
Chapter 7

One-way ANOVA
One-way ANOVA examines equality of population means for a quantitative out-
come and a single categorical explanatory variable with any number of levels.

The t-test of Chapter 6 looks at quantitative outcomes with a categorical ex-
planatory variable that has only two levels. The one-way Analysis of Variance
(ANOVA) can be used for the case of a quantitative outcome with a categorical
explanatory variable that has two or more levels of treatment. The term one-
way, also called one-factor, indicates that there is a single explanatory variable
(“treatment”) with two or more levels, and only one level of treatment is applied
at any time for a given subject. In this chapter we assume that each subject is ex-
posed to only one treatment, in which case the treatment variable is being applied
“between-subjects”. For the alternative in which each subject is exposed to several
or all levels of treatment (at different times) we use the term “within-subjects”,
but that is covered Chapter 14. We use the term two-way or two-factor ANOVA,
when the levels of two different explanatory variables are being assigned, and each
subject is assigned to one level of each factor.

It is worth noting that the situation for which we can choose between one-way
ANOVA and an independent samples t-test is when the explanatory variable has
exactly two levels. In that case we always come to the same conclusions regardless
of which method we use.

The term “analysis of variance” is a bit of a misnomer. In ANOVA we use
variance-like quantities to study the equality or non-equality of population means.
So we are analyzing means, not variances. There are some unrelated methods,
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172 CHAPTER 7. ONE-WAY ANOVA

such as “variance component analysis” which have variances as the primary focus
for inference.

7.1 Moral Sentiment Example

As an example of application of one-way ANOVA consider the research reported
in “Moral sentiments and cooperation: Differential influences of shame and guilt”
by de Hooge, Zeelenberg, and M. Breugelmans (Cognition & Emotion,21(5): 1025-
1042, 2007).

As background you need to know that there is a well-established theory of Social
Value Orientations or SVO (see Wikipedia for a brief introduction and references).
SVOs represent characteristics of people with regard to their basic motivations.
In this study a questionnaire called the Triple Dominance Measure was used to
categorize subjects into “proself” and “prosocial” orientations. In this chapter we
will examine simulated data based on the results for the proself individuals.

The goal of the study was to investigate the effects of emotion on cooperation.
The study was carried out using undergraduate economics and psychology students
in the Netherlands.

The sole explanatory variable is “induced emotion”. This is a nominal cat-
egorical variable with three levels: control, guilt and shame. Each subject was
randomly assigned to one of the three levels of treatment. Guilt and shame were
induced in the subjects by asking them to write about a personal experience where
they experienced guilt or shame respectively. The control condition consisted of
having the subject write about what they did on a recent weekday. (The validity
of the emotion induction was tested by asking the subjects to rate how strongly
they were feeling a variety of emotions towards the end of the experiment.)

After inducing one of the three emotions, the experimenters had the subjects
participate in a one-round computer game that is designed to test cooperation.
Each subject initially had ten coins, with each coin worth 0.50 Euros for the
subject but 1 Euro for their “partner” who is presumably connected separately
to the computer. The subjects were told that the partners also had ten coins,
each worth 0.50 Euros for themselves but 1 Euro for the subject. The subjects
decided how many coins to give to the interaction partner, without knowing how
many coins the interaction partner would give. In this game, both participants
would earn 10 Euros when both offered all coins to the interaction partner (the

http://en.wikipedia.org/wiki/Social_Value_Orientations
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cooperative option). If a cooperator gave all 10 coins but their partner gave none,
the cooperator could end up with nothing, and the partner would end up with the
maximum of 15 Euros. Participants could avoid the possibility of earning nothing
by keeping all their coins to themselves which is worth 5 Euros plus 1 Euro for each
coin their partner gives them (the selfish option). The number of coins offered was
the measure of cooperation.

The number of coins offered (0 to 10) is the outcome variable, and is called
“cooperation”. Obviously this outcome is related to the concept of “cooperation”
and is in some senses a good measure of cooperation, but just as obviously, it is
not a complete measure of the concept.

