x=5 pi=3.14159 model {for (i in 1:M) { for (j in 1:MM) { yMin[i] ~ dnorm( meanyMin , precyMin ) yMax[i] ~ dnorm( meanyMax , precyMax ) tmp1[i] <- meantMid + be4Mid * e4pos[i] tMid[i] ~ dnorm( tmp1[i] , prectMid ) tmp2[i] <- meanRate + be4Rate * e4pos[i] Rate[i] ~ dnorm( tmp2[i] , precRate ) }} for(k in 1:5) { for (j in 1:NN ) { mu[j] <- yMin[subj[j]] + ( yMax[subj[j]] - yMin[subj[j]] ) / ( 1 + exp( ( X[j] - tMid[subj[j]] ) / Rate[subj[j]] ) ) Y[j] ~ dnorm( mu[j] , precY )I(0,100) } } be4Mid ~ dnorm( meanbe4Mid , precbe4Mid ) be4Rate ~ dnorm( meanbe4Rate , precbe4Rate ) precY <- pow( sdY ,-2) sdY ~ dunif(0,20) meanyMin ~ dunif(0.01, 80);meanyMax ~ dunif(20, 99.99);meantMid ~ dnorm(70, 0.001) meanRate ~ dunif(-20, 100) meanbe4Mid ~ dnorm(0, 50) meanbe4Rate ~ dnorm(0, 15) precyMin <- pow( sdyMin ,-2) sdyMin ~ dunif(0,40) precyMax <- pow( sdyMax ,-2) sdyMax ~ dunif(0,30) prectMid <- pow( sdtMid ,-2) sdtMid ~ dunif(0,30) precRate <- pow( sdRate ,-2) sdRate ~ dunif(0,20) precbe4Mid <- pow( sdbe4Mid ,-2) sdbe4Mid ~ dunif(0,30) precbe4Rate <- pow( sdbe4Rate ,-2) sdbe4Rate ~ dunif(0,10) } data[]=c(1,2,4)