
Chapter 16

Analyzing Experiments with
Categorical Outcomes
Analyzing data with non-quantitative outcomes

All of the analyses discussed up to this point assume a Normal distribution for
the outcome (or for a transformed version of the outcome) at each combination of
levels of the explanatory variable(s). This means that we have only been cover-
ing statistical methods appropriate for quantitative outcomes. It is important to
realize that this restriction only applies to the outcome variable and not to the ex-
planatory variables. In this chapter statistical methods appropriate for categorical
outcomes are presented.

16.1 Contingency tables and chi-square analysis

This section discusses analysis of experiments or observational studies with a cat-
egorical outcome and a single categorical explanatory variable. We have already
discussed methods for analysis of data with a quantitative outcome and categorical
explanatory variable(s) (ANOVA and ANCOVA). The methods in this section are
also useful for observational data with two categorical “outcomes” and no explana-
tory variable.
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16.1.1 Why ANOVA and regression don’t work

There is nothing in most statistical computer programs that would prevent you
from analyzing data with, say, a two-level categorical outcome (usually designated
generically as “success” and “failure”) using ANOVA or regression or ANCOVA.
But if you do, your conclusion will be wrong in a number of different ways. The
basic reason that these methods don’t work is that the assumptions of Normality
and equal variance are strongly violated. Remember that these assumptions relate
to groups of subjects with the same levels of all of the explanatory variables.
The Normality assumption says that in each of these groups the outcomes are
Normally distributed. We call ANOVA, ANCOVA, and regression “robust” to this
assumption because moderate deviations from Normality alter the null sampling
distributions of the statistics from which we calculate p-values only a small amount.
But in the case of a categorical outcome with only a few (as few as two) possible
outcome values, the outcome is so far from the smooth bell-shaped curve of a
Normal distribution, that the null sampling distribution is drastically altered and
the p-value completely unreliable.

The equal variance assumption is that, for any two groups of subjects with
different levels of the explanatory variables between groups and the same levels
within groups, we should find that the variance of the outcome is the same. If we
consider the case of a binary outcome with coding 0=failure and 1=success, the
variance of the outcome can be shown to be equal to pi(1 − pi) where pi is the
probability of getting a success in group i (or, equivalently, the mean outcome for
group i). Therefore groups with different means have different variances, violating
the equal variance assumption.

A second reason that regression and ANCOVA are unsuitable for categorical
outcomes is that they are based on the prediction equation E(Y ) = β0 + x1β1 +
· · · + xkβk, which both is inherently quantitative, and can give numbers out of
range of the category codes. The least unreasonable case is when the categorical
outcome is ordinal with many possible values, e.g., coded 1 to 10. Then for any
particular explanatory variable, say, βi, a one-unit increase in xi is associated with
a βi unit change in outcome. This works only over a limited range of xi values,
and then predictions are outside the range of the outcome values.

For binary outcomes where the coding is 0=failure and 1=success, a mean
outcome of, say, 0.75 corresponds to 75% successes and 25% failures, so we can
think of the prediction as being the probability of success. But again, outside of
some limited range of xi values, the predictions will correspond to the absurdity
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of probabilities less than 0 or greater than 1.

And for nominal categorical variables with more than two levels, the prediction
is totally arbitrary and meaningless.

Using statistical methods designed for Normal, quantitative outcomes
when the outcomes are really categorical gives wrong p-values due
to violation of the Normality and equal variance assumptions, and
also gives meaningless out-of-range predictions for some levels of the
explanatory variables.

16.2 Testing independence in contingency tables

16.2.1 Contingency and independence

A contingency table counts the number of cases (subjects) for each combination of
levels of two or more categorical variables. An equivalent term is cross-tabulation
(see Section 4.4.1). Among the definitions for “contingent” in the The Oxford
English Dictionary is “Dependent for its occurrence or character on or upon some
prior occurrence or condition”. Most commonly when we have two categorical
measures on each unit of study, we are interested in the question of whether the
probability distribution (see section 3.2) of the levels of one measure depends on the
level of the other measure, or if it is independent of the level of the second measure.
For example, if we have three treatments for a disease as one variable, and two
outcomes (cured and not cured) as the other outcome, then we are interested in
the probabilities of these two outcomes for each treatment, and we want to know
if the observed data are consistent with a null hypothesis that the true underlying
probability of a cure is the same for all three treatments.

In the case of a clear identification of one variable as explanatory and the
other as outcome, we focus on the probability distribution of the outcome and
how it changes or does not change when we look separately at each level of the
explanatory variable. The “no change” case is called independence, and indicates
that knowing the level of the (purported) explanatory variable tells us no more
about the possible outcomes than ignoring or not knowing it. In other words, if the
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variables are independent, then the “explanatory” variable doesn’t really explain
anything. But if we find evidence to reject the null hypothesis of independence,
then we do have a true explanatory variable, and knowing its value allows us to
refine our predictions about the level of the other variable.

Even if both variables are outcomes, we can test their association in the same
way as just mentioned. In fact, the conclusions are always the same when the roles
of the explanatory and outcome variables are reversed, so for this type of analysis,
choosing which variable is outcome vs. explanatory is immaterial.

Note that if the outcome has only two possibilities then we only need the
probability of one level of the variable rather than the full probability distribution
(list of possible values and their probabilities) for each level of the explanatory
variable. Of course, this is true simply because the probabilities of all levels must
add to 100%, and we can find the other probability by subtraction.

