result is an error. And these
are what you would really like to know! But you
do know that when you study “ineffective” treatments (and perform an
appropriate statistical analysis) you have only a 5%
chance of incorrectly claiming they are “effective”.
And you know that the more you increase the power of an experiment,
the better your chances are of detecting a truly effective treatment.




It is worth knowing something about the relationship of power to confidence
intervals. Roughly, wide confidence intervals correspond to experiments
with low power, and narrow confidence
intervals correspond to experiments with good power.









	The error rates that experimenters are really interested
in, i.e., the probability that I am making an error
for my current experiment, are not knowable. These error
rates differ from both α and β=1-power.










12.4 Expected Mean Square



Although a full treatment of “expected mean squares” is quite technical,
a superficial understanding is not difficult and greatly aids understanding of
several other topics. EMS tells us what values we will get for any given mean
square (MS) statistic under either the null or an alternative distribution,
on average over repeated experiments.




If we have k population treatment means, we can define
μ¯=∑i=1kμik
as the mean of the population treatment means, and λi=μi-μ¯
(where λ is read “lambda”),
and σA2=∑i=1kλi2k-1.
The quantity σA2 is not a variance, because it is calculated from fixed
parameters rather than from random quantities, but it obviously is a “variance-like”
quantity. Notice that we can express our usual null hypothesis as H0:σA2=0
because if all of the μ’s are equal, then all of the λ’s equal zero.
We can similarly define σB2 and σA*B2 for a 2 way design.




Let σe2 be the true error variance (including subject-to-subject, treatment
application, environmental, and measurement variability). We haven’t been using the
subscript “e” up to this point, but here we will use it to be sure we can distinguish
various symbols that all include σ2. As usual, n is the number
of subjects per group. For 2-way ANOVA, a (instead of k) is the number of levels
of factor A and b is the number of levels of factor B.




The EMS tables for one-way and two-way designs are shown in table
12.1 and 12.2.




Remember that all of the between-subjects ANOVA F-statistics are
ratios of mean squares with various means squares in the numerator
and with the error mean square in the denominator.
From the EMS tables, you can see why, for either design, under the null hypothesis,
the F ratios that we have been using are appropriate and have “central F”
sampling distributions (mean near 1). You can also see why, under any alternative,
these F ratios tend to get bigger. You can also see that power can
be increased by increasing the spacing between population means (“treatment strength”)
via increased values of |λ|, by increasing n, or by decreasing σe2.
This formula also demonstrates that the value of σe2 is irrelevant to
the sampling distributing of the F-statistic (cancels out)
when the null hypothesis is true, i.e., σA2=0.







	Source of Variation
	MS
	EMS





	Factor A
	M⁢SA
	σe2+n⁢σA2



	Error (residual)
	M⁢Serror
	σe2





Table 12.1: Expected mean squares for a one-way ANOVA.





	Source of Variation
	MS
	EMS





	Factor A
	M⁢SA
	σe2+b⁢n⁢σA2



	Factor B
	M⁢SB
	σe2+a⁢n⁢σB2



	A*B interaction
	M⁢SA*B
	σe2+n⁢σA⁢B2



	Error (residual)
	M⁢Serror
	σe2





Table 12.2: Expected mean squares for a two-way ANOVA.







	For the mathematically inclined, the EMS formulas give
a good idea of what aspects of an experiment affect the F ratio.










12.5 Power Calculations



In case it is not yet obvious, I want to reiterate why it is
imperative to calculate power for your experiment before
running it. It is possible and common for experiments to
have low power, e.g., in the range of 20 to 70%. If you are
studying a treatment which is effective in changing the
population mean of your outcome, and your
experiment has, e.g., 40% power for detecting the true
mean difference, and you conduct the experiment
perfectly and analyze it appropriately, you have a 60%
chance of getting a p-value of greater than 0.05, in which
case you will erroneously conclude that the treatment is
ineffective. To prevent wasted experiments, you should
calculate power and only perform the experiment if there
is a reasonably high power.




It is worth noting that you will not be able to calculate
the “true” power of your experiment. Rather you
will use a combination of mathematics and judgement to make
a useful estimation of the power.




There are an infinite number of alternative hypothesis.
For any of them we can
increase power by 1) increasing n (sample size) or 2) decreasing
experimental error (σe2). Also, among the alternatives, those
with larger effect sizes (population mean differences) will have more power.
These statements derive directly
from the EMS interpretive form of the F equation (shown here for 1-way ANOVA):







	
	Expected Value of F=Expected value of ⁢M⁢SAM⁢Serror≈σe2+n⁢σA2σe2
	







Obviously increasing n or σA2 increases the average value of F.
Regarding the effect of changing σe2, a small example will make
this more clear. Consider the case where n⁢σA2=10 and σe2=10.
In this case the average F value is 20/10=2. Now reduce σe2 to 1.
In this case the average F value is 11/1=11, which is much bigger, resulting
in more power.




In practice, we try to calculate the power of an experiment for one or a few
reasonable alternative hypotheses. We try not to get carried away by considering
alternatives with huge effects that are unlikely to occur. Instead we try to
devise alternatives that are fairly conservative and reflect what might really happen
(see the next section).




What we need to know to calculate power?
Beyond k and alpha (α), we need to know sample size (which we may
be able to increase if we have enough resources), an estimate of
experimental error (variance or σe2, which we may be able to reduce,
possibly in a trade-off with generalizability),
and reasonable estimates of true effect sizes.




For any set of these three things, which we will call an “alternative
hypothesis scenario”, we can find the sampling distribution of F under that
alternative hypothesis. Then it is easy to find the power.




We often estimate σe2 with residual MS, or error MS (MSE), or
within-group MS from previous similar
experiments. Or we can use the square of the actual or guessed standard
deviation of the outcome measurement for a number of subjects exposed to
the same (any) treatment. Or, assuming Normality, we can use expert knowledge
to guesstimate
the 95% range of a homogenous group of subjects, then
estimate σe as that range divided by 4. (This works because 95%
of a normal distribution is encompassed by mean plus or minus 2 s.d.) A
similar trick is to estimate σe as 3/4 of the IQR (see Section
4.2.4), then square that quantity.




Be careful! If you use too large (pessimistic) of a value for σe2 your computed
power will be smaller than your true power. If you use too small (optimistic) of a
value for σe2 your computed power will be larger than your true power.






12.6 Choosing effect sizes



As mentioned above, you want to calculate power for “reasonable”
effect sizes that you consider achievable. A similar goal
is to choose effects sizes such that smaller effects would
not be scientifically interesting. In either case, it is
obvious that choosing effect sizes is not a statistical
exercise, but rather one requiring subject matter or
possibly policy level expertise.




I will give a few simple examples here, choosing subject
matter that is known to most people or easily
explainable. The first example is for a categorical
outcome, even though we haven’t yet discussed statistical
analyses for such experiments. Consider an experiment to
see if a certain change in a TV commercial for a political
advisor’s candidate will make a difference
in an election. Here is the kind of thinking that goes
into defining the effect sizes for which we will calculate
the power. From prior subject matter knowledge, he estimate
that about one fourth of the voting public will see the
commercial. He also
estimates that a change of 1% in the total vote will be enough
to get him excited that redoing this commercial is a worthwhile
expense.
So therefore an effect size of 4% difference in a favorable
response towards his candidate is the effect size that
is reasonable to test for.




Now consider an example of a farmer who wants to know if
it’s worth it to move her tomato crop in the future to
a farther, but more sunny slope. She estimates that
the cost of initially preparing the field is $2000, the yearly
extra cost of transportation to the new field is $200,
and she would like any payoff to happen within 4 years.
The effect size is the difference in crop yield in pounds
of tomatoes per plant. She can put 1000 plants in either
field, and a pound of tomatoes sells for $1 wholesale.
So for each 1 pound of effect size, she gains $1000 per
year. Over 4 years she needs to pay off $2000+4($200)=$2800.
She concludes that she needs to have good power, say 80%,
to detect an effect size of 2.8/4=0.7 additional pounds of tomatoes
per plant (i.e., a gain of $700 per year).




Finally consider a psychologist who wants to test the effects
of a drug on memory. She knows that people typically
remember 40 out of 50 items on this test. She really wouldn’t
get too excited if the drug raised the score to 41, but
she certainly wouldn’t want to miss it if the drug raised
the score to 45. She decides to “power her study” for
μ1=40 vs. μ2=42.5. If she adjusts n to get
80% power for these population test score means, then
she has an 80% chance of getting p≤0.05 when the true
effect is a difference of 2.5, and some larger (calculable)
power for a difference of 5.0, and some smaller (calculable)
non-zero, but less than ideal, power for a difference of 1.0.




In general, you should consider the smallest effect size
that you consider interesting and try to achieve reasonable
power for that effect size, while also realizing that there
is more power for larger effects and less power for smaller
effects. Sometimes it is worth calculating power for
a range of different effect sizes.






12.7 Using n.c.p. to calculate power



The material in this section is optional.




Here we will focus on the simple case of power in a one-way
between-subjects design. The “manual” calculation steps
are shown here. Understanding these may aid your understanding
of power calculation in general, but ordinarily you will
use a computer (perhaps a web applet) to calculate power.




Under any particular alternative distribution the numerator of F is inflated,
and F follows the non-central F distribution with k-1 and k⁢(n-1) degrees of
freedom and with “non-centrality parameter” equal to:




	
	n.c.p.=n⋅∑i=1kλi2σe2
	




where n is the proposed number of subjects in each of the groups we are
comparing. The bigger the n.c.p., the more the alternative sampling distribution
moves to the right and the more power we have.




Manual calculation example: Let α=0.10 and n=11 per cell.
In a similar experiment MSE=36. What is the power for the alternative
hypothesis HA:μ1=10, μ2=12, μ3=14, μ4=16?





	
1. 

Under the null hypothesis the F-statistic will follow the central F distribution
(i.e., n.c.p.=0) with k-1=3 and k⁢(n-1)=40 df. Using a computer or F table
we find Fcritical=2.23.





	
2. 

Since μ¯=(10+12+14+16)/4=13, the λ’s are -3,-1,1,3, so the
non-centrality parameter is







	
	11⁢(9+1+1+9)36=6.11.
	








	
3. 

The power is the area under the non-central F curve with 3,40 df and n.c.p.=6.11
that is to the right of 2.23. Using a computer or non-central F table, we find
that the area is 0.62. This means that we have a 62% chance of rejecting
the null hypothesis if the given alternate hypothesis is true.





	
4. 

An interesting question is what is the power if we double the sample
size to 22 per cell. dferror
is now 21*4=84 and Fcritical
is now 2.15. The n.c.p.=12.22. From the appropriate non-central F distribution
we find
that the power increases to 90%.










In practice we will use a Java applet to calculate power.





In R, the commands that give the values in the above example are:
qf(1-0.10, 3, 40) # result is 2.226092 for alpha=0.10
1-pf(2.23, 3, 40, 6.11) # result is 0.6168411
qf(1-0.10, 3, 84) # result is 2.150162
1-pf(2.15,3, 84, 12.22) # result is 0.8994447
In SPSS, put the value of 1-α (here, 1-0.10=0.90) in a
spreadsheet cell, e.g., in a
column named “P”. The use Transform/Compute to create
a variable called, say, ”Fcrit”, using the formula
“IDF.F(P,3,40)”. This will give 2.23. The use
Transform/Compute to create a variable called, say,
“power”, using the formula “1-NCDF.F(Fcrit,3,40,6.11)”.
This will give 0.62.






12.8 A power applet



The Russ Lenth power applet is very nice way to calculate
power. It is available on the web at http://www.cs.uiowa.edu/~rlenth/Power.
If you are using it more that occasionally you should copy the applet
to your website.
Here I will cover ANOVA and regression. Additional topic are
in future chapters.





12.8.1 Overview



To get started with the Lenth Power Applet, select a method such
as Linear Regression or Balanced ANOVA, then click the “Run
Selection” button. A new window will open with the applet for
the statistical method you have chosen. Every time you see
sliders for entering numeric values, you may also click the
small square at upper right to change to a text box form for
entering the value. The Help menu item explains what each
input slider or box is for.






12.8.2 One-way ANOVA



This part of the applet works for one-way and two-way balanced
ANOVA. Remember that balanced indicates equal numbers of subjects
per group. For one-way ANOVA, leave the “Built-in models”
drop-down box at the default value of “One-way ANOVA”.



[image: ]
Figure 12.3: One-way ANOVA with Lenth power applet.


Enter “n” under “Observations per factor combination”, and click
to study the power of “F tests”. A window
opens that looks like figure 12.3.




On the left, enter “k” under
“levels[treatment] (Fixed)”. Under “n[Within] (Random)” you can change n.




On the right enter σe (σ) under “SD[Within]”
(on the standard deviation, not variance scale)
and α under “Significance level”. Finally you need
to enter the “effect size” in the form of “SD[treatment]”.
For this applet the formula is




	
	SD⁢[treatment]=∑i=1kλi2k-1
	




where λi is μi-μ¯ as in section 12.4.




For HA:μ1=10, μ2=12, μ3=14, μ4=16, μ¯=13
and λ1=-3, λ2=-1, λ3=+1, λ4=+3.




	
	SD⁢[treatment]
	=
	∑i=1kλi2k-1
	



	
	
	=
	(-3)2+(-1)2+(+1)2+(+3)23
	



	
	
	=
	20/3
	



	
	
	=
	2.58
	







You can also use the menu item “SD Helper” under Options to graphically
set the means and have the applet calculate SD[treatment].




Following the example of section 12.7 we can
plug in SD[treatment]=2.58, n=11, and σe=6 to
get power=0.6172, which matches the manual calculation of section
12.7




At this point it is often useful to make a power plot. Choose Graph
under the Options menu item. The most useful graph has “Power[treatment]”
on the y-axis and “n[Within]” on the x-axis.
Continuing with the above example I would choose to plot
power “from” 5 “to” 40 “by” 1.
When I click “Draw”, I see the power for this experiment for different
possible sample sizes. An interesting addition can be obtained by
clicking “Persistent”, then changing “SD[treatment]” in the main
window to another reasonable value, e.g., 2 (for
HA:μ1=10, μ2=10, μ3=10, μ4=14), and clicking
OK. Now the plot shows power as a function of n for two (or more)
effect sizes. In Windows you can use the Alt-PrintScreen key combination to
copy the plot to the clipboard, then paste it into another
application. The result is shown in figure 12.4.
The lower curve is for the smaller value of SD[treatment].
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Figure 12.4: One-way ANOVA power plot from Lenth power applet.




12.8.3 Two-way ANOVA without interaction



Select “Two-way ANOVA (additive model)”. Click “F tests”.
In the new window, on the left enter the number of levels
for each of the two factors under “levels[row] (Fixed)”
and “levels[col] (Fixed)”. Enter the number of subjects
for each cell under “Replications (Random)”.




Enter the estimate of σ under “SD[Residual]” and
the enter the “Significance level”.




Calculate “SD[row]” and “SD[col]” as in the one-way ANOVA
calculation for “SD[treatment]”, but the means for either
factor are now averaged over all levels of the other factor.




Here is an example. The table shows cell population means
for each combination of levels of the two treatment factors
for which additivity holds (e.g., a profile plot would
show parallel lines).







	Row factor / Column Factor
	Level 1
	Level 2
	Level 3
	Row Mean



	Level 1
	10
	20
	15
	15



	Level 2
	13
	23
	18
	18



	Col. Mean
	11.5
	21.5
	16.5
	16.5








Averaging over the other factor we see that for the column
means, using some fairly obvious invented notation we get
HC⁢o⁢l⁢A⁢l⁢t:μC⁢1=11.5,μC⁢2=21.5,μC⁢3=16.5.
The row means are HR⁢o⁢w⁢A⁢l⁢t:μR⁢1=15,μR⁢2=18.




Therefore SD[row] is the square root of ((-1.5)2+(+1.5)2)/1
which is 2.12. The value of SD[col] is the square root of
((-5)2+(+5)2+(0)2)/2 which equals 5. If we choose α=0.05,
n=8 per cell, and estimate σ at 8, then the power is
a not-so-good 24.6% for HR⁢o⁢w⁢A⁢l⁢t, but
a very good 87.4% for HC⁢o⁢l⁢A⁢l⁢t.







12.8.4 Two-way ANOVA with interaction



You may someday find it useful to calculate the power for
a two-way ANOVA interaction. It’s fairly complicated!




Select “Two-way ANOVA”. Click “F tests”.
In the new window, on the left enter the number of levels
for each of the two factors under “levels[row] (Fixed)”
and “levels[col] (Fixed)”. Enter the number of subjects
for each cell under “Replications (Random)”.




Enter the estimate of σ under “SD[Residual]” and
the enter the “Significance level”.




The treatment effects are a bit more complicated here. Consider
a table of cell means in which additivity does not hold.







	Row factor / Column Factor
	Level 1
	Level 2
	Level 3
	Row Mean



	Level 1
	10
	20
	15
	15



	Level 2
	13
	20
	18
	17



	Col. Mean
	11.5
	20.0
	16.5
	16








For the row effects, which come from the row means of
15 and 17, we subtract 16 from each to get the λ
values of -1 and 1, then find SD[row]=(-1)2+(1)21=1.41.




For the column effects, which come from the column means of
11.5, 20.0, and 16.5, we subtract their common mean of 16
to get λ values of -4.5, 4.0, and 0.5, and then find that
SD[col]=(-4.5)2+(4.0)2+(0.5)22=4.27.




To calculate “SD[row*col]” we need to calculate for each
of the 6 cells, the value of μi⁢j-(μ¯+λi.+λ.j)
where μi⁢j indicates the it⁢h row and jt⁢h column,
and λi. is the λ value for the it⁢h row
mean, and λ.j is the λ value for the jt⁢h
column mean. For example, for the top left cell we get 10-(16-4.5-1.0)=-0.5.
The complete table is







	Row factor / Column Factor
	Level 1
	Level 2
	Level 3
	Row Mean



	Level 1
	-0.5
	1.0
	-0.5
	0.0



	Level 2
	+0.5
	-1.0
	0.5
	0.0



	Col. Mean
	0.0
	0.0
	0.0
	0.0








You will know you constructed the table correctly if all of the
margins are zero. To find SD[row*col], sum the squares of
all of the (non-marginal) cells, then divide by (r-1) and (c-1)
where r and c are the number of levels in the row and column
factors, then take the square root. Here we get
SD[row*col]=0.25+1.0+0.25+0.25+1.0+0.251⋅2=1.22.




If we choose α=0.05,
n=7 per cell, and estimate σ at 3, then the power is
a not-so-good 23.8% for detecting the interaction (gettin an
interaction p-value less than 0.05).
This is shown in figure 12.5.
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Figure 12.5: Two-way ANOVA with Lenth power applet.




12.8.5 Linear Regression



We will just look at simple linear regression (one explanatory variable).
In addition to the α, n, and σ, and the effect size
for the slope, we need to characterize the spacing of the explanatory
variable.




Choose “Linear regression” in the applet and the Linear Regression dialog
shown in figure 12.6 appears. Leave “No. of predictors”
(number of explanatory variables) at 1, and set “Alpha”, “Error SD” (estimate
of σ), and “(Total) Sample size”.




Under “SD of x[j]” enter the
standard deviation of the x values you will use. Here we use the fact
that the spread of any number of repetitions of a set of values is the same as just
one set of those values. Also, because the x values are fixed, we use
n instead of n-1 in the denominator of the standard deviation formula.
E.g., if we plan to use 5 subjects each at doses, 0, 25, 50, and 100 (which
have a mean of 43.75), then
SD of x[j] = (0-43.75)2+(25-43.75)2+(50-43.75)2+(100-43.75)24=36.98.




Plugging in this value and σ=30, and a sample size of 3*4=12, and an
effect size of beta[j] (slope) equal to 0.5, we get power = 48.8%, which
is not good enough.



[image: ]
Figure 12.6: Linear regression with Lenth power applet.







	In a nutshell: Just like the most commonly used value for alpha is 0.05, you will find that
(arbitrarily) the most common approach people take is to find the value of n that
achieves a power of 80% for some specific, carefully chosen alternative hypothesis.
Although there is a bit of educated guesswork in calculating
(estimating) power, it is strongly advised to make some power calculations before
running an experiment to find out if you have enough power to make running the
experiment worthwhile.































































Chapter 13 Contrasts and Custom Hypotheses



Contrasts ask specific questions as opposed to the general
ANOVA null vs. alternative hypotheses.




In a one-way ANOVA with a k level factor, the null hypothesis is
μ1=⋯=μk, and the alternative is that at least one
group (treatment) population mean of the outcome
differs from the others. If k=2, and the null hypothesis
is rejected we need only look at the sample means to see which
treatment is “better”. But if k>2, rejection of the null
hypothesis does not give the full information of interest. For
some specific group population means we would like to know if
we have sufficient evidence that they differ from certain other
group population means. E.g., in a test of the effects of control
and two active treatments to increase vocabulary, we might find
that based on a the high value for the F-statistic we
are justified in rejecting the null hypothesis μ1=μ2=μ3.
If the sample means of the outcome are 50, 75 and 80 respectively,
we need additional testing to answer specific questions like
“Is the control population mean lower than the average of the
two active treatment population means?” and “Are the two
active treatment population means different?” To answer
questions like these we frame “custom” hypotheses, which
are formally expressed as contrast hypothesis.








Comparison and analytic comparison are other synonyms for contrast.





13.1 Contrasts, in general



A contrast null hypothesis compares two population means or
combinations of population means.
A simple contrast hypothesis compares two
population means, e.g. H0:μ1=μ5. The corresponding
inequality is the alternative hypothesis: H1:μ1≠μ5.




A contrast null hypotheses that has multiple population means on
either or both sides of the equal sign is called a
complex contrast hypothesis. In the vast majority of practical
cases, the multiple population means are combined as their mean,
e.g., the custom null hypothesis
H0:μ1+μ22=μ3+μ4+μ53
represents a test of the equality of the average of the first two
treatment population means to the average of the next
three. An example where this
would be useful and interesting is when we are studying
five ways to improve vocabulary, the first two of which are
different written methods and the last three of which are
different verbal methods.




It is customary to rewrite the null hypothesis with all of the
population means on one side of the equal sign and a zero on the
other side. E.g., H0:μ1-μ5=0 or
H0:μ1+μ22-μ3+μ4+μ53=0.
This mathematical form, whose left side is checked for equality
to zero is the standard form for a contrast.
In addition to hypothesis testing, it is also often
of interest to place a confidence interval around a contrast
of population
means, e.g., we might calculate that
the 95% CI for μ3-μ4 is [-5.0, +3.5].




As in the rest of classical statistics, we proceed by finding
the null sampling distribution of the contrast statistic.
A little bit of formalism is needed so that we can enter the
correct custom information into a computer program, which
will then calculate the contrast statistic (estimate of
the population contrast), the standard error of the
statistic, a corresponding t-statistic, and the appropriate
p-value. As shown later, this process only works
under the special circumstances called “planned
comparisons”; otherwise it requires some modifications.




Let γ (gamma) represent the population contrast.
In this section, will use an example from a single
six level one-way ANOVA, and use subscripts
1 and 2 to distinguish two specific contrasts.
As an example of a simple
(population) contrast, define γ1 to be μ3-μ4,
a contrast
of the population means of the outcomes for the third
vs. the fourth treatments. As an example of a complex
contrast let γ2 be
μ1+μ22-μ3+μ4+μ53,
a contrast of the population mean of the outcome for the first
two treatments to the population mean of the outcome for the
third through fifth treatments. We can write the
corresponding hypothesis as
H01:γ1=0,HA⁢1:γ1≠0 and
H02:γ2=0,HA⁢2:γ2≠0.




If we call the corresponding estimates, g1 and g2 then
the appropriate estimates are g1=y¯3-y¯4 and
g2=y¯1+y¯22-y¯3+y¯4+y¯53.
In the hypothesis testing situation, we are testing whether
or not these estimates are consistent with the corresponding
null hypothesis. For a confidence interval on a particular
population contrast (γ), these estimates will be at the
center of the confidence interval.




In the chapter on probability theory, we saw that the
sampling distribution of any of the sample means from
a (one treatment) sample of size n using
the assumptions of Normality, equal variance, and independent
errors is y¯i∼N⁢(μi,σ2/n), i.e.,
across repeated experiments, a sample mean is
Normally distributed with the “correct” mean and the
variance equal to the common group variance reduced by
a factor of n. Now we need to find the sampling
distribution for some particular combination of sample means.




