4/9/2010 36-402/608 ADA-II H. Seltman Handout #20: Categorical Outcomes, part 1

- 1. The basics of comparing proportions and using odds ratios
 - (a) When outcomes are yes/no, success/fail, live/die DO NOT use methods for Normal outcomes.
 - (b) For two groups we have the canonical contingency table:

	true success prob.	successes	failures	total
group 1	p_1	y_1	$n_1 - y_1$	n_1
group 2	p_2	y_2	$n_2 - y_2$	n_2

- (c) If Y Binomial(n, p), then E(Y) = np and the variance of Y is np(1-p) rather than having a separate σ^2 value.
- (d) If $Y \sim \text{Binomial}(n, p)$ then E(Y/n) = p and Var(Y/n) = p(1-p)/n.
- (e) Estimate of p: $\hat{p} = y/n$. Estimate of $\operatorname{Var}(\hat{p}) = \hat{p}(1-\hat{p})/n$.
- (f) If $n\hat{p} \ge 5$ and $n(1-\hat{p}) \ge 5$ then $\hat{p} = Y/n \approx N(\hat{p}, \hat{p}(1-\hat{p})/n)$, which leads to a CI for p and a Z-score based test for $H_0: p = p_0$.
- (g) Probability differences for two independent groups have sampling variance equal to the sum of the individual sampling variances. Use $\hat{p}_{\text{diff}} \pm 1.96\text{SE}_{\text{diff}}$ for a 95% CI, and $Z = \hat{p}_{\text{diff}}/\text{SE}_{\text{diff}}$ for a test of $H_0: p_1 = p_2$.
- (h) Often a better scale is odds(success)=prob(success)/prob(failure). Interpret as number of successes for each failure.
- (i) A probability difference of zero corresponds to an odds ratio of 1.
- (j)

Odds ratio =
$$\frac{\frac{y_1}{n_1}}{\frac{n_1-y_1}{n_1}} / \frac{\frac{y_2}{n_2}}{\frac{n_2-y_2}{n_2}} = \frac{y_1(n_2-y_2)}{y_2(n_1-y_1)}$$

- (k) E(crossproduct) = true odds ratio.
- (l) E.g. success rates are 0.50 vs. 0.45: prob. diff=0.05, OR=1.22. E.g. success rates are 0.07 vs. 0.02: prob. dif.=0.05 and OR = 3.7.
- (m) SE(log odds ratio) = $\sqrt{1/y_1 + 1/(n_1 y_1) + 1/y_2 + 1/(n_2 y_2)}$, and the sampling distribution of the log odds ratio is Normal. Odds ratio 95% CI = exp(log odds ratio +/- 1.96SE).
- (n) The p-value for Z = LOR/SE(LOR) is used as a test of $H_0 : LOR = 0$.

- 2. Other tests for independence of two categorical random variables
 - (a) Chi-square test: compare observed to expected under independence.

$$X^{2} = \sum_{i=1}^{\text{cell count}} \frac{(O_{i} - E_{i})^{2}}{E_{i}} \sim \chi^{2}_{(R-1)(C-1)} \text{ (asymptotically)}$$

- (b) Fisher Exact test: Assuming fixed row and column margin counts, use the hypergeometric distribution. Correct for small numbers of counts. Often only available for 2x2 tables without large counts.
- (c) Mantel-Haensel test: Test odds ratio = 1 in K 2x2 table with a common odds ratio and possibly very different odds values across tables. Can be used to "correct" for a covariate. (First need to test for a common odds ratio.)