The usual statistical test in the case of a categorical outcome and a
categorical explanatory variable is whether or not the two variables
are independent, which is equivalent to saying that the probability
distribution of one variable is the same for each level of the other
variable.

16.2.2 Contingency tables

It is a common situation to measure two categorical variables, say X (with k levels)
and Y (with m levels) on each subject in a study. For example, if we measure
gender and eye color, then we record the level of the gender variable and the level
of the eye color variable for each subject. Usually the first task after collecting
the data is to present it in an understandable form such as a contingency table
(also known as a cross-tabulation).

For two measurements, one with k levels and the other with m levels, the
contingency table is a k × m table with cells for each combination of one level
from each variable, and each cell is filled with the corresponding count (also called
frequency) of units that have that pair of levels for the two categorical variables.

For example, table 16.1 is a (fake) contingency table showing the results of
asking 271 college students what their favorite music is and what their favorite ice
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favorite ice cream
chocolate vanilla strawberry other total

rap 5 10 7 38 60
jazz 8 9 23 6 46

favorite classical 12 3 4 3 22
music rock 39 10 15 9 73

folk 10 22 8 8 48
other 4 7 5 6 22

total 78 61 62 70 271

Table 16.1: Basic ice cream and music contingency table.

cream flavor is. This table was created in SPSS by using the Cross-tabs menu item
under Analysis / Descriptive Statistics. In this simple form of a contingency table
we see the cell counts and the marginal counts. The margins are the extra
column on the right and the extra row at the bottom. The cells are the rest of the
numbers in the table. Each cell tells us how many subjects gave a particular pair of
answers to the two questions. For example, 23 students said both that strawberry
is their favorite ice cream flavor and that jazz is their favorite type of music. The
right margin sums over ice cream types to show that, e.g., a total of 60 students
say that rap is their favorite music type. The bottom margin sums over music
types to show that, e.g,, 70 students report that their favorite flavor of ice cream
is neither chocolate, vanilla, nor strawberry. The total of either margin, 271, is
sometimes called the “grand total” and represent the total number of subjects.

We can also see, from the margins, that rock is the best liked music genre, and
classical is least liked, though there is an important degree of arbitrariness in this
conclusion because the experimenter was free to choose which genres were in or not
in the “other” group. (The best practice is to allow a “fill-in” if someone’s choice
is not listed, and then to be sure that the “other” group has no choices with larger
frequencies that any of the explicit non-other categories.) Similarly, chocolate is
the most liked ice cream flavor, and subject to the concern about defining “other”,
vanilla and strawberry are nearly tied for second.

Before continuing to discuss the form and content of contingency tables, it is
good to stop and realize that the information in a contingency table represents
results from a sample, and other samples would give somewhat different results.
As usual, any differences that we see in the sample may or may not reflect real
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favorite ice cream
chocolate vanilla strawberry other total

rap 5 10 7 38 60
8.3% 17.7% 11.7% 63.3% 100%

jazz 8 9 23 6 46
17.4% 19.6% 50.0% 13.0% 100%

classical 12 3 4 3 22
favorite 54.5% 13.6% 18.2% 13.6% 100%
music rock 39 10 15 9 73

53.4% 13.7% 20.5% 12.3% 100%
folk 10 22 8 8 48

20.8% 45.8% 16.7% 16.7% 100%
other 4 7 5 6 22

18.2% 31.8% 22.7% 27.3% 100%

total 78 61 62 70 271
28.8% 22.5% 22.9% 25.8% 100%

Table 16.2: Basic ice cream and music contingency table with row percents.

differences in the population, so you should be careful not to over-interpret the
information in the contingency table. In this sense it is best to think of the
contingency table as a form of EDA. We will need formal statistical analysis to
test hypotheses about the population based on the information in our sample.

Other information that may be present in a contingency table includes various
percentages. So-called row percents add to 100% (in the right margin) for each
row of the table, and column percents add to 100% (in the bottom margin) for
each column of the table.

For example, table 16.2 shows the ice cream and music data with row percents.
In SPSS the Cell button brings up check boxes for adding row and/or column
percents. If one variable is clearly an outcome variable, then the most useful and
readable version of the table is the one with cell counts plus percentages that
add up to 100% across all levels of the outcome for each level of the explanatory
variable. This makes it easy to compare the outcome distribution across levels
of the explanatory variable. In this example there is no clear distinction of the
roles of the two measurements, so arbitrarily picking one to sum to 100% is a good
approach.
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Many important things can be observed from this table. First, we should look
for the 100% numbers to see which way the percents go. Here we see 100% on the
right side of each row. So for any music type we can see the frequency of each
flavor answer and those frequencies add up to 100%. We should think of those row
percents as estimates of the true population probabilities of the flavors for each
given music type.

Looking at the bottom (marginal) row, we know that, e.g., averaging over all
music types, approximately 26% of students like “other” flavors best, and approx-
imately 29% like chocolate best. Of course, if we repeat the study, we would get
somewhat different results because each study looks at a different random sample
from the population of interest.

In terms of the main hypothesis of interest, which is whether or not the two
questions are independent of each other, it is equivalent to ask whether all of the
row probabilities are similar to each other and to the marginal row probabilities.
Although we will use statistical methods to assess independence, it is worthwhile
to examine the row (or column) percentages for equality. In this table, we see
rather large differences, e.g., chocolate is high for classical and rock music fans,
but low for rap music fans, suggesting lack of independence.

