On normal approximations to U-statistics

by

Wang Zhou National University of Singapore stazw@nus.edu.sg

Abstract

Let X_1, \ldots, X_n be i.i.d. random observations. Let $\mathbb{S} = \mathbb{L} + \mathbb{T}$ be a *U*-statistics of order $k \geq 2$, where \mathbb{L} is a linear statistic having asymptotic normal distribution, and \mathbb{T} is a stochastically smaller statistic. We show that the rate of convergence to normality for \mathbb{S} can be simply expressed as the rate of convergence to normality for the linear part \mathbb{L} plus a correction term, $(\operatorname{var} \mathbb{T}) \ln^2(\operatorname{var} \mathbb{T})$, under the condition $\mathbb{E} \mathbb{T}^2 < \infty$. An optimal bound without this log factor is obtained under a lower moment assumption $\mathbb{E} |\mathbb{T}|^{\alpha} < \infty$ for $\alpha < 2$. Some other related results are also obtained in the paper. Our results extend, refine and yield a number of related known results in the literature.

This is joint work with Vidmantas Bentkus (Vilnius Institute of Mathematics and Informatics) and Bing-Yi Jing (Hong Kong University of Science and Technology).