Cooperation as defined here is a discrete quantitative variable with a limited
range of possible values. As explained below, the Analysis of Variance statistical
procedure, like the t-test, is based on the assumption of a Gaussian distribution
of the outcome at each level of the (categorical) explanatory variable. In this
case, it is judged to be a reasonable approximation to treat “cooperation” as a
continuous variable. There is no hard-and-fast rule, but 11 different values might
be considered borderline, while, e.g., 5 different values would be hard to justify as
possibly consistent with a Gaussian distribution.

Note that this is a randomized experiment. The levels of “treatment” (emotion
induced) are randomized and assigned by the experimenter. If we do see evidence
that “cooperation” differs among the groups, we can validly claim that induced
emotion causes different degrees of cooperation. If we had only measured the
subjects’ current emotion rather than manipulating it, we could only conclude
that emotion is associated with cooperation. Such an association could have other
explanations than a causal relationship. E.g., poor sleep the night before could
cause more feelings of guilt and more cooperation, without the guilt having any
direct effect on cooperation. (See section 8.1 for more on causality.)

The data can be found in MoralSent.dat. The data look like this:

emotion cooperation
Control 3
Control 0
Control 0

Typical exploratory data analyses include a tabulation of the frequencies of the
levels of a categorical explanatory variable like “emotion”. Here we see 39 controls,
42 guilt subjects, and 45 shame subjects. Some sample statistics of cooperation
broken down by each level of induced emotion are shown in table 7.1, and side-by-

http://www.stat.cmu.edu/~hseltman/309/Book/data/MoralSent.dat
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Figure 7.1: Boxplots of cooperation by induced emotion.

side boxplots shown in figure 7.1.

Our initial impression is that cooperation is higher for guilt than either shame
or the control condition. The mean cooperation for shame is slightly lower than
for the control. In terms of pre-checking model assumptions, the boxplots show
fairly symmetric distributions with fairly equal spread (as demonstrated by the
comparative IQRs). We see four high outliers for the shame group, but careful
thought suggests that this may be unimportant because they are just one unit of
measurement (coin) into the outlier region and that region may be “pulled in’ a
bit by the slightly narrower IQR of the shame group.
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Induced
emo-
tion Statistic Std.Error

Cooperation Control Mean 3.49 0.50
score 95% Confidence Lower Bound 2.48

Interval for Mean Upper Bound 4.50
Median 3.00
Std. Deviation 3.11
Minimum 0
Maximum 10
Skewness 0.57 0.38
Kurtosis -0.81 0.74

Guilt Mean 5.38 0.50
95% Confidence Lower Bound 4.37
Interval for Mean Upper Bound 6.39
Median 6.00
Std. Deviation 3.25
Minimum 0
Maximum 10
Skewness -0.19 0.36
Kurtosis -1.17 0.72

Shame Mean 3.78 0.44
95% Confidence Lower Bound 2.89
Interval for Mean Upper Bound 4.66
Median 4.00
Std. Deviation 2.95
Minimum 0
Maximum 10
Skewness 0.71 0.35
Kurtosis -0.20 0.70

Table 7.1: Group statistics for the moral sentiment experiment.
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7.2 How one-way ANOVA works

7.2.1 The model and statistical hypotheses

One-way ANOVA is appropriate when the following model holds. We have a single
“treatment” with, say, k levels. “Treatment” may be interpreted in the loosest
possible sense as any categorical explanatory variable. There is a population of
interest for which there is a true quantitative outcome for each of the k levels
of treatment. The population outcomes for each group have mean parameters
that we can label µ1 through µk with no restrictions on the pattern of means.
The population variances for the outcome for each of the k groups defined by the
levels of the explanatory variable all have the same value, usually called σ2, with
no restriction other than that σ2 > 0. For treatment i, the distribution of the
outcome is assumed to follow a Normal distribution with mean µi and variance σ2,
often written N(µi, σ

2).

Our model assumes that the true deviations of observations from their corre-
sponding group mean parameters, called the “errors”, are independent. In this
context, independence indicates that knowing one true deviation would not help
us predict any other true deviation. Because it is common that subjects who have
a high outcome when given one treatment tend to have a high outcome when given
another treatment, using the same subject twice would violate the independence
assumption.

