
4/8/2010 36-402/608 ADA-II H. Seltman
Breakout #21: Logistic Regression Comments

In R, logistic regression is performed using
result = glm(y ∼ x..., data=my.dtf, family=binomial)

where “y” is 0 or 1, and “x...” is any prediction formula. Warning: If you forget to
specify the family, it defaults to “normal” and you get the very wrong lm() analysis.

As usual summary(result) has the standard errors and (Wald) Z and p-values, as well
as AIC $aic.

The glm() object has a $deviance component that can be used for the likelihood ratio
test. E.g., to compare glm objects named “full” and “reduced” use:
p.val = 1 - pchisq(reduced$deviance - full$deviance, reduced$df.res - full$df.res)

If you prefer probit regression to logistic regression use family=binomial(link="probit").

For binomial (instead of Bernoulli) outcomes use cbind(successCount,FailureCount)

instead of y in the formula.

Use family=quasibinomial to check for under/over dispersion.

The analysis shown here is the famous British moth predation data, often cited as an
example of observable natural selection due to sooty pollution making moths that are
resting on (normally) light colored trees easier to spot by predators. It comes from The
Sleuth, chapter 21.

The outcome is expressed in the two data columns “placed” (total number of moths
on a tree) and “removed” (number killed by predators). The explanatory variables are
“distance” from the city center (in km.; used as a surrogate for level of pollution) and
whether the moth is light or dark colored (“morph”). The study comprises 968 moths in
7 locations.

moths=read.csv("case2102.csv")

names(moths)=casefold(names(moths))

dim(moths) # 14 4

moths[1:3,]

# morph distance placed removed

#1 light 0.0 56 17

#2 dark 0.0 56 14

#3 light 7.2 80 28



summary(moths)

# morph distance placed removed

# dark :7 Min. : 0.00 Min. :52.00 Min. : 9.00

# light:7 1st Qu.:11.42 1st Qu.:57.00 1st Qu.:16.25

# Median :30.20 Median :60.00 Median :20.00

# Mean :27.23 Mean :69.14 Mean :21.86

# 3rd Qu.:40.23 3rd Qu.:83.00 3rd Qu.:23.75

# Max. :51.20 Max. :92.00 Max. :40.00

# Create ‘‘failure’’ variable

moths$left = moths$placed - moths$removed

# EDA plot

with(moths, plot(distance, log(removed/left), ylab="log(Removed/Left)",

pch=1+15*(morph=="dark"), main="British Moth Predation by Color"))

with(moths[moths$morph=="dark",], abline(lm(log(removed/left)~distance)))

with(moths[moths$morph=="light",], abline(lm(log(removed/left)~distance), lty=2))

legend("bottomleft", c("dark","light"), lty=1:2, pch=c(16,1))
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Question 1: What model is suggested by the EDA?

It looks like the slope of log odds of predation vs. distance differs for light and dark
moths, so we need a logistic regression model that uses distance, morphology, and their
interaction.

noia = glm(cbind(removed,left)~morph+distance,moths,family="binomial")

summary(noia)
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# Coefficients: Estimate Std. Error z value Pr(>|z|)

# (Intercept) -0.732690 0.151221 -4.845 1.27e-06 ***

# morphlight -0.404052 0.139377 -2.899 0.00374 **

# distance 0.005314 0.004002 1.328 0.18422

# (Dispersion parameter for binomial family taken to be 1)

# Null deviance: 35.385 on 13 degrees of freedom

# Residual deviance: 25.161 on 11 degrees of freedom

# AIC: 93.836

exp(noia$coef)

# (Intercept) morphlight distance

# 0.4806144 0.6676093 1.0053278

Question 2: Write out the prediction model on the log odds scale. Then write
out the prediction model on the odds scale. Finally, write out and simplify the
prediction equation for the ratio of the odds of removal for light colored moths
at distance “d” to the odds for removal for dark colored moths at distance
“d”. What do you conclude?

I am using “R” for removed (success in this model), and LO() as the estimated log odds,
and O() for estimated odds, “L” for light, “D” for dark, and “d” for distance.