A contingency table summarizes the data from an experiment or ob-
servational study with two or more categorical variables. Comparing
a set of marginal percentages to the corresponding row or column
percentages at each level of one variable is good EDA for checking
independence.

16.2.3 Chi-square test of Independence

The most commonly used test of independence for the data in a contingency ta-
ble is the chi-square test of independence. In this test the data from a k by
m contingency table are reduced to a single statistic usually called either X2 or
χ2 (chi-squared), although X2 is better because statistics usually have Latin, not
Greek letters. The null hypothesis is that the two categorical variables are inde-
pendent, or equivalently that the distribution of either variable is the same at each
level of the other variable. The alternative hypothesis is that the two variables are
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not independent, or equivalently that the distribution of one variable depends on
(varies with) the level of the other.

If the null hypothesis of independence is true, then the X2 statistic is asymp-
totically distributed as a chi-square distribution (see section 3.9.6) with (k −
1)(m−1) df. Under the alternative hypothesis of non-independence the X2 statistic
will be larger on average. The p-value is the area under the null sampling distri-
bution larger than the observed X2 statistic. The term asymptotically distributed
indicates that the null sampling distribution can not be computed exactly for a
small sample size, but as the sample size increases, the null sampling distribution
approaches the shape of a particular known distribution, which is the chi-square
distribution in the case of the X2 statistic. So the p-values are reliable for “large”
sample sizes, but not for small sample sizes. Most textbooks quote a rule that no
cell of the expected counts table (see below) can have less than five counts for the
X2 test to be reliable. This rule is conservative, and somewhat smaller counts also
give reliable p-values.

Several alternative statistics are sometimes used instead of the chi-square statis-
tic (e.g., likelihood ratio statistic or Fisher exact test), but these will not be covered
here. It is important to realize that these various tests may disagree for small sam-
ple sizes and it is not clear (or meaningful to ask) which one is “correct”.

The calculation of the X2 statistic is based on the formula

X2 =
k∑
i=1

m∑
j=1

(Observedij − Expectedij)
2

Expectedij

where k and m are the number of rows and columns in the contingency table (i.e.,
the number of levels of the categorical variables), Observedij is the observed count
for the cell with one variable at level i and the other at level j, and Expectedij is
the expected count based on independence. The basic idea here is that each cell
contributes a non-negative amount to the sum, that a cell with an observed count
very different from expected contributes a lot, and that “a lot” is relative to the
expected count (denominator).

Although a computer program is ordinarily used for the calculation, an un-
derstanding of the principles is worthwhile. An “expected counts” table can be
constructed by looking at either of the marginal percentages, and then computing
the expected counts by multiplying each of these percentages by the total counts
in the other margin. Table 16.3 shows the expected counts for the ice cream exam-
ple. For example, using the percents in the bottom margin of table 16.2, if the two
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favorite ice cream
chocolate vanilla strawberry other total

rap 17.3 13.5 13.7 15.5 60
jazz 13.2 10.4 10.5 11.9 46

favorite classical 6.3 5.0 5.0 5.7 22
music rock 21.0 16.4 16.7 18.9 73

folk 13.8 10.8 11.0 12.4 48
other 6.3 5.0 5.0 5.7 22

total 78 61 62 70 271

Table 16.3: Expected counts for ice cream and music contingency table.

variables are independent, then we expect 22.9% of people to like strawberry best
among each group of people defined by their favorite music. Because 73 people
like rock best, under the null hypothesis of independence, we expect (on average)
0.229 ∗ 73 = 16.7 people to like rock and strawberry best, as shown in table 16.3.
Note that there is no reason that the expected counts should be whole numbers,
even though observed counts must be.

By combing the observed data of table 16.1 with the expected values of table
16.3, we have the information we need to calculate the X2 statistic. For the ice
cream data we find that

X2 =

(
(5− 17.3)2

5

)
+

(
(10− 13.5)2

10

)
+ · · ·+

(
(6− 5.7)2

6

)
= 112.86.

So for the ice cream example, jazz paired with chocolate shows a big deviation
from independence and of the 24 terms of the X2 sum, that cell contributes (5−
17.3)2/5 = 30.258 to the total of 112.86. There are far fewer people who like that
particular combination than would be expected under independence. To test if all
of the deviations are consistent with chance variation around the expected values,
we compare the X2 statistic to the χ2 distribution with (6−1)(4−1) = 15 df. This
distribution has 95% of its probability below 25.0, so with X2 = 112.86, we reject
H0 at the usual α = 0.05 significance level. In fact, only 0.00001 of the probability
is above 50.5, so the p-value is far less than 0.05. We reject the null hypothesis of
independence of ice cream and music preferences in favor of the conclusions that
the distribution of preference of either variable does depend on preference for the
other variable.
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You can choose among several ways to express violation (or non-violation) of the
null hypothesis for a “chi-square test of independence” of two categorical variables.
You should use the context of the problem to decide which one best expresses the
relationship (or lack of relationship) between the variables. In this problem it
is correct to say any of the following: ice cream preference is not independent of
music preference, or ice cream preference depends on or differs by music preference,
or music preference depends on or differs by ice cream preference, or knowing a
person’s ice cream preference helps in predicting their music preference, or knowing
a person’s music preference helps in predicting their ice cream preference.