To do this, we need to write the contrast in “standard form”.
The standard form involves writing a sum with one term for
each population mean (μ), whether or not it is
in the particular contrast, and with a single number,
called a contrast coefficient in front of each
population mean. For our examples we get:




	
	γ1=(0)⁢μ1+(0)⁢μ2+(0)⁢μ3+(1)⁢μ4+(-1)⁢μ5+(0)⁢μ6
	




and





	
	γ2=(1/2)⁢μ1+(1/2)⁢μ2+(-1/3)⁢μ3+(-1/3)⁢μ4+(-1/3)⁢μ5+(0)⁢μ6.
	







In a more general framing of the contrast we would write




	
	γ=C1⁢μ1+⋯+Ck⁢μk.
	







In other words, each contrast can be summarized by specifying its
k coefficients (C values). And it turns out that the k coefficients
are what most computer programs want as input when you specify
the contrast of a custom null hypothesis.




In our examples, the coefficients (and computer input) for null
hypothesis H01 are [0, 0, 1, -1, 0, 0], and for H02 they
are [1/2, 1/2, -1/3, -1/3, -1/3, 0]. Note that the zeros are
necessary. For example, if you just entered [1, -1], the computer
would not understand which pair of treatment population means
you want it to compare. Also, note that any valid set of contrast
coefficients must add to zero.




It is OK to multiply the set of coefficients by any
(non-zero) number. E.g., we could also specify H02
as [3, 3, -2, -2, -2, 0] and [-3, -3, 2, 2, 2, 0]. These
alternate contrast coefficients give the same p-value, but
they do give different estimates of γ, and that must
be taken in to account when you interpret confidence intervals.
If you really want to get a confidence interval on the difference
in average group population outcome means for the first two
vs. the next three treatments, it will be directly interpretable
only in the fraction form.




A positive estimate
for γ indicates higher means for the groups with
positive coefficients compared to those with negative coefficients,
while a negative estimate for γ indicates higher means for
the groups with negative coefficients compared to those with
positive coefficients









	To get a computer program to test a custom hypothesis,
you must enter the k coefficients that specify that hypothesis.








If you can handle a bit more math, read the theory behind contrast
estimates provided here.





The simplest case is for two independent random variables
Y1 and Y2 for which the population means are μ1 and μ2
and the variances are σ12 and σ22. (We allow
unequal variance, because even under the equal variance assumption,
the sampling distribution of two means, depends on their sample sizes,
which might not be equal.) In this
case it is true that E⁢(C1⁢Y1+C2⁢Y2)=C1⁢μ1+C2⁢μ2 and
Var⁢(C1⁢Y1+C2⁢Y2)=C12⁢σ12+C22⁢σ22. If
in addition, the distributions of the random variables are
Normal, we can conclude that the distribution of the linear
combination of the random variables is also Normal. Therefore
Y1∼N(μ1,σ12),Y2∼N(μ2,σ22),⇒C1Y1+C2Y2∼N(C1μ1+C2μ2,C12σ12+C22σ22).
We will also use the fact that if each of several independent random
variables has variance σ2, then the variance of a sample mean of
n of these has variance σ2/n.
From these ideas (and some algebra) we find that in a one-way ANOVA
with k treatments, where
the group sample means are independent, if we let σ2 be the
common population variance, and ni be the number of subjects
sampled for treatment i, then
Var⁢(g)=Var⁢(C1⁢Y1¯+⋯+Ck⁢Yk¯)=σ2⁢[∑i=1k(Ci2/ni)].
In a real data analysis, we don’t know σ2 so we substitute
its estimate, the within-group mean square. Then the square
root of the estimated variance is the standard error of the contrast
estimate, SE(g).
For any normally distributed quantity, g, which is an estimate
of a parameter, γ, we can construct a
t-statistic, (g-γ)/SE⁢(g). Then the sampling distribution
of that t-statistic will be that of the t-distribution with
df equal to the number of degrees of freedom in the standard
error (dfwithin).
From this we can make a hypothesis test using H0:γ=0, or
we can construct a confidence interval for γ, centered
around g.




For two-way (or higher) ANOVA without interaction, main effects
contrasts are constructed
separately for each factor, where the population means represent
setting a specific level for one factor and ignoring (averaging over)
all levels of the other factor.




For two-way ANOVA with interaction, contrasts are a bit more
complicated. E.g., if one factor is job classification (with k levels)
and the other factor is incentive applied (with m levels),
and the outcome is
productivity, we might be interested in comparing any
particular combination of factor levels to any other
combination. In this case, a one-way ANOVA with k⋅m
levels is probably the best way to go.




If we are only interested in comparing the size of the
mean differences for two particular levels of one factor across
two levels of the other factor, then we are more clearly
in an “interaction framework”, and contrasts written
for the two-way ANOVA make the most sense. E.g., if the
subscripts on mu represent the levels of the two factors,
we might be interested in a confidence interval on the
contrast (μ1,3-μ1,5)-(μ2,3-μ2,5).









	The contrast idea extends easily to two-way ANOVA
with no interaction, but can be more complicated if there is
an interaction.










13.2 Planned comparisons



The ANOVA module of most statistical computer packages allow
entry of custom hypotheses through contrast coefficients,
but the p-values produced are only valid under stringent
conditions called planned comparisons or planned contrasts
or planned custom hypotheses. Without meeting these conditions,
the p-values will be smaller than 0.05 more than 5% of the time,
often far more, when the null hypothesis is true (i.e., when
you are studying ineffectual treatments). In other words,
these requirement are needed to maintain the Type 1 error
rate across the entire experiment.




Note that for some situations, such as genomics and proteomics,
where k is very large, a better goal than trying to keep
the chance of making any false claim at only 5% is to reduce
the total fraction of positive claims that are false positive.
This is called control of the false discovery rate (FDR).




The conditions needed for planned comparisons are:


	
1. 

The contrasts are selected before looking at the results,
i.e., they are planned, not post-hoc (after-the-fact).





	
2. 

The tests are ignored if the overall null hypothesis
(μ1=⋯=μk) is not rejected in the ANOVA.





	
3. 

The contrasts are orthogonal (see below). This requirement
is often ignored, with relatively minor consequences.





	
4. 

The number of planned contrasts is no more than the
corresponding degrees of freedom (k-1, for one-way ANOVA).











The orthogonality idea is that each contrast should be
based on independent information from the other contrasts.
For the 36309 course, you can consider this paragraph optional.
To test for orthogonality of two contrasts for which the
contrast coefficients are C1⁢⋯⁢Ck and D1⁢⋯⁢Dk,
compute ∑i=1k(Ci⁢Di). If the sum is zero, then
the contrasts are orthogonal. E.g., if k=3, then
μ1-0.5⁢μ2-0.5⁢μ3 is orthogonal to μ2-μ3,
but not to μ1-μ2 because (1)(0)+(-0.5)(1)+(-0.5)(-1)=0, but
(1)(1)+(-0.5)(-1)+(-0.5)(0)=1.5.




To reiterate the requirements of planned comparisons, let’s
consider the consequences of breaking each requirement.
If you construct your contrasts after looking at your
experimental results, you will naturally choose to compare
the biggest and the smallest sample means, which suggests
that you are implicitly comparing all of the sample means
to find this interesting pair. Since each comparison has
a 95% chance of correctly retaining the null hypothesis
when it is true, after m independent tests you have a
0.95m chance of correctly concluding that there are
no significant differences when the null hypothesis is
true. As examples, for m=3, 5, and 10, the chance of
correctly retaining all of the null hypotheses are
86%, 77% and 60% respectively. Put another way,
choosing which groups to compare after looking at
results puts you at risk of making a false claim
14, 23 and 40% of the time respectively. (In reality
the numbers are often slightly better because of
lack of independence of the contrasts.)




The same kind of argument applies to looking at your
planned comparisons without first “screening” with
the overall p-value of the ANOVA. Screening protects
your Type 1 experiment-wise error rate, while lack
of screening raises it.




Using orthogonal contrasts is also required to maintain
your Type 1 experiment-wise error rate. Correlated
null hypotheses tend to make the chance of
having several simultaneous rejected hypotheses
happen more often than should occur when the null hypothesis
is really true.




Finally, making more than k-1 planned contrasts (or k-1 and m-1
contrasts for a two-way k×m ANOVA without interaction) increases
your Type 1 error because each additional test is an
additional chance to reject the null hypothesis incorrectly
whenever the null hypothesis actually is true.




Many computer packages, including SPSS, assume that for any
set of custom hypotheses that you enter you have already
checked that these four conditions apply. Therefore,
any p-value it gives you is wrong if you have not
met these conditions.









	It is up to you to make sure that your contrasts
meet the conditions of “planned contrasts”; otherwise
the computer package will give wrong p-values.








In SPSS, anything entered as “Contrasts” (in menus)
or “LMATRIX” (in Syntax, see Section 5.1)
is tested as if it is a planned contrast.




As an example, consider a trial of control vs. two active
treatments (k=3). Before running the experiment, we
might decide to test if the average population means
for the active treatments differs from the control, and
if the two active treatments differ from each other.
The contrast coefficients are [1, -0.5, -0.5] and [0, 1, -1].
These are planned before running the experiment. We
need to realize that we should only examine the contrast
p-values if the overall (between-groups, 2 df) F test
gives a p-value less than 0.05. The contrasts are orthogonal
because (1)(0)+(-0.5)(1)+(-0.5)(-1)=0. Finally, there are
only k-1=2 contrasts, so we have not selected too many.






13.3 Unplanned or post-hoc contrasts



What should we do if we want to test more than k-1
contrasts, or if we find an interesting difference that
was not in our planned contrasts after looking at our
results? These are examples of what is variously
called unplanned comparisons, multiple comparisons, post-hoc
(after-the-fact) comparisons, or data snooping. The
answer is that we need to add some sort of penalty to
preserve our Type 1 experiment-wise error rate. The
penalty can either take the form of requiring a larger
difference (g value) before an unplanned test is
considered “statistically significant”, or using
a smaller α value (or equivalently, using a bigger
critical F-value or critical t-value).




How big of a penalty to apply is mostly a matter of
considering the size of the “family” of comparisons
within which you are operating. (Amount of dependence
among the contrasts can also have an effect.) For
example, if you pick out the biggest and the smallest
means to compare, you are implicitly comparing all
pairs of means. In the field of probability, the symbol (ab)
(read a choose b) is used to indicate the number of
different groups of size b that can be formed from
a set of a objects. The formula is (ab)=a!b!⁢(a-b)!
where a!=a⋅(a-1)⁢⋯⁢(1) is read “a factorial”.
The simplification for pairs, b=2, is
(a2)=a!2!⁢(a-2)!=a⁢(a-1)/2. For example,
if we have a factor with 6 levels, there are 6(5)/2=15
different paired comparisons we can make.




Note that these penalized procedures are designed to
be applied without first looking at the overall
p-value.




The simplest, but often overly conservative penalty is the
Bonferroni correction. If m is the size of the family
of comparisons you are making, the Bonferroni procedure
says to reject any post-hoc comparison test(s) if
p≤α/m. So for k=6 treatment levels, you can
make post-hoc comparisons of all pairs while
preserving Type 1 error at 5% if you reject H0
only when p≤α/15=0.0033.




The meaning of conservative is that this procedure is often
more stringent than necessary, and using some other valid
procedure might show a statistically significant result in
some cases where the Bonferroni correction shows no statistical
significance.




The Bonferroni procedure is completely general. For example,
if we want to try all contrasts of the class “compare all pairs and
compare the mean of any two groups to any other single group”,
the size of this class can be computed, and the Bonferroni
correction applied. If k=5, there are 10 pairs, and for
each of these we can compare the mean of the pair to each of
the three other groups, so the family has 10*3+10=40 possible
comparisons. Using the Bonferroni correction with m=40 will
ensure that you make a false positive claim no more than
100α% of the time.




Another procedure that is valid specifically for comparing
pairs is the Tukey procedure. The mathematics will not
be discussed here, but the procedure is commonly available,
and can be used to compare any and all pairs of group population
means after seeing the results. For two-way ANOVA without
interaction, the Tukey procedure can be applied to each
factor (ignoring or averaging over the other factor).
For a k×m ANOVA with a significant interaction,
if the desired contrasts are between arbitrary cells
(combinations of levels of the two factors), the Tukey
procedure can be applied after reformulating the analysis
as a one-way ANOVA with k×m distinct (arbitrary)
levels. The
Tukey procedure is more powerful (less conservative) than
the corresponding Bonferroni procedure.




It is worth mentioning again here that none of these
procedures is needed for k=2. If you try to apply them,
you will either get some form of “not applicable” or
you will get no penalty, i.e., the overall μ1=μ2
hypothesis p-value is what is applicable.




Another post-hoc procedure is Dunnett’s test. This makes
the appropriate penalty correction for comparing
one (control) group to all other groups.




The total number of available post-hoc procedures is huge.
Whenever you see such an embarrassment of riches, you can
correctly conclude that there is some lack of consensus on
the matter, and that applies here. I recommend against
using most of these, and certainly it is very bad practice
to try as many as needed until you get the answer you want!





The final post-hoc procedure discussed here is the Scheffé
procedure. This is a very general, but conservative procedure.
It is applicable for the family of all possible contrasts!
One way to express the procedure is to consider the usual
uncorrected t-test for a contrast of interest. Square the
t-statistic to get an F statistic. Instead of the usual
F-critical value for the overall null hypothesis,
often written as F⁢(1-α,k-1,N-k), the penalized
critical F value for a post-hoc contrast is
(k-1)⁢F⁢(1-α,k-1,N-k). Here,
N is the total sample size for a one-way ANOVA,
and N-k is the degrees of freedom in the estimate of
σ2.
The critical F value for a Scheffé penalized contrast
can be obtained as (k-1)×qf⁢(0.95,k-1,N-k) in R or
from (k-1)×IDF.F⁢(0.95,k-1,N-k) in SPSS.
Although Scheffé is a choice in the SPSS Post-Hoc dialog
box, it doesn’t make much sense to choose this because
it only compares all possible pairs, but applies the
penalty needed to allow all possible contrasts.
In practice, the Scheffé penalty makes sense when
you see an interesting complex post-hoc contrast, and
then want to see if you actually have good evidence that
it is “real” (statistically significant).
You can either use the menu or syntax in SPSS to compute
the contrast estimate (g) and its standard error (SE(g)),
or calculate
these manually. Then find F=(g/SE⁢(g))2 and
reject H0 only if this value exceeds the Scheffé penalized
F cutoff value.




When you have both planned and unplanned comparisons (which
should be most of the time), it is not worthwhile (re-)examining
any planned comparisons that also show up in the list of
unplanned comparisons. This is because the unplanned comparisons
have a penalty, so if the contrast null hypothesis is rejected
as a planned comparison we already know to reject it,
whether or not it is rejected on the post-hoc list, and
if it is retained as a planned comparison, there is no
way it will be rejected when the penalty is added.









	Unplanned contrasts should be tested only after
applying an appropriate penalty to avoid a high chance
of Type 1 error. The most useful post-hoc procedures
are Bonferroni, Tukey, and Dunnett.










13.4 Do it in SPSS



SPSS has a Contrast button that opens a dialog box for specifying
planned contrasts and a PostHoc button that opens a dialog box for
specifying various post-hoc procedures. In addition, planned
comparisons can be specified by using the Paste button to
examine and extend the Syntax (see Section 5.1)
of a command to include one or more contrast calculations.





13.4.1 Contrasts in one-way ANOVA



Here we will examine planned and post-hoc contrast analyses
for an experiment with three levels of an independent variable
called “additive” (which is a chemical additive to a reaction, and
has nothing to do with additive vs. interaction model types). The
outcome is the number of hours until the reaction completes.
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Figure 13.1: One-way ANOVA contrasts dialog box.


For a k-level one-way (between-subjects) ANOVA,
accessed using Analyze/OneWayANOVA on the menus,
the Contrasts button opens the “One-Way ANOVA: Contrasts” dialog
box (see figure 13.1). From here you can
enter the coefficients for each planned contrast. For a given
contrast, enter the k coefficients that define any
given contrast into the box labeled “Coefficients:”
as a decimal number (no fractions allowed). Click the “Add” button
after entering each of the coefficients. For a k-level ANOVA, you
must enter all k coefficients, even if some are zero.
Then you should check if the
“Coefficient Total” equals 0.000. (Sometimes, due to rounding,
this might be slightly above or below 0.000.) If you have any
additional contrasts to add, click the Next button and repeat
the process. Click the Continue button when you are finished.
The figure shows a planned contrast for comparing the mean outcome (hours)
for additives 1 and 2 to the mean outcome for additive 3.




When entering contrast coefficients in one-way ANOVA, SPSS will
warn you and give no result if you enter more or less than the
appropriate number of coefficients. It will not warn you
if you enter more than k-1 contrasts, if your coefficients
do not add to 0.0, or if the contrasts are not orthogonal.
Also, it will not prevent you from incorrectly analyzing
post-hoc comparisons as planned comparisons.







	Contrast Coefficients





	
	additive



	Contrast
	1
	2
	3



	1
	0.5
	0.5
	-1



	2
	1
	-1
	0








	Contrast Tests





	
	Contr
	Value of
	Std.
	
	
	Sig.



	
	ast
	Contrast
	Error
	t
	df
	(2-tailed)



	hrs
	Assume
	1
	-0.452
	0.382
	-1.18
	47
	0.243



	
	equal variance
	2
	0.485
	0.445
	1.09
	47
	0.282



	
	Does not assume
	1
	-0.452
	0.368
	-1.23
	35.58
	0.228



	
	equal variance
	2
	0.485
	0.466
	1.04
	28.30
	0.307





Table 13.1: Contrast results for one-way ANOVA.


The results for this example are given in Table 13.1.
You should always look at the Contrast Coefficients table to verify
which contrasts you are testing. In this table, contrast 1, using
coefficients (0.5, 0.5, -1) is testing H01:μ1+μ22-μ3=0.
Contrast 2 with coefficients (1, -1, 0) is testing H02:μ1-μ2=0.




The Contrast Tests table shows the results. Note that “hrs” is the
name of the outcome variable. The “Value of the Contrast”
entry is the best estimate of the contrast. For example, the best estimate
of μ1-μ2 is 0.485. The standard error of this estimate (based on
the equal variance section) is 0.445 giving a t-statistic of 0.485/0.445=1.09,
which corresponds to a p-value of 0.282 using the t-distribution with 47 df.
So we retain the null hypothesis, and an approximate 95% CI for μ1-μ2
is 0.485±2×0.445=[-0.405,1.375]. If you have evidence of
unequal variance (violation of the equal variance assumption) you can
use the lower section which is labeled “Does not assume equal variances.”




In SPSS, the two post-hoc tests that make the most sense are Tukey HSD and
Dunnett. Tukey should be used when the only post-hoc testing is among all pairs
of population means. Dunnett should be used when the only post-hoc testing
is between a control and all other population means. Only one of these
applies to a given experiment. (Although the Scheffé test is useful
for allowing post-hoc testing of all combinations of population means,
turning that procedure on in SPSS does not make sense because it still only
tests all pairs, in which case Tukey is more appropriate.)







	Multiple Comparisons



	hrs



	Tukey HSD





	
	
	
	
	95% Confidence Interval



	(I)
	(J)
	Mean
	
	
	
	



	additive
	additive
	Difference (I-J)
	Std.Error
	Sig.
	Lower Bound
	Upper Bound



	1
	2
	0.485
	0.445
	0.526
	-0.593
	1.563



	
	3
	-0.209
	0.445
	0.886
	-1.287
	0.869



	2
	1
	-0.485
	0.445
	0.526
	-1.563
	0.593



	
	3
	-0.694
	0.439
	0.263
	-1.756
	0.367



	3
	1
	0.209
	0.445
	0.886
	-0.869
	1.287



	
	2
	0.694
	0.439
	0.263
	-0.367
	1.756








	Homogeneous Subsets



	hrs



	Tukey HSD



	
	
	Subset for



	
	
	alpha=0.05



	additive
	N
	1



	2
	17
	16.76



	1
	16
	17.244



	3
	17
	17.453



	Sig.
	
	0.270





Table 13.2: Tukey Multiple Comparison results for one-way ANOVA.


Table 13.2 shows the Tukey results for our example.
Note the two columns labeled I and J. For each combination of levels
I and J, the “Mean Difference (I-J)” column gives the mean difference
subtracted in that order. For example, the first mean difference,
0.485, tells us that the sample mean for additive 1 is 0.485 higher than
the sample mean for additive 2, because the subtraction is I (level 1)
minus J (level 2). The standard error of each difference is given.
This standard error is used in the Tukey procedure to calculate
the corrected p-value that is appropriate for post-hoc testing.
For any contrast that is (also) a planned contrast, you should ignore
the information given in the Multiple Comparisons table, and instead
use the information in the planned comparisons section of the output.
(The p-value for a planned comparison is smaller than for the corresponding
post-hoc test.)




The Tukey procedure output also gives a post-hoc 95% CI for each
contrast. Note again
that if a contrast is planned, we use the CI from the planned contrasts
section and ignore what is in the multiple comparisons section.
Contrasts that are made post-hoc (or analyzed using post-hoc procedures
because they do not meet the four conditions
for planned contrasts) have appropriately wider confidence intervals than
they would have if they were treated as planned contrasts.




The Homogeneous Subsets table presents the Tukey procedure results
in a different way. The levels of the factor are presented
in rows ordered by the sample means of the outcome. There
are one or more numbered columns that identify “homogeneous
subsets.” One way to read this table is to say that
all pairs are significantly different except those that
are in the same subset. In this example, with only one
subset, no pairs have a significant difference.
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Figure 13.2: Univariate contrasts dialog box.


You can alternately use the menu item Analyze/GeneralLinearModel/Univariate
for one-way ANOVA. Then the Contrasts button does not allow setting
arbitrary contrasts. Instead, there a fixed set of named planned
contrasts. Figure 13.2 shows the
“Univariate: Contrasts” dialog box. In this figure the
contrast type has been changed from the default “None” to
“Repeated”. Note the word “Repeated” under Factors
confirms that the change of contrast type has actually
been registered by pressing the Change button. Be sure
to also click the Change button whenever you change the
setting of the Contrast choice, or your choice will be ignored!
The pre-set contrast choices include “Repeated” which
compares adjacent levels, “Simple” which compares
either the first or last level to all other levels,
polynomial which looks for increasing orders of polynomial
trends, and a few other less useful ones. These are all
intended as planned contrasts, to be chosen before
running the experiment.



[image: ]
Figure 13.3: Univariate syntax window.


To make a custom set of planned contrasts in the Univariate
procedure, click the Paste button of the Univariate dialog
box. This brings up a syntax window with the SPSS
native commands that are equivalent to the menu choices
you have made so far (see Figure 13.3).
You can now insert some appropriate subcommands
to test your custom hypotheses. You can insert
the extra lines anywhere between the first line and
the final period. The lines that you would add to
the Univariate syntax to test H01:μ1-μ2+μ32=0
and H02:μ2-μ3=0 are:

 /LMATRIX = "first vs. second and third" additive 1 -1/2 -1/2
 /LMATRIX = "second vs. third" additive 0 1 -1





Note that you can type any descriptive phrase inside the quotes,
and SPSS will not (cannot) test if your phrase actually corresponds
to the null hypothesis defined by your contrasts. Also note
that fractions are allowed here. Finally, note that the name
of the factor (additive) precedes its list of coefficients.







	Custom Hypothesis Tests #1



	Contrast Results (K Matrix)



	
	Dependent



	Contrast
	
	hrs



	L1
	Contrast Estimate
	0.138



	
	Hypothesized Value
	0



	
	Difference(Estimate-Hypothesized)
	0.138



	
	Std. Error
	0.338



	
	Sig.
	0.724



	
	95% Confidence Interval
	Lower Bound
	-0.642



	
	for Difference
	Upper Bound
	0.918



	Based on user-specified contrast coefficients: first vs. second and third





Table 13.3: Planned contrast in one-way ANOVA using LMATRIX syntax.
.



The output of the first of these LMATRIX subcommands is shown
in Table 13.3. This gives
the p-value and 95%CI appropriate for a planned contrast.






13.4.2 Contrasts for Two-way ANOVA



Contrasts in two-way (between-subjects) ANOVA without interaction work
just like in one-way ANOVA, but with separate contrasts for each factor.
Using the Univariate procedure on the Analyze/GeneralLinearModel menu,
if one or both factors has more than two levels, then pre-defined
planned contrasts are available with the Contrasts button, post-hoc
comparisons are available with the Post-Hoc button, and arbitrary
planned contrasts are available with Paste button and LMATRIX
subcommands added to the Syntax.