Subjects are randomly selected from the population, and then randomly as-
signed to exactly one treatment each. The number of subjects assigned to treat-
ment i (where 1 ≤ i ≤ k) is called ni if it differs between treatments or just n if
all of the treatments have the same number of subjects. For convenience, define
N =

∑k
i=1 ni, which is the total sample size.

(In case you have forgotten, the Greek capital sigma (Σ) stands for summation,
i.e., adding. In this case, the notation says that we should consider all values of
ni where i is set to 1, 2, . . . , k, and then add them all up. For example, if
we have k = 3 levels of treatment, and the group samples sizes are 12, 11, and 14
respectively, then n1 = 12, n2 = 11, n3 = 14 and N =

∑k
i=1 ni = n1 + n2 + n3 =

12 + 11 + 14 = 37.)

Because of the random treatment assignment, the sample mean for any treat-
ment group is representative of the population mean for assignment to that group
for the entire population.
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Technically, the sample group means are unbiased estimators of the
population group means when treatment is randomly assigned. The mean-
ing of unbiased here is that the true mean of the sampling distribution of
any group sample mean equals the corresponding population mean. Fur-
ther, under the Normality, independence and equal variance assumptions
it is true that the sampling distribution of Ȳi is N(µi, σ

2/ni), exactly.

The statistical model for which one-way ANOVA is appropriate is that
the (quantitative) outcomes for each group are normally distributed
with a common variance (σ2). The errors (deviations of individual
outcomes from the population group means) are assumed to be inde-
pendent. The model places no restrictions on the population group
means.

The term assumption in statistics refers to any specific part of a statistical
model. For one-way ANOVA, the assumptions are normality, equal variance, and
independence of errors. Correct assignment of individuals to groups is sometimes
considered to be an implicit assumption.

The null hypothesis is a point hypothesis stating that “nothing interesting is
happening.” For one-way ANOVA, we use H0 : µ1 = · · · = µk, which states that all
of the population means are equal, without restricting what the common value is.
The alternative must include everything else, which can be expressed as “at least
one of the k population means differs from all of the others”. It is definitely wrong
to use HA : µ1 6= · · · 6= µk because some cases, such as µ1 = 5, µ2 = 5, µ3 = 10,
are neither covered by H0 nor this incorrect HA. You can write the alternative
hypothesis as “HA : Not µ1 = · · · = µk or “the population means are not all equal”.

One way to correctly write HA mathematically is HA : ∃ i, j : µi 6= µj.

This null hypothesis is called the “overall” null hypothesis and is the hypothesis
tested by ANOVA, per se. If we have only two levels of our categorical explanatory
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variable, then retaining or rejecting the overall null hypothesis, is all that needs to
be done in terms of hypothesis testing. But if we have 3 or more levels (k ≥ 3),
then we usually need to followup on rejection of the overall null hypothesis with
more specific hypotheses to determine for which population group means we have
evidence of a difference. This is called contrast testing and discussion of it will be
delayed until chapter 13.

The overall null hypothesis for one-way ANOVA with k groups is
H0 : µ1 = · · · = µk. The alternative hypothesis is that “the population
means are not all equal”.

7.2.2 The F statistic (ratio)

The next step in standard inference is to select a statistic for which we can compute
the null sampling distribution and that tends to fall in a different region for the
alternative than the null hypothesis. For ANOVA, we use the “F-statistic”. The
single formula for the F-statistic that is shown in most textbooks is quite complex
and hard to understand. But we can build it up in small understandable steps.

Remember that a sample variance is calculated as SS/df where SS is “sum of
squared deviations from the mean” and df is “degrees of freedom” (see page 69).
In ANOVA we work with variances and also “variance-like quantities” which are
not really the variance of anything, but are still calculated as SS/df. We will call
all of these quantities mean squares or MS. i.e., MS = SS/df , which is a key
formula that you should memorize. Note that these are not really means, because
the denominator is the df, not n.