The chi-square test is based on a statistic that is large when the ob-
served cell counts differ markedly from the expected counts under the
null hypothesis condition of independence. The corresponding null
sampling distribution is a chi-square distribution if no expected cell
counts are too small.

Two additional points are worth mentioning in this abbreviated discussion of
testing independence among categorical variables. First, because we want to avoid
very small expected cell counts to assure the validity of the chi-square test of
independence, it is common practice to combine categories with small counts into
combined categories. Of course, this must be done in some way that makes sense
in the context of the problem.

Second, when the contingency table is larger than 2 by 2, we need a way to
perform the equivalent of contrast tests. One simple solution is to create subtables
corresponding to the question of interest, and then to perform a chi-square test
of independence on the new table. To avoid a high Type 1 error rate we need
to make an adjustment, e.g., by using a Bonferroni correction, if this is post-hoc
testing. For example to see if chocolate preference is higher for classical than jazz,
we could compute chocolate vs. non-chocolate counts for the two music types to
get table 16.4. This gives a X2 statistic of 9.9 with 1 df, and a p-value of 0.0016.
If this is a post-hoc test, we need to consider that there are 15 music pairs and 4
flavors plus 6 flavor pairs and 6 music types giving 4*15+6*6=96 similar tests, that
might just as easily have been noticed as “interesting”. The Bonferroni correction
implies using a new alpha value of 0.05/96=0.00052, so because 0.0016 > 0.00052,
we cannot make the post-hoc conclusion that chocolate preference differs for jazz
vs. classical. In other words, if the null hypothesis of independence is true, and we
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favorite ice cream
chocolate not chocolate total

jazz 8 38 46
favorite 17.4% 82.6% 100%
music classical 12 10 22

54.5% 45.5% 100%

total 20 48 68
29.4% 70.6% 100%

Table 16.4: Cross-tabulation of chocolate for jazz vs. classical.

data snoop looking for pairs of categories of one factor being different for presence
vs. absence of a particular category of the other factor, finding that one of the 96
different p-values is 0.0016 is not very surprising or unlikely.

16.3 Logistic regression

16.3.1 Introduction

Logistic regression is a flexible method for modeling and testing the relationships
between one or more quantitative and/or categorical explanatory variables and one
binary (i.e., two level) categorical outcome. The two levels of the outcome can
represent anything, but generically we label one outcome “success” and the other
“failure”. Also, conventionally, we use code 1 to represent success and code 0 to
represent failure. Then we can look at logistic regression as modeling the success
probability as a function of the explanatory variables. Also, for any group of
subjects, the 0/1 coding makes it true that the mean of Y represents the observed
fraction of successes for that group.

Logistic regression resembles ordinary linear regression in many ways. Besides
allowing any combination of quantitative and categorical explanatory variables
(with the latter in indicator variable form), it is appropriate to include functions of
the explanatory variables such as log(x) when needed, as well as products of pairs
of explanatory variables (or more) to represent interactions. In addition, there
is usually an intercept parameter (β0) plus one parameter for each explanatory
variable (β1 through βk), and these are used in the linear combination form: β0 +
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x1β1 + · · ·+ xkβk. We will call this sum eta (written η) for convenience.

Logistic regression differs from ordinary linear regression because its outcome
is binary rather than quantitative. In ordinary linear regression the structural
(means) model is that E(Y ) = η. This is inappropriate for logistic regression
because, among other reasons, the outcome can only take two arbitrary values,
while eta can take any value. The solution to this dilemma is to use the means
model

log

(
E(Y )

1− E(Y )

)
= log

(
Pr(Y = 1)

Pr(Y = 0)

)
= η.

Because of the 0/1 coding, E(Y ), read as the “expected value of Y” is equivalent
to the probability of success, and 1−E(Y ) is the probability of failure. The ratio
of success to failure probabilities is called the odds. Therefore our means model
for logistic regression is that the log of the odds (or just “log odds”) of success
is equal to the linear combination of explanatory variables represented as eta. In
other words, for any explanatory variable j, if βj > 0 then an increase in that
variable is associated with an increase in the chance of success and vice versa.

The means model for logistic regression is that the log odds of suc-
cess equals a linear combination of the parameters and explanatory
variables.

A shortcut term that is often used is logit of success, which is equivalent to the
log odds of success. With this terminology the means model is logit(S)=η, where
S indicates success, i.e., Y=1.

It takes some explaining and practice to get used to working with odds and log
odds, but because this form of the means model is most appropriate for modeling
the relationship between a set of explanatory variables and a binary categorical
outcome, it’s worth the effort.

First consider the term odds, which will always indicate the odds of success
for us. By definition

odds(Y = 1) =
Pr(Y = 1)

1− Pr(Y = 1)
=

Pr(Y = 1)

Pr(Y = 0)
.

The odds of success is defined as the ratio of the probability of success to the
probability of failure. The odds of success (where Y=1 indicates success) contains
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Pr(Y = 1) Pr(Y = 0) Odds Log Odds
0 1 0 -∞

0.1 0.9 1/9 -2.197
0.2 0.8 0.25 -1.383

0.25 0.75 1/3 -1.099
1/3 2/3 0.5 -0.693
0.5 0.5 1 0.000
2/3 1/3 2 0.693

0.75 0.25 3 1.099
0.8 0.2 4 1.386
0.9 0.1 9 2.197

1 0 ∞ ∞

Table 16.5: Relationship between probability, odds and log odds.

the same information as the probability of success, but is on a different scale.
Probability runs from 0 to 1 with 0.5 in the middle. Odds runs from 0 to ∞ with
1.0 in the middle. A few simple examples, shown in table 16.5, make this clear.
Note how the odds equal 1 when the probability of success and failure are equal.
The fact that, e.g., the odds are 1/9 vs. 9 for success probabilities of 0.1 and 0.9
respectively demonstrates how 1.0 can be the “center” of the odds range of 0 to
infinity.