For a k×m two-way ANOVA with interaction, two types of contrasts
make sense. For planned comparisons, out of the k⁢m total treatment
cells, you can test up to (k-1)⁢(m-1) pairs out of the
(k⁢m2)=k⁢m⁢(k⁢m-1)2 total pairs.
With the LMATRIX subcommand you can only test a particular subset of these:
comparisons between any two levels of one factor when the other
factor is fixed at any particular level. To do this, you
must first check the order of the
two factors in the DESIGN line of the pasted syntax.
If the factors are labeled A and B, the line will look either
like

 /DESIGN=A B A*B


or

 /DESIGN=B A B*A





Let’s assume that we have the “A*B” form with, say, 3 levels of factor A
and 2 levels of factor B. Then a test of, say, level 1 vs. 3 of factor A
when factor B is fixed at level 2 is performed as follows:
Start the LMATRIX subcommand in the usual way:

/LMATRIX="compare A1B2 to A3B2"


Then add coefficients for the varying factor, which is A in this example:

/LMATRIX="compare A1B2 to A3B2"  A 1 0 -1


Finally add the “interaction coefficients”. There are k⁢m of these
and the rule is “the first factor varies slowest”. This means that
if the interaction is specified as A*B in the DESIGN statement then
the first set of coefficients corresponds to all levels of B when
A is set to level 1, then the next set is all levels of B when
A is set to level 2, etc. For our example with we need to set
A1B2 to 1 and A3B2 to -1, while setting everything else to 0.
The correct subcommand is:

/LMATRIX="compare A1B2 to A3B2"  A 1 0 -1   A*B 0 1   0 0   0 -1


It is helpful to space out the A*B coefficients in blocks to see what
is going on better. The first block corresponds to level 1 of factor
A, the second block to level 2, and the third block to level 3.
Within each block the first number is for B=1 and the second number
for B=2. It is in this sense that B is changing quickly and A slowly
as we move across the coefficients. To reiterate, position 2 in the
A*B list corresponds to A=1 and B=2, while position 6 corresponds
to A=3 and B=2. These two have coefficients that match those
of the A block (1 0 -1) and the desired contrast (μA⁢1⁢B⁢2-μA⁢3⁢B⁢2).




To test other types of planned pairs or to make post-hoc tests of
all pairs, you can convert the analysis to a one-way ANOVA by
combining the factors using a calculation such as 10*A+B to
create a single factor that encodes the information from
both factors and that has k⁢m different levels. Then just
use one-way ANOVA with either the specific planned hypotheses
or the with the Tukey post-hoc procedure.




The other kind of hypothesis testing that makes sense in
two-way ANOVA with interaction is to test the interaction
effects directly with questions such as “is the effect of
changing from level 1 to level 3 of factor A when factor
B=1 the same or different from the effect of changing
from level 1 to level 3 of factor A when factor B=2?”
This corresponds to the null hypothesis:
H0:(μA⁢3⁢B⁢1-μA⁢1⁢B⁢1)-(μA⁢3⁢B⁢2-μA⁢1⁢B⁢2)=0.
This can be tested as a planned contrast within the
context of the two-way ANOVA with interaction by using
the following LMATRIX subcommand:

/LMATRIX="compare A1 to A3 for B1 vs. B2"  A*B -1 1   0 0   1 -1


First note that we only have the interaction coefficients
in the LMATRIX subcommand for this type of contrast.
Also note that because the order is A then B in A*B, the
A levels move change slowly, so the order of effects is
A1B1 A1B2  A2B1 A2B2  A3B1 A3B2. Now you can see that the
above subcommand matches the above null hypothesis.
For an example of interpretation, assume that for fixed levels
of both B=1 and B=2, A3-A1 is positive. Then a positive
Contrast Estimate for this contrast would indicate that
the outcome difference with B=1 is greater than the difference
with B=2.



































































Chapter 14 Within-Subjects Designs



ANOVA must be modified to take correlated errors into
account when multiple measurements are made for each subject.









14.1 Overview of within-subjects designs



Any categorical explanatory variable
for which each subject experiences all of the levels
is called a within-subjects factor. (Or sometimes a subject
may experience several, but not all levels.) These
levels could be different “treatments”, or they
may be different measurements
for the same treatment (e.g., height and weight as outcomes for
each subject), or they may be repetitions of the same outcome
over time (or space) for each subject. In the broad sense,
the term repeated measure is a synonym for a within-subject
factor, although often the term repeated measures analysis is used in
a narrower sense to indicate the specific set of analyses
discussed in Section 14.5.




In contrast to a within-subjects
factor, any factor for which each subject experiences
only one of the levels is a between-subjects factor. Any
experiment that has at least one within-subjects factor is said
to use a within-subjects design, while an experiment
that uses only between-subjects factor(s) is called a
between-subjects design. Often the term mixed
design or mixed within- and between-subjects design
is used when there is at least one within-subjects factor
and at least one between-subjects factor in the same experiment.
(Be careful to distinguish
this from the so-called mixed models of chapter 15.)
All of the experiments discussed in the preceding chapters are
between-subjects designs.




Please do not confuse the terms between-groups and within-groups
with the terms between-subjects and within-subjects. The first
two terms, which we first encountered in the ANOVA chapter, are names
of specific SS and MS components and are named because of how
we define the deviations that are summed and squared to compute SS.
In contrast, the terms between-subjects and within-subjects
refer to experimental designs that either do not or do make multiple
measurements on each subject.




When a within-subjects factor is used in an experiment, new methods are
needed that do not make the assumption of no correlation (or, somewhat
more strongly, independence)
of errors for the multiple measurements made on the same subject.
(See section 6.2.8 to review the independent
errors assumption.)




Why would we want to make multiple measurements on the same subjects?
There are two basic reasons. First, our primary interest may be
to study the change of an outcome over time, e.g., a learning effect.
Second, studying multiple outcomes for each subject allows each
subject to be his or her own “control”, i.e., we can effectively
remove subject-to-subject variation from our investigation of the
relative effects of different treatments. This reduced
variability directly increases power, often dramatically.
We may use this increased
power directly, or we may use it indirectly to allow a reduction
in the number of subjects studied.





These are very important advantages to using within-subjects
designs, and such designs are widely used. The major reasons
for not using within-subjects designs are when it is impossible
to give multiple treatments to a single subject
or because of concern about confounding. An example of a case
where a within-subjects design is impossible is a study of
surgery vs. drug treatment for a disease; subjects generally
would receive one or the other treatment, not both.




The confounding problem of within-subjects designs is an
important concern. Consider the case of three kinds of hints
for solving a logic problem. Let’s take the time till solution
as the outcome measure. If each subject first sees problem 1
with hint 1, then problem 2 with hint 2, then problem 3 with
hint 3, then we will probably have two major
difficulties. First, the effects of the hints carry-over
from each trial to the next. The truth is that problem 2 is
solved when the subject has been exposed to two hints, and
problem 3 when the subject has been exposed to all three hints.
The effect of hint type (the main focus of inference) is
confounded with the cumulative effects of prior hints.




The carry-over effect is generally dealt with by allowing
sufficient time between trials to “wash out” the effects
of previous trials. That is often quite effective, e.g.,
when the treatments are drugs, and we can wait until
the previous drug leaves the system before studying the next
drug. But in cases such as the hint study, this approach may not
be effective or may take too much time.




The other, partially overlapping, source of confounding is the
fact that when testing hint 2, the subject has already had
practice with problem 1, and when testing hint three she
has already had practice with problems 1 and 2. This is
the learning effect.




The learning effect can be dealt with effectively by using
counterbalancing. The carryover effect is also
partially corrected by counterbalancing. Counterbalancing
in this experiment
could take the form of collecting subjects in groups of six,
then randomizing the group to all possible orderings of the
hints (123, 132, 213, 231, 312, 321). Then, because each
hint is evenly tested at all points along the learning curve,
any learning effects would “balance out” across the three
hint types, removing the confounding. (It would probably
also be a good idea to randomize the order of the problem
presentation in this study.)









	You need to know how to distinguish within-subjects from
between-subjects factors. Within-subjects designs have the
advantages of more power and allow observation of change
over time. The main disadvantage is possible confounding,
which can often be overcome by using counterbalancing.










14.2 Multivariate distributions



Some of the analyses in this chapter require you to think about
multivariate distributions. Up to this point, we have
dealt with outcomes that, among all subjects that have the
same given combination of explanatory variables, are assumed to
follow the (univariate) Normal distribution. The mean and
variance, along with the standard bell-shape characterize the
kinds of outcome values that we expect to see. Switching
from the population to the sample, we can
put the value of the outcome on the x-axis of a plot and the
relative frequency of that value on the y-axis to get a
histogram that shows which values are most likely and from
which we can visualize how likely a range of values is.




To represent the outcomes of two treatments for each subject,
we need a so-called, bivariate distribution. To produce
a graphical representation of a bivariate distribution,
we use the two axes (say, y1 and y2) on a sheet of paper
for the two different outcome values,
and therefore each pair of outcomes corresponds to a point on
the paper with y1 equal
to the first outcome and y2 equal to the second outcome.
Then the third dimension (coming up out of the paper) represents
how likely each combination of outcome is. For a bivariate
Normal distribution, this is like
a real bell sitting on the paper (rather than the silhouette of
a bell that we have been using so far).




Using an analogy between a bivariate distribution and a mountain peak,
we can represent a bivariate distribution in 2-dimensions
using a figure corresponding to a topographic map. Figure
14.1 shows the center and the contours of
one particular bivariate Normal distribution. This
distribution has a negative correlation between the
two values for each subject, so the distribution
is more like a bell squished along a diagonal line from the upper left
to the lower right. If we have no correlation between the
two values for each subject, we get a nice round bell. You can see
that an outcome like Y1=2,Y2=6 is fairly likely, while
one like Y1=6,Y2=2 is quite unlikely. (By the way,
bivariate distributions can have shapes other than Normal.)



[image: ]
Figure 14.1: Contours enclosing 1/3, 2/3 and 95%
of a bivariate Normal distribution with a negative covariance.


The idea of the bivariate distribution can easily be extended
to more than two dimensions, but is of course much harder to
visualize. A multivariate distribution with k-dimensions has
a k-length vector (ordered set of numbers) representing its
mean. It also has a k×k dimensional matrix (rectangular
array of numbers) representing the variances of the individual
variables, and all of the paired covariances
(see section 3.6.1).




For example a 3-dimensional multivariate distribution representing
the outcomes of three treatments in a within-subjects experiment
would be characterized by a mean vector, e.g.,







	
	μ=[μ1μ2μ3],
	







and a variance-covariance matrix, e.g.,




	
	Σ=[σ12γ1,2γ1,3γ1,2σ22γ2,3γ1,3γ2,3σ32].
	







Here we are using γi,j to represent the covariance
of variable Yi with Yj.




Sometimes, as an alternative to a variance-covariance matrix,
people use a variance vector, e.g.,







	
	σ2=[σ12σ22σ32],
	







and a correlation matrix, e.g.,




	
	Corr=[1ρ1,2ρ1,3ρ1,21ρ2,3ρ1,3ρ2,31].
	







Here we are using ρi,j to represent the correlation
of variable Yi with Yj.




If the distribution is also Normal, we could write the
distribution as Y∼N⁢(μ,Σ).






14.3 Example and alternate approaches



Consider an example related to the disease osteoarthritis.
(This comes from the OzDASL web site,
OzDASL. For
educational purposes, I slightly altered the data, which
can be found in both the tall and wide formats on the
data web page of this book: osteoTall.sav and
osteoWide.sav.)
Osteoarthritis is a mechanical degeneration of joint surfaces causing
pain, swelling and loss of joint function in one or more joints.
Physiotherapists treat the affected joints to increase the range of
movement (ROM). In this study 10 subjects were each given a trial of
therapy with two treatments, TENS (an electric nerve stimulation) and
short wave diathermy (a heat treatment), plus control.




We cannot perform ordinary (between-subjects) one-way ANOVA for this
experiment because each subject was exposed to all three treatments,
so the errors (ROM outcomes for a given subject for all three treatments
minus the population means of outcome for those treatment) are almost
surely correlated, rather than independent. Possible appropriate
analyses fall into four categories.


	
1. 

Response simplification: e.g. call the difference of two of
the measurements on each subject the response, and use standard techniques.
If the within-subjects factor is the only factor, an appropriate
test is a one-sample t-test for the difference outcome, with the
null hypothesis being a zero mean difference.
In cases where the within-subjects factor is repetition of the
same measurement over time or space and there is a second,
between subjects-factor, the effects
of the between subjects factor on the outcome can be studied
by taking the mean of
all of the outcomes for each subject and using standard, between-subjects
one-way ANOVA. This approach does not fully utilize the available information.
Often it cannot answer some interesting questions.






	
2. 

Treat the several responses on one subject as a single “multivariate”
response and model the correlation between the components of that response.
The main statistics are now matrices rather than individual numbers.
This approach corresponds to results labeled “multivariate” under
“repeated measures ANOVA” for most statistical packages.





	
3. 

Treat each response as a separate (univariate) observation,
and treat “subject” as a (random) blocking factor. This corresponds
to within-subjects ANOVA with subject included as a random factor and
with no interaction in the model. It also corresponds to the “univariate”
output under “repeated measures”. In this form, there are assumptions
about the nature of the within-subject correlation that are not met
fairly frequently. To use the univariate approach when its assumptions
are not met, it is common to use some approximate correction (to the
degrees of freedom) to compensate for a shifted null sampling distribution.





	
4. 

Treat each measurement as univariate, but explicitly model the
correlations. This is a more modern univariate approach called
“mixed models” that subsumes a variety of models in a single unified
approach, is very flexible in modeling correlations, and often has
improved interpretability. As opposed to “classical repeated
measures analysis” (approaches 2 and 3), mixed models can accommodate
missing data as oppposed to dropping all data from every subject who
is missing one or more measurements), and it accommodates unequal
and/or irregular spacing of repeated measurements.
Mixed models can also be extended to
non-normal outcomes. (See chapter 15.)













14.4 Paired t-test



The paired t-test uses response simplification to handle the correlated
errors. It only works with two treatments, so we will ignore the
diathermy treatment in our osteoarthritis example for this section.
The simplification here is to compute the difference between the
two outcomes for each subject. Then there is only one “outcome”
for each subject, and there is no longer any concern about correlated
errors. (The subtraction is part of the paired t-test, so you
don’t need to do it yourself.)




In SPSS, the paired t-test requires the “wide” form of data in
the spreadsheet rather than the “tall” form we have used up until
now. The tall form has one outcome per row, so it has many
rows. The wide form has
one subject per row with two or more outcomes per row (necessitating
two or more outcome columns).




The paired t-test uses a one-sample t-test on the single column of
computed differences. Although we have not yet discussed the
one-sample t-test, it is a straightforward extension of other
t-tests like the independent-sample t-test of
Chapter 6 or the one for regression coefficients
in Chapter 9. We have
an estimate of the difference in outcome between the two treatments
in the form of the mean of the difference column. We can compute the
standard error for that difference (which is the square root
of the variance of the difference column divided by the number of
subjects). Then we can construct the t-statistic as the estimate
divided by the SE of the estimate,
and under the null hypothesis that the population
mean difference is zero, this will follow a t-distribution with
n-1 df, where n is the number of subjects.




The results from SPSS for comparing control to TENS ROM is shown
in table 14.1. The table tells us that the best
point estimate of the difference in population means for ROM
between control and TENS is 17.70 with control being higher
(because the direction of the subtraction is listed as control
minus TENS). The uncertainty in this estimate due to random
sampling variation is 7.256 on the standard deviation scale.
(This was calculated based on the sample size of 10 and the
observed standard deviation of 22.945 for the observed
sample.) We are 95% confident that the true reduction in ROM
caused by TENS relative to the control is between 1.3 and 34.1,
so it may be very small or rather large. The t-statistic
of 2.439 will follow the t-distribution with 9 df if the
null hypothesis is true and the assumptions are met. This
leads to a p-value of 0.037, so we reject the null hypothesis
and conclude that TENS reduces range of motion.







	Paired Differences
	
	
	



	
	
	
	95% Confidence
	
	
	



	
	
	Std.
	Interval of the
	
	
	



	
	Std.
	Error
	Difference
	
	
	Sig.



	Mean
	Deviation
	Mean
	Lower
	Upper
	t
	df
	(2-tailed)



	17.700
	22.945
	7.256
	1.286
	34.114
	2.439
	9
	0.037





Table 14.1: Paired t-test for control-TENS ROM in the osteoarthritis experiment.


For comparison, the incorrect, between-subjects one-way ANOVA
analysis of these data gives a p-value of 0.123, leading to the
(probably) incorrect conclusion that the two treatments both
have the same population mean of ROM. For future discussion
we note that the within-groups SS for this incorrect analysis
is 10748.5 with 18 df.




For educational purposes, it is worth noting that it is possible
to get the same correct results in this case (or other one-factor
within-subjects experiments) by performing a two-way ANOVA in
which “subject” is the other factor (besides treatment). Before
looking at the results we need to note several important facts.




There is an important concept relating to the repeatability of
levels of a factor. A factor is said to be a fixed factor
if the levels used are the same levels you would use if you
repeated the experiment. Treatments are generally fixed factors.
A factor is said to be a random factor if a different
set of levels would be used if you repeated the experiment.
Subject is a random factor because if you would repeat the
experiment, you would use a different set of subjects. Certain types
of blocking factors are also random factors.




The reason that we want to use subject as a factor is that
it is reasonable to consider that some subjects will
have a high outcome for all treatments and others a low outcome
for all treatments. Then it may be true that the errors
relative to the overall subject mean are uncorrelated
across the k treatments given to a single subject. But
if we use both treatment and subject as factors, then
each combination of treatment and subject has only
one outcome. In this case, we have zero degrees of
freedom for the within-subjects (error) SS. The usual
solution is to use the interaction MS in place of the
error MS in forming the F test for the treatment effect.
(In SPSS it is equivalent to fit a model without an
interaction.) Based on the formula for expected MS of
an interaction (see section 12.4), we can see
that the interaction MS is
equal to the error MS if there is no interaction and
larger otherwise. Therefore if the assumption of no interaction
is correct (i.e,.
treatment effects are similar for all subjects) then
we get the “correct” p-value, and if there really
is an interaction, we get too small of an F value
(too large of a p-value), so
the test is conservative, which means that it
may give excess Type 2 errors,
but won’t give excess Type 1 errors.




The two-way ANOVA results are shown in table 14.2. Although
we normally ignore the intercept, it is included here to demonstrate
the idea that in within-subjects ANOVA (and other cases called nested ANOVA)
the denominator of the F-statistic, which is labeled “error”, can be
different for different numerators (which correspond to the different
null hypotheses). The null hypothesis of main interest here is that the three
treatment population means are equal, and that is tested and rejected
on the line called “rx”. The null hypothesis for the random subject
effect is that the population variance of the subject-to-subject means
(of all three treatments) is zero.




The key observation from this table is that the treatment (rx) SS and MS
corresponds to the between-groups SS and MS in the incorrect one-way
ANOVA, while the sum of the subject SS and error SS is 10748.5, which
is the within-groups SS for the incorrect one-way ANOVA. This is
a decomposition of the four sources of error (see Section 8.5)
that contribute to σ2, which is estimated
by SS⁢w⁢i⁢t⁢h⁢i⁢n in the
one-way ANOVA. In this two-way ANOVA the subject-to-subject
variability is estimated to
be 931.05, and the remaining three sources contribute 263.23
(on the variance scale). This
smaller three-source error MS is the denominator for the numerator (rx) MS
for the F-statistic of the treatment effect. Therefore we get a
larger F-statistic and more power when we use a within-subjects design.







	
	Type III Sum
	
	
	
	



	Source
	of Squares
	df
	Mean Square
	F
	Sig.



	Intercept
	Hypothesis
	173166.05
	1
	173166.05
	185.99
	
<0.0005



	
	Error
	8379.45
	9
	931.05
	
	



	rx
	Hypothesis
	1566.45
	1
	1566.45
	5.951
	0.035



	
	Error
	2369.05
	9
	263.23
	
	



	subject
	Hypothesis
	8379.45
	9
	931.05
	3.537
	0.037



	
	Error
	2369.05
	9
	263.23
	
	





Table 14.2: Two-way ANOVA results for the osteoarthritis experiment.


How do we know which error terms to use for which F-tests? That requires more
mathematical statistics than we cover in this course,
but SPSS will produce an EMS table, and
it is easy to use that table to figure out which ratios are 1.0 when the
null hypotheses are true.




It is worth mentioning that in SPSS a one-way within-subjects ANOVA
can be analyzed either as a two-way ANOVA with subjects as a random
factor (or even as a fixed factor if a no-interaction model is
selected) or as a repeated measures analysis (see next section).
The p-value for the overall null hypothesis, that the population
outcome means are equal for all levels of the factor, is
the same for each analysis, although which auxiliary
statistics are produced differs.









	A two-level one-way within-subjects experiment can equivalently
be analyzed by a paired t-test or a two-way ANOVA with a random subject factor.
The latter also applies to more than two levels. The extra power comes
from mathematically removing the subject-to-subject component of
the underlying variance (σ2).










14.5 One-way Repeated Measures Analysis



Although repeated measures analysis is a very general term for any study
in which multiple measurements are made
on the same subject, there is a narrow sense of repeated measures analysis
which is discussed in this section and the next section. This is
a set of specific analysis methods commonly used in social sciences, but
less commonly in other fields where alternatives such as mixed models
tends to be used.




This narrow-sense repeated measures analysis is what you get if you choose
“General Linear Model / Repeated Measures” in SPSS. It includes
the second and third approaches of our list of approaches given in the
introduction to this chapter. The various sections of the output
are labeled univariate or multivariate to distinguish which type of
analysis is shown.




This section discusses the k-level (k≥2) one-way within-subjects ANOVA
using repeated measures in the narrow sense. The next section discusses
the mixed within/between subjects two-way ANOVA.




First we need to look at the assumptions of repeated measures analysis.
One-way repeated measures analyses assume a Normal distribution of the outcome
for each level of the within-subjects factor. The errors are assumed to be
uncorrelated between subjects. Within a subject the multiple measurements
are assumed to be correlated. For the univariate analyses, the assumption
is that a technical condition called sphericity is met. Although
the technical condition is difficult to understand, there is a simpler
condition that is nearly equivalent: compound symmetry. Compound
symmetry indicates that all of the variances are equal and all of the
covariances (and correlations) are equal. This variance-covariance pattern
is seen fairly often when there are several different treatments, but is unlikely
when there are multiple measurements over time, in which case adjacent
times are usually more highly correlated than distant times.





In contrast, the multivariate portions of repeated measures analysis
output are based on an unconstrained variance-covariance pattern.
Essentially, all of the variances and covariances are estimated from the data,
which allows accommodation of a wider variety of variance-covariance
structures, but loses some power, particularly when the sample
size is small, due to “using up” some of the data and degrees of
freedom for estimating a more complex variance-covariance structure.




Because the univariate analysis requires the assumption of sphericity,
it is customary to first examine the Mauchly’s test of sphericity.
Like other tests of assumptions (e.g., Levene’s test of equal
variance), the null hypothesis is that there is no assumption violation
(here, that the variance-covariance structure is consistent with sphericity),
so a large (>0.05) p-value is good, indicating no problem with the
assumption. Unfortunately, the sphericity test is not very reliable,
being often of low power and also overly sensitive to mild violations
of the Normality assumption. It is worth knowing that the
sphericity assumption cannot be violated with k=2 levels of treatment
(because there is only a single covariance between the two measures,
so there is nothing for it to be possible unequal to), and therefore
Mauchly’s test is inapplicable and not calculated when there
are only two levels of treatment.




The basic overall univariate test of equality of population means for
the within-subjects factor is labeled “Tests of Within-Subjects Effects”
in SPSS and is shown in table 14.3. If we accept the
sphericity assumption, e.g., because the test of sphericity is non-significant,
then we use the first line of the treatment section and the first line
of the error section. In this case F=M⁢Sbetween
divided by M⁢Swithin=1080.9/272.4=3.97. The
p-value is based on the F-distribution with 2 and 18 df. (This
F and p-value are exactly the same as the two-way ANOVA with subject
as a random factor.)




If the sphericity assumption is violated, then one of the other, corrected
lines of the Tests of Within-Subjects Effects table is used. There is
some controversy about when to use which correction, but generally it
is safe to go with the Huynh-Feldt correction.







	
	Type III Sum
	
	
	
	



	Source
	of Squares
	df
	Mean Square
	F
	Sig.



	rx
	Sphericity Assumed
	2161.8
	2
	1080.9
	3.967
	.037



	
	Greenhouse-Geisser
	2161.8
	1.848
	1169.7
	3.967
	.042



	
	Huynh-Feldt
	2161.8
	2.000
	1080.9
	3.967
	.042



	
	Lower-bound
	2161.8
	1.000
	1169.7
	3.967
	.042



	Error(rx)
	Sphericity Assumed
	4904.2
	18
	272.4
	
	



	
	Greenhouse-Geisser
	4904.2
	16.633
	294.8
	
	



	
	Huynh-Feldt
	4904.2
	18,000
	272.4
	
	



	
	Lower-bound
	4904.2
	9.000
	544.9
	
	





Table 14.3: Tests of Within-Subjects Effects for the osteoarthritis experiment.