For one-way ANOVA we will work with two different MS values called “mean
square within-groups”, MSwithin, and “mean square between-groups”, MSbetween.
We know the general formula for any MS, so we really just need to find the formulas
for SSwithin and SSbetween, and their corresponding df.

The F statistic denominator: MSwithin

MSwithin is a “pure” estimate of σ2 that is unaffected by whether the null or alter-
native hypothesis is true. Consider figure 7.2 which represents the within-group
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deviations used in the calculation of MSwithin for a simple two-group experiment
with 4 subjects in each group. The extension to more groups and/or different
numbers of subjects is straightforward.

0 20

Group 1

Group 2

Ȳ1 = 4.25

Ȳ2 = 14.00

Figure 7.2: Deviations for within-group sum of squares

The deviation for subject j of group i in figure 7.2 is mathematically
equal to Yij − Ȳi where Yij is the observed value for subject j of group i
and Ȳi is the sample mean for group i.

I hope you can see that the deviations shown (black horizontal lines extending
from the colored points to the colored group mean lines) are due to the underlying
variation of subjects within a group. The variation has standard deviation σ, so
that, e.g., about 2/3 of the times the deviation lines are shorter than σ. Regardless
of the truth of the null hypothesis, for each individual group, MSi = SSi/dfi is a
good estimate of σ2. The value of MSwithin comes from a statistically appropriate
formula for combining all of the k separate group estimates of σ2. It is important
to know that MSwithin has N − k df.

For an individual group, i, SSi =
∑ni
j=1(Yij − Ȳi)2 and dfi = ni − 1. We

can use some statistical theory beyond the scope of this course to show
that in general, MSwithin is a good (unbiased) estimate of σ2 if it is defined
as

MSwithin = SSwithin/dfwithin
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where SSwithin =
∑k
i=1 SSi, and dfwithin =

∑k
i=1 dfi =

∑k
i=1(ni−1) = N−k.

MSwithin is a good estimate of σ2 (from our model) regardless of the
truth of H0. This is due to the way SSwithin is defined. SSwithin (and
therefore MSwithin) has N-k degrees of freedom with ni − 1 coming
from each of the k groups.

The F statistic numerator: MSbetween

0 20

Group 1

Group 2

Ȳ1 = 4.25

Ȳ2 = 14.00

Ȳ = 9.125

Figure 7.3: Deviations for between-group sum of squares

Now consider figure 7.3 which represents the between-group deviations used
in the calculation of MSbetween for the same little 2-group 8-subject experiment
as shown in figure 7.2. The single vertical black line is the average of all of the
outcomes values in all of the treatment groups, usually called either the overall
mean or the grand mean. The colored vertical lines are still the group means. The
horizontal black lines are the deviations used for the between-group calculations.
For each subject we get a deviation equal to the distance (difference) from that
subject’s group mean to the overall (grand) mean. These deviations are squared
and summed to get SSbetween, which is then divided by the between-group df,
which is k − 1, to get MSbetween.

MSbetween is a good estimate of σ2 only when the null hypothesis is true. In
this case we expect the group means to be fairly close together and close to the
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grand mean. When the alternate hypothesis is true, as in our current example, the
group means are farther apart and the value of MSbetween tends to be larger than
σ2. (We sometimes write this as “MSbetween is an inflated estimate of σ2”.)

SSbetween is the sum of the N squared between-group deviations, where
the deviation is the same for all subjects in the same group. The formula
is

SSbetween =
k∑
i=1

ni(Ȳi − ¯̄Y )2

where ¯̄Y is the grand mean. Because the k unique deviations add up to
zero, we are free to choose only k − 1 of them, and then the last one is
fully determined by the others, which is why dfbetween = k−1 for one-way
ANOVA.

Because of the way SSbetween is defined, MSbetween is a good estimate
of σ2 only if H0 is true. Otherwise it tends to be larger. SSbetween
(and therefore MSbetween) has k − 1 degrees of freedom.

