
Chapter 1

The Big Picture
Why experimental design matters.

Much of the progress in the sciences comes from performing experiments. These
may be of either an exploratory or a confirmatory nature. Experimental evidence
can be contrasted with evidence obtained from other sources such as observational
studies, anecdotal evidence, or “from authority”. This book focuses on design
and analysis of experiments. While not denigrating the roles of anecdotal and
observational evidence, the substantial benefits of experiments (discussed below)
make them one of the cornerstones of science.

Contrary to popular thought, many of the most important parts of experimental
design and analysis require little or no mathematics. In many instances this book
will present concepts that have a firm underpinning in statistical mathematics,
but the underlying details are not given here. The reader may refer to any of
the many excellent textbooks of mathematical statistics listed in the appendix for
those details.

This book presents the two main topics of experimental design and statistical
analysis of experimental results in the context of the large concept of scientific
learning. All concepts will be illustrated with realistic examples, although some-
times the general theory is explained first.

Scientific learning is always an iterative process, as represented in Figure 1.1.
If we start at Current State of Knowledge, the next step is choosing a current
theory to test or explore (or proposing a new theory). This step is often called
“Constructing a Testable Hypothesis”. Any hypothesis must allow for different
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Figure 1.1: The circular flow of scientific learning

possible conclusions or it is pointless. For an exploratory goal, the different possible
conclusions may be only vaguely specified. In contrast, much of statistical theory
focuses on a specific, so-called “null hypothesis” (e.g., reaction time is not affected
by background noise) which often represents “nothing interesting going on” usually
in terms of some effect being exactly equal to zero, as opposed to a more general,
“alternative hypothesis” (e.g., reaction time changes as the level of background
noise changes), which encompasses any amount of change other than zero. The
next step in the cycle is to “Design an Experiment”, followed by “Perform the
Experiment”, “Perform Informal and Formal Statistical Analyses”, and finally
“Interpret and Report”, which leads to possible modification of the “Current State
of Knowledge”.

Many parts of the “Design an Experiment” stage, as well as most parts of
the “Statistical Analysis” and “Interpret and Report” stages, are common across
many fields of science, while the other stages have many field-specific components.
The focus of this book on the common stages is in no way meant to demean the
importance of the other stages. You will learn the field-specific approaches in other
courses, and the common topics here.
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1.1 The importance of careful experimental de-

sign

Experimental design is a careful balancing of several features including “power”,
generalizability, various forms of “validity”, practicality and cost. These concepts
will be defined and discussed thoroughly in the next chapter. For now, you need to
know that often an improvement in one of these features has a detrimental effect
on other features. A thoughtful balancing of these features in advance will result
in an experiment with the best chance of providing useful evidence to modify the
current state of knowledge in a particular scientific field. On the other hand, it is
unfortunate that many experiments are designed with avoidable flaws. It is only
rarely in these circumstances that statistical analysis can rescue the experimenter.
This is an example of the old maxim “an ounce of prevention is worth a pound of
cure”.

Our goal is always to actively design an experiment that has the best
chance to produce meaningful, defensible evidence, rather than hoping
that good statistical analysis may be able to correct for defects after
the fact.

1.2 Overview of statistical analysis

Statistical analysis of experiments starts with graphical and non-graphical ex-
ploratory data analysis (EDA). EDA is useful for

• detection of mistakes

• checking of assumptions

• determining relationships among the explanatory variables

• assessing the direction and rough size of relationships between explanatory
and outcome variables, and
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• preliminary selection of appropriate models of the relationship between an
outcome variable and one or more explanatory variables.

EDA always precedes formal (confirmatory) data analysis.

Most formal (confirmatory) statistical analyses are based on models. Statis-
tical models are ideal, mathematical representations of observable characteristics.
Models are best divided into two components. The structural component of
the model (or structural model) specifies the relationships between explana-
tory variables and the mean (or other key feature) of the outcome variables. The
“random” or “error” component of the model (or error model) characterizes
the deviations of the individual observations from the mean. (Here, “error” does
not indicate “mistake”.) The two model components are also called “signal” and
“noise” respectively. Statisticians realize that no mathematical models are perfect
representations of the real world, but some are close enough to reality to be useful.
A full description of a model should include all assumptions being made because
statistical inference is impossible without assumptions, and sufficient deviation of
reality from the assumptions will invalidate any statistical inferences.

A slightly different point of view says that models describe how the distribution
of the outcome varies with changes in the explanatory variables.