The alternative, multivariate analysis, labeled “Multivariate Tests” in SPSS
is shown in table 14.4. The multivariate tests are tests
of the same overall null hypothesis (that all of the treatment population
means are equal) as was used for the univariate analysis.




The approach for
the multivariate analysis is to first construct a set of k-1 orthogonal
contrasts. (The main effect and interaction p-values are the same for
every set of orthogonal contrasts.) Then SS are computed for each contrast
in the usual way, and also “sum of cross-products” are also formed
for pairs of contrasts. These numbers are put into a k-1 by k-1 matrix
called the SSCP (sums of squares and cross products) matrix. In addition
to the (within-subjects) treatment SSCP matrix, an error SSCP matrix is
constructed analogous to computation of error SS. The ratio of these matrices
is a matrix with F-values on the diagonal and ratios of treatment to error
cross-products off the diagonal. We need to make a single F statistic from
this matrix to get a p-value to test the overall null hypothesis. Four
methods are provided for reducing the ratio matrix to a single F value.
These are called Pillai’s Trace, Wilk’s Lambda, Hotelling’s Trace, and Roy’s
Largest Root. There is a fairly extensive, difficult-to-understand
literature comparing these methods, but it most cases they give
similar p-values.




The decision to reject or retain the overall null hypothesis of equal
population outcome means for all levels of the within-subjects factor
is made by looking at the p-value for one of the four F-values computed
by SPSS. I recommend that you use “Pillai’s trace”. The thing you should
not do is pick the line that gives the answer you want! In a one-way
within-subjects ANOVA, the four F-values will always agree, while in
more complex designs they will disagree to some extent.







	Effect
	Value
	F
	Hypothesis df
	Error df
	Sig.



	modality
	Pillai’s Trace
	0.549
	4.878
	2
	8
	0.041



	
	Wilk’s Lambda
	0.451
	4.878
	2
	8
	0.041



	
	Hotelling’s Trace
	1.220
	4.878
	2
	8
	0.041



	
	Roy’s Largest Root
	1.220
	4.878
	2
	8
	0.041





Table 14.4: Multivariate Tests for the osteoarthritis experiment.


Which approach should we use, univariate or multivariate? Luckily, they
agree most of the time. When they disagree, it could be because the
univariate approach is somewhat more powerful, particularly for small studies,
and is thus preferred.
Or it could be that the correction is insufficient in the case of
far deviation from sphericity, in which case the multivariate test
is preferred as more robust. In general, you should at least look
for outliers or mistakes if there is a disagreement.




An additional section of the repeated measures analysis shows the planned
contrasts and is labeled “Tests of Within-Subjects Contrasts”.
This section is the same for both the univariate and multivariate
approaches. It gives a p-value for each planned contrast. The default
contrast set is “polynomial” which is generally only appropriate for
a moderately large number of levels of a factor representing repeated
measures of the same measurement over time. In most circumstances, you
will want to change the contrast type to simple (baseline against each
other level) or repeated (comparing adjacent levels).




It is worth noting that post-hoc comparisons are available
for the within-subjects factor under Options by selecting
the factor in the Estimated Marginal Means box and then
by checking the “compare main effects” box and choosing
Bonferroni as the method.






14.6 Mixed between/within-subjects designs



One of the most common designs used in psychology experiments is
a two-factor ANOVA, where one factor is varied between subjects
and the other within subjects. The analysis of this type of
experiment is a straightforward combination of the analysis
of two-way between subjects ANOVA and the concepts of
within-subject analysis from the previous section.




The interaction between a within- and a between-subjects factor
shows up in the within-subjects section of the repeated measures
analysis. As usual, the interaction should be examined first.
If the interaction is significant, then (changes in) both factors
affect the outcome, regardless of the p-values for the main
effects. Simple effects contrasts in a mixed design are
not straightforward, and are not available in SPSS. A profile
plot is a good summary of the results. Alternatively, it is
common to run separate one-way ANOVA analyses for each level
of one factor, possibly using planned and/or post-hoc testing.
In this case we test the simple effects hypotheses about the effects
of differences in level of one factor at fixed levels of the
other factor, as is appropriate in the case of interaction.
Note that, depending on which factor is restricted to a single
level for these analyses, the appropriate ANOVA could be
either within-subjects or between-subjects.




If the interaction is not significant, then the analysis can be
re-run without the interaction. Either the univariate or multivariate
tests can be used for the overall null hypothesis for the
within-subjects factor.




There is also a separate section for
the overall null hypothesis for the between subjects factor.
Because this section compares means between levels of the
between-subjects factor, and those means are reductions of the
various levels of the within-subjects factor to a single number,
there is no
concern about correlated errors, and there is only a single
univariate test of the overall null hypothesis.




For each factor you may select a set of planned contrasts
(assuming that there are more than two levels and that the
overall null hypothesis is rejected). Finally, post-hoc
tests are available for the between-subjects factor, and either
the Tukey or Dunnett test is usually appropriate (where Dunnett
is used only if there is no interest in comparisons other than
to the control level). For the within-subjects factor
the Bonferroni test is available with Estimated Marginal Means.









	Repeated measures analysis is appropriate when one
(or more) factors is a within-subjects factor. Usually
univariate and multivariate tests agree for the overall
null hypothesis for the within-subjects factor or any
interaction involving a within-subjects factor. Planned
(main effects) contrasts are appropriate for both factors
if there is no significant interaction. Post-hoc comparisons
can also be performed.









14.6.1 Repeated Measures in SPSS



To perform a repeated measures analysis in SPSS,
use the menu item “Analyze / General Linear Model / Repeated Measures.”
The example uses the data in circleWide.sav. This
is in the “wide” format with a separate column for each level
of the repeated factor.



[image: ]
Figure 14.2: SPSS Repeated Measures Define Factor(s) dialog box.


Unlike other analyses in SPSS, there is a dialog box that
you must fill out before seeing the main analysis dialog box.
This is called the “Repeated Measures Define Factor(s)” dialog
box as shown in Figure 14.2.
Under “Within-Subject Factor Name” you should enter a (new) name that
describes what is different among the levels of your within-subjects
factor. Then enter the “Number of Levels”, and click Add. In a more
complex design you need to do this for each within-subject factor. Then,
although not required, it is a very good idea to enter a “Measure Name”,
which should describe what is measured at each level of the
within-subject factor. Either a term like “time” or units like
“milliseconds” is appropriate for this box. Click the “Define”
button to continue.



[image: ]
Figure 14.3: SPSS Repeated Measures dialog box.


Next you will see the Repeated Measures dialog box. On the left
is a list of all variables, at top right right is the “Within-Subjects
Variables” box with lines for each of the levels of the within-subjects
variables you defined previously. You should move the k outcome
variables corresponding to the k levels of the within-subjects factor
into the “Within-Subjects Variables” box, either one at a time or all together.
The result looks something like Figure 14.3.
Now enter the between-subjects factor, if any. Then use the model button
to remove the interaction if desired, for a two-way ANOVA. Usually
you will want to use the contrasts button to change the within-subjects
contrast type from the default “polynomial” type to either “repeated”
or “simple”. If you want to do post-hoc testing for the between-subjects
factor, use the Post-Hoc button. Usually you will want to use the
options button to display means for the levels of the factor(s). Finally
click OK to get your results.



































































Chapter 15 Mixed Models



A flexible approach to correlated data.



15.1 Overview








Correlated data arise frequently in statistical analyses. This may be due
to grouping of subjects, e.g., students within classrooms, or to
repeated measurements on each subject over time or space,
or to multiple related outcome measures at one point in time.
Mixed model analysis provides a general, flexible approach in these
situations, because it allows a wide variety of correlation
patterns (or variance-covariance structures) to be explicitly modeled.




As mentioned in chapter 14, multiple measurements
per subject generally result in the correlated errors that are
explicitly forbidden by the assumptions of standard (between-subjects)
AN(C)OVA and regression models. While repeated measures analysis of
the type found in SPSS, which I will call “classical repeated measures
analysis”, can model general (multivariate approach) or
spherical (univariate approach) variance-covariance structures,
they are not suited for other explicit structures. Even more importantly,
these repeated measures approaches discard all results on any
subject with even a single missing measurement, while mixed models
allow other data on such subjects to be used as long as the
missing data meets the so-called missing-at-random definition.
Another advantage of mixed models is that they naturally handle
uneven spacing of repeated measurements, whether intentional or
unintentional.
Also important is the fact that mixed model analysis is often more
interpretable than classical repeated measures. Finally, mixed
models can also be extended (as generalized mixed models) to
non-Normal outcomes.




The term mixed model refers to the use of both fixed and random
effects in the same analysis. As explained in section 14.1,
fixed effects have levels that are of primary interest and would
be used again if the experiment were repeated. Random effects
have levels that are not of primary interest, but rather are thought
of as a random selection from a much larger set of levels. Subject
effects are almost always random effects, while treatment levels
are almost always fixed effects. Other examples of random effects
include cities in a multi-site trial, batches in a chemical or
industrial experiment, and classrooms in an educational setting.




As explained in more detail below, the use of both fixed and random
effects in the same model can be thought of hierarchically, and there
is a very close relationship between mixed models and the
class of models called hierarchical
linear models. The hierarchy arises because we can think of
one level for subjects and another level for measurements within
subjects. In more complicated situations, there can be more than
two levels of the hierarchy. The hierarchy also plays out in
the different roles of the fixed and random effects parameters.
Again, this will be discussed more fully below, but the basic
idea is that the fixed effects parameters tell how population
means differ between any set of treatments, while the random
effect parameters represent the general variability among
subjects or other units.









	Mixed models use both fixed and random effects. These
correspond to a hierarchy of levels with the repeated, correlated
measurement occurring among all of the lower level units for each particular
upper level unit.











15.2 A video game example



Consider a study of the learning effects of repeated plays of
a video game where age is expected to have an effect. The
data are in MMvideo.txt. The quantitative outcome
is the score on the video game (in thousands of points). The
explanatory variables are age group of the subject and “trial”
which represents which time the subject played
the game (1 to 5). The “id” variable identifies the
subjects. Note the the data are in the tall format with
one observation per row, and multiple rows per subject,



[image: ]
Figure 15.1: EDA for video game example with smoothed
lines for each age group.


Some EDA is shown in figure 15.1. The plot shows
all of the data points, with game score plotted against
trial number. Smoothed lines are shown for each of the
three age groups. The plot shows
evidence of learning, with players improving their score
for each game over the previous game. The improvement
looks fairly linear. The y-intercept (off the graph to the left)
appears to be higher for older players. The slope (rate of
learning) appears steeper for younger players.




At this point you are most likely thinking that this
problem looks like an ANCOVA problem where each age group
has a different intercept and slope for the relationship
between the quantitative variables trial and score. But
ANCOVA assumes that all of the measurements for a given
age group category have uncorrelated errors. In the
current problem each subject has several measurements and
the errors for those measurements will almost surely be
correlated. This shows up as many subjects with most
or all of their outcomes on the same side of their
group’s fitted line.






15.3 Mixed model approach



The solution to the problem of correlated within-subject
errors in the video game example is to let each subject have
his or her own “personal” intercept (and possibly slope)
randomly deviating from the mean intercept for
each age group. This results in a group of parallel
“personal” regression lines (or non-parallel if the slope
is also random).
Then, it is reasonable (but not certain)
that the errors around the personal regression lines
will be uncorrelated. One way to do this is to use
subject identification as a categorical variable, but
this is treating the inherently random subject-to-subject
effects as fixed effects, and “wastes” one parameter for
each subject in order to estimate his or her personal intercept.
A better
approach is to just estimate a single variance parameter which
represents how spread out the random intercepts are around
the common intercept of each group (usually following a
Normal distribution). This is the mixed models
approach.




From another point of view, in a mixed model we have a hierarchy
of levels. At the top level the units are often subjects
or classrooms. At the lower level we could have repeated measurements
within subjects or students within classrooms. The lower level
measurements that are within the same upper level unit are
correlated, when all of their measurements are compared to
the mean of all measurements for a given treatment, but often
uncorrelated when compared to a personal (or class level) mean
or regression line. We also expect that there are various measured and
unmeasured aspects of the upper level units that affect all of
the lower level measurements similarly for a given unit. For
example various subject skills and traits may affect all measurements
for each subject, and various classroom traits such as teacher
characteristics and classroom environment affect all of the
students in a classroom similarly.
Treatments are usually applied randomly to whole upper-level units.
For example, some subjects receive a drug and some receive a placebo,
Or some classrooms get an aide and others do not.




In addition to all of these aspects of hierarchical data analysis,
there is a variety of possible variance-covariance structures for
the relationships among the lower level units. One common
structure is called compound symmetry, which indicates the same
correlation between all pairs of measurements, as in the sphericity
characteristic of chapter 14. This is a
natural way to represent the relationship between students within
a classroom. If the true correlation structure is compound symmetry,
then using a random intercept for each upper level unit will
remove the correlation among lower level units.
Another commonly used structure is autoregressive,
in which measurements are ordered, and adjacent measurements are
more highly correlated than distant measurements.




To summarize, in each problem the hierarchy is usually fairly
obvious, but the user must think about and specify which fixed
effects (explanatory variables, including transformations and
interactions) affect the average responses for all subjects.
Then the user
must specify which of the fixed effect coefficients are sufficient
without a corresponding random effect as opposed to those
fixed coefficients which only represent an average around which individual units
vary randomly. In addition, correlations among measurements that are not
fully accounted for by the random intercepts and slopes may
be specified. And finally, if there are multiple random
effects the correlation of these various effects may need
to be specified.









	To run a mixed model, the user must make many choices
including the nature of the hierarchy, the fixed effects and
the random effects.








In almost all situations several related models are considered
and some form of model selection must be used to choose
among related models.




The interpretation of the statistical output of a mixed model
requires an understanding of how to explain the relationships
among the fixed and random effects in terms of the levels
of the hierarchy.






15.4 Analyzing the video game example


[image: ]
Figure 15.2: EDA for video game example with smoothed
lines for each subject.


Based on figure 15.1 we should model separate linear
relationships between trial number and game score for each age group.
Figure 15.2, shows smoothed lines for each subject.
From this figure, it looks like we need
a separate slope and intercept
for each age group. It is also fairly clear that in each group
there is random subject-to-subject variation in the intercepts.
We should also consider the possibilities that the “learning
trajectory” is curved rather than linear, perhaps using the
square of the trial number as an additional covariate to create
a quadratic curve. We should also check if a random
slope is needed. It is also prudent to check if the random
intercept is really needed. In addition, we should check
if an autoregressive model is needed.







15.5 Setting up a model in SPSS



The mixed models section of SPSS, accessible from the
menu item “Analyze / Mixed Models / Linear”, has an
initial dialog box (“Specify Subjects and Repeated”),
a main dialog box, and the usual
subsidiary dialog boxes activated by clicking buttons
in the main dialog box. In the initial dialog box
(figure 15.3)
you will always specify the upper level of the
hierarchy by moving the identifier for that level
into the “subjects” box. For our video game example
this is the subject “id” column. For a classroom
example in which we study many students in each
classroom, this would be the classroom identifier.



[image: ]
Figure 15.3: Specify Subjects and Repeated Dialog Box.


If we want to model the correlation of the repeated measurements
for each subject (other than the correlation induced by
random intercepts), then we need to specify the order
of the measurements within a subject in the bottom (“repeated”)
box. For the video game example, the trial number could be
appropriate.



[image: ]
Figure 15.4: Main Linear Mixed Effects Dialog Box.


The main “Linear Mixed Models” dialog box is shown in figure
15.4. (Note that just like in regression analysis
use of transformation of the outcome or a quantitative explanatory
variable, i.e., a covariate, will allow fitting of curves.) As usual,
you must put a quantitative outcome variable in the “Dependent
Variable” box. In the “Factor(s)” box you put any
categorical explanatory variables (but not the subject variable itself).
In the “Covariate(s)” box you put any quantitative explanatory
variables. Important note: For mixed models, specifying
factors and covariates on the main screen does not indicate
that they will be used in the model, only that they are available
for use in a model.




The next step is to specify the fixed effects
components of the model, using the Fixed button which brings up
the “Fixed Effects” dialog box, as shown in figure
15.5. Here you will specify the structural
model for the “typical” subject, which is just like what
we did in ANCOVA models. Each explanatory variable
or interaction that you specify will have a corresponding
parameter estimated, and that estimate will represent the
relationship between that explanatory variable and the outcome if
there is no corresponding random effect, and it will represent
the mean relationship if there is a corresponding random
effect.



[image: ]
Figure 15.5: Fixed Effects Dialog Box.


For the video example, I specified main effects
for age group and trial plus their interaction. (You will always
want to include the main effects for any interaction you
specify.) Just like in ANCOVA, this model allows a different
intercept and slope for each age group. The fixed intercept
(included unless the “Include intercept” check box is
unchecked) represents the (mean) intercept for the baseline
age group, and the k-1 coefficients for the age group
factor (with k=3 levels) represent differences in
(mean) intercept for the other age groups.
The trial coefficient represents the (mean) slope
for the baseline group, while the interaction coefficients
represent the differences in (mean) slope for the other
groups relative to the baseline group. (As in other
“model” dialog boxes, the actual model depends only
on what is in the “Model box”, not how you got it there.)




In the “Random Effects” dialog box (figure 15.6),
you will specify
which parameters of the fixed effects model are only
means around which individual subjects vary randomly,
which we think of as having their own personal
values. Mathematically these personal values, e.g., a
personal intercept for a given subject, are equal to the
fixed effect plus a random deviation from that fixed effect,
which is zero on average, but which has a magnitude that
is controlled by the size of the random
effect, which is a variance.



[image: ]
Figure 15.6: Random Effects Dialog Box.


In the random effects dialog box, you will usually want to
check “Include Intercept”, to allow a separate intercept
(or subject mean if no covariate is used) for each subject
(or each level of some other upper level variable). If you
specify any random effects, then you must indicate that
there is a separate “personal” value of, say, the intercept,
for each subject by placing the subject identifier in
the “Combinations” box. (This step is very easy to
forget, so get in the habit of doing this every time.)




To model a random slope, move the covariate that defines
that slope into the “Model” box. In this example,
moving trial into the Model box could be used to
model a random slope for the score by trial relationship.
It does not make sense to include a random effect for
any variable unless there is also a fixed effect for
that variable, because the fixed effect represents
the average value around which the random effect varies.
If you have more than one random effect, e.g., a random
intercept and a random slope, then you need to specify
any correlation between these using the “Covariance Type”
drop-down box. For a single random effect, use
“identity”. Otherwise, “unstructured” is usually most appropriate
because it allows correlation among the random effects (see
next paragraph). Another choice is “diagonal” which
assumes no correlation between the random effects.




What does it mean for two random effects to be correlated?
I will illustrate this with the example of a random intercept
and a random slope for the trial vs. game score relationship.
In this example, there are different intercepts and slopes
for each age group, so we need to focus on any one age
group for this discussion. The fixed effects define
a mean intercept and mean slope for that age group,
and of course this defines a mean fitted regression
line for the group. The idea of a random intercept
and a random slope indicate that any given subject will
“wiggle” a bit around this mean regression line
both up or down (random intercept) and clockwise or
counterclockwise (random slope). The variances (and
therefore standard deviations) of
the random effects determine the sizes of typical
deviations from the mean intercept and slope. But
in many situations like this video game example
subjects with a higher than average intercept
tend to have a lower than average slope, so there
is a negative correlation between the random intercept
effect and the random slope effect. We can look
at it like this: the next subject is represented by
a random draw of an intercept deviation and a slope
deviation from a distribution with mean zero for
both, but with a negative correlation between these
two random deviations. Then the personal
intercept and slope are constructed by adding
these random deviations to the fixed effect
coefficients.




Some other buttons in the main mixed models dialog
box are useful. I recommend that you always click the
Statistics button, then check both “Parameter estimates”
and “Tests for covariance parameters”. The parameter
estimates are needed for interpretation of the
results, similar to what we did for ANCOVA (see chapter
10). The tests for covariance parameters aid
in determining which random effects are needed in
a given situation. The “EM Means” button allows
generation of “expected marginal means” which
average over all subjects and other treatment
variables. In the current video
game example, marginal means for the three video
groups is not very useful because this averages
over the trials and the score varies dramatically
over the trials. Also, in the face of an interaction
between age group and trial number, averages for
each level of age group are really meaningless.




As you can see there are many choices to be made when
creating a mixed model. In fact there are many more
choices possible than described here. This flexibility
makes mixed models an important general purpose tool
for statistical analysis, but suggests that it should
be used with caution by inexperienced analysts.









	Specifying a mixed model requires many steps,
each of which requires an informed choice. This is both
a weakness and a strength of mixed model analysis.










15.6 Interpreting the results for the video game example



Here is some of the SPSS output for the video game example.
We start with the model for a linear relationship between
trial and score with separate intercepts and slopes for
each age group, and including a random per-subject intercept.
Table 15.1 is called “Model Dimension”.
Focus on the “number of parameters” column. The total is
a measure of overall complexity of the model and plays
a role in model selection (see next section). For
quantitative explanatory variables, there is only
one parameter. For categorical variables, this column
tells how many parameters are being estimated in the
model. The “number of levels” column tells how many lines
are devoted to an explanatory variable in the Fixed Effects
table (see below), but lines beyond the number of estimated parameters
are essentially blank (with parameters labeled as redundant
and a period in the rest of the columns). We can see that
we have a single random effect, which is an intercept for
each level of id (each subject). The Model Dimension
table is a good quick check that the computer is fitting
the model that you intended to fit.







	
	Number
	Covariance
	Number of
	Subject



	
	of Levels
	Structure
	Parameters
	Variables





	Fixed
	Intercept
	1
	
	1
	



	Effects
	agegrp
	3
	
	2
	



	
	trial
	1
	
	1
	



	
	agegrp * trial
	3
	
	2
	



	Random Effects
	Intercept
	1
	Identity
	1
	id



	Residual
	
	
	
	1
	



	Total
	
	9
	
	8
	





Table 15.1: Model dimension for the video game example.


The next table in the output is labeled “Information Criteria”
and contains many different measures of how well the model
fits the data. I recommend that you only pay attention to
the last one, “Schwartz’s Bayesian Criterion (BIC)”, also
called Bayesian Information Criterion. In this model, the
value is 718.4. See the section on model comparison for
more about information criteria.




Next comes the Fixed Effects tables (tables 15.2
and 15.3). The tests of fixed effects
has an ANOVA-style test for each fixed effect in the model.
This is nice because it gives a single overall test of the
usefulness of a given explanatory variable, without focusing
on individual levels. Generally, you will want to remove
explanatory variables that do not have a significant fixed
effect in this table, and then rerun the mixed effect
analysis with the simpler model. In this example,
all effects are significant (less than the standard alpha of
0.05). Note that I converted the SPSS p-values from 0.000
to the correct form.







	
	
	Denominator
	
	



	Source
	Numerator df
	df
	F
	Sig.



	Intercept
	1
	57.8
	266.0
	
<0.0005



	agegrp
	2
	80.1
	10.8
	
<0.0005



	trial
	1
	118.9
	1767.0
	
<0.0005



	agegrp * trial
	2
	118.9
	70.8
	
<0.0005





Table 15.2: Tests of Fixed Effects for the video game example.


The Estimates of Fixed Effects table does not appear by
default; it is produced by choosing “parameter estimates”
under Statistics. We can see that age group 40-50 is the “baseline”
(because SPSS chooses the last category). Therefore the (fixed)
intercept value of 14.02 represents the mean game score (in thousands
of points) for
40 to 50 year olds for trial zero. Because trials start at one,
the intercepts are not meaningful in themselves for this problem,
although they are needed for calculating and drawing the best fit
lines for each age group.







	
	
	
	
	
	
	95% Conf. Int.



	
	
	Std.
	
	
	
	Lower
	Upper



	Parameter
	Estimate
	Error
	df
	t
	Sig.
	Bound
	Bound



	Intercept
	14.02
	1.11
	55.4
	12.64
	
<0.0005
	11.80
	16.24



	agegrp=(20,30)
	-7.26
	1.57
	73.0
	-4.62
	
<0.0005
	-10.39
	-4.13



	agegrp=(30,40)
	-3.49
	1.45
	64.2
	-2.40
	0.019
	-6.39
	-0.59



	agegrp=(40,50)
	0
	0
	.
	.
	.
	.
	.



	trial
	3.32
	0.22
	118.9
	15.40
	
<0.0005
	2.89
	3.74



	(20,30)*trial
	3.80
	0.32
	118.9
	11.77
	
<0.0005
	3.16
	4.44



	(30,40)*trial
	2.14
	0.29
	118.9
	7.35
	
<0.0005
	1.57
	2.72



	(40,50)*trial
	0
	0
	.
	.
	.
	.
	.