The F statistic ratio

It might seem that we only need MSbetween to distinguish the null from the alter-
native hypothesis, but that ignores the fact that we don’t usually know the value
of σ2. So instead we look at the ratio

F =
MSbetween
MSwithin

to evaluate the null hypothesis. Because the denominator is always (under null
and alternative hypotheses) an estimate of σ2 (i.e., tends to have a value near σ2),
and the numerator is either another estimate of σ2 (under the null hypothesis) or
is inflated (under the alternative hypothesis), it is clear that the (random) values
of the F-statistic (from experiment to experiment) tend to fall around 1.0 when
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the null hypothesis is true and are bigger when the alternative is true. So if we
can compute the sampling distribution of the F statistic under the null hypothesis,
then we will have a useful statistic for distinguishing the null from the alternative
hypotheses, where large values of F argue for rejection of H0.

The F-statistic, defined by F =
MSbetween
MSwithin

, tends to be larger if the

alternative hypothesis is true than if the null hypothesis is true.

7.2.3 Null sampling distribution of the F statistic

Using the technical condition that the quantities MSbetween and MSwithin are in-
dependent, we can apply probability and statistics techniques (beyond the scope
of this course) to show that the null sampling distribution of the F statistic is that
of the “F-distribution” (see section 3.9.7). The F-distribution is indexed by two
numbers called the numerator and denominator degrees of freedom. This indicates
that there are (infinitely) many F-distribution pdf curves, and we must specify
these two numbers to select the appropriate one for any given situation.

Not surprisingly the null sampling distribution of the F-statistic for any given
one-way ANOVA is the F-distribution with numerator degrees of freedom equal to
dfbetween = k − 1 and denominator degrees of freedom equal to dfwithin = N − k.
Note that this indicates that the kinds of F-statistic values we will see if the
null hypothesis is true depends only on the number of groups and the numbers
of subjects, and not on the values of the population variance or the population
group means. It is worth mentioning that the degrees of freedom are measures
of the “size” of the experiment, where bigger experiments (more groups or more
subjects) have bigger df.

We can quantify “large” for the F-statistic, by comparing it to its null
sampling distribution which is the specific F-distribution which has
degrees of freedom matching the numerator and denominator of the
F-statistic.



7.2. HOW ONE-WAY ANOVA WORKS 183

0 1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

F

D
en

si
ty

df=1,10
df=2,10
df=3,10
df=3,100

Figure 7.4: A variety of F-distribution pdfs.

The F-distribution is a non-negative distribution in the sense that F
values, which are squares, can never be negative numbers. The distribution
is skewed to the right and continues to have some tiny probability no matter
how large F gets. The mean of the distribution is s/(s− 2), where s is the
denominator degrees of freedom. So if s is reasonably large then the mean
is near 1.00, but if s is small, then the mean is larger (e.g., k=2, n=4 per
group gives s=3+3=6, and a mean of 6/4=1.5).

Examples of F-distributions with different numerator and denominator degrees
of freedom are shown in figure 7.4. These curves are probability density functions,
so the regions on the x-axis where the curve is high are the values most likely
to occur. And the area under the curve between any two F values is equal to
the probability that a random variable following the given distribution will fall
between those values. Although very low F values are more likely for, say, the
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Figure 7.5: The F(3,10) pdf and the p-value for F=2.0.

F(1,10) distribution than the F(3,10) distribution, very high values are also more
common for the F(1,10) than the F(3,10) values, though this may be hard to
see in the figure. The bigger the numerator and/or denominator df, the more
concentrated the F values will be around 1.0.

7.2.4 Inference: hypothesis testing

There are two ways to use the null sampling distribution of F in one-way ANOVA:
to calculate a p-value or to find the “critical value” (see below).

A close up of the F-distribution with 3 and 10 degrees of freedom is shown
in figure 7.5. This is the appropriate null sampling distribution of an F-statistic
for an experiment with a quantitative outcome and one categorical explanatory
variable (factor) with k=4 levels (each subject gets one of four different possible
treatments) and with 14 subjects divided among the 4 groups. A vertical line
marks an F-statistic of 2.0 (the observed value from some experiment). The p-
value for this result is the chance of getting an F-statistic greater than or equal to
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Figure 7.6: The F(3,10) pdf and its alpha=0.05 critical value.