Here is one way to think about odds. If the odds are 9 or 9/1, which is often
written as 9:1 and read 9 to 1, then this tells us that for every nine successes there
is one failure on average. For odds of 3:1, for every 3 successes there is one failure
on average. For odds equal to 1:1, there is one failure for each success on average.
For odds of less than 1, e.g., 0.25, write it as 0.25:1 then multiply the numerator
and denominator by whatever number gives whole numbers in the answer. In this
case, we could multiple by 4 to get 1:4, which indicates that for every one success
there are four failures on average. As a final example, if the odds are 0.4, then this
is 0.4:1 or 2:5 when I multiply by 5/5, so on average there will be five failures for
every two successes.

To calculate probability, p, when you know the odds use the formula

p =
odds

1 + odds
.
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The odds of success is defined as the ratio of the probability of success
to the probability of failure. It ranges from 0 to infinity.

The log odds of success is defined as the natural (i.e., base e, not base 10) log of
the odds of success. The concept of log odds is very hard for humans to understand,
so we often “undo” the log odds to get odds, which are then more interpretable.
Because the log is a natural log, we undo log odds by taking Euler’s constant
(e), which is approximately 2.718, to the power of the log odds. For example, if
the log odds are 1.099, then we can find e1.099 as exp(1.099) in most computer
languages or in Google search to find that the odds are 3.0 (or 3:1). Alternatively,
in Windows calculator (scientific view) enter 1.099, then click the Inv (inverse)
check box, and click the “ln” (natural log) button. (The “exp” button is not an
equivalent calculation in Windows calculator.) For your handheld calculator, you
should look up how to do this using 1.099 as an example.

The log odds scale runs from −∞ to +∞ with 0.0 in the middle. So zero
represents the situation where success and failure are equally likely, positive log
odds values represent a greater probability of success than failure, and negative log
odds values represent a greater probability of failure than success. Importantly,
because log odds of −∞ corresponds to probability of success of 0, and log odds
of +∞ corresponds to probability of success of 1, the model “log odds of success
equal eta” cannot give invalid probabilities as predictions for any combination of
explanatory variables.

It is important to note that in addition to population parameter values for an
ideal model, odds and log odds are also used for observed percent success. E.g., if
we observe 5/25=20% successes, then we say that the (observed) odds of success
is 0.2/0.8=0.25.

The log odds of success is simply the natural log of the odds of success.
It ranges from minus infinity to plus infinity, and zero indicates that
success and failure are equally likely.

As usual, any model prediction, which is the probability of success in this situa-
tion, applies for all subjects with the same levels of all of the explanatory variables.
In logistic regression, we are assuming that for any such group of subjects the prob-
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ability of success, which we can call p, applies individually and independently to
each of the set of similar subjects. These are the conditions that define a binomial
distribution (see section 3.9.1). If we have n subjects all with with the same level
of the explanatory variables and with predicted success probability p, then our er-
ror model is that the outcomes will follow a random binomial distribution written
as Binomial(n,p). The mean number of successes will be the product np, and the
variance of the number of success will be np(1− p). Note that this indicates that
there is no separate variance parameter (σ2) in a logistic regression model; instead
the variance varies with the mean and is determined by the mean.

The error model for logistic regression is that for each fixed combi-
nation of explanatory variables the distribution of success follows the
binomial distribution, with success probability, p, determined by the
means model.

16.3.2 Example and EDA for logistic regression

The example that we will use for logistic regression is a simulated dataset (LRex.dat)
based on a real experiment where the experimental units are posts to an Internet
forum and the outcome is whether or not the message received a reply within the
first hour of being posted. The outcome variable is called “reply” with 0 as the
failure code and 1 as the success code. The posts are all to a single high volume
forum and are computer generated. The time of posting is considered unimportant
to the designers of the experiment. The explanatory variables are the length of
the message (20 to 100 words), whether it is in the passive or active voice (coded
as an indicator variable for the “passive” condition), and the gender of the fake
first name signed by the computer (coded as a “male” indicator variable).

Plotting the outcome vs. one (or each) explanatory variable is not helpful when
there are only two levels of outcome because many data points end up on top of
each other. For categorical explanatory variables, cross-tabulating the outcome
and explanatory variables is good EDA.

For quantitative explanatory variables, one reasonably good possibility is to
break the explanatory variable into several groups (e.g., using Visual Binning in
SPSS), and then to plot the mean of the explanatory variable in each bin vs. the

http://www.stat.cmu.edu/~hseltman/309/Book/data/LRex.dat
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observed fraction of successes in that bin. Figure 16.1 shows a binning of the
length variable vs. the fraction of successes with separate marks of “0” for active
vs. “1” for passive voice. The curves are from a non-parametric smoother (loess)
that helps in identifying the general pattern of any relationship. The main things
you should notice are that active voice messages are more likely to get a quick
reply, as are shorter messages.
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Figure 16.1: EDA for forum message example.
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EDA for continuous explanatory variables can take the form of cate-
gorizing the continuous variable and plotting the fraction of success
vs. failure, possibly separately for each level of some other categorical
explanatory variable(s).

16.3.3 Fitting a logistic regression model

The means model in logistic regression is that

logit(S) = β0 + β1x1 + · · ·+ βkxk.

For any continuous explanatory variable, xi, at any fixed levels of all of the other
explanatory variables this is linear on the logit scale. What does this correspond
to on the more natural probability scale? It represents an “S” shaped curve that
either rises or falls (monotonically, without changing direction) as xi increases. If
the curve is rising, as indicated by a positive sign on βi, then it approaches Pr(S)=1
as xi increases and Pr(S)=0 as xi decreases. For a negative βi, the curve starts
near Pr(S)=1 and falls toward Pr(S)=0. Therefore a logistic regression model is
only appropriate if the EDA suggest a monotonically rising or falling curve. The
curve need not approach 0 and 1 within the observed range of the explanatory
variable, although it will at some extreme values of that variable.

It is worth mentioning here that the magnitude of βi is related to the steepness
of the rise or fall, and the value of the intercept relates to where the curve sits left
to right.

The fitting of a logistic regression model involves the computer finding the best
estimates of the β values, which are called b or B values as in linear regression.
Technically logistic regression is a form of generalized (not general) linear model
and is solved by an iterative method rather than the single step (closed form)
solutions of linear regression.

In SPSS, there are some model selection choices built-in to the logistic regres-
sion module. These are the same as for linear regression and include “Enter” which
just includes all of the explanatory variables, “Backward conditional (stepwise)”
which starts with the full model, then drops possibly unneeded explanatory vari-
ables one at a time to achieve a parsimonious model, and “Forward conditional
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Dependent Variable Encoding
Original Value Internal Value
Not a quick reply 0
Got a quick reply 1

Table 16.6: Dependent Variable Encoding for the forum example.

(stepwise)” which starts with a simple model and adds explanatory variables until
nothing “useful” can be added. Neither of the stepwise methods is guaranteed to
achieve a “best” model by any fixed criterion, but these model selection techniques
are very commonly used and tend to be fairly good in many situations. Another
way to perform model selection is to fit all models and pick the one with the lowest
AIC or BIC.

The results of an SPSS logistic regression analysis of the forum message ex-
periment using the backward conditional selection method are described here. A
table labeled “Case Processing Summary” indicates that 500 messages were tested.
The critical “Dependent Variable Encoding” table (Table 16.6) shows that “Got
a quick reply” corresponds to the “Internal Value” of “1”, so that is what SPSS
is currently defining as success, and the logistic regression model is estimating the
log odds of getting a quick reply as a function of all of the explanatory variables.
Always check the Dependent Variable Encoding. You need to be certain which
outcome category is the one that SPSS is calling “success”, because if it is not the
one that you are thinking of as “success”, then all of your interpretations will be
backward from the truth.

The next table is Categorical Variables Codings. Again checking this table is
critical because otherwise you might interpret the effect of a particular categorical
explanatory variable backward from the truth. The table for our example is table
16.7. The first column identifies each categorical variable; the sections of the
table for each variable are interpreted entirely separately. For each variable with,
say k levels, the table has k lines, one for each level as indicated in the second
column. The third column shows how many experimental units had each level of
the variable, which is interesting information but not the critical information of
the table. The critical information is the final k − 1 columns which explain the
coding for each of the k − 1 indicator variables created by SPSS for the variable.
In our example, we made the coding match the coding we want by using the
Categorical button and then selecting “first” as the “Reference category”. Each
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Parameter
coding

Frequency (1)

Male gender? Female 254 .000
Male 246 1.000

Passive Active voice 238 .000
voice? Passive voice 262 1.000

Table 16.7: Categorical Variables Codings for the forum example.

Hosmer and Lemeshow Test
Step Chi-square df Sig.
1 4.597 8 0.800
2 4.230 8 0.836

Table 16.8: Hosmer-Lemeshow Goodness of Fit Test for the forum example.

of the k − 1 variables is labeled “(1)” through “(k-1)” and regardless of how we
coded the variable elsewhere in SPSS, the level with all zeros is the “reference
category” (baseline) for the purposes of logistic regression, and each of the k-1
variables is an indicator for whatever level has the Parameter coding of 1.000 in
the Categorical Variables Coding table. So for our example the indicators indicate
male and passive voice respectively.

Correct interpretation of logistic regression results in SPSS critically
depends on correct interpretation of how both the outcome and ex-
planatory variables are coded.

SPSS logistic regression shows an uninteresting section called “Block 0” which
fits a model without any explanatory variables. In backward conditional model
selection Block 1 shows the results of interest. The numbered steps represent
different models (sets of explanatory variables) which are checked on the way to
the “best” model. For our example there are two steps, and therefore step 2
represents the final, best model, which we will focus on.
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One result is the Hosmer and Lemeshow Test of goodness of fit, shown
in Table 16.8. We only look at step 2. The test is a version of a goodness-of-
fit chi-square test with a null hypothesis that the data fit the model adequately.
Therefore, a p-value larger than 0.05 suggests an adequate model fit, while a small
p-value indicates some problem with the model such as non-monotonicity, variance
inappropriate for the binomial model at each combination of explanatory variables,
or the need to transform one of the explanatory variables. (Note that Hosmer and
Lemeshow have deprecated this test in favor of another more recent one, that is
not yet available in SPSS.) In our case, a p-value of 0.836 suggests no problem
with model fit (but the test is not very powerful). In the event of an indication of
lack of fit, examining the Contingency Table for Hosmer and Lemeshow Test may
help to point to the source of the problem. This test is a substitute for residual
analysis, which in raw form is uninformative in logistic regression because there are
only two possible values for the residual at each fixed combination of explanatory
variables.