Statistical models have both a structural component and a random
component which describe means and the pattern of deviation from
the mean, respectively.

A statistical test is always based on certain model assumptions about the pop-
ulation from which our sample comes. For example, a t-test includes the assump-
tions that the individual measurements are independent of each other, that the two
groups being compared each have a Gaussian distribution, and that the standard
deviations of the groups are equal. The farther the truth is from these assump-
tions, the more likely it is that the t-test will give a misleading result. We will need
to learn methods for assessing the truth of the assumptions, and we need to learn
how “robust” each test is to assumption violation, i.e., how far the assumptions
can be “bent” before misleading conclusions are likely.
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Understanding the assumptions behind every statistical analysis we
learn is critical to judging whether or not the statistical conclusions
are believable.

Statistical analyses can and should be framed and reported in different ways
in different circumstances. But all statistical statements should at least include
information about their level of uncertainty. The main reporting mechanisms you
will learn about here are confidence intervals for unknown quantities and p-values
and power estimates for specific hypotheses.

Here is an example of a situation where different ways of reporting give different
amounts of useful information. Consider three different studies of the effects of a
treatment on improvement on a memory test for which most people score between
60 and 80 points. First look at what we learn when the results are stated as 95%
confidence intervals (full details of this concept are in later chapters) of [−20, 40]
points, [−0.5,+0.5], and [5, 7] points respectively. A statement that the first study
showed a mean improvement of 10 points, the second of 0 points, and the third of
6 points (without accompanying information on uncertainty) is highly misleading!
The third study lets us know that the treatment is almost certainly beneficial by a
moderate amount, while from the first we conclude that the treatment may be quite
strongly beneficial or strongly detrimental; we don’t have enough information to
draw a valid conclusion. And from the second study, we conclude that the effect is
near zero. For these same three studies, the p-values might be, e.g., 0.35, 0.35 and
0.01 respectively. From just the p-values, we learn nothing about the magnitude
or direction of any possible effects, and we cannot distinguish between the very
different results of the first two studies. We only know that we have sufficient
evidence to draw a conclusion that the effect is different from zero in the third
study.

p-values are not the only way to express inferential conclusions, and
they are insufficient or even misleading in some cases.
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Figure 1.2: An oversimplified concept map.

1.3 What you should learn here

My expectation is that many of you, coming into the course, have a “concept-
map” similar to figure 1.2. This is typical of what students remember from a first
course in statistics.

By the end of the book and course you should learn many things. You should
be able to speak and write clearly using the appropriate technical language of
statistics and experimental design. You should know the definitions of the key
terms and understand the sometimes-subtle differences between the meanings of
these terms in the context of experimental design and analysis as opposed to their
meanings in ordinary speech. You should understand a host of concepts and their
interrelationships. These concepts form a “concept-map” such as the one in figure
1.3 that shows the relationships between many of the main concepts stressed in
this course. The concepts and their relationships are the key to the practical use
of statistics in the social and other sciences. As a bonus to the creation of your
own concept map, you will find that these maps will stick with you much longer
than individual facts.

By actively working with data, you will gain the experience that becomes “data-
sense”. This requires learning to use a specific statistical computer package. Many
excellent packages exist and are suitable for this purpose. Examples here come
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Figure 1.3: A reasonably complete concept map for this course.
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from SPSS, but this is in no way an endorsement of SPSS over other packages.

You should be able to design an experiment and discuss the choices that can
be made and their competing positive and negative effects on the quality and
feasibility of the experiment. You should know some of the pitfalls of carrying
out experiments. It is critical to learn how to perform exploratory data analysis,
assess data quality, and consider data transformations. You should also learn how
to choose and perform the most common statistical analyses. And you should be
able to assess whether the assumptions of the analysis are appropriate for the given
data. You should know how to consider and compare alternative models. Finally,
you should be able to interpret and report your results correctly so that you can
assess how your experimental results may have changed the state of knowledge in
your field.



Chapter 2

Defining and Classifying Data
Variables
The link from scientific concepts to data quantities.

A key component of design of experiments is operationalization, which is
the formal procedure that links scientific concepts to data collection. Operational-
izations define measures or variables which are quantities of interest or which
serve as the practical substitutes for the concepts of interest. For example, if you
have a theory about what affects people’s anger level, you need to operationalize
the concept of anger. You might measure anger as the loudness of a person’s voice
in decibels, or some summary feature(s) of a spectral analysis of a recording of
their voice, or where the person places a mark on a visual-analog “anger scale”, or
their total score on a brief questionnaire, etc. Each of these is an example of an
operationalization of the concept of anger.