2.0 when the null hypothesis is true, which is the shaded area. The total area is
always 1.0, and the shaded area is 0.178 in this example, so the p-value is 0.178
(not significant at the usual 0.05 alpha level).

Figure 7.6 shows another close up of the F-distribution with 3 and 10 degrees of
freedom. We will use this figure to define and calculate the F-critical value. For
a given alpha (significance level), usually 0.05, the F-critical value is the F value
above which 100α% of the null sampling distribution occurs. For experiments with
3 and 10 df, and using α = 0.05, the figure shows that the F-critical value is 3.71.
Note that this value can be obtained from a computer before the experiment is run,
as long as we know how many subjects will be studied and how many levels the
explanatory variable has. Then when the experiment is run, we can calculate the
observed F-statistic and compare it to F-critical. If the statistic is smaller than
the critical value, we retain the null hypothesis because the p-value must be bigger
than α, and if the statistic is equal to or bigger than the critical value, we reject
the null hypothesis because the p-value must be equal to or smaller than α.
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7.2.5 Inference: confidence intervals

It is often worthwhile to express what we have learned from an experiment in
terms of confidence intervals. In one-way ANOVA it is possible to make confidence
intervals for population group means or for differences in pairs of population group
means (or other more complex comparisons). We defer discussion of the latter to
chapter 13.

Construction of a confidence interval for a population group means is
usually done as an appropriate “plus or minus” amount around a sample
group mean. We use MSwithin as an estimate of σ2, and then for group

i, the standard error of the mean is
√

MSwithin/ni. As discussed in sec-
tion 6.2.7, the multiplier for the standard error of the mean is the so called
“quantile of the t-distribution” which defines a central area equal to the de-
sired confidence level. This comes from a computer or table of t-quantiles.
For a 95% CI this is often symbolized as t0.025,df where df is the degrees of
freedom of MSwithin, (N − k). Construct the CI as the sample mean plus
or minus (SEM times the multiplier).

In a nutshell: In one-way ANOVA we calculate the F-statistic as the
ratio MSbetween/MSwithin. Then the p-value is calculated as the area
under the appropriate null sampling distribution of F that is bigger
than the observed F-statistic. We reject the null hypothesis if p ≤ α.

7.3 Do it in SPSS

To run a one-way ANOVA in SPSS, use the Analyze menu, select Compare Means,
then One-Way ANOVA. Add the quantitative outcome variable to the “Dependent
List”, and the categorical explanatory variable to the “Factor” box. Click OK to
get the output. The dialog box for One-Way ANOVA is shown in figure 7.7.

You can also use the Options button to perform descriptive statistics by group,
perform a variance homogeneity test, or make a means plot.
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Figure 7.7: One-Way ANOVA dialog box.

You can use the Contrasts button to specify particular planned contrasts among
the levels or you can use the Post-Hoc button to make unplanned contrasts (cor-
rected for multiple comparisons), usually using the Tukey procedure for all pairs or
the Dunnett procedure when comparing each level to a control level. See chapter
13 for more information.

7.4 Reading the ANOVA table

The ANOVA table is the main output of an ANOVA analysis. It always has the
“source of variation” labels in the first column, plus additional columns for “sum
of squares”, “degrees of freedom”, “means square”, F, and the p-value (labeled
“Sig.” in SPSS).

For one-way ANOVA, there are always rows for “Between Groups” variation
and “Within Groups” variation, and often a row for “Total” variation. In one-way
ANOVA there is only a single F statistic (MSbetween/MSwithin), and this is shown
on the “Between Groups” row. There is also only one p-value, because there is only
one (overall) null hypothesis, namely H0 : µ1 = · · · = µk, and because the p-value
comes from comparing the (single) F value to its null sampling distribution. The
calculation of MS for the total row is optional.

Table 7.2 shows the results for the moral sentiment experiment. There are
several important aspects to this table that you should understand. First, as
discussed above, the “Between Groups” lines refer to the variation of the group
means around the grand mean, and the “Within Groups” line refers to the variation
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Sum of Squares df Mean Square F Sig.

