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Outline

• What is sparse PCA?

• How does sparsity help?

• Can we estimate it in polynomial time?

• Is there a good algorithm?

• How does it work?





Principal Components Analysis
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Principal Components Analysis

• I have iid data points X1, ...,Xn on p variables.

• p may be large, so I want to use principal components analysis
(PCA) for dimension reduction.



Principal Components Analysis

• Σ = E(XXT) is the population covariance matrix (say EX = 0).

• Eigen-decomposition
Σ = λ1v1vT

1 +λ2v2vT
2 + ...+λpvpvT

p

λ1 ≥ λ2 ≥ ...≥ λp ≥ 0 (eigenvalues)
vT

i vj = δij (eigenvectors)

• “Optimal” d-dimensional projection: X→ΠdX
Πd = VdVT

d (d-dimensional projection matrix),
Vd = (v1, ...,vd).



Classical Estimator

• Sample covariance matrix: Σ̂ = n−1(X1XT
1 + ...+XnXT

n ).

• Estimate (λ̂j, v̂j) by eigen-decomposition of Σ̂.
V̂d = (v̂1, ..., v̂d), Π̂d = V̂dV̂T

d .

• These are consistent and asymptotically normal when p is fixed
and n→ ∞.



What is sparse PCA?



High-Dimensional PCA: Challenges

• When p is large, PCA can be inconsistent (Johnstone & Lu 2009
JASA), and/or hard to interpret.

• Sparse PCA offers simultaneous dimension reduction and
variable selection.



UCI wine Data (n = 178,p = 13), PCA



UCI wine Data (n = 178,p = 13), sPCA



The Sparse PCA Model

• A general model:

Σ = λ1v1vT
1 + ...+λdvdvT

d︸ ︷︷ ︸
signal

+λd+1Σ
′︸ ︷︷ ︸

noise

where λd > λd+1; Σ
′ � 0; ‖Σ′‖= 1; Σ

′vj = 0, ∀1≤ j≤ d ,

and v1, ...,vd are sparse.

• Other authors (Johnstone & Lu 09, Paul & Johnstone 12, Ma 13,
Cai et al 13) consider the Spiked model, with the additional
constraint of spherical noise

Σ
′ = Ip.



Subspace Sparsity [Vu & L 2013]

• Identifiability. If λ1 = λ2 = ...= λd, then one cannot distinguish
Vd and VdQ from observed data for any orthogonal Q.

• Intuition: a good notion of sparsity must be rotation invariant.

• Matrix (2,0) norm: for any matrix V ∈ Rp×d,
‖V‖2,0 = # of non-zero rows in V

• Row sparsity: ‖Vd‖2,0 ≤ R0� p . Vd = (v1,v2, ...,vd).

• Loss function: ‖Π̂d−Πd‖2
F (‖ · ‖F: the Frobenius norm).

Recall: Πd = VdVT
d , Π̂d = V̂dV̂T

d .
Π is uniquely defined as long as λd > λd+1.



Spiked Model is a Special Case of General Model

Black cell: |Σ(i, j)| ≤ 0.01, White cell: |Σ(i, j)|> 0.01
In spiked model, all black cells outside the upper 20×20 are 0.
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How does sparsity help?



How Does Sparsity Help?

• Question: how does sparsity help PCA?
1. How well can we do if sparsity is assumed?
2. How to estimate under sparsity assumption?

• Intuition: Estimation is easy if
1. n is large.
2. p is small.
3. λd+1 is close to 0.
4. λd−λd+1 is away from 0.
5. R0 is small.



Answer: Sparsity Determines the Error Rate

Theorem: (Vu & L 2013)

Under the general model, assuming Vd is R0-sparse, then the optimal
error rate of estimating Πd is

‖Π̂d−Πd‖2
F � R0

λ1λd+1

(λd−λd+1)2
d+ logp

n
,

and can be achieved by

V̂d = arg max
UT U=Id,‖U‖2,0≤R0

Trace(UT
Σ̂U) .



About This Result

• Good news
• Exact minimax error rate in (n,p,d,R0,~λ ) for general models.
• First consistency result for sparsity-constrained/penalized PCA.

• Price to pay
• Finding the global maximizer is computationally demanding.

• Extensions
• Soft sparsity: `q-ball with q ∈ [0,1] [Vu & L 2012a,b].



Can we estimate it in polynomial time?



Plan: formulate it as a convex optimization.



Some Linear Algebra

• Ordinary PCA (Ky Fan’s Theorem):

maxU∈Rp×d Trace(UT
Σ̂U), s.t. UTU = Id .

• Change to a linear problem by considering Z = UUT :

maxZ,U Trace(Σ̂Z), s.t. Z = UUT , UTU = Id .

or equivalently

minZ −Trace(Σ̂Z), s.t. Z is a d-dim projection matrix.



Convex Relaxation of Sparse PCA

• Add sparsity

minZ −Trace(Σ̂Z)+λ‖Z‖1, s.t. Z is a d-dim projection matrix

‖Z‖1: entry-wise `1 norm; λ : tuning parameter.

• The tightest convex relaxation would be

minZ −Trace(Σ̂Z)+λ‖Z‖1,

s.t. Z ∈ Convhull(all d-dim projection matrices) .



The Fantope

Theorem (Fillmore & Williams 71)

Convhull(all d-dim projection matrices)

={Z : Z = ZT ,0� Z � Ip, Trace(Z) = d}

:=Fp,d (the Fantope)



Ky Fan (1914–2010)



Convex Relaxation of Sparse PCA

Fantope Projection and Selection (FPS) [VCLR13]

minZ −Trace(Σ̂