As another example, consider the concept of manual dexterity. You could
devise a number of tests of dexterity, some of which might be “unidimensional”
(producing one number) while others might be ‘multidimensional”‘ (producing
two or more numbers). Since your goal should be to convince both yourself and
a wider audience that your final conclusions should be considered an important
contribution to the body of knowledge in your field, you will need to make the
choice carefully. Of course one of the first things you should do is investigate
whether standard, acceptable measures already exist. Alternatively you may need
to define your own measure(s) because no standard ones exist or because the
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existing ones do not meet your needs (or perhaps because they are too expensive).

One more example is cholesterol measurement. Although this seems totally
obvious and objective, there is a large literature on various factors that affect
cholesterol, and enumerating some of these may help you understand the impor-
tance of very clear and detailed operationalization. Cholesterol may be measured
as “total” cholesterol or various specific forms (e.g., HDL). It may be measured on
whole blood, serum, or plasma, each of which gives somewhat different answers. It
also varies with the time and quality of the last meal and the season of the year.
Different analytic methods may also give different answers. All of these factors
must be specified carefully to achieve the best measure.

2.1 What makes a “good” variable?

Regardless of what we are trying to measure, the qualities that make a good
measure of a scientific concept are high reliability, absence of bias, low cost, prac-
ticality, objectivity, high acceptance, and high concept validity. Reliability is
essentially the inverse of the statistical concept of variance, and a rough equivalent
is “consistency”. Statisticians also use the word “precision”.

Bias refers to the difference between the measure and some “true” value. A
difference between an individual measurement and the true value is called an “er-
ror” (which implies the practical impossibility of perfect precision, rather than the
making of mistakes). The bias is the average difference over many measurements.
Ideally the bias of a measurement process should be zero. For example, a mea-
sure of weight that is made with people wearing their street clothes and shoes
has a positive bias equal to the average weight of the shoes and clothes across all
subjects.

Precision or reliability refers to the reproducibility of repeated mea-
surements, while bias refers to how far the average of many measure-
ments is from the true value.

All other things being equal, when two measures are available, we will choose
the less expensive and easier to obtain (more practical) measures. Measures that
have a greater degree of subjectivity are generally less preferable. Although devis-
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ing your own measures may improve upon existing measures, there may be a trade
off with acceptability, resulting in reduced impact of your experiment on the field
as a whole.

Construct validity is a key criterion for variable definition. Under ideal
conditions, after completing your experiment you will be able to make a strong
claim that changing your explanatory variable(s) in a certain way (e.g., doubling
the amplitude of a background hum) causes a corresponding change in your out-
come (e.g., score on an irritability scale). But if you want to convert that to
meaningful statements about the effects of auditory environmental disturbances
on the psychological trait or construct called “irritability”, you must be able to
argue that the scales have good construct validity for the traits, namely that the
operationalization of background noise as an electronic hum has good construct
validity for auditory environmental disturbances, and that your irritability scale
really measures what people call irritability. Although construct validity is critical
to the impact of your experimentation, its detailed understanding belongs sepa-
rately to each field of study, and will not be discussed much in this book beyond
the discussion in Chapter 3.

Construct validity is the link from practical measurements to mean-
ingful concepts.

2.2 Classification by role

There are two different independent systems of classification of variables that you
must learn in order to understand the rest of this book. The first system is based
on the role of the variable in the experiment and the analysis. The general terms
used most frequently in this text are explanatory variables vs. outcome variables.
An experiment is designed to test the effects of some intervention on one or more

measures, which are therefore designated as outcome variables. Much of this
book deals with the most common type of experiment in which there is only a single
outcome variable measured on each experimental unit (person, animal, factory,
etc.) A synonym for outcome variable is dependent variable, often abbreviated
DV.
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The second main role a variable may play is that of an explanatory variable.
Explanatory variables include variables purposely manipulated in an experi-
ment and variables that are not purposely manipulated, but are thought to possibly
affect the outcome. Complete or partial synonyms include independent variable
(IV), covariate, blocking factor, and predictor variable. Clearly, classification of
the role of a variable is dependent on the specific experiment, and variables that
are outcomes in one experiment may be explanatory variables in another experi-
ment. For example, the score on a test of working memory may be the outcome
variable in a study of the effects of an herbal tea on memory, but it is a possible
explanatory factor in a study of the effects of different mnemonic techniques on
learning calculus.