LO(R) = b0 + bLL + bdd

O(R) = exp(b0 + bLL + bdd)

O(RLd)/O(RDd) =
exp(b0 + bL + bdd)

exp(b0 + bdd)
= exp(b0 + bL + bdd− (b0 + bdd)) = exp(bL)

full = glm(cbind(removed,left)~morph*distance,moths,family="binomial")

summary(full)

# Coefficients: Estimate Std. Error z value Pr(>|z|)

# (Intercept) -1.128987 0.197906 -5.705 1.17e-08 ***

# morphlight 0.411257 0.274490 1.498 0.134066

# distance 0.018502 0.005645 3.277 0.001048 **

# morphlight:distance -0.027789 0.008085 -3.437 0.000588 ***

# (Dispersion parameter for binomial family taken to be 1)

# Null deviance: 35.385 on 13 degrees of freedom

# Residual deviance: 13.230 on 10 degrees of freedom

# AIC: 83.904

# Number of Fisher Scoring iterations: 4

exp(full$coef)
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# (Intercept) morphlight distance morphlight:distance

# 0.3233608 1.5087132 1.0186745 0.9725935

Question 3: Use the notation “L0” for light moths at distance “d”, “L1” for
light moths at distance “d+1”, and similarly “D0” and “D1” for dark moths.

Write out and simplify the prediction equation for: odds(L1)/odds(D1)

odds(L0)/odds(D0)
What do

you conclude?
LO(R) = b0 + bLL + bdd + bLdLd

O(R) = exp(b0 + bLL + bdd + bLdLd)

O(RL0)/O(RD0) =
exp(b0 + bL + bdd + bLdd)

exp(b0 + bdd)
= exp(b0+bL+bdd+bLdd−(b0+bdd)) = exp(bL+bLdd)

O(RL1)/O(RD1) =
exp(b0 + bL + bd(d + 1) + bLd(d + 1))

exp(b0 + bd(d + 1))

= exp(b0 + bL + bd(d + 1) + bLd(d + 1)− (b0 + bd(d + 1)))

= exp(bL + bLd(d + 1))

O(RL1)/O(RD1)

O(RL0)/O(RD0)
= exp(bL + bLd(d + 1))− (bL + bLdd)) = exp(bLd)

# CI for interaction effect

tmp = summary(full)$coef[4,]

tmp

# Estimate Std. Error z value Pr(>|z|)

# -0.0277890438 0.0080854798 -3.4369072050 0.0005883972

LOCI = tmp[1] + c(-1,1)*1.96*tmp[2]

round(LOCI,3) # -0.044 -0.012

LOCI10 = 10*tmp[1] + c(-1,1)*1.96*10*tmp[2]

round(exp(10*tmp[1]),3) # 0.757

round(exp(LOCI10),3) # 0.646 0.887

Question 4: Explain the meaning of 0.757 and its CI. The odds ratio for removal
(predation) for light vs. dark moths drops by (1-0.757) = 24.3% for each additional
kilometer distant from the city. We are 95% confident that the true drop is 11.3 to 35.4%.

Here is the likelihood ratio test for the interaction:

cat(noia$df.residual, full$df.residual, "\n") # 11 10

1-pchisq(noia$deviance-full$deviance,1) # 0.000552
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Question 5: What do you conclude? (Additional Note: A similar test for the
need for distance squared gave p=0.479.)

The interaction is definitely needed with p=0.000552 for the null hypothesis that the in-
teraction coefficient is zero. (There is no evidence that we need the next most complicated
model with a curvature in time.)

Here is the test for under/over-dispersion:

qfull = glm(cbind(removed,left)~morph*distance,moths,family="quasibinomial")

summary(qfull)

# Coefficients: Estimate Std. Error t value Pr(>|t|)

# (Intercept) -1.128987 0.223104 -5.060 0.000492 ***

# morphlight 0.411257 0.309439 1.329 0.213360

# distance 0.018502 0.006364 2.907 0.015637 *

# morphlight:distance -0.027789 0.009115 -3.049 0.012278 *

# (Dispersion parameter for quasibinomial family taken to be 1.270859)

# Null deviance: 35.385 on 13 degrees of freedom

# Residual deviance: 13.230 on 10 degrees of freedom

# AIC: NA

1 - pchisq(summary(qfull)$dispersion * qfull$df.residual, qfull$df.residual)

# 0.2404243

Question 6: What do you conclude?

We estimate the variances to be 1.27 times bigger than expected, but this estimate is
consistent with a dispersion of 1.0 (p=0.24 for the null hypothesis that the dispersion is
1), so we can use the original logistic regression results. If this p-value were small, we
would use the dispersion adjusted estimates and p-values from the quasi-binomial analysis.
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