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Outline

What is sparse PCA?

How does sparsity help?

Can we estimate it in polynomial time?
Is there a good algorithm?

How does it work?



“In many physical, statistical, and biological
investigations it is desirable to represent a
system of points in ... higher dimensioned space
by the ‘best fitting’ straight line or plane.”

— Karl Pearson (1901)

On lines and planes of closest fit to systems of points in space



Principal Components Analysis
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Principal Components Analysis

e | have iid data points Xi, ..., X, on p variables.

e p may be large, so I want to use principal components analysis

(PCA) for dimension reduction.



Principal Components Analysis

e ¥ =[E(XXT) is the population covariance matrix (say EX = 0).
e Eigen-decomposition

L=l + v + .+ lpvpv;

M > A > ... > A, > 0 (eigenvalues)

vl = §; (elgenvectors)
e “Optimal” d-dimensional projection: X — I1;X

I, = V4V} (d-dimensional projection matrix),

Vd = (vl,...,vd).



Classical Estimator

e Sample covariance matrix: £ =n~! (X, X7 +... + X, XI).
e Estimate (jtj, ?;) by eigen-decomposition of £.
Vi=(01,..,00), Ty = V4, V7.
e These are consistent and asymptotically normal when p is fixed

and n — oo.



What is sparse PCA?



High-Dimensional PCA: Challenges

e When p is large, PCA can be inconsistent (Johnstone & Lu 2009
JASA), and/or hard to interpret.

e Sparse PCA offers simultaneous dimension reduction and

variable selection.



UCI wine Data (n = 178,p = 13), PCA

® barolo ® grignolino ® barbera
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UCI wine Data (n = 178,p = 13), sPCA

® barolo ® grignolino ® barbera

PC2 (9.0 percent)
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The Sparse PCA Model

e A general model:

Y= 7L]V1VIT+ +ldvdv§+ld+12’
——

noise
where A4 > 44013 £ = 0; [T =1; v =0, V1 <;j<d,

and vy,...,v, are sparse.

e Other authors (Johnstone & Lu 09, Paul & Johnstone 12, Ma 13,
Cai et al 13) consider the Spiked model, with the additional

constraint of spherical noise

Y =1,



Subspace Sparsity [Vu & L 2013]

Identifiability. If Ay = A, = ... = A4, then one cannot distinguish
V4 and V0 from observed data for any orthogonal Q.

Intuition: a good notion of sparsity must be rotation invariant.

Matrix (2,0) norm: for any matrix V € RP*¢,

|V]|2,0 = # of non-zero rows in V
Row sparsity: ||Vy|[20 <Ry < p. Vo= (vi,v2,...,Va).

Loss function: ||[ITy —I14||% (|| - || : the Frobenius norm).
Recall: Hd = VdVdT, ﬁd = ‘A/df/;
IT is uniquely defined as long as A5 > A4 1.



Spiked Model is a Special Case of General Model

Black cell: |X(i,7)| < 0.01, White cell: |X(7,j)| > 0.01
In spiked model, all black cells outside the upper 20x20 are 0.
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How does sparsity help?



How Does Sparsity Help?

e Question: how does sparsity help PCA?

1. How well can we do if sparsity is assumed?

2. How to estimate under sparsity assumption?
e Intuition: Estimation is easy if

1. nislarge.

2. pis small.

3. Agsqisclose to 0.

4. Ag— Agy1 is away from 0.

5. Ry is small.



Answer: Sparsity Determines the Error Rate

Theorem: (Vu & L 2013)

Under the general model, assuming V is Ry-sparse, then the optimal

error rate of estimating I, is

MAqy1  d+logp
(Ad—Agr1)? n 7

1Ty — al|7 =< Ro
and can be achieved by

V= arg max Trace(UTEU).
UTU=I4,||U|20<Ro



About This Result

—

e Exact minimax error rate in (n,p,d, Ry, A) for general models.

o First consistency result for sparsity-constrained/penalized PCA.
e Price to pay

e Finding the global maximizer is computationally demanding.
e Extensions

e Soft sparsity: £,-ball with ¢ € [0, 1] [Vu & L 2012a,b].



Can we estimate it in polynomial time?



Plan: formulate it as a convex optimization.



Some Linear Algebra

e Ordinary PCA (Ky Fan’s Theorem):
maxycgrra Trace(UTEU), s.t. UTU =1,.
e Change to a linear problem by considering Z = UU':
maxz y Trace(£2), st. Z=UU", U'U=1,.
or equivalently

min; — Trace(£Z), s.t. Z is a d-dim projection matrix.



Convex Relaxation of Sparse PCA

e Add sparsity
min; — Trace(£Z)+A||Z||;, s.t. Z is a d-dim projection matrix

|Z||1: entry-wise £; norm; A: tuning parameter.

e The tightest convex relaxation would be

min; —Trace(£Z) + A||Z||;,

s.t. Z € Convhull(all d-dim projection matrices).