Most simple experiments have a single dependent or outcome variable
plus one or more independent or explanatory variables.

In many studies, at least part of the interest is on how the effects of one
explanatory variable on the outcome depends on the level of another explanatory
variable. In statistics this phenomenon is called interaction. In some areas of
science, the term moderator variable is used to describe the role of the secondary
explanatory variable. For example, in the effects of the herbal tea on memory,
the effect may be stronger in young people than older people, so age would be
considered a moderator of the effect of tea on memory.

In more complex studies there may potentially be an intermediate variable in a
causal chain of variables. If the chain is written A⇒B⇒C, then interest may focus
on whether or not it is true that A can cause its effects on C only by changing B.
If that is true, then we define the role of B as a mediator of the effect of A on C.
An example is the effect of herbal tea on learning calculus. If this effect exists but
operates only through herbal tea improving working memory, which then allows
better learning of calculus skills, then we would call working memory a mediator
of the effect.

2.3 Classification by statistical type

A second classification of variables is by their statistical type. It is critical to un-
derstand the type of a variable for three reasons. First, it lets you know what type
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of information is being collected; second it defines (restricts) what types of statis-
tical models are appropriate; and third, via those statistical model restrictions, it
helps you choose what analysis is appropriate for your data.

Warning: SPSS uses “type” to refer to the storage mode (as in com-
puter science) of a variable. In a somewhat non-standard way it uses
“measure” for what we are calling statistical type here.

Students often have difficulty knowing “which statistical test to use”. The
answer to that question always starts with variable classification:

Classification of variables by their roles and by their statistical types
are the first two and the most important steps to choosing a correct
analysis for an experiment.

There are two main types of variables, each of which has two subtypes according
to this classification system:

Quantitative Variables
Discrete Variables
Continuous Variables

Categorical Variables
Nominal Variables
Ordinal Variables

Both categorical and quantitative variables are often recorded as numbers, so
this is not a reliable guide to the major distinction between categorical and quan-
titative variables. Quantitative variables are those for which the recorded num-
bers encode magnitude information based on a true quantitative scale. The best
way to check if a measure is quantitative is to use the subtraction test. If two
experimental units (e.g., two people) have different values for a particular measure,
then you should subtract the two values, and ask yourself about the meaning of
the difference. If the difference can be interpreted as a quantitative measure of
difference between the subjects, and if the meaning of each quantitative difference
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is the same for any pair of values with the same difference (e.g., 1 vs. 3 and 10 vs.
12), then this is a quantitative variable. Otherwise, it is a categorical variable.

For example, if the measure is age of the subjects in years, then for all of the
pairs 15 vs. 20, 27 vs. 32, 62 vs. 67, etc., the difference of 5 indicates that the
subject in the pair with the large value has lived 5 more years than the subject
with the smaller value, and this is a quantitative variable. Other examples that
meet the subtraction test for quantitative variables are age in months or seconds,
weight in pounds or ounces or grams, length of index finger, number of jelly beans
eaten in 5 minutes, number of siblings, and number of correct answers on an exam.

Examples that fail the subtraction test, and are therefore categorical, not quan-
titative, are eye color coded 1=blue, 2=brown, 3=gray, 4=green, 5=other; race
where 1=Asian, 2=Black, 3=Caucasian, 4=Other; grade on an exam coded 4=A,
3=B, 2=C, 1=D, 0=F; type of car where 1=SUV, 2=sedan, 3=compact and 4=sub-
compact; and severity of burn where 1=first degree, 2=second degree, and 3=third
degree. While the examples of eye color and race would only fool the most careless
observer into incorrectly calling them quantitative, the latter three examples are
trickier. For the coded letter grades, the average difference between an A and a
B may be 5 correct questions, while the average difference between a B and a C
may be 10 correct questions, so this is not a quantitative variable. (On the other
hand, if we call the variable quality points, as is used in determining grade point
average, it can be used as a quantitative variable.) Similar arguments apply for
the car type and burn severity examples, e.g., the size or weight difference between
SUV and sedan is not the same as between compact and subcompact. (These three
variables are discussed further below.)

Once you have determined that a variable is quantitative, it is often worthwhile
to further classify it into discrete (also called counting) vs. continuous. Here the
test is the midway test. If, for every pair of values of a quantitative variable the
value midway between them is a meaningful value, then the variable is continu-
ous, otherwise it is discrete. Typically discrete variables can only take on whole
numbers (but all whole numbered variables are not necessarily discrete). For ex-
ample, age in years is continuous because midway between 21 and 22 is 21.5 which
is a meaningful age, even if we operationalized age to be age at the last birthday
or age at the nearest birthday.