Table 15.3: Estimates of Fixed Effects for the video game example.


As in ANCOVA, writing out the full regression model then simplifying
tells us that the intercept for 20 to 30 year olds is 14.02-7.26=6.76
and this is significantly lower than for 40 to 50 year olds (t=-4.62,
p<0.0005, 95% CI for the difference is 4.13 to 10.39 thousand points
lower). Similarly
we know that the 30 to 40 years olds have a lower intercept than
the 40 to 50 year olds. Again these intercepts themselves are not
directly interpretable because they represent trial zero. (It would
be worthwhile to recode the trial numbers as zero to four, then rerun
the analysis, because then the intercepts would represent game
scores the first time someone plays the game.)




The trial coefficient of 3.32 represents that average gain in game
score (in thousands of points) for each
subsequent trial for the baseline 40 to 50 year old
age group. The interaction estimates tell the difference in
slope for other age groups compared to the 40 to 50 year olds. Here
both the 20 to 30 year olds and the 30 to 40 year olds learn quicker
than the 40 to 50 year olds, as shown by the significant interaction
p-values and the positive sign on the estimates. For example, we
are 95% confident that the trial to trial “learning” gain is
3.16 to 4.44 thousand points higher for the youngest age
group compared to the oldest age group.









	Interpret the fixed effects for a mixed model in the
same way as an ANOVA, regression, or ANCOVA depending on
the nature of the explanatory variables(s), but realize that
any of the coefficients that have a corresponding random
effect represent the mean over all subjects, and each
individual subject has their own “personal” value for
that coefficient.








The next table is called “Estimates of Covariance Parameters”
(table 15.4). It is very important to realize
that while the parameter estimates given in the Fixed Effects
table are estimates of mean parameters, the parameter estimates
in this table are estimates of variance parameters. The intercept
variance is estimated as 6.46, so the estimate of the standard deviation
is 2.54. This tells us that for any given age group, e.g., the
oldest group with mean intercept of 14.02, the individual subjects
will have “personal” intercepts that are up to 2.54 higher or lower
than the group average
about 68% of the time, and up to 5.08 higher or lower about 95% of
the time. The null hypothesis for this parameter is a variance
of zero, which would indicate that a random effect is not needed.
The test statistic is called a Wald Z statistic.
Here we reject the null hypothesis (Wald Z=3.15, p=0.002) and conclude
that we do need a random intercept. This suggests that there
are important unmeasured explanatory variables for each subject
that raise or lower their performance in a way that appears
random because we do not know the value(s) of the missing
explanatory variable(s).







	
	
	
	
	
	95% Conf. Int.



	
	
	Std.
	Wald
	
	Lower
	Upper



	Parameter
	Estimate
	Error
	Z
	Sig.
	Bound
	Bound



	Residual
	4.63
	0.60
	7.71
	
<0.0005
	3.59
	5.97



	Intercept(Subject=id) Variance
	6.46
	2.05
	3.15
	0.002
	3.47
	12.02





Table 15.4: Estimates of Covariance Parameters for the video game example.


The estimate of the residual variance, with standard deviation equal
to 2.15 (square root of 4.63), represents the variability of
individual trial’s game scores around the individual regression
lines for each subjects. We are assuming that once a personal
best-fit line is drawn for each subject, their actual measurements
will randomly vary around this line with about 95% of the
values falling within 4.30 of the line. (This is an estimate
of the same σ2 as in a regression or ANCOVA problem.)
The p-value for the residual is not very meaningful.









	Random effects estimates are variances.
Interpret a random effect parameter estimate
as the magnitude of the variability
of “personal” coefficients from the mean fixed effects
coefficient.








All of these interpretations are contingent on choosing the right
model. The next section discusses model selection.






15.7 Model selection for the video game example



Because there are many choices among models to fit to
a given data set in the mixed model setting, we need an
approach to choosing among the models. Even then, we
must always remember that all models are wrong (because
they are idealized simplifications of Nature), but
some are useful. Sometimes a single best model is chosen.
Sometimes subject matter knowledge is used to choose
the most useful models (for prediction or for interpretation).
And sometimes several models, which differ but appear
roughly equivalent in terms of fit to the data, are
presented as the final summary for a data analysis problem.




Two of the most commonly used methods for model selection
are penalized likelihood and testing of individual
coefficient or variance estimate p-values. Other more
sophisticated methods
include model averaging and cross-validation, but they
will not be covered in this text.





15.7.1 Penalized likelihood methods for model selection



Penalized likelihood methods calculate the likelihood
of the observed data using a particular model (see
chapter 3). But because it
is a fact that the likelihood always goes up when
a model gets more complicated, whether or not
the additional complication is “justified”, a
model complexity penalty is used. Several different
penalized likelihoods are available in SPSS, but I
recommend using the BIC (Bayesian information criterion).
AIC (Akaike information criterion) is another commonly
used measure of model adequacy.
The BIC number penalizes the likelihood based on both
the total number of parameters in a model and the
number of subjects studied. The formula varies between
different programs based on whether or not a factor
of two is used and whether or not the sign is changed.
In SPSS, just remember that “smaller is better”.




The absolute value of the BIC has no interpretation.
Instead the BIC values can be computed for two (or more) models,
and the values compared. A smaller BIC indicates a
better model. A difference of under 2 is “small” so
you might use other considerations to choose between
models that differ in their BIC values by less than
2. If one model has a BIC more than 2 lower than another,
that is good evidence that the model with the
lower BIC is a better balance between complexity
and good fit (and hopefully is closer to the
true model of Nature).




In our video game problem, several different models were fit
and their BIC values are shown in table 15.5.
Based on the “smaller is better” interpretation, the (fixed) interaction
between trial and age group is clearly needed in the model, as
is the random intercept. The additional complexity of a
random slope is clearly not justified. The use of quadratic
curves (from inclusion of a trial2 term) is essentially
no better than excluding it, so I would not include it
on grounds of parsimony.







	Interaction
	random intercept
	random slope
	quadratic curve
	BIC



	yes
	yes
	no
	no
	718.4



	yes
	no
	no
	no
	783.8



	yes
	yes
	no
	yes
	718.3



	yes
	yes
	yes
	no
	727.1



	no
	yes
	no
	no
	811.8





Table 15.5: BIC for model selection for the video game example.


The BIC approach to model selection is a good one, although
there are some technical difficulties. Briefly, there is
some controversy about the appropriate penalty for mixed models,
and it is probably better to change the estimation method
from the default “restricted maximum likelihood” to “maximum likelihood”
when comparing models that differ only in fixed effects.
Of course you never know if the best model is one you have not
checked because you didn’t think of it.
Ideally the penalized likelihood approach is best done by running
all reasonable models and listing them in BIC order. If one model
is clearly better than the rest, use that model, otherwise
consider whether there are important differing implications among
any group of similar low BIC models.






15.7.2 Comparing models with individual p-values



Another approach to model selection is to move incrementally
to one-step more or less complex models, and use the corresponding
p-values to choose between them. This method has some deficiencies,
chief of which is that different “best” models can result just from
using different starting places. Nevertheless, this method,
usually called stepwise model selection , is commonly used.




Variants of step-wise selection include forward and backward
forms. Forward selection starts at a simple model, then considers
all of the reasonable one-step-more-complicated models and
chooses the one with the smallest p-value for the new parameter.
This continues until no addition parameters have a significant
p-value. Backward selection starts at a complicated model and
removes the term with the largest p-value, as long as that
p-value is larger than 0.05. There is no guarantee that
any kind of “best model” will be reached by stepwise methods,
but in many cases a good model is reached.







15.8 Classroom example



The (fake) data in schools.txt represent a randomized
experiment of two different reading methods which were randomly
assigned to third or fifth grade classrooms, one per school,
for 20 different schools. The experiment lasted 4 months.
The outcome is the after minus before
difference for a test of reading given to each student.
The average sixth grade reading score for each school
on a different
statewide standardized test (stdTest) is used as an
explanatory variable for each school (classroom).




It seems likely that students within a classroom will be more similar
to each other than to students in other classrooms
due to whatever school level characteristics are
measured by the standardized test. Additional unmeasured
characteristics including teacher characteristics,
will likely also raise or lower the outcome
for a given classroom.



[image: ]
Figure 15.7: EDA for school example


Cross-tabulation shows that each classroom
has either grade 3 or 5 and either placebo or control.
The classroom sizes are 20 to 30 students.
EDA, in the form of a scatterplot of standardized test scores
vs. experimental test score difference are shown in figure
15.7. Grade differences are represented in
color and treatment differences by symbol type.
There is a clear positive correlation of standardized test score
and the outcome (reading score difference), indicating
that the standardized test score
was a good choice of a control variable. The clustering
of students within schools is clear once it is realized that each
different standardized test score value represents a different school.
It appears that fifth graders tend to have a larger rise than third
graders. The plot does not show any obvious effect of
treatment.




A mixed model was fit with classroom as the upper level (“subjects” in
SPSS mixed models) and with students at the lower level. There
are main effects for stdTest, grade level, and treatment group.
There is a random effect (intercept) to account for school to
school differences that induces correlation among scores for
students within a school. Model selection included checking
for interactions among the fixed effects, and checking the necessity
of including the random intercept. The only change suggested is to drop
the treatment effect. It was elected to keep the non-significant
treatment in the model to allow calculation of a confidence interval
for its effect.




Here are some results:







	
	
	Denominator
	
	



	Source
	Numerator df
	df
	F
	Sig.



	Intercept
	1
	15.9
	14.3
	0.002



	grade
	1
	16.1
	12.9
	0.002



	treatment
	1
	16.1
	1.2
	0.289



	stdTest
	1
	15.9
	25.6
	
<0.0005





Table 15.6: Tests of Fixed Effects for the school example.





	
	
	
	
	
	
	95% Conf. Int.



	
	
	Std.
	
	
	
	Lower
	Upper



	Parameter
	Estimate
	Error
	df
	t
	Sig.
	Bound
	Bound



	Intercept
	-23.09
	6.80
	15.9
	-3.40
	0.004
	-37.52
	-8.67



	grade=3
	-5.94
	1.65
	16.1
	-3.59
	0.002
	-9.45
	-2.43



	grade=5
	0
	0
	.
	.
	.
	.
	.



	treatment=0
	1.79
	1.63
	16.1
	1.10
	0.289
	-1.67
	5.26



	treatment=1
	0
	0
	.
	.
	.
	.
	.



	stdTest
	0.44
	0.09
	15.9
	5.05
	
<0.0005
	0.26
	0.63





Table 15.7: Estimates of Fixed Effects for the school example.





	
	
	
	
	
	95% Conf. Int.



	
	
	Std.
	Wald
	
	Lower
	Upper



	Parameter
	Estimate
	Error
	Z
	Sig.
	Bound
	Bound



	Residual
	25.87
	1.69
	15.33
	
<0.0005
	22.76
	29.40



	Intercept(Subject=sc.) Variance
	10.05
	3.94
	2.55
	0.011
	4.67
	21.65





Table 15.8: Estimates of Covariance Parameters for the school example.


We note that non-graphical EDA (ignoring the explanatory variables)
showed that individual students test score differences varied between a
drop of 14 and a rise of 35 points.




The “Tests of Fixed Effects” table, Table 15.6,
shows that grade (F=12.9, p=0.002) and stdTest (F=25.6, p<0.0005)
each have a significant effect on a student’s reading score difference,
but treatment (F=1.2, p=0.289) does not.




The “Estimates of Fixed Effects” table, Table 15.7,
gives the same p-values plus estimates of the effect sizes and 95%
confidence intervals for those estimates. For example, we are 95%
confident that the improvement seen by fifth graders is 2.43 to 9.45 more
than for third graders. We are particularly interested in the
conclusion that we are 95% confident that treatment method 0 (control)
has an effect on the outcome that is between 5.26 points more and
1.67 points less than treatment 1 (new, active treatment).




We assume that students within a classroom perform similarly due to
school and/or classroom characteristics. Some of the effects of
the student and school characteristics are
represented by the standardized test which has a
standard deviation of 8.8 (not shown), and Table 15.7
shows that each one unit rise in standardized test score is associated with a
0.44 unit rise in outcome on average. Consider the comparison
of schools at the mean vs. one s.d. above the mean of standardized
test score. These values correspond to μs⁢t⁢d⁢T⁢e⁢s⁢t and μs⁢t⁢d⁢T⁢e⁢s⁢t+8.8.
This corresponds to a 0.44*8.8=3.9 point
change in average reading scores for a classroom. In addition, other
unmeasured characteristics must be in play because Table
15.8 shows that the random
classroom-to-classroom variance is 10.05 (s.d.= 3.2 points).
Individual student-to-student, differences with a variance 23.1
(s.d. = 4.8 points),
have a somewhat large effect that either school differences (as
measured by the standardized test) or the random classroom-to-classroom
differences.




In summary, we find that students typically have a
rise in test score over the four month period. (It would be good to center
the stdTest values by subtracting their mean, then rerun the mixed model analysis;
this would allow the Intercept to represent the average gain for a fifth
grader with active treatment, i.e., the baseline group). Sixth graders improve
on average by 5.9 more than third graders. Being in a school
with a higher standardized test score tends to raise the
reading score gain. Finally there is no evidence that
the treatment worked better than the placebo.









	In a nutshell: Mixed effects models flexibly give correct estimates of
treatment and other fixed effects in the presence of the correlated
errors that arise from a data hierarchy.



































































Chapter 16 Analyzing Experiments with Categorical Outcomes



Analyzing data with non-quantitative outcomes




All of the analyses discussed up to this point assume a Normal
distribution for the outcome (or for a transformed version of the
outcome) at each combination of levels of the explanatory variable(s).
This means that we have only been covering statistical
methods appropriate for quantitative outcomes. It is important
to realize that this restriction only applies to the outcome
variable and not to the explanatory variables. In this chapter
statistical methods appropriate for categorical outcomes are
presented.





16.1 Contingency tables and chi-square analysis



This section discusses analysis of experiments or observational studies
with a categorical outcome and a single categorical explanatory variable.
We have already discussed methods for analysis of data with
a quantitative outcome and categorical explanatory variable(s)
(ANOVA and ANCOVA). The methods in this section
are also useful for observational data with two categorical “outcomes” and
no explanatory variable.





16.1.1 Why ANOVA and regression don’t work



There is nothing in most statistical computer programs that would prevent you
from analyzing data with, say, a two-level categorical outcome
(usually designated generically as “success” and “failure”)
using ANOVA or regression or ANCOVA. But if you do,
your conclusion will be wrong in a number of different ways.
The basic reason that these methods don’t work is that
the assumptions of Normality and equal variance are strongly
violated. Remember that these assumptions relate to groups
of subjects with the same levels of all of the explanatory
variables. The Normality assumption says that in each of these
groups the outcomes are Normally distributed. We call ANOVA,
ANCOVA, and regression “robust” to this assumption because
moderate deviations from Normality alter the null sampling
distributions of the statistics from which we calculate
p-values only a small amount. But in the case of a categorical
outcome with only a few (as few as two) possible outcome
values, the outcome is so far from the smooth bell-shaped
curve of a Normal distribution, that the null sampling
distribution is drastically altered and the p-value
completely unreliable.




The equal variance assumption is that, for any two
groups of subjects with different levels of the explanatory
variables between groups and the same levels within groups,
we should find that the variance of the outcome is the same.
If we consider the case of a binary outcome with coding 0=failure
and 1=success, the variance of the outcome can be shown to
be equal to pi⁢(1-pi) where pi is the probability
of getting a success in group i (or, equivalently, the mean
outcome for group i). Therefore groups with different
means have different variances, violating the equal variance
assumption.




A second reason that regression and ANCOVA are unsuitable for
categorical outcomes is that they are based on the prediction
equation E⁢(Y)=β0+x1⁢β1+⋯+xk⁢βk, which
both is inherently quantitative, and can give numbers out of
range of the category codes. The least unreasonable
case is when the categorical outcome is ordinal with many possible values,
e.g., coded 1 to 10. Then for any particular explanatory
variable, say, βi, a one-unit increase in xi
is associated with a βi unit change in outcome. This
works only over a limited range of xi values, and then
predictions are outside the range of the outcome values.




For binary outcomes where the coding is 0=failure and 1=success,
a mean outcome of, say, 0.75 corresponds to 75% successes
and 25% failures, so we can think of the prediction as
being the probability of success. But again, outside
of some limited range of xi values, the predictions
will correspond to the absurdity of probabilities
less than 0 or greater than 1.




And for nominal categorical variables with more than two
levels, the prediction is totally arbitrary and meaningless.









	Using statistical methods designed for Normal,
quantitative outcomes when the outcomes are really
categorical gives wrong p-values due to violation
of the Normality and equal variance assumptions, and
also gives meaningless out-of-range predictions for
some levels of the explanatory variables.











16.2 Testing independence in contingency tables




16.2.1 Contingency and independence



A contingency table counts the number of cases (subjects)
for each combination of levels of two or more categorical
variables. An equivalent term is cross-tabulation (see Section
4.4.1).
Among the definitions for “contingent” in the The Oxford
English Dictionary is “Dependent for its occurrence or character
on or upon some prior occurrence or condition”.
Most commonly when we have two categorical measures
on each unit of study, we are interested in the question
of whether the probability distribution (see section
3.2)
of the levels of one measure depends on the level of
the other measure, or if it is independent of the level
of the second measure. For example, if we have three
treatments for a disease as one variable, and two
outcomes (cured and not cured) as the other outcome,
then we are interested in the probabilities of these
two outcomes for each treatment, and we want to
know if the observed data are consistent with a
null hypothesis that the true underlying probability
of a cure is the same for all three treatments.




In the case of a clear identification of one variable
as explanatory and the other as outcome, we focus
on the probability distribution of the outcome and
how it changes or does not change when we look separately
at each level of the explanatory variable. The
“no change” case is called independence, and indicates
that knowing the level of the (purported)
explanatory variable tells us no more about the possible
outcomes than ignoring or not knowing it. In other
words, if the variables are independent, then the
“explanatory” variable doesn’t really explain
anything. But if we find evidence to reject the
null hypothesis of independence, then we do have
a true explanatory variable, and knowing its value
allows us to refine our predictions about the
level of the other variable.




Even if both variables are outcomes, we can test
their association in the same way as just mentioned.
In fact, the conclusions are always the same
when the roles of the explanatory and outcome variables
are reversed, so for this type of analysis, choosing
which variable is outcome vs. explanatory is
immaterial.




Note that if the outcome has only two possibilities
then we only need the probability of one level of
the variable rather than the full probability distribution
(list of possible values and their probabilities) for
each level of the explanatory variable. Of course,
this is true simply because the probabilities of
all levels must add to 100%, and we can find the
other probability by subtraction.









	The usual statistical test in the case of
a categorical outcome and a categorical explanatory variable
is whether or not the two variables
are independent, which is equivalent to saying
that the probability distribution of one variable is the
same for each level of the other variable.










16.2.2 Contingency tables



It is a common situation to measure two categorical variables,
say X (with k levels) and Y (with m levels) on
each subject in a study. For example, if we measure
gender and eye color, then we record the level of the
gender variable and the level of the eye color variable for
each subject. Usually the first task after collecting
the data is to present it in an understandable form
such as a contingency table (also known as a cross-tabulation).




For two measurements, one with k levels and the other
with m levels, the contingency table is a k×m
table with cells for each combination of one level
from each variable, and each cell is filled with the
corresponding count (also called frequency)
of units that have that pair of levels for the two
categorical variables.




For example, table 16.1 is a (fake) contingency table
showing the results of asking 271 college students what their
favorite music is and what their favorite ice cream
flavor is. This table was created in SPSS by using the
Cross-tabs menu item under Analysis / Descriptive Statistics.
In this simple form of a contingency table we see the
cell counts and the marginal counts. The margins
are the extra column on the right and the extra row
at the bottom. The
cells are the rest of the numbers in the table. Each cell
tells us how many subjects gave a particular pair of
answers to the two questions. For example, 23 students
said both that strawberry is their favorite ice cream
flavor and that jazz is their favorite type of music.
The right margin sums over ice cream types to show that,
e.g., a total of 60 students say that rap is their favorite
music type. The bottom margin sums over music types to
show that, e.g,, 70 students report that their favorite
flavor of ice cream is neither chocolate, vanilla, nor
strawberry. The total of either margin, 271, is sometimes
called the “grand total” and represent the total
number of subjects.







	
	favorite ice cream



	
	chocolate
	vanilla
	strawberry
	other
	total



	
	rap
	5
	10
	7
	38
	60



	
	jazz
	8
	9
	23
	6
	46



	favorite
	classical
	12
	3
	4
	3
	22



	music
	rock
	39
	10
	15
	9
	73



	
	folk
	10
	22
	8
	8
	48



	
	other
	4
	7
	5
	6
	22



	
	total
	78
	61
	62
	70
	271





Table 16.1: Basic ice cream and music contingency table.


We can also see, from the margins, that rock is the best liked music
genre, and classical is least liked, though there is an important
degree of arbitrariness in this conclusion because the
experimenter was free to choose which genres were in or
not in the “other” group. (The best practice is to
allow a “fill-in” if someone’s choice is not listed, and then
to be sure that the “other” group has no choices with larger
frequencies that any of the explicit non-other categories.)
Similarly, chocolate is the most
liked ice cream flavor, and subject to the concern about defining
“other”, vanilla and strawberry are nearly tied for second.




Before continuing to discuss the form and content of
contingency tables, it is good to stop and realize that
the information in a contingency table represents
results from a sample, and other samples would give somewhat
different results. As usual, any differences that we see
in the sample may or may not reflect real differences in
the population, so you should be careful not to over-interpret
the information in the contingency table. In this sense
it is best to think of the contingency table as a form of
EDA. We will need formal statistical analysis to test
hypotheses about the population based on the information in
our sample.




Other information that may be present in a contingency table
includes various percentages.
So-called row percents add to 100% (in the right margin)
for each row of the table, and column percents add to
100% (in the bottom margin) for each column of the table.





For example, table 16.2 shows the ice cream and
music data with row percents. In SPSS the Cell button brings
up check boxes for adding row and/or column percents. If one
variable is clearly an outcome variable, then the most
useful and readable version of the table is the one with
cell counts plus percentages that add up to 100% across
all levels of the outcome for each level of the explanatory
variable. This makes it easy to compare the outcome
distribution across levels of the explanatory variable.
In this example there is no clear distinction of the
roles of the two measurements, so arbitrarily picking
one to sum to 100% is a good approach.







	
	favorite ice cream



	
	chocolate
	vanilla
	strawberry
	other
	total





	
	rap
	5
	10
	7
	38
	60



	
	
	8.3%
	17.7%
	11.7%
	63.3%
	100%



	
	jazz
	8
	9
	23
	6
	46



	
	
	17.4%
	19.6%
	50.0%
	13.0%
	100%



	
	classical
	12
	3
	4
	3
	22



	favorite
	
	54.5%
	13.6%
	18.2%
	13.6%
	100%



	music
	rock
	39
	10
	15
	9
	73



	
	
	53.4%
	13.7%
	20.5%
	12.3%
	100%



	
	folk
	10
	22
	8
	8
	48



	
	
	20.8%
	45.8%
	16.7%
	16.7%
	100%



	
	other
	4
	7
	5
	6
	22



	
	
	18.2%
	31.8%
	22.7%
	27.3%
	100%



	
	total
	78
	61
	62
	70
	271



	
	
	28.8%
	22.5%
	22.9%
	25.8%
	100%





Table 16.2: Basic ice cream and music contingency table with row percents.


Many important things can be observed from this table. First,
we should look for the 100% numbers to see which way the
percents go. Here we see 100% on the right side of each row.
So for any music type we can see the frequency of each flavor
answer and those frequencies add up to 100%. We should think
of those row percents as estimates of the true population
probabilities of the flavors for each given music type.




Looking at the bottom (marginal) row, we know that, e.g., averaging
over all music types, approximately 26% of students like
“other” flavors best, and approximately 29% like chocolate best.
Of course, if we repeat the study, we would get somewhat different
results because each study looks at a different random sample
from the population of interest.




In terms of the main hypothesis of interest, which is whether
or not the two questions are independent of each other,
it is equivalent to ask whether all of the row probabilities are
similar to each other and to the marginal row probabilities. Although
we will use statistical methods to assess independence, it is
worthwhile to examine the row (or column) percentages for equality.
In this table, we see rather large differences, e.g., chocolate is high
for classical and rock music fans, but low for rap music fans,
suggesting lack of independence.









	A contingency table summarizes the data from an
experiment or observational study with two or more
categorical variables. Comparing a set of marginal
percentages to the corresponding row or column percentages
at each level of one variable is good EDA for checking
independence.