The Fantope

Theorem (Fillmore & Williams 71)

Convhull(all d-dim projection matrices)
={z:2=27" ,0=<Z =<1, Trace(Z) = d}
:=%pa (the Fantope)



Ky Fan (1914-2010)




Convex Relaxation of Sparse PCA
Fantope Projection and Selection (FPS) [VCLR13]

mingz — Trace(£2) +A||Z||1, s.t.Z € Fpa.

Theorem: FPS Error Bound [VCLR 2013]

Under the general PCA model, with Ry-sparsity on V,, the global

optimizer Z satisfies (w.h.p)

AMAgy1 logp

7 —Ty||% <R3
” “F O(;Ld_ld-&-l)z n

When d is small, this has an extra factor of Ry (compare to minimax

rate), which may be unavoidable for polynomial time algorithms.



How to solve FPS?



A Hard Problem at First Glance

miny — Trace(22)+A||Z|1, st.Z€ Fpa.

FPS minimizes a linear function of Z over the intersection of two
convex sets:

1. The ¢; ball;
2. The Fantope .7, 4.

Similar to the ¢;-penalized inverse covariance matrix estimation

(graphical Lasso)
Traditional algorithms may be slow.

There are powerful tools designed for problems like these.



Alternating Direction Method of Multipliers

Equivalent formulation using convex indicator 1.z, ,(-):
miny; — Trace(ZA)Z)—i-lyM (Z)+A||Z||; -
Z appears in three terms. We split these into Z and Y
minzy — Trace(2Z)+ 1z, ,(Z2)+A[Y(, st Z=Y.
Augmented Lagrangian with dual variable W

minzyw — Trace(£Z)+ 1z, ,(Z)+ (Y]

+Trace((Z — Y)W) +gHZ— Y|2.

p is a penalty parameter (like the step size).



Update Scheme is Simple

From current state (Z°, y°/4 We!d), the variables are updated by

iteratively optimizing the Lagrangian over Z and Y.

7" =Pz (Y old L (£ —w°4)/p), Fantope projection
Y'Y = 8Ty )p (2" + W4 /p), soft thresholding
wrew — yold | p(Z"" —Y""), dual update

Then (Z°4 yold Wweld) « (zrew ynew Wnew) and repeat until
convergence is observed.

Detail: Fantope projection ~ soft thresholding singular values.



How does it work?



PC2 (1.4 percent)

Wine Data Again. Added 487 Noise Columns.

® barolo ® grignolino ¢ barbera

¢ barolo e grignolino ® barbera

PC2 (0.5 percent)

2 0 2
PC1 (0.9 percent)

2 0 2
PC1 (1.7 percent)



Where else can we use it?

e Variable clustering: finding sets of variables with similar
correlation patterns.
e Intuition: These variables will point to similar directions in the
bi-plot.
e Example: S&P 500 data.
500 (n) daily returns for 500 (p) stocks.



1
-0.10

1
-0.05

Example: S&P 500 data

1
0.00

sector

Basic Industries
Capital Goods
Consumer Durables
Consumer Non-Durables
Consumer Services
Energy

Finance

Health Care
Miscellaneous
Public Utilities
Technology

Transportation

DA



PC3

0.10 -

0.05 -

0.00 -

-0.05 -

1
-0.05

Example: S&P 500 data

1
0.00

1
0.05

PC2

sector

Basic Industries
Capital Goods
Consumer Durables
Consumer Non-Durables
Consumer Services
Energy

Finance

Health Care
Miscellaneous
Public Utilities
Technology

Transportation

DA



0.10 -

0.05 -

-0.05 -

Example: S&P 500 data

0.0

PC2

0.1

sector

-
(]

Basic Industries

Capital Goods
Consumer Durables
Consumer Non-Durables
Consumer Services
Energy

Finance

Health Care
Miscellaneous

Public Utilities

~ Technology

© Transportation

N
0
i)



Another Example

e New York Times data shows similar variable clustering effect.
Some of the clusters are

CEINT3

1. “bowl”, “butter”, “chopped”, “cup”, “add”, “tablespoon”,

EEINNT3 LEINT3

“gram”, “oil”, “pan”, “water”, ...

CLINY3 CTINNYS

2. “fund”, “investment”, “market”, “price”, “stock”, ...
" 13 2 13

3. “administration”, “meeting”, “bush”, “congress”, “washington”

“white house”, ...



Future & Ongoing Work

e Applications
1. Linear discriminant analysis
2. Clustering
3. Network data
e Theory & methods
1. Sparsistency
2. Hypothesis testing
3. Sparse singular value decomposition



Summary

Sparsity PCA offers simultaneous dimension reduction and

variable selection.

It makes more sense to focus on the subspace.

It can be estimated at optimal rate.

Near optimal practical method: Fantope + ADMM.

It works, but its behavior needs better understanding.



Thank You!

Questions?