Other examples of continuous variables include weights, lengths, areas, times,
and speeds of various kinds. Other examples of discrete variables include number
of jelly beans eaten, number of siblings, number of correct questions on an exam,
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and number of incorrect turns a rat makes in a maze. For none of these does an
answer of, say, 31

2
, make sense.

There are examples of quantitative variables that are not clearly categorized
as either discrete or continuous. These generally have many possible values and
strictly fail the midpoint test, but are practically considered to be continuous
because they are well approximated by continuous probability distributions. One
fairly silly example is mass; while we know that you can’t have half of a molecule,
for all practical purposes we can have a mass half-way between any two masses
of practical size, and no one would even think of calling mass discrete. Another
example is the ratio of teeth to forelimb digits across many species; while only
certain possible values actually occur and many midpoints may not occur, it is
practical to consider this to be a continuous variable. One more example is the
total score on a questionnaire which is comprised of, say, 20 questions each with
a score of 0 to 5 as whole numbers. The total score is a whole number between 0
and 100, and technically is discrete, but it may be more practical to treat it as a
continuous variable.

It is worth noting here that as a practical matter most models and analyses do
not distinguish between discrete and continuous explanatory variables, while many
do distinguish between discrete and continuous quantitative outcome variables.

Measurements with meaningful magnitudes are called quantitative.
They may be discrete (only whole number counts are valid) or con-
tinuous (fractions are at least theoretically meaningful).

Categorical variables simply place explanatory or outcome variable char-
acteristics into (non-quantitative) categories. The different values taken on by a
categorical variable are often called levels. If the levels simply have arbitrary
names then the variable is nominal. But if there are at least three levels, and if
every reasonable person would place those levels in the same (or the exact reverse)
order, then the variable is ordinal. The above examples of eye color and race are
nominal categorical variables. Other nominal variables include car make or model,
political party, gender, and personality type. The above examples of exam grade,
car type, and burn severity are ordinal categorical variables. Other examples of
ordinal variables include liberal vs. moderate vs. conservative for voters or politi-
cal parties; severe vs. moderate vs. mild vs. no itching after application of a skin
irritant; and disagree vs. neutral vs. agree on a policy question.



16 CHAPTER 2. VARIABLE CLASSIFICATION

It may help to understand ordinal variables better if you realize that most ordi-
nal variables, at least theoretically, have an underlying quantitative variable. Then
the ordinal variable is created (explicitly or implicitly) by choosing “cut-points” of
the quantitative variable between which the ordinal categories are defined. Also, in
some sense, creation of ordinal variables is a kind of “super-rounding”, often with
different spans of the underlying quantitative variable for the different categories.
See Figure 2.1 for an example based on the old IQ categorizations. Note that the
categories have different widths and are quite wide (more than one would typically
create by just rounding).

IQ/Categorical Idiot Imbecile Moron DullAverageSuperior Genius

IQ/Quantitative 0 20 50 70 90 110 140 200

Figure 2.1: Old IQ categorization

It is worth noting here that the best-known statistical tests for categorical
outcomes do not take the ordering of ordinal variables into account, although there
certainly are good tests that do so. On the other hand, when used as explanatory
variables in most statistical tests, ordinal variables are usually either “demoted”
to nominal or “promoted” to quantitative.

2.4 Tricky cases

When categorizing variables, most cases are clear-cut, but some may not be. If the
data are recorded directly as categories rather than numbers, then you only need
to apply the “reasonable person’s order” test to distinguish nominal from ordinal.
If the results are recorded as numbers, apply the subtraction test to distinguish
quantitative from categorical. When trying to distinguish discrete quantitative
from continuous quantitative variables, apply the midway test and ignore the de-
gree of rounding.

An additional characteristic that is worth paying attention to for quantitative
variables is the range, i.e., the minimum and maximum possible values. Variables
that are limited to between 0 and 1 or 0% and 100% often need special considera-
tion, as do variables that have other arbitrary limits.

When a variable meets the definition of quantitative, but it is an explanatory
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variable for which only two or three levels are being used, it is usually better to
treat this variable as categorical.

Finally we should note that there is an additional type of variable called an
“order statistic” or “rank” which counts the placement of a variable in an ordered
list of all observed values, and while strictly an ordinal categorical variable, is often
treated differently in statistical procedures.
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