16.2.3 Chi-square test of Independence



The most commonly used test of independence for the data
in a contingency table is the chi-square test of independence.
In this test the data from a k by m contingency table are reduced
to a single statistic usually called either X2 or χ2 (chi-squared),
although X2 is better because statistics usually have Latin, not
Greek letters.
The null hypothesis is that the two categorical variables are
independent, or equivalently that the distribution of either variable
is the same at each level of the other variable. The alternative
hypothesis is that the two variables are not independent, or
equivalently that the distribution of one variable
depends on (varies with) the level of the other.




If the null hypothesis of independence is true, then
the X2 statistic is asymptotically distributed as a chi-square
distribution (see section 3.9.6) with (k-1)⁢(m-1) df.
Under the alternative
hypothesis of non-independence the X2 statistic will be larger
on average. The p-value is the area under the null sampling distribution
larger than the observed X2 statistic. The term asymptotically
distributed indicates that the null sampling distribution can
not be computed exactly for a small sample size, but as the sample
size increases, the null sampling distribution approaches the
shape of a particular known distribution, which is the chi-square
distribution in the case of the X2 statistic. So the p-values
are reliable for “large” sample sizes, but not for small
sample sizes. Most textbooks quote a rule that no cell of the
expected counts table (see below) can have less than five counts for the
X2 test to be reliable. This rule is conservative,
and somewhat smaller counts also give reliable p-values.




Several alternative statistics are sometimes used instead of the
chi-square statistic (e.g., likelihood ratio statistic or Fisher
exact test), but these will not be covered here. It is important
to realize that these various tests may disagree for small sample
sizes and it is not clear (or meaningful to ask) which one is
“correct”.




The calculation of the X2 statistic is based on the formula




	
	X2=∑i=1k∑j=1m(Observedi⁢j-Expectedi⁢j)2Expectedi⁢j
	




where k and m are the number of rows and columns in the contingency
table (i.e., the number of levels of the categorical variables),
Observedi⁢j is the observed count for the cell
with one variable at level i and the other at level j,
and Expectedi⁢j is the expected count based on independence.
The basic idea here is that each cell contributes a non-negative
amount to the sum, that a cell with an observed count very
different from expected contributes a lot, and that “a lot”
is relative to the expected count (denominator).




Although a computer program is ordinarily used for the calculation,
an understanding of the principles is worthwhile. An “expected
counts” table can be constructed by looking at either of the
marginal percentages, and then computing the
expected counts by multiplying each of these percentages by the total
counts in the other margin. Table 16.3 shows
the expected counts for the ice cream example.
For example, using the percents in the bottom margin of
table 16.2, if
the two variables are independent, then we expect 22.9% of
people to like strawberry best among each group of people defined
by their favorite music. Because 73 people like
rock best, under the null hypothesis of independence,
we expect (on average) 0.229*73=16.7 people to like
rock and strawberry best, as shown in table 16.3.
Note that there is no reason that the expected counts should
be whole numbers, even though observed counts must be.







	
	favorite ice cream



	
	chocolate
	vanilla
	strawberry
	other
	total



	
	rap
	17.3
	13.5
	13.7
	15.5
	60



	
	jazz
	13.2
	10.4
	10.5
	11.9
	46



	favorite
	classical
	6.3
	5.0
	5.0
	5.7
	22



	music
	rock
	21.0
	16.4
	16.7
	18.9
	73



	
	folk
	13.8
	10.8
	11.0
	12.4
	48



	
	other
	6.3
	5.0
	5.0
	5.7
	22



	
	total
	78
	61
	62
	70
	271





Table 16.3: Expected counts for ice cream and music contingency table.


By combing the observed data of table 16.1 with the
expected values of table 16.3, we have the information
we need to calculate the X2 statistic. For the ice cream
data we find that




	
	X2=((5-17.3)25)+((10-13.5)210)+⋯+((6-5.7)26)=112.86.
	







So for the ice cream example, jazz paired with chocolate shows
a big deviation from independence and of the 24 terms of the
X2 sum, that cell contributes (5-17.3)2/5=30.258 to the
total of 112.86. There are far fewer people who like that
particular combination than would be expected under independence.
To test if all of the deviations are consistent with chance
variation around the expected values, we compare the X2
statistic to the χ2 distribution with (6-1)⁢(4-1)=15 df.
This distribution has 95% of its probability below 25.0,
so with X2=112.86, we reject H0 at the usual α=0.05
significance level. In fact, only 0.00001 of the probability
is above 50.5, so the p-value is far less than 0.05. We reject
the null hypothesis of independence of ice cream and
music preferences in favor of the conclusions that the
distribution of preference of either variable does
depend on preference for the other variable.




You can choose among several ways to express violation
(or non-violation) of the null hypothesis for a “chi-square
test of independence” of two categorical variables.
You should use the context of the problem to decide which
one best expresses the relationship (or lack of relationship)
between the variables. In this problem it is correct to
say any of the following: ice cream preference is not independent of
music preference, or ice cream preference depends
on or differs by music preference, or music
preference depends on or differs by ice cream preference,
or knowing a person’s ice cream preference helps
in predicting their music preference, or knowing
a person’s music preference helps in predicting their
ice cream preference.










	The chi-square test is based on a statistic
that is large when the observed cell counts differ
markedly from the expected counts under the null
hypothesis condition of independence. The corresponding
null sampling distribution is a chi-square distribution
if no expected cell counts are too small.








Two additional points are worth mentioning in this
abbreviated discussion of testing independence among
categorical variables. First, because we want to
avoid very small expected cell counts to assure
the validity of the chi-square test of independence,
it is common practice to combine categories with
small counts into combined categories. Of course,
this must be done in some way that makes sense in
the context of the problem.




Second, when the
contingency table is larger than 2 by 2, we need a
way to perform the equivalent of contrast tests. One
simple solution is to create subtables corresponding
to the question of interest, and then to perform a
chi-square test of independence on the new table.
To avoid a high Type 1 error rate we need to
make an adjustment, e.g., by using a Bonferroni correction,
if this is post-hoc testing. For example to see
if chocolate preference is higher for classical
than jazz, we could compute chocolate vs. non-chocolate
counts for the two music types to get table
16.4. This gives a X2 statistic of
9.9 with 1 df, and a p-value of 0.0016. If this
is a post-hoc test, we need to consider that
there are 15 music pairs and 4 flavors plus
6 flavor pairs and 6 music types giving
4*15+6*6=96 similar tests, that might just as
easily have been noticed as “interesting”. The
Bonferroni correction implies using a new
alpha value of 0.05/96=0.00052, so because
0.0016>0.00052, we cannot
make the post-hoc conclusion that chocolate
preference differs for jazz vs. classical. In other
words, if the null hypothesis of independence is true,
and we data snoop looking for pairs of categories of one factor
being different for presence vs. absence of a
particular category of the other factor, finding that one
of the 96 different p-values is 0.0016 is not very
surprising or unlikely.







	
	favorite ice cream



	
	chocolate
	not chocolate
	total





	
	jazz
	8
	38
	46



	favorite
	
	17.4%
	82.6%
	100%



	music
	classical
	12
	10
	22



	
	
	54.5%
	45.5%
	100%



	
	total
	20
	48
	68



	
	
	29.4%
	70.6%
	100%





Table 16.4: Cross-tabulation of chocolate for jazz vs. classical.





16.3 Logistic regression




16.3.1 Introduction



Logistic regression is a flexible method for modeling and testing
the relationships between one or more quantitative and/or categorical
explanatory variables and one binary (i.e., two level) categorical
outcome. The two levels of the outcome can represent anything,
but generically we label one outcome “success” and the other
“failure”. Also, conventionally, we use code 1 to represent
success and code 0 to represent failure. Then we can look at
logistic regression as modeling
the success probability as a function of the explanatory
variables. Also, for any group of subjects, the 0/1 coding
makes it true that the mean of
Y represents the observed fraction of successes for that
group.




Logistic regression resembles ordinary linear regression in many
ways. Besides allowing any combination of quantitative and
categorical explanatory variables (with the latter in indicator
variable form), it is appropriate to include functions of
the explanatory variables such as log(x) when needed, as
well as products of pairs of explanatory variables (or more)
to represent interactions. In addition, there is usually an
intercept parameter (β0) plus one parameter for each
explanatory variable (β1 through βk), and these
are used in the linear combination form: β0+x1⁢β1+⋯+xk⁢βk. We will call this sum eta
(written η) for convenience.




Logistic regression differs from ordinary linear regression
because its outcome is binary rather than quantitative.
In ordinary linear regression the structural (means) model is that
E⁢(Y)=η. This is inappropriate for logistic regression
because, among other reasons, the outcome can only take
two arbitrary values, while eta can take any value. The
solution to this dilemma is to use the means model




	
	log⁡(E⁢(Y)1-E⁢(Y))=log⁡(Pr⁡(Y=1)Pr⁡(Y=0))=η.
	




Because of
the 0/1 coding, E⁢(Y), read as the “expected value of Y”
is equivalent to the probability of success, and 1-E⁢(Y)
is the probability of failure. The ratio of success
to failure probabilities is called the odds. Therefore
our means model for logistic regression is that the
log of the odds (or just “log odds”) of success is
equal to the linear combination of explanatory variables
represented as eta. In other words, for any explanatory
variable j, if βj>0 then an increase in that
variable is associated with an increase in the chance
of success and vice versa.









	The means model for logistic regression is that
the log odds of success equals a linear combination
of the parameters and explanatory variables.








A shortcut term that is often used is logit of success,
which is equivalent to the log odds of success. With this terminology
the means model is logit(S)=η, where S indicates
success, i.e., Y=1.




It takes some explaining and practice to get used to
working with odds and log odds, but because this form of
the means model is most appropriate for modeling the
relationship between a set of explanatory variables
and a binary categorical outcome, it’s worth the effort.




First consider the term odds, which will always
indicate the odds of success for us. By definition




	
	odds(Y=1)=Pr⁡(Y=1)1-Pr⁡(Y=1)=Pr⁡(Y=1)Pr⁡(Y=0).
	




The odds of success is defined as the ratio of the probability
of success to the probability of failure.
The odds of success (where Y=1 indicates success)
contains the
same information as the probability of success, but
is on a different scale. Probability runs from 0
to 1 with 0.5 in the middle. Odds runs from 0 to
∞ with 1.0 in the middle. A few simple
examples, shown in table 16.5, make this clear.
Note how the odds equal 1 when the probability of
success and failure are equal. The fact that, e.g.,
the odds are 1/9 vs. 9 for success probabilities of
0.1 and 0.9 respectively demonstrates how 1.0 can be the “center”
of the odds range of 0 to infinity.







	Pr⁡(Y=1)
	Pr⁡(Y=0)
	Odds
	Log Odds



	0
	1
	0
	-∞




	0.1
	0.9
	1/9
	-2.197



	0.2
	0.8
	0.25
	-1.383



	0.25
	0.75
	1/3
	-1.099



	1/3
	2/3
	0.5
	-0.693



	0.5
	0.5
	1
	0.000



	2/3
	1/3
	2
	0.693



	0.75
	0.25
	3
	1.099



	0.8
	0.2
	4
	1.386



	0.9
	0.1
	9
	2.197



	1
	0
	∞
	∞





Table 16.5: Relationship between probability, odds and log odds.


Here is one way to think about odds.
If the odds are 9 or 9/1, which is often
written as 9:1 and read 9 to 1, then this tells
us that for every nine successes there
is one failure on average. For odds of 3:1, for
every 3 successes there is one failure on average.
For odds equal to 1:1, there is one failure for each
success on average. For odds of less than 1,
e.g., 0.25, write it as 0.25:1 then multiply the
numerator and denominator by whatever number gives whole
numbers in the answer. In this case, we could multiple
by 4 to get 1:4, which indicates that for every one success
there are four failures on average. As a final example,
if the odds are 0.4, then this is 0.4:1 or
2:5 when I multiply by 5/5, so on average there will be
five failures for every two successes.




To calculate probability, p, when you know the odds
use the formula





	
	p=odds1+odds.
	












	The odds of success is defined as the ratio of the
probability of success to the probability of failure.
It ranges from 0 to infinity.








The log odds of success is defined as the natural
(i.e., base e, not base 10) log of the odds of success.
The concept of log odds is very hard for humans to understand,
so we often “undo” the log odds to get odds,
which are then more interpretable. Because the log
is a natural log, we undo log odds by taking
Euler’s constant (e), which is approximately
2.718, to the power of the log odds. For example,
if the log odds are 1.099, then we can find
e1.099 as exp(1.099) in most computer languages or in
Google search to find that the odds are 3.0 (or 3:1).
Alternatively, in Windows calculator (scientific view) enter
1.099, then click the Inv (inverse) check box,
and click the “ln” (natural log) button.
(The “exp” button is not an equivalent
calculation in Windows calculator.)
For your handheld calculator, you should look up how to
do this using 1.099 as an example.




The log odds scale runs from -∞ to +∞
with 0.0 in the middle. So zero represents the
situation where success and failure are equally
likely, positive log odds values represent a
greater probability of success than failure, and negative
log odds values represent a greater probability
of failure than success. Importantly, because
log odds of -∞ corresponds to probability
of success of 0, and log odds of +∞ corresponds
to probability of success of 1, the model
“log odds of success equal eta”
cannot give invalid probabilities as predictions
for any combination of explanatory variables.




It is important to note that in addition to
population parameter values for an ideal model,
odds and log odds
are also used for observed percent success. E.g.,
if we observe 5/25=20% successes, then we say that
the (observed) odds of success is 0.2/0.8=0.25.









	The log odds of success is simply the natural
log of the odds of success. It ranges from minus
infinity to plus infinity, and zero indicates that
success and failure are equally likely.








As usual, any model prediction, which is the probability
of success in this situation, applies for all subjects with
the same levels of all of the explanatory variables.
In logistic regression, we are assuming that for
any such group of subjects the probability of success,
which we can call p, applies individually and independently
to each of the set of similar subjects. These are the
conditions that define a
binomial distribution (see section 3.9.1).
If we have n subjects all with with the same level
of the explanatory variables and with predicted success
probability p, then our error model is that the
outcomes will follow a random binomial distribution
written as Binomial(n,p). The mean number of
successes will be the product n⁢p, and the variance
of the number of success will be n⁢p⁢(1-p). Note
that this indicates that there is no separate variance
parameter (σ2) in a logistic regression model;
instead the variance varies with the mean and
is determined by the mean.









	The error model for logistic regression
is that for each fixed combination of
explanatory variables the distribution of success
follows the binomial distribution, with success
probability, p, determined by the means model.










16.3.2 Example and EDA for logistic regression



The example that we will use for logistic regression
is a simulated dataset (LRex.dat) based
on a real experiment where
the experimental units are posts to an Internet
forum and the outcome is whether or not the
message received a reply within the first hour
of being posted. The outcome variable is called
“reply” with 0 as the failure code and 1 as
the success code. The posts are all to a single
high volume forum and are computer generated.
The time of posting is considered unimportant to
the designers of the experiment. The explanatory
variables are the length of the message (20 to 100
words), whether it is in the passive or active
voice (coded as an indicator variable for the
“passive” condition), and the gender of the
fake first name signed by the computer (coded
as a “male” indicator variable).




Plotting the outcome vs. one (or each) explanatory
variable is not helpful when there are only two
levels of outcome because many data points
end up on top of each other. For categorical explanatory
variables, cross-tabulating the outcome and
explanatory variables is good EDA.




For quantitative explanatory variables, one
reasonably good possibility is to break
the explanatory variable into several
groups (e.g., using Visual Binning in SPSS), and
then to plot the mean of the explanatory variable
in each bin vs. the observed fraction of successes
in that bin. Figure 16.1 shows a
binning of the length variable vs. the fraction
of successes with separate marks of
“0” for active vs. “1” for passive voice.
The curves are from a non-parametric smoother
(loess) that helps in identifying the general
pattern of any relationship. The main things
you should notice are that active voice messages
are more likely to get a quick reply, as
are shorter messages.



[image: ]
Figure 16.1: EDA for forum message example.







	EDA for continuous explanatory variables can
take the form of categorizing the continuous variable
and plotting the fraction of success vs. failure,
possibly separately for each level of some other
categorical explanatory variable(s).










16.3.3 Fitting a logistic regression model



The means model in logistic regression is that




	
	logit(S)=β0+β1⁢x1+⋯+βk⁢xk.
	




For any continuous explanatory variable, xi,
at any fixed levels of all of the other explanatory
variables this is linear on the logit scale. What
does this correspond to on the more natural probability
scale? It represents an “S” shaped curve that either
rises or falls (monotonically, without changing direction)
as xi increases. If the curve is rising, as indicated
by a positive sign on βi, then it
approaches Pr(S)=1 as xi increases and Pr(S)=0
as xi decreases. For a negative βi, the
curve starts near Pr(S)=1 and falls toward Pr(S)=0.
Therefore a logistic regression model is only
appropriate if the EDA suggest a monotonically
rising or falling curve. The curve need not
approach 0 and 1 within the observed range of
the explanatory variable, although it will at some
extreme values of that variable.




It is worth mentioning here that the magnitude
of βi is related to the steepness
of the rise or fall, and the value of the intercept
relates to where the curve sits left to right.




The fitting of a logistic regression model involves
the computer finding the best estimates of the β
values, which are called b or B values as in
linear regression. Technically logistic regression
is a form of generalized (not general) linear model
and is solved by an iterative method rather than
the single step (closed form) solutions of
linear regression.




In SPSS, there are some model selection choices
built-in to the logistic regression module.
These are the same as for linear regression
and include “Enter” which just includes all
of the explanatory variables, “Backward conditional (stepwise)”
which starts with the full model, then drops possibly
unneeded explanatory variables one at a time to
achieve a parsimonious model, and “Forward conditional (stepwise)”
which starts with a simple model and adds explanatory
variables until nothing “useful” can be added.
Neither of the stepwise methods is guaranteed to
achieve a “best” model by any fixed criterion,
but these model selection techniques are very
commonly used and tend to be fairly good in
many situations. Another way to perform model
selection is to fit all models and pick the
one with the lowest AIC or BIC.







	Dependent Variable Encoding





	Original Value
	Internal Value



	Not a quick reply
	0



	Got a quick reply
	1





Table 16.6: Dependent Variable Encoding for the forum example.


The results of an SPSS logistic regression
analysis of the forum message experiment using the
backward conditional selection method are
described here. A table labeled “Case Processing Summary”
indicates that 500 messages were tested. The critical
“Dependent Variable Encoding” table (Table 16.6)
shows that “Got a quick reply” corresponds to the
“Internal Value” of “1”, so that is what SPSS
is currently defining as success, and the logistic
regression model is estimating the log odds of
getting a quick reply as a function of all of the
explanatory variables. Always
check the Dependent Variable Encoding. You need
to be certain which outcome category is the one that
SPSS is calling “success”, because if it is not
the one that you
are thinking of as “success”, then all of your
interpretations will be backward from the truth.




The next table is Categorical Variables Codings.
Again checking this table is critical because
otherwise you might interpret the effect of a
particular categorical explanatory variable
backward from the truth. The table for
our example is table 16.7.
The first column identifies each categorical
variable; the sections of the table for each
variable are interpreted entirely separately.
For each variable with, say k levels, the table
has k lines, one for each level as indicated
in the second column. The third column shows
how many experimental units had each level
of the variable, which is interesting information
but not the critical information of the table.
The critical information is the final k-1 columns
which explain the coding for each of the k-1
indicator variables created by SPSS for the
variable. In our example, we made the coding
match the coding we want by using the
Categorical button and then selecting “first”
as the “Reference category”. Each of
the k-1 variables is labeled “(1)” through
“(k-1)” and regardless of how we coded
the variable elsewhere in SPSS, the level
with all zeros is the “reference category”
(baseline) for the purposes of logistic regression,
and each of the k-1 variables is an indicator
for whatever level has the Parameter coding of 1.000
in the Categorical Variables Coding table. So
for our example the indicators indicate male
and passive voice respectively.







	
	
	Parameter



	
	
	coding



	
	Frequency
	(1)





	Male gender?
	Female
	254
	.000



	
	Male
	246
	1.000



	Passive
	Active voice
	238
	.000



	voice?
	Passive voice
	262
	1.000





Table 16.7: Categorical Variables Codings for the forum example.







	Correct interpretation of logistic regression
results in SPSS critically depends on correct interpretation
of how both the outcome and explanatory variables are
coded.








SPSS logistic regression shows an uninteresting section called
“Block 0” which fits a model without any explanatory variables.
In backward conditional model selection Block 1 shows
the results of interest. The numbered steps represent
different models (sets of explanatory variables) which
are checked on the way to the “best” model. For our
example there are two steps, and therefore step 2
represents the final, best model, which we will
focus on.







	Hosmer and Lemeshow Test





	Step
	Chi-square
	df
	Sig.



	1
	4.597
	8
	0.800



	2
	4.230
	8
	0.836





Table 16.8: Hosmer-Lemeshow Goodness of Fit Test for the forum example.


One result is the Hosmer and Lemeshow Test of goodness
of fit, shown in Table 16.8.
We only look at step 2. The test is a
version of a goodness-of-fit chi-square test with
a null hypothesis that the data fit the model adequately.
Therefore, a p-value larger than 0.05 suggests
an adequate model fit, while a small p-value indicates
some problem with the model such as non-monotonicity,
variance inappropriate for the binomial model at
each combination of explanatory variables, or the
need to transform one of the explanatory variables.
(Note that Hosmer and Lemeshow have deprecated this
test in favor of another more recent one, that is
not yet available in SPSS.) In our case, a p-value
of 0.836 suggests no problem with model fit (but
the test is not very powerful).
In the event of an indication of lack of fit,
examining the Contingency Table for Hosmer and
Lemeshow Test may help to point to the source
of the problem. This test is a substitute for
residual analysis, which in raw form is uninformative
in logistic regression because there are only two
possible values for the residual at each fixed combination
of explanatory variables.









	The Hosmer-Lemeshow test is a reasonable substitute
for residual analysis in logistic regression.








The Variables in the Equation table (Table 16.9)
shows the estimates of the parameters, their standard
errors, and p-values for the null hypotheses
that each parameter equals zero. Interpretation
of this table is the subject of the next section.






16.3.4 Tests in a logistic regression model



The main interpretations for a logistic regression
model are for the parameters. Because the structural
model is




	
	logit⁢(S)=β0+β1⁢x1+⋯+βk⁢xk
	




the interpretations are similar to those of
ordinary linear regression, but the linear combination
of parameters and explanatory variables gives the
log odds of success rather than the expected
outcome directly. For human interpretation we
usually convert log odds to odds. As shown below,
it is best to use the odds scale for interpreting
coefficient parameters. For predictions, we can
convert to the probability scale for easier interpretation.




The coefficient estimate results from the SPSS section
labeled “Variables in the Equation” are shown
in table 16.9 for the forum message example.
It is this table that you should examine to see which
explanatory variables are included in the different
“steps”, i.e., which means model corresponds to which
step.
Only results for step 2 are shown here; step 1 (not shown)
indicates that
in a model including all of the explanatory variables
the p-value for “male” is non-significant (p=0.268).







	
	B
	S.E.
	Wald
	df
	Sig.
	Exp(B)



	length
	-0.035
	0.005
	46.384
	1
	
<0.005
	0.966



	passive(1)
	-0.744
	0.212
	12.300
	1
	
<0.005
	0.475



	Constant
	1.384
	0.308
	20.077
	1
	
<0.005
	3.983





Table 16.9: Variables in the equation for the forum message example.


This model’s prediction equation is




	
	logit⁢(S)=β0+βlength⁢(length)+βpassive⁢(passive)
	




and filling in the estimates we get




	
	logit⁢(S)^=1.384-0.035⁢(length)-0.744⁢(passive).
	







The intercept is the average log odds of success when all
of the explanatory variables are zero. In this model this
is the meaningless extrapolation to an active voice message with
zero words. If this were meaningful, we could say that the
estimated log odds for such messages is 1.384. To get to
a more human scale we take exp(1.384)=e1.384 which is given in
the last column of the table as 3.983 or 3.983:1. We can express this
as approximately four successes for every one failure.
We can also convert to the probability scale using
the formula p=3.9831+3.983=0.799, i.e., an
80% chance of success. As usual for an intercept,
the interpretation of the estimate is meaningful if
setting all explanatory variables to zero is meaningful
and is not a gross extrapolation. Note that a zero log odds
corresponds to odds of e0=1 which corresponds to a
probability of 11+1=0.5. Therefore it is almost
never valid to interpret the p-value for the intercept
(constant) in logistic regression because it
tests whether the probability of success is 0.5 when
all explanatory variables equal zero.