Between Groups 86.35 2 43.18 4.50 0.013
Within Groups 1181.43 123 9.60
Total 1267.78 125

Table 7.2: ANOVA for the moral sentiment experiment.

of the subjects around their group means. The “Total” line refers to variation of
the individual subjects around the grand mean. The Mean Square for the Total
line is exactly the same as the variance of all of the data, ignoring the group
assignments.

In any ANOVA table, the df column refers to the number of degrees of freedom
in the particular SS defined on the same line. The MS on any line is always equal
to the SS/df for that line. F-statistics are given on the line that has the MS that
is the numerator of the F-statistic (ratio). The denominator comes from the MS
of the “Within Groups” line for one-way ANOVA, but this is not always true for
other types of ANOVA. It is always true that there is a p-value for each F-statistic,
and that the p-value is the area under the null sampling distribution of that F-
statistic that is above the (observed) F value shown in the table. Also, we can
always tell which F-distribution is the appropriate null sampling distribution for
any F-statistic, by finding the numerator and denominator df in the table.

An ANOVA is a breakdown of the total variation of the data, in the form of
SS and df, into smaller independent components. For the one-way ANOVA, we
break down the deviations of individual values from the overall mean of the data
into deviations of the group means from the overall mean, and then deviations
of the individuals from their group means. The independence of these sources of
deviation results in additivity of the SS and df columns (but not the MS column).
So we note that SSTotal = SSBetween +SSWithin and dfTotal = dfBetween +dfWithin.
This fact can be used to reduce the amount of calculation, or just to check that
the calculation were done and recorded correctly.

Note that we can calculate MSTotal = 1267.78/125 = 10.14 which is the vari-
ance of all of the data (thrown together and ignoring the treatment groups). You
can see that MSTotal is certainly not equal to MSBetween + MSWithin.

Another use of the ANOVA table is to learn about an experiment when it
is not full described (or to check that the ANOVA was performed and recorded
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correctly). Just from this one-way ANOVA table, we can see that there were 3
treatment groups (because dfBetween is one less than the number of groups). Also,
we can calculate that there were 125+1=126 subjects in the experiment.

Finally, it is worth knowing that MSwithin is an estimate of σ2, the variance of
outcomes around their group mean. So we can take the square root of MSwithin
to get an estimate of σ, the standard deviation. Then we know that the majority
(about 2

3
) of the measurements for each group are within σ of the group mean and

most (about 95%) are within 2σ, assuming a Normal distribution. In this example
the estimate of the s.d. is

√
9.60 = 3.10, so individual subject cooperation values

more than 2(3.10)=6.2 coins from their group means would be uncommon.

You should understand the structure of the one-way ANOVA table
including that MS=SS/df for each line, SS and df are additive, F is
the ratio of between to within group MS, the p-value comes from the
F-statistic and its presumed (under model assumptions) null sampling
distribution, and the number of treatments and number of subjects
can be calculated from degrees of freedom.

7.5 Assumption checking

Except for the skewness of the shame group, the skewness and kurtosis statistics for
all three groups are within 2SE of zero (see Table 7.1), and that one skewness is only
slightly beyond 2SE from zero. This suggests that there is no evidence against the
Normality assumption. The close similarity of the three group standard deviations
suggests that the equal variance assumption is OK. And hopefully the subjects are
totally unrelated, so the independent errors assumption is OK. Therefore we can
accept that the F-distribution used to calculate the p-value from the F-statistic is
the correct one, and we “believe” the p-value.

7.6 Conclusion about moral sentiments

With p = 0.013 < 0.05, we reject the null hypothesis that all three of the group
population means of cooperation are equal. We therefore conclude that differences
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in mean cooperation are caused by the induced emotions, and that among control,
guilt, and shame, at least two of the population means differ. Again, we defer
looking at which groups differ to chapter 13.

(A complete analysis would also include examination of residuals for additional
evaluation of possible non-normality or unequal spread.)

The F-statistic of one-way ANOVA is easily calculated by a computer.
The p-value is calculated from the F null sampling distribution with
matching degrees of freedom. But only if we believe that the assump-
tions of the model are (approximately) correct should we believe that
the p-value was calculated from the correct sampling distribution, and
it is then valid.