The Hosmer-Lemeshow test is a reasonable substitute for residual
analysis in logistic regression.

The Variables in the Equation table (Table 16.9) shows the estimates of the
parameters, their standard errors, and p-values for the null hypotheses that each
parameter equals zero. Interpretation of this table is the subject of the next section.

16.3.4 Tests in a logistic regression model

The main interpretations for a logistic regression model are for the parameters.
Because the structural model is

logit(S) = β0 + β1x1 + · · ·+ βkxk

the interpretations are similar to those of ordinary linear regression, but the linear
combination of parameters and explanatory variables gives the log odds of success
rather than the expected outcome directly. For human interpretation we usually
convert log odds to odds. As shown below, it is best to use the odds scale for inter-
preting coefficient parameters. For predictions, we can convert to the probability
scale for easier interpretation.
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B S.E. Wald df Sig. Exp(B)
length -0.035 0.005 46.384 1 <0.005 0.966
passive(1) -0.744 0.212 12.300 1 <0.005 0.475
Constant 1.384 0.308 20.077 1 <0.005 3.983

Table 16.9: Variables in the equation for the forum message example.

The coefficient estimate results from the SPSS section labeled “Variables in the
Equation” are shown in table 16.9 for the forum message example. It is this table
that you should examine to see which explanatory variables are included in the
different “steps”, i.e., which means model corresponds to which step. Only results
for step 2 are shown here; step 1 (not shown) indicates that in a model including
all of the explanatory variables the p-value for “male” is non-significant (p=0.268).

This model’s prediction equation is

logit(S) = β0 + βlength(length) + βpassive(passive)

and filling in the estimates we get

̂logit(S) = 1.384− 0.035(length)− 0.744(passive).

The intercept is the average log odds of success when all of the explanatory
variables are zero. In this model this is the meaningless extrapolation to an active
voice message with zero words. If this were meaningful, we could say that the
estimated log odds for such messages is 1.384. To get to a more human scale we
take exp(1.384)=e1.384 which is given in the last column of the table as 3.983 or
3.983:1. We can express this as approximately four successes for every one failure.
We can also convert to the probability scale using the formula p = 3.983

1+3.983
= 0.799,

i.e., an 80% chance of success. As usual for an intercept, the interpretation of the
estimate is meaningful if setting all explanatory variables to zero is meaningful and
is not a gross extrapolation. Note that a zero log odds corresponds to odds of e0 = 1
which corresponds to a probability of 1

1+1
= 0.5. Therefore it is almost never valid

to interpret the p-value for the intercept (constant) in logistic regression because it
tests whether the probability of success is 0.5 when all explanatory variables equal
zero.
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The intercept estimate in logistic regression is an estimate of the log
odds of success when all explanatory variables equal zero. If “all
explanatory variables are equal to zero” is meaningful for the problem,
you may want to convert the log odds to odds or to probability. You
should ignore the p-value for the intercept.

For a k-level categorical explanatory variable like “passive”, SPSS creates k−1
indicator variables and estimates k−1 coefficient parameters labeled Bx(1) through

Bx(k-1). In this case we only have Bpassive(1) because k = 2 for the passive

variable. As usual, Bpassive(1) represents the effect of increasing the explanatory

variable by one-unit, and for an indicator variable this is a change from baseline
to the specified non-baseline condition. The only difference from ordinary linear
regression is that the “effect” is a change in the log odd of success.

For our forum message example, the estimate of -0.744 indicates that at any
fixed message length, a passive message has a log odds of success 0.744 lower than
a corresponding active message. For example, if the log odds of success for active
messages for some particular message length is 1.744, then the log odds of success
for passive messages of the same length is 1.000.

Because log odds is hard to understand we often rewrite the prediction equation
as something like ̂logit(S) = B0L − 0.744(passive)

where B0L = 1.384− 0.035L for some fixed message length, L. Then we exponen-
tiate both sides to get

̂odds(S) = eB0Le−0.744(passive).

The left hand side of this equation is the estimate of the odds of success. Because

e−0.744 = 0.475 and e0 = 1, this says that for active voice ̂odds(S) = eB0L and

for passive voice ̂odds(S) = 0.475eB0L . In other words, at any message length,
compared to active voice, the odds of success are multiplied (not added) by 0.475
to get the odds for passive voice.

So the usual way to interpret the effect of a categorical variable on a binary
outcome is to look at “exp(B)” and take that as the multiplicative change in odds
when comparing the specified level of the indicator variable to the baseline level.
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If B=0 and therefore exp(B) is 1.0, then there is no effect of that variable on the
outcome (and the p-value will be non-significant). If exp(B) is greater than 1, then
the odds increase for the specified level compared to the baseline. If exp(B) is less
than 1, then the odds decrease for the specified level compared to the baseline. In
our example, 0.475 is less than 1, so passive voice, compared to active voice, lowers
the odds (and therefore probability) of success at each message length.

It is worth noting that multiplying the odds by a fixed number has very different
effects on the probability scale for different baseline odds values. This is just what
we want so that we can keep the probabilities between 0 and 1. If we incorrectly
claim that for each one-unit increase in x probability rises, e.g., by 0.1, then this
becomes meaningless for a baseline probability of 0.95. But if we say that, e.g., the
odds double for each one unit increase in x, then if the baseline odds are 0.5 or 2
or 9 (with probabilities 0.333, 0.667 and 0.9 respectively) then a one-unit increase
in x changes the odds to 1, 4 and 18 respectively (with probabilities 0.5, 0.8, and
0.95 respectively). Note that all new probabilities are valid, and that a doubling of
odds corresponds to a larger probability change for midrange probabilities than for
more extreme probabilities. This discussion also explains why you cannot express
the interpretation of a logistic regression coefficient on the probability scale.

The estimate of the coefficient for an indicator variable of a categorical
explanatory variable in a logistic regression is in terms of exp(B). This
is the multiplicative change in the odds of success for the named vs.
the baseline condition when all other explanatory variables are held
constant.

For a quantitative explanatory variable, the interpretation of the coefficient
estimate is quite similar to the case of a categorical explanatory variable. The
differences are that there is no baseline, and that x can take on any value, not
just 0 and 1. In general, we can say that the coefficient for a given continuous
explanatory variable represents the (additive) change in log odds of success when
the explanatory variable increases by one unit with all other explanatory variables
held constant. It is easier for people to understand if we change to the odds
scale. Then exp(B) represents the multiplicative change in the odds of success for
a one-unit increase in x with all other explanatory variables held constant.

For our forum message example, our estimate is that when the voice is fixed
at either active or passive, the log odds of success (getting a reply within one
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hour) decreases by 0.035 for each additional word or by 0.35 for each additional
ten words. It is better to use exp(B) and say that the odds are multiplied by 0.966
(making them slightly smaller) for each additional word.

It is even more meaningful to describe the effect of a 10 word increase in message
length on the odds of success. Be careful: you can’t multiply exp(B) by ten. There
are two correct ways to figure this out. First you can calculate e−0.35 = 0.71, and
conclude that the odds are multiplied by 0.71 for each additional ten words. Or
you can realize that if for each additional word, the odds are multiplied by 0.966,
then adding a word ten times results in multiplying the odds by 0.966 ten times.
So the result is 0.96610 = 0.71, giving the same conclusion.

The p-value for each coefficient is a test of βx = 0, and if βx = 0, then when x
goes up by 1, the log odds go up by 0 and the odds get multiplied by exp(0)=1. In
other words, if the coefficient is not significantly different from zero, then changes
in that explanatory variable do not affect the outcome.

For a continuous explanatory variable in logistic regression, exp(B) is
the multiplicative change in odds of success for a one-unit increase in
the explanatory variable.

16.3.5 Predictions in a logistic regression model

Predictions in logistic regression are analogous to ordinary linear regression. First
create a prediction equation using the intercept (constant) and one coefficient
for each explanatory variable (including k − 1 indicators for a k-level categorical
variable). Plug in the estimates of the coefficients and a set of values for the
explanatory variables to get what we called η, above. This is your prediction of
the log odds of success. Take exp(η) to get the odds of success, then compute

odds
1+odds to get the probability of success. Graphs of the probability of success vs.

levels of a quantitative explanatory variable, with all other explanatory variable
fixed at some values, will be S-shaped (or its mirror image), and are a good way
to communicate what the means model represents.

For our forum messages example, we can compute the predicted log odds of
success for a 30 word message in passive voice as η = 1.384−0.035(30)−0.744(1) =
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−0.41. Then the odds of success for such a message is exp(-0.41)=0.664, and the
probability of success is 0.664/1.664=0.40 or 40%.

Computing this probability for all message lengths from 20 to 100 words sep-
arately for both voices gives figure 16.2 which is a nice summary of the means
model.
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Figure 16.2: Model predictions for forum message example.
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Prediction of probabilities for a set of explanatory variables involves
calculating log odds from the linear combination of coefficient esti-
mates and explanatory variables, then converting to odds and finally
probability.

16.3.6 Do it in SPSS

In SPSS, Binary Logistic is a choice under Regression on the Analysis menu. The
dialog box for logistic regression is shown in figure 16.3. Enter the dependent
variable. In the “Covariates” box enter both quantitative and categorical explana-
tory variables. You do not need to manually convert k-level categorical variables
to indicators. Select the model selection method. The default is to “Enter” all
variables, but you might want to switch to one of the available stepwise methods.
You should always select “Hosmer-Lemeshow goodness-of-fit” under Options.

Figure 16.3: SPSS dialog box for logistic regression.

If you have any categorical explanatory variables listed in the “Covariates” box,
click on “Categorical” to open the dialog box shown in figure 16.4. Move only the
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categorical variables over to the “Categorical Covariates” box. The default is for
SPSS to make the last category the baseline (reference) category. For variables
that are already appropriately named indicator variables, like passive and male
in our example, you will want to change the “Reference Category” to “First” to
improve the interpretability of the coefficient tables. Be sure to click the “Change”
button to register the change in reference category.

Figure 16.4: SPSS Categorical Definition dialog box for logistic regression.

The interpretation of the SPSS output is shown in the preceding sections.
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