	The intercept estimate in logistic regression
is an estimate of the log odds of success when all
explanatory variables equal zero. If “all explanatory
variables are equal to zero” is meaningful for the problem,
you may want to convert the log odds to odds or to probability.
You should ignore the p-value for the intercept.








For a k-level categorical explanatory variable like
“passive”, SPSS creates k-1 indicator variables
and estimates k-1 coefficient parameters labeled
Bx(1) through Bx(k-1). In
this case we only have Bpassive(1) because
k=2 for the passive variable. As usual,
Bpassive(1) represents the effect of
increasing the explanatory variable by one-unit, and
for an indicator variable this is a change from baseline
to the specified non-baseline condition. The only
difference from ordinary linear regression is that
the “effect” is a change in the log odd of success.




For our forum message example, the estimate of -0.744
indicates that at any fixed message length, a
passive message has a log odds of success 0.744 lower
than a corresponding active message. For example,
if the log odds of success for active messages for
some particular message length is 1.744, then the
log odds of success for passive messages of the same
length is 1.000.




Because log odds is hard to understand we often rewrite
the prediction equation as something like




	
	logit⁢(S)^=B0⁢L-0.744⁢(passive)
	




where B0⁢L=1.384-0.035⁢L for some fixed message length, L.
Then we exponentiate both sides to get




	
	odds⁢(S)^=eB0⁢L⁢e-0.744⁢(passive).
	




The left hand side of this equation is the estimate of the
odds of success.
Because e-0.744=0.475 and e0=1, this says that
for active voice odds⁢(S)^=eB0⁢L
and for passive voice odds⁢(S)^=0.475⁢eB0⁢L.
In other words, at any message length, compared to
active voice, the odds of success are multiplied (not added)
by 0.475 to get the odds for passive voice.




So the usual way to interpret the effect of a categorical
variable on a binary outcome is to look at “exp(B)” and
take that as the multiplicative change in odds when
comparing the specified level of the indicator variable to
the baseline level. If B=0 and therefore exp(B)
is 1.0, then there is no effect of that variable on the
outcome (and the p-value will be non-significant). If exp(B)
is greater than 1, then the odds increase for the specified
level compared to the baseline. If exp(B) is less than
1, then the odds decrease for the specified
level compared to the baseline. In our example, 0.475
is less than 1, so passive voice, compared to active voice,
lowers the odds (and therefore probability) of success
at each message length.




It is worth noting that multiplying the odds by a fixed
number has very different effects on the probability
scale for different baseline odds values. This is
just what we want so that we can keep the probabilities between
0 and 1. If we incorrectly claim that for each one-unit
increase in x probability rises, e.g., by 0.1, then this
becomes meaningless for a baseline probability of 0.95.
But if we say that, e.g., the odds double for each one
unit increase in x, then if the baseline odds are
0.5 or 2 or 9 (with probabilities 0.333, 0.667 and
0.9 respectively) then a one-unit increase in x
changes the odds to 1, 4 and 18 respectively
(with probabilities 0.5, 0.8, and 0.95 respectively).
Note that all new probabilities are valid, and that
a doubling of odds corresponds to a larger probability
change for midrange probabilities than for more extreme
probabilities. This discussion also explains why you
cannot express the interpretation of a logistic regression
coefficient on the probability scale.









	The estimate of the coefficient for an indicator
variable of a categorical explanatory variable in
a logistic regression is in terms of exp(B). This
is the multiplicative change in the odds of
success for the named vs. the baseline condition
when all other explanatory variables are held constant.








For a quantitative explanatory variable, the interpretation
of the coefficient estimate is quite similar to the case
of a categorical explanatory variable. The differences
are that there is no baseline, and that x can take
on any value, not just 0 and 1. In general, we can
say that the coefficient for a given continuous explanatory
variable represents the (additive) change in log odds of
success when the explanatory variable increases by one
unit with all other explanatory variables held constant.
It is easier for people to understand if we change
to the odds scale. Then exp(B) represents the multiplicative
change in the odds of success for a one-unit increase in
x with all other explanatory variables held constant.




For our forum message example, our estimate is that
when the voice is fixed at either active or passive, the
log odds of success (getting a reply within one hour)
decreases by 0.035 for each additional word or by
0.35 for each additional ten words. It is better to
use exp(B) and say that the odds are multiplied by
0.966 (making them slightly smaller) for each additional
word.




It is even more meaningful to describe the
effect of a 10 word increase in message length
on the odds of success.
Be careful: you can’t multiply exp(B) by ten.
There are two correct ways to figure this out.
First you can calculate e-0.35=0.71, and
conclude that the odds are multiplied by 0.71
for each additional ten words. Or you can realize
that if for each additional word, the odds are multiplied
by 0.966, then adding a word ten times results in
multiplying the odds by 0.966 ten times. So the
result is 0.96610=0.71, giving the same
conclusion.




The p-value for each coefficient is a test of
βx=0, and if βx=0, then when x
goes up by 1, the log odds go up by 0 and the
odds get multiplied by exp(0)=1. In other words,
if the coefficient is not significantly different
from zero, then changes in that explanatory variable
do not affect the outcome.









	For a continuous explanatory variable in
logistic regression, exp(B) is the multiplicative
change in odds of success for a one-unit increase
in the explanatory variable.










16.3.5 Predictions in a logistic regression model



Predictions in logistic regression are analogous to
ordinary linear regression. First create a prediction
equation using the intercept (constant) and one
coefficient for each explanatory variable (including k-1
indicators for a k-level categorical variable). Plug
in the estimates of the coefficients and a set of
values for the explanatory variables to get what
we called η, above. This is your prediction of
the log odds of success. Take exp(η) to get
the odds of success, then compute odds1+odds to get the probability of success.
Graphs of the probability of success vs. levels
of a quantitative explanatory variable, with all
other explanatory variable fixed at some values,
will be S-shaped (or its mirror image), and
are a good way to communicate
what the means model represents.




For our forum messages example, we can compute
the predicted log odds of success for a 30 word
message in passive voice as η=1.384-0.035⁢(30)-0.744⁢(1)=-0.41.
Then the odds of success for such a message is exp(-0.41)=0.664,
and the probability of success is 0.664/1.664=0.40 or 40%.




Computing this probability for all message lengths from
20 to 100 words separately for both voices gives figure
16.2 which is a nice summary of the
means model.



[image: ]
Figure 16.2: Model predictions for forum message example.







	Prediction of probabilities for a set of explanatory
variables involves calculating log odds from the linear
combination of coefficient estimates and explanatory
variables, then converting to odds and finally probability.










16.3.6 Do it in SPSS



In SPSS, Binary Logistic is a choice under Regression on the Analysis
menu. The dialog box for logistic regression is shown in figure
16.3. Enter the dependent variable. In the
“Covariates” box enter both quantitative and categorical
explanatory variables. You do not need to manually convert
k-level categorical variables to indicators. Select the
model selection method. The default is to “Enter” all
variables, but you might want to switch to one of the available
stepwise methods. You should always select “Hosmer-Lemeshow
goodness-of-fit” under Options.



[image: ]
Figure 16.3: SPSS dialog box for logistic regression.


If you have any categorical explanatory variables listed in the
“Covariates” box, click on “Categorical” to open the dialog
box shown in figure 16.4. Move only the categorical
variables over to the “Categorical Covariates” box.
The default is for SPSS to make the last category the baseline
(reference) category. For variables that are already appropriately
named indicator variables, like passive and male in our example,
you will want to change the “Reference Category” to “First”
to improve the interpretability of the coefficient tables. Be
sure to click the “Change” button to register the change in
reference category.



[image: ]
Figure 16.4: SPSS Categorical Definition dialog box for logistic regression.


The interpretation of the SPSS output is shown in the preceding
sections.





































































Chapter 17 Going beyond this course

































































Index



	
additive model Chapter 11


	
additivity 10.2


	
alpha 6.2.6


	
alternative hypothesis 6.2.3


	
alternative scenario 12.1


	
analysis of covariance, see ANCOVA


	
analytic comparison, see contrast


	
ANCOVA Chapter 10


	
ANOVA Chapter 7

	
multiway Chapter 11


	
one-factor, see ANOVA, one-way


	
one-way Chapter 7


	
two-way Chapter 11






	
ANOVA table 7.4


	
antagonism 10.2


	
AR1, see autoregressive


	
association 8.1


	
assumption 7.2.1

	
equal spread 9.1


	
fixed-x 9.1, 9.7


	
independent errors 6.2.8, 9.1


	
linearity 9.1


	
Normality 9.1






	
asymptotically distributed 16.2.3


	
autoregressive 15.3


	
average 4.2.3


	
balanced design 11.1


	
Bayesian Information Criterion 15.7


	
Bernoulli distribution 3.9.1


	
between-subjects design 11.1, see design, between-subjects


	
between-subjects factor, see factor, between-subjects


	
bias 2.1


	
BIC, see Bayesian Information Criterion


	
bin 4.3.1


	
binary 16.3.1


	
binomial distribution 3.9.1


	
blind

	
double, see double blind


	
triple, see triple blind






	
blinding 8.1


	
block randomization 8.1


	
blocking 8.5


	
Bonferroni correction 13.3


	
boxplot 4.3.3


	
carry-over 14.1


	
causality 8.1


	
cell 11.1


	
cell counts 16.2.2


	
cells 16.2.2


	
Central Limit Theorem 3.8


	
central tendency 3.5.1, 4.2.3


	
Chebyshev’s inequality 3.5.2


	
chi-square distribution 3.9.6


	
chi-square test 16.2.3


	
CI, see confidence interval


	
CLT, see central limit theorem


	
coefficient 9.1


	
coefficient of variation 3.5.2


	
column percent 16.2.2


	
complex hypothesis, see hypothesis, complex


	
compound symmetry 14.5, 15.3


	
concept map 1.3


	
conditional distribution 3.6


	
conditional probability, see probability!conditional


	
confidence interval 6.2.7, 6.4


	
confounding 8.1


	
contingency table 16.2.1


	
contingency tables 16.2.2


	
contrast 13.1


	
contrast coefficient 13.1


	
contrast hypothesis Chapter 13

	
complex 13.1


	
simple 13.1






	
control group 8.1


	
control variable 8.5


	
correlation 3.6.1


	
correlation matrix 3.6.1


	
counterbalancing 14.1


	
counterfactuals 6.2.2


	
covariance 3.6.1


	
covariate Chapter 11, 8.5


	
cross-tabulation 4.4.1


	
custom hypotheses, see contrast


	
CV, see coefficient of
variation


	
data snooping 13.3


	
decision rule 6.2.6


	
degrees of freedom 3.9.5, 4.6


	
dependent variable, see variable, outcome


	
design

	
between-subjects 14.1


	
mixed 14.1


	
within-subjects 14.1






	
df, see degrees of freedom


	
distribution

	
conditional, see conditional distribution


	
joint, see joint distribution


	
marginal, see marginal distribution


	
multivariate 14.2






	
double blind 8.1


	
dummy variable 10.3


	
DV, see variable, dependent


	
EDA 1.2


	
effect size 12.6, 6.2.10


	
EMS, see expected mean square


	
error 6.2.8, 9.1

	
Type 1 6.2.6, 8.4


	
Type 2 12.1, 6.2.10, 6.2.6






	
error model, see model, error


	
eta 16.3.1


	
event 2.4


	
example

	
osteoarthritis 14.3






	
expected mean square 12.4


	
expected values 3.5


	
experiment 8.1


	
explanatory variable, see variable, explanatory


	
exploratory data analysis 1.2


	
extrapolate 9.1


	
F-critical 7.2.4


	
F-distribution 3.9.7


	
factor

	
between-subjects 14.1


	
fixed 14.4


	
random 14.4


	
within-subjects 14.1






	
false negative 12.3


	
false positive 12.3


	
fat tails 4.3.3


	
fixed factor, see factor, fixed


	
frequencies, see tabulation


	
frequency 16.2.2


	
Gaussian distribution 3.9.4


	
gold standard 9.2


	
grand mean 7.2.2


	
Hawthorne effect 8.1


	
HCI 6.1


	
histogram 4.3.1


	
Hosmer-Lemeshow Test 16.3.3


	
hypothesis

	
complex 6.2.3


	
point 6.2.3






	
iid 3.7


	
independence 3.3


	
independent variable, see variable, explanatory


	
indicator variable 10.3, 2.4


	
interaction 10.2, 2.2


	
interaction plot Chapter 11


	
interpolate 9.1


	
interquartile range 4.2.4


	
IQR, see interquartile range


	
IV, see variable, independent


	
joint distribution 3.6


	
kurtosis

	
population 3.5.3


	
sample 4.2.5






	
learning effect 14.1


	
level 2.3


	
linear regression, see regression, linear


	
log odds 16.3.1


	
logistic regression 16.3.1


	
logit 16.3.1


	
main effects 10.2, 10.2


	
marginal counts 16.2.2


	
marginal distribution 3.6


	
marginal probability, see probability!marginal


	
margins 16.2.2


	
masking 8.1


	
mean 4.2.3

	
population 3.5






	
mean square 7.2.2


	
mean squared error 9.8


	
means model, see model, structural


	
measure 1.3


	
median 4.2.3


	
mediator 2.2


	
mixed design, see design, mixed


	
mode 4.2.3


	
model

	
error 1.2, 6.2.2


	
means, see model, structural


	
noise 6.2.2, see model, error


	
structural 1.2, 6.2.2






	
model selection 15.7


	
models 1.2


	
moderator 2.2


	
Moral Sentiment 7.1


	
MS, see mean square


	
MSE 9.8


	
multinomial distribution 3.9.2


	
multiple comparisons 13.3


	
multiple correlation coefficient 9.8


	
multivariate distributions 14.2


	
n.c.p., see non-centrality parameter


	
negative binomial distribution 3.9.3


	
noise model, see model, error


	
non-centrality parameter 12.1, 12.7


	
Normal distribution 3.9.4


	
null hypothesis 6.2.3


	
null sampling distribution, see sampling distribution, null


	
observational study 8.1


	
observational units, see units—observational


	
odds 16.3.1


	
one-way ANOVA, see ANOVA, one-way


	
operationalization 1.3


	
outcome, see variable, outcome


	
outlier 4.2.2, 4.3.3


	
p-value 6.2.6


	
parameter 3.5, 4.2.3


	
pdf, see probability density function


	
penalized likelihood 15.7


	
placebo effect 8.1


	
planned comparisons 13.2


	
pmf, see probability mass function


	
point hypothesis, see hypothesis, point


	
Poisson distribution 3.9.3


	
population 3.4


	
population kurtosis, see kurtosis, population


	
population mean, see mean, population


	
population skewness, see skewness, population


	
population standard deviation, see standard deviation, population


	
population variance, see variance, population


	
post-hoc comparisons 13.3


	
power 12.1, 6.2.10


	
precision 8.5


	
probability 2.4

	
conditional 3.3


	
marginal 3.3






	
probability density function 3.2


	
probability mass function 3.2


	
profile plot Chapter 11


	
QN plot, see quantile-normal plot


	
QQ plot, see quantile-quantile plot


	
quantile-normal plot 4.3.4


	
quantile-quantile plot 4.3.4


	
quartiles 4.2.4, 4.3.3


	
R squared 9.8


	
random factor, see factor, random


	
random treatment assignment 8.1


	
random variable 2.4


	
randomization, see random treatment assignment


	
range 4.2.4


	
recoding 5.5.1


	
regression

	
simple linear 9.1






	
reliability 2.1


	
repeated measure 14.1


	
residual 6.2.8


	
residual vs. fit plot 9.6


	
residuals 9.4, 9.4


	
robustness 1.2, 4.2.3, 6.2.8


	
row percent 16.2.2


	
sample 3.4, 4.2.2

	
convenience 3.4


	
simple random 3.7






	
sample deviations 4.2.4


	
sample space 2.4


	
sample statistics 3.7, 4.2.2


	
sampling distribution 3.7, 4.2.3

	
alternative 12.1, 12.1


	
null 6.2.5






	
Schwartz’s Bayesian Criterion, see Bayesian Information Criterion


	
SE, see standard error


	
serial correlation 9.1


	
side-by-side boxplots 4.5.1


	
signal, see model, structural


	
significance level 6.2.6


	
simple random sample, see sample, simple random


	
Simpson’s paradox 8.6


	
skewness

	
population 3.5.3


	
sample 4.2.5






	
sources of variation, see variation, sources of


	
sphericity 14.5


	
spread 3.5.2, 4.2.4, 4.2.4


	
SPSS

	
boxplot 5.7.3


	
correlation 5.6


	
creating variables 5.5


	
cross-tabulate 5.6


	
data editor 5.1


	
data transformation 5.5


	
data view 5.1


	
descriptive statistics 5.6


	
dialog recall 5.1


	
Excel files 5.4


	
explore 5.8


	
frequencies 5.6


	
functions 5.5


	
histogram 5.7.2


	
importing data 5.4


	
measure 5.3


	
median 5.6


	
overview 5.1


	
quartiles 5.6


	
recoding 5.5.1

	
automatic 5.5.2






	
scatterplot 5.7.4

	
regression line 5.7.4


	
smoother line 5.7.4






	
tabulate 5.6


	
text import wizard 5.4


	
value labels 5.3


	
variable definition 5.3


	
variable view 5.1


	
visual binning 5.5.3






	
SS, see sum of squares


	
standard deviation 4.2.4

	
population 3.5.2






	
standard error 6.4


	
standardized coefficients 9.4


	
statistic 3.7


	
statistical significance 6.2.6


	
stem and leaf plot 4.3.2


	
stepwise model selection 15.7.2


	
structural model, see model, structural


	
substantive significance 6.2.7


	
sum of squares 4.2.4


	
support 2.4


	
synergy 10.2


	
Syntax (in SPSS) 5.1


	
t-distribution 3.9.5


	
tabulation 4.2.1


	
transformation 2.4, 5.5


	
triple blind 8.1


	
true negative 12.3


	
true positive 12.3


	
Type 1 error, see error, Type 1


	
Type 2 error, see error, Type 2


	
uncorrelated 3.6.1


	
units

	
observational 3.4






	
unplanned comparisons 13.3


	
validity

	
construct 2.1, 8.2


	
external 8.3


	
internal 8.1






	
variable 1.3

	
classification

	
by role 2.2


	
by type 2.3






	
dependent, see variable, outcome


	
explanatory 2.2


	
independent, see variable, explanatory


	
mediator, see mediator


	
moderator, see moderator


	
outcome 2.2






	
variance 4.2.4

	
population 3.5.2






	
variation

	
sources of 8.5






	
within-subjects design 8.5, see design, within-subjects


	
within-subjects factor, see factor, within-subjects


	
Z-score 9.4



































Generated  on Thu Aug 31 20:55:23 2017 by LaTeXML [image: [LOGO]]






x3.png
0z

T
sk

T
ok

fouenbaiy






x4.png
ok

Aouanbaig

10





x1.png
T T T T
gL 0L 80 90 v0 20 00
Ausuaq





x2.png
210

L —
800 00

AKusuap

000

10





badschematic.jpg
Scientific
Question

Null and alternative
Hypotheses

Population

Observables
(random variables)

Experiment

Hypothesis
Test Results

(p-value)

Sample Results
(data)

Statistic(s)






seltmanschematic.jpg
Power
Calculation

Scientific
Concepts

Unobservable
Key Quantities

Statistical Model
{signal-nose)

(parameters)

Scientific
Question

Observables
(random variables)

Null and Alternative
Hypotheses

Sample Results EDA
(data)
Model
Assumtions

Confidence
Intervals

Hypothesis
Test Results

(p-value)

Data and Model

Assessment
Sampling
Distributions






spsselementproperties.jpg
Element Properties

Edit Properties of
Bert

-aist (Bart)
¥-ist (Bar)
it 1

Text Type: Tie 1

Contert:
i i the Thle for My Graph

ooty | cancel |[ e






spsscharteditor.jpg
i Chart Editor
Ele Edt Vew Opfions Eemerts tiep

oo EXYAEP BiILEY CEOL Eulis &1
[ =l ~ 81 5x= Atl—t

B Wb Lk W

z
2
s
5
z
2
Il

7o, w71 75 parts






spsshistogramsetup.jpg
ud Chart Builder

Varisbles:

Gan

& Gencer

el Grace i course
& Trestent

& Resnonse tine (ms) R

Chart preview uses example data

No categaries (scae
variabie)

e tamerts | GroupsrontD | Tesrontes |
craose o

Eemert.

e i

Pierolar
Scatterat
Histogram

High-Low
Boxpiot
ual Axes

o e J e I I






spsshistogram.jpg
Ages from the Drinking and Driving Study

1007 Hean =207
std-Bev, =208
N2

80

Frequency

40

20

Age





x5.png
=

=

15

10

Bl

2

s

5

0

E

st

s

3

s

o s
J—

o

9 oimdllln

rr—

E

=

s

0





spssbinningproperty.jpg
Properties
ChartSize | Fil & Border Veriables
(@) K axds only

) Z s rly

) Kand Zaxes
X Axis

©) mutomatic
(©) cugtom
O umoer ofrtervas: 1|
© terval it
[ Custom value fo anchr:

2 Axis:






x6.png
s

s o=
s vz o0 IREER 00y
Ja— -

=) dre
89 rzo 990 L
— - e—
=i =
———1 7 ——
vz o B9 vz L
Jovmbass Jovanonry fovorbany

2

S0s 0

)

S0s w0

=

S050





spsscorrelation.jpg
Correlations.

Respanse
Age time (me)
) Fearson Correlaion | 1.000 -252
Sig. (24ailec) 283
N 20,000 20
Response time (ms) _ Fearson Correlaion | -252 1.000
Sig. (24ailec) 283
N 20 20000






spssdescript.jpg
Descriptive Statistics

Winimum_| Waximum | _Wean | Std. Deviation
Age el [ 53 EE] 13240
degree 42 1 3 1908 811

Valig N (listwise)

4






spssemptycb.jpg
& Chart Builder.

Varisbles: Chart preview uses example data

Gan

& cender

& age

ol Grace i i course
& Trostent

& Resnonse tine (ms) R

Novaniabios selbcted

Bask Bemens | Groupsport | THesFosinoies

Choase from:

Favortes

Ber
Line

area

Pierolar

Scatterat
Histogram
High-Low
Boxpiot
ual Axes

o Jse [ me J[ o )

Eemert.
Properties.

options.






spssquantiles.jpg
Statistics

degree
N Vg )
Missing 0
Hedian 200
Perceniiles 25 100
50 200
75 3.00






spsstitlestab.jpg
Galery | Basic Elemerts | GroupsPointiD_| TitlesFFootnotes |

Chesked ems adei e and foctnotes tothe char,Ext the text witin Properties. Elmert, ‘
Properies
[Ttet ——
Olmez ‘ option, ‘
] subtite
[JEootnote 1
[ Foctnote 2

o] [Lese (s ) [Lcmes J[_rem






spssgrpptid.jpg
Golery | Basic Eemerts | GroupsPoint_ | Ttes Fostnctes
725 S R B R

Elemert,
Properties.

‘ Options. ‘

[ Groupingistacking variable.
] Rows Panel

01 Columns pane varisble

o (oo J[geont [ _caea J[_ri






spssexplorebckgrnd.jpg
Reaction Time (ms)

1200

1000

e004

600

4004

2004

T
yelow

Background Color

T
eyan






spssexplore.jpg
Case Processing Summary

Cases
Valid Missing Total
sex N Percent N Percent N Percent
Strength _Male 20 | 100.0% 0 0% 20 | 1000%
Female 21| 955% 45% 22 | 1000%
Descriptives
sex Statistic | Std Error
Strength_Male  Mean 22015 5390
95% Confidence  Lower Bound 20887
Interval for Mean  Upper Bound _—
5% Trimmed Mean 22106
Median 21700
Variance 5810
Std. Deviation 24103
Minimum 165
Maximum 259
Range 94
Interquartile Range a1
Skewness 412 512
Kurtosis 016 992
Female Wean 22119 4502
95% Confidence  Lower Bound 21.180
Interval for Mean  Upper Bound 25058
% Trimmed Mean 22191
Median 22300
Variance 4257
Std. Deviation 20832
Minimum 178
Maximum 251
Range 73
Interquartile Range 35
Skewness -408 501
Kurtosis 727 972






x13.png
03 04

Density
02

0.1

00

t distribution pdf with 33 df

area—0.382

area=0.382,






population.jpg
I=1Q, W=waist size, S=soccer kick distance

Y/C=reaction times with yellow/cyan backgrounds





spssbckgrndttest.jpg
Group Statistics
Std. Error
Background Color N Mean | Std. Deviation | _Wean
Reacton Time (ms) _yellow 7] 67965 50387 | 38.657
oan 18| 66004 202039 | 47621
Independent Samples Test
Levenes
Testfor
Equality of
Variances ttestfor Equalty of Means
stg. | 95% Confidence
sig. | Wean | Eror | Intenaloftne
(24ail | Differe | Differe Difference
F |sig |t | o | ed) | nce | nce [ Lower | Upper
Reacton _ Equalvariances | 1
S 1250 | 272 | 30 | 33| 784 18703 | 61758 | -108.04 | 14435
Equal variances 5 55 .
St 30 (3202 | 762 18703 | 61336 | 10623 | 14364






spssttestdb.jpg
M independent-Samples T Test:

Tes Vel
& Reaction Tims (ms) ]

Fo

& Residua fortime [Resi

o Var
o) — |

|

Options






spssboxplot.jpg
Response Time by Grade for the Driving Study

o001

8501
e00
700

6501

Response time (ms)

600

T T
¢ 5

>

Grade in prior course





spssboxplotsetup.jpg
Varisbles: Chart preview uses example data

G0 ]
& cender
& age

K e —

Novaniabios selbcted

I —

ol e oneris || oot o) | s roctwsest|

Choase from: Elemert.

Favortes Properties.

E | aoBlubll S

Pierolar
Scatterat
Histogram
High-Low
[Boxpict
ual Axes

o e J e J[cmen [ e






spssscatter.jpg
Response time (ms)

Response Time by Age for Driving Study

00

850

s00-{

T

700

650

2

2

Age






spssscattersetup.jpg
& Chart Builder.

Variables: Chart preview uses exampie data
o ™

& cender

& age

il rade nprior course [
& Trostent

& Resnonse tine (ms) R

Respanse time (m3)

A

Novaniabios selbcted

Gallry | Basic Eemerts | GroupsiPaint D

Eemert.
Properties.

Cime2 s
mEYT

] Eeence

oot 2

e






spssfitlineproperty.jpg
Properties
ChartSize | Lies | Fitline | Varities

[ Display Spkes  [] Suppress inercept
Fit Method -

Oeanat ¥ O Quadratic

(®) Linear #| O cupic

=
[ Ovaees

% of points o ft:

Kerme: [, =

Confitence inervals .
Oen

O ielvidual

[ (e






x16.png
Density
03

05 06 07

0.4

0.2

0.1

0.0

Fcritical for alpha=0.05






threat.jpg
Threats to Avoid

Poor
External
Validity

Poor
Construct
Validity

Poor Internal
Validity

Confounding

Methods Don't
Ensure Correct
Typel Error

Poor Power






spssonewaydb.jpg
2 One-Way ANOVA

7
[ conpertonscrs o | LS5t |
ot
ooters,
-]

—
[»]

o) e J[ e [ o J[ e ]






x18.png
Final Weight (gm)

500 600

300 400

200

100

o o
3
8
8
0 20 40 60 80 100

Soil Nitrogen (mg/pot)





x17.png
15

10

10






x20.png
Residual

Residual

-10

= G
S 2
o ©o

o © © % s 0

R _

o o 8l 3
e /&e\’g g °
o ho |oo|oo| &
o o !
° =]

o e o
" e
20 40 60 80 100 20 40 60 80 100

Fitted value Fitted value
D
o
]
=) % g
_ 2 -odwo
] NG /'
2 o ° o
< ° | ode s o
3 ofo
Je
—
0 20 60 100
Fitted value Fitted value





x19.png
25

20

15

10

21-19=2

6-9=
Slope=2/1=2

Residual=3.5-11=-7.5

6 8 10 12






lenth2way.jpg
Two-way ANOVA
Options  Help

row  © Fied

Tevelsfrou] = =

SDlcoll P Powerlcoll = 1

@GRt Clam |
|

SDlrowcol] " Powerlrowtcol] = 2381
e 912 =

levelsfeol] = 3 a

SD[Within] " Significance level

Within O Foed  © Random ‘ Ve ] [B =]

n[Within] = 7






spssmoralsentboxplot.jpg
Cooperation score

104

97 110
o
12389

T
Cortrol

T
Guit

Induced emotion

T
Shame.






lenth1wayplot.jpg
Power[treatment] vs. n[Within]

5 25 30 E3 a

Vettical () axis [Powerreatmeny ]
Horizontal (x) axis [nwitning

from |5 a0 | w

¥ Persistent ‘Show Data " Rec |

s2va Aoplet Window






spssbckgrndresid.jpg
Count

Histograms of Residuals

yellow. eyan
==

Residual for time

Residual for time






lenth1way.jpg
One-way ANOVA
Options  Help

treatment @ Fixed  ( Random SDitreatment]

levels[ireatmeni] E = _I
E — |‘ sDM¥itinl S

———— [ s |

o Rt CRmen |

Java Applet Window





x15.png
Density
03

05 06 07

0.4

01 02

0.0

Observed F-statistic=2.0

shaded area is 0.178






x14.png
oe gz 0z G+ 0L S0 00
Ausuaq





spssunivariatesyntax.jpg
s Widow  Heh

Ele Edt Vew Deia Iransform Analyze Graphs Uities Run Add.

EHa o0 OLEil # b 0% 73 55 & e s ]| |

UNIANOVA hrs BY addtive
METHOD=SSTYPEQ)
/INTERCEPT=INCLUDE
JEMMEANS=TABLES additive)

-ALPHA(05)

e

[5PSS Processor s ready| |





spssunivariatecontrasts.jpg
Ectors:

citive(Repeatec)

Change Contrast

Referenice Cateny: @) Last O First






spss1waycontrasts.jpg
£ One-Way ANOVA: Contrasts 3]

Clesynoma e

Contrast 1.0f 1

Coettserts [

5

1

s |os

Coefiicent Tetel: 0.000






lenthlr.jpg
inear Regression
Options Help

DNo. of predictors = 1

R T e |

SD ofxljl
Value (v [36.98

Solve for

[Sempte i






spssrepeatedmeasures.jpg
£ Repeated Measures

& Subet D st

& occhisont; Occksiont
& occhison 2 Occksint
& occhison: Occlsint

cclusan 4 Occlusiont.

AR Subjects Variables
(ocolusionType):

InoOcelusion(1 milseconds)
WissCovered(2 millseconds)
(OppCovered(3,milseconds)
OppCovers(d milsecons)

Between-Subjects Factor(s)

Covarites:

Conasts
st Hoe
—
[ opions






spssrmdefinefactors.jpg
sl Repeated Measures Define Factor(s)

WAt Subject Factor Name:

L 1

tomperorovat ||

ot | foectusionTypeca)

Measure Name:

]

miliseconds






bivarcis.jpg
¥

10






x23.png
Test score

30

X+ Do

0-5 flashes/min
6-10 flashes/min
11-15 flashes/min
16-20 flashes/min

T T T T
20 40 60 80

decibel





spssregplotdb.jpg
Linear Regression: Plots

oEFERGNT | | Seaterlaf 1
ZeRED evos (Chet )
s = (et )
DRESID

L W e R 20|

“SRESID
“SDRESID

[ S e —|

Standarized Resdual PRts [ produce al patial plts
O tistogram
Nognal probabity ot






x25.png
Test score

80
L

-~ Tutor A
-4 TutorB 0

70
L

a

20

o

400 500

600
Math SAT

700

800





x24.png
+ H\F

~4- 9-11 months
—— 13-16 months

-6~ 5-8 months

052

T T T
002 0SH 00k

(seinuiw) swp desispsey

30

25

20

15

10

dose





x27.png
o

ot

9 ¥
aWooINQO ueapy

‘0. B=r. o

9 4
aWooINQO Uesy

r

c

b

Factor B

Factor A





x26.png
RxA

T
004

souBULIONS]

80

60

40

20

Skill





carnoiseerrbar.jpg
NOISE

s

s

a0

s

madium

SIZE

TYPE
Standerd
——octel

Ertor Bars show Mean +1- 20 SE





carnoiseexplore.jpg
a60

840

20

NOISE

e00

7804

780

T T T T T T
Small stimedun  stdferge  octelsmal octelmedum octelfarge
TypeSize






x22.png
Quanties of Standard Normal

Quanties of Standard Normal

-2

-2

A B
3 @ g
% 5 1 3
2
-
5o
g g o
s T
s 0 s w0 q0 s 0 s
Observed Resicual uarties Observed Resicual uarties
c D
3 = 5
s 57 $
H
5 o
o RS
2 o s 00 s o

Observed Residual Quantiles

Observed Residual Quantiles






x21.png
Residual

Residual

50 100

0

-100

A B
5T g ER 5
o o ° o
w4
& o - /o |,
5| o) ER " | ¥ | o fow
B 3 T8 55%
ER £ & ~-of
o |2 fipe e e —09510%
e |7 o
o o |® ol o
T T T
20 40 60 80 100 0 20 40 60 80 100
Fitted value Fitted value
c )
g ]
o
00
81
2 ¥ ot
3 e o
g °°°_aga
b o
° @
8 e o
° ' °
T —
20 40 60 80 100 0 20 40 60 80

Fitted value

Fitted value





spssregdb.jpg
near Regression

[ ¢ Nirogen added (mg/o] Dependert

Blook 1of 1

dependents)
| & Nirogen added fm/oot ot






x29.png
Mean ACT Score

2

20

15

10

ob

o
malea:
femaleo

algebra geometry calculus

courses





x31.png
Mean Outcome

30

20

10

Case B

o light=low

2 light=medium

+light=high
T T T T
1 2 3 4

sound






x30.png
Mean Outcome

30

20

10

Case A

°
a

T

light=low
light=medium
light=high

T
1

sound






x33.png
Mean Outcome

30

20

10

Case D

o light=low

2 light=medium

+light=high
T T T T
1 2 3 4

sound






x32.png
Mean Outcome

30

20

10

CaseC

o light=low

2 light=medium

+light=high
T T T T
1 2 3 4

sound






logdefcatdb.jpg
Logistic Regression: Define Categorical Variables

Covarates:

Categorcal Covatates

& Wessage lengih frord]

|

ssivelndicatorfirst)
R R S —

Change Cortrast

Contrest: [incicator v

Reference Category: Olast @it

o






spssunivariatedb.jpg
nivariate

& GendecCouse

Dependent Varable:

8 | =—

Fed Factorf)

Sogender
[ sz

Random Factork):

Options

Covatatel):






x34.png
Mean Outcome

30

20

10

CaseE

°
a

T

light=low
light=medium
light=high

T
1

sound






x35.png
Density

1.0

08

0.6

04

02

Nullis true; Pr(F<Ferit)=0.95, Pr(F>=Fcrit)=0.05

F critical = 3.1

Crit}=0.59, Pr(F>=Fcrit}=0.41

ItF<Feit}=0.24, Pr(F>=Forit)=0.76






x7.png
] =[]
s s o5 o s o5
fouanbas - fovenbe
] dre —
s @S0 s o s oo s
fouanbs fovertes fovenve
El gr &
—— 7 1 7 ——
o s @ s oo s o o s
Jovanbory fouonbany fovonbory

2

S0s 0

)

S0s w0

=

S050





spssunivariatemodeldb.jpg
Univariate: Model

‘Specfy Model
O Ful factorial ©Custom
Eactors & Covariates:
gender(F)

coursestf)

Buid Temis)

=

S of squeres Twell v [Elincuderterosptinmodel






carnoiseresplot.jpg
Predicted Observed

Std. Residual

Dependent Variable: NOISE

o
o oo
L
8 5612
8 008°
an 0000
o ° 6oao
[BR® Q5/8/016:050
5 S
oolo oo
o g olo g0
> 8o |® %o
lo o
e o ° o

Observed Predicted  Std. Residual

Model: Intercept + SIZE +TYPE + SIZE * TYPE





x28.png
Mean Outcome

6

4

0B=2

& Averaged over H

Factor A





x12.png
Strength

35

30

25

20

15

10

cobb

F/Dem
F/Rep

M/Dem
MiRep






x11.png
og se 0z
wbuang

e

ok

(42,62] (62,82

(2142)

Age Group





videommdb.jpg
inear Mixed Models

Said Dependent Varizble:
& tia2irel2) O] [
Factor):
[ ]

Covatatel):

Prial

]

o —

Faed. ] ([Fentor ) (Eomaten. ) (3ios ] [ oare ] (e






x9.png
© Outlier

Upper whisker

IQR

Lower whisker

Upper whisker end

Q3 or upper hinge
Median

Q1 or lower hinge

Lower whisker end






videosubrepdb.jpg
pecify Subjects and Repeated

Clck Cortinue for models wih Uncorlated terms.
‘Specty Subject varable for models with corelated random sffects

‘Specfy both Repeated and Subject varibles for models wih conslated
resicuals witin the random efects.

difagean 20cis
score Suid
Sl
Sl 2 2] |
Bepeated:

™

Repeated Coyariance Type:






x36.png
Frequency
002 004 006 008

0.00

Frequency
02 03 04

0.1

0.0

2

o*=25 =100 =100 =100
w=13 pe=17] 3 |w=13 pe=17 3 |w=13 pe=17 3 |we=it =19
S S S
9 9 9
3] ! 3]
50 59 50
Sy Sy Sy
& & &
5 5 5
3 3 3
s 3 s
8] 8] 8]
TTTTTTT © rrrrTTT S rTTTTT © rTTTTT
0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
Click Pop. Values Click Pop. Values Click Pop. Values. Click Pop. Values
ln:ﬁo ln—GO l 120 ln:SO
&4 by &4
=) ° o
| @ 2]
[ 2° o
§ § §
So Sa £
g5 85 85
£ £° b
9 9
g =4 8]
=) ° =)
g o g
o ° o

010 20 30
Clof Click Mus

010 20 30
Clof Cick Mu's

0 10 20 30
Clof Cick Mu's

0 10 20 30
Clof Click Mu's





x8.png





videoeda2.jpg
score

Complex Scatterplot

id
Wac Hrr EvE

agegrp
o—oa0
A G0d0l
VoS0

LLR Smosther






x10.png
L e
0£0 S20 020 SHO 0L0 SO0 000

Ausuag

Expected Normal Value





qn1.jpg
Expected Normal Value

Normal Q-Q Plot of Post-Pre

Observed Value






videoeda.jpg
score

Complex Scatterplot

agegrp
Heoan
(30,40]
Hwoso

LLR Smosther





qn3.jpg
Expected Normal Value

Normal Q-Q Plot of gam4x20

04

03]

0.1

0.0

01

T
02
Observed Value






x37.png
Pr(success)

1.0

0.8

0.6

0.4

0.2

0.0

T T T T T T
(20,30] (40,50] (60,70] (80,90]

Length (words)





qn2.jpg
Normal Q-Q Plot of rnd

Expected Normal Value

Observed Value





schooleda.png
score

Complex Scatterplot

stdTest

grade
&

@s
treatment
o—o0
At

Linear Regression

ReSquare

.66 +0.49 * stdTest
e





qn5.jpg
Expected Normal Value

Normal Q-Q Plot of OL

T T
2 4

Observed Value






videorandomdb.jpg
Linear Mixed Models: Random Effects

Random Bfect 1of 1

Cousrance Tipe.
Random Sfects
© Buidtems O Buid nested tems
Foctorsand Covarites el
seon®) el

add

Build Term:

Remove

Subject Groupings
Subjects: Combinatons:

Said Said






qn4.jpg
Expected Normal Value

Normal Q-Q Plot of n3.1

T T
00 25 50

Observed Value

75

100





videofixeddb.jpg
Linear Mixed Models: Fixed Effects

=
@ Bliid tems! O Build nested tems
e -
ageam(F) ageam
trial(C) trial

204 | [Remove

B Teim,

T e T = =0 )






qn6.jpg
Expected Normal Value

Normal Q-Q Plot of mix

Observed Value





logisticdb.jpg
stic Regression

& Wessage lengih (words| Dependert
At (] e

@ vicoieriniel o

Covttes
] st
s CTI
‘Selection Variable:

[ | ——






x38.png
Pr(success)

1.0

0.8

0.6

0.4

0.2

0.0

active
passive

20

T T T T
40 60 80 100

Length (words)






spsstw2db.jpg
Text Import Wizard - Step 2 of 6

How are your varisbles amanged?
 Delimted - Variables are delimted by a specfic character (.., comma, tab).

 Bedwidh - Varisbles are afgned in foed wicth columns.

Are varizble names included at the top of your fie?
C Yes
@ g

Textfil: C:\Program Fies\SPSS \utorial\sample_fies\dermo bt
] 1 20 30 2 50

.GE ZMARTTAL= ADDRESS = INCOME — INCCAT—CAR=CARCAT ZED=EM;

<Back ot > Cancel o |






spsstw4db.jpg
Text Import Wizard - Delimited Step 4 of 6

- Which delmiters appear between varisbles? What s the text qualfier?

2] I Space & None
© Sogequte
™ Coma ™ Semicdon e
Double quate
I~ Other:
o ol

| Datapreview

2 [
0 i) [ts200 e

it 0 [0 200






spsstw3db.jpg
Text Import Wizard - Delimited Step 3 of 6

The fot case o de beginson which e umber? F =

How are your cases represerted?

 Eachine represents a case

" Aspecic number of yarables represerts acase:  [1 =]

How many cases do you want o import?

Al oithe cases

© Thefist [1000 cases.

" Arandom percentage of the cases (sppromate): [10

Data preview

] 1 20 30 2 50

<Back ot > Cancel o |






data-url-image.png





spssdateddv.jpg
= ed - SPSS Data Ed =]
Fle Edt Vew Data Iransform Analyze Graphs Utiites Addons Window tep

ECEEESEEEPE =t =)

1 Gender i
Gonder | Age [ var [ va [ v | v | wr ﬂ
[ Fomae = % T T T T
2] Wale 30, [ [ [ [
3 Wiale | 2] | [ | [
4| Female| 35| | [ | [
5 Male 28] | | | |
6| Female 20 [ [ [ [

T\ Data view {Varabieview 7« | |

[5PSS Processor s unavalable |





spssintro.jpg
SPSS 15.0 for Windows

What would you ke to do?

Opeindata

»
O Run an existing query.
80

(O Create new guery using Database Wizard

(@ Open an existing data source:

lore Fies. |
C \Documents and Setings\Howard Sekiman \Deskior|
C'\Documents and Setiings\Howard Sekiman'\Deskior|

&) Oopen oo ie

Hore Fies.

] Dont show this dialog in the future.






spssvaluesdb.jpg
Value Labels

o — =
Valug Label: [Male]
LChange
Bemove

“Female”






spssdatedvv.jpg
= ed - SPSS Data Ed =]
Fle Edt Vew Data Iransform Analyze Graphs Utiites Addons Window tep

B8] = ol | &l o) 2 SEE o]

Name | Type | Width | Deci| Label | Values |Missing| Col[Al] _Measure ii

1[Gender|Numes 0 [ |{1. Fem None 8 |RigNominal
2|Age [0 |Age in years [None e 8 |RigScale
3 [ [ | T
4 [ 1 | | [
5 [ 1 [ [ 11
§ [ [T | | [
7] | 1 | | [T

j 1 T T [E——

Ll

[ K BV ) variabie view /7]

[5PSS Processor s unavalabe |





spssopenfiledb.jpg
Open File

[Evy Doauments  Eimhotepo7
Dy Computer (RCiass
Dy NetnorkPiaces (SsimToo!
=5 Sstats
(Sconst =
(Ecenetics [BsPss pdfs

Florane: |

Gpen
Flesoftpe: [sPSSfsav) <] Paste
Cancel






spsssaveasdb.jpg
- Save Data As.

swer [@oeir ]

[Evy Doauments S imhotepo7
| @y computer  SRClass
Gy NetmorkPlaces simToo
(S5 Dstats
|Sconsit s
‘ﬁseneos [5sPsS pdfs

Keeping 2 cf 2 variables. Vaiiables.

Floame: | Sove

Saveastipe: [5PSS (“sav) - Baste

7 ite vaiebe st sreadhest ol

™ Save value labels where defined instead of data values

I~ 5ave valie abels s 5 535 e





spsstw1db.jpg
Text Import Wizard - Step 1 of 6

Wecometothe e ot i

This wizard wil help you read data fom your text fle and
specty infomation aboutthe varables

Does yourtext il match a predefined format ?

C Yes

& g

Textfil: C:\Program Fies\SPSS utorial\sample_fies\dermo bt
] 1 20 30 2 50

PGE ZMARTTAL = ADDRESS - INCOME — INCCAT—CAR=CARCAT ~ED_EME

= covd | o |






spssopenexceldb.jpg
Opening Excel Data Source

CAProgram Fles\SPSS\tutorahsample_flestcemo.sls

¥ Fisad vaiabl e fom he frs o of s

Wotksheet: [dema [AT-ABE4D1] -
Range:

sl e






spssvisbin2db.jpg
Make Cutpoints

© g i e
tervls il t ezt o il

X
P Coportlocato: ||
R
Width: ‘ ‘

Lot Caport Lcatn

O Eaual Percerties Based on Scanned Cases
Intervals -fl n stherield

(O Cutpoints at Mean and Selected Standard Deviations Based on Scanned Cases

Afinalnterval wilincude o remaining values: N cutpoints produce:

Apply will replace the cument cutpoint defintions with this specication.






spssvisbin1db.jpg
Visual Bi

ing

Sgamned Varebe it Nae Label
e Corent Vaiable:  [Age 1 [ ]
& helhgel Bined Variable:  [BnAge | [Age @imes) ]
Mirimum: 14 Nonmissing Values Vaimum: [63
o ww aw B0 S0 BD 40 6D 8D B0 6 70
Enterinteval cupaints orcick ke Cutpons for automatic rtervals. Acutport value
AEE @ o 10.for cxemple, defines an nerval staring above the previousnerval and endng at
] G 0
UsperEndports
ke Value Label
—— l« © cluded (<2)
Missing Valves: [0 B Obeided ()
3
Copy Bins 4 Make Cutpoints.

Wake Labels

[JReverse scale

Cox (=] (B (o] (o)






spsscrosstab.jpg
sex degree Crosstabulation

degree
1 2 3 Total

Sex  Wale  Count 7 5 B 20
Swithindegree |  50.0% | 333% |  615% |  47.6%

Female Count 7 0 5 2
Swithinderee |  50.0% | 667% |  385% | 524%

Total Count N 5 3 [
% within degree |  100.0% | 100.0% | 1000% | 100.0%






spssfreq.jpg
degree

Cumulative
Frequency | Percent | ValidPercent | Percent
Vaid 1 4 333 £ 333
2 15 387 387 690
3 13 310 310 1000
Total 42 100.0 1000






spsstw5db.jpg
Text Import Wizard - Step 5

Speciications for variable(s)selected nthe data preview

Varizble name: Original Name:
==
Data format:

Data preview
WARITAL | ADDRESS | WCOME | WCCAT | CAR | CAIA
T B ZINET) EZTIELT)
o E3 5200 |s00 00 300
T 0 =m0 2w )
T XTI B [ty

<Back x> Cancel Help






spsstw4bdb.jpg
Text Import Wizard ith Step 4 of 6

The vetical ines inthe data preview represent the breakpoits between variabis,
~To MODIFY 3 variable break e, drag i 1o the desied posion
~To INSERT a variable break lne, olck at the desired posion.
~To DELETE a variable bresk I, rag  out of the data preview ares

Data preview

20 30 2 50

<o [THeis ] Cancel o |






spsscompvardb.jpg
ompute Variable
Toroet Varicble

Numeric Expression:

oK

{optional case selection conditor)

=

Function group:

A

Athmetic

(CDF & Noncentral COF
Conversion L
Curent Date/Time

Date Arthmetic

Date Creation

Date Bdraction &

Functions and Special Variables:






spsstw6db.jpg
Text Import Wizard - Step 6 of 6

You have successfuly defined the fomat of your text i

Would you i to save ths fle fomatfor uture use?

- Crvs [ sk

A | o] v © e
3| e | Would you ke to past the syntax? |
e e Cves ¥ Cache datalocally
& N
Pressthe Fish button to complte the text import wizard.
- Data preview

B
a0
|200
T2m

<Bsck e | [ Cancel Hep






spssoldnewdb.jpg
Recode into Different Variables: Old and New Values

~0id Value New Value
© Ve & Vaue:[3 " Sytemmissing
© Systemmissing  Copy old valuefs)
 System- o usermissing
 Range: Lowest thnu 30 > 1

Wi

e [
o
BT o hcpest

Al gther valuss

30thu 50->2

I~ Output variables are stings 1/ [
I~ Convest rumere stings t rmbers

o |

i






spssrecodedb.jpg
B Recode into Different Variables

Numeric Varable -> Output Varizbl:

B Gander o






spssautorecodedb.jpg
Automatic Recode

Varable > New Name o

New Name:
£dd New Name

Recode Stating from
@Lowestvaue O Highest value

] Use the same recocing scheme for al varables:
[ Treat blank sting values as usermissing
Template
(] Aoply tempiate from

[ Save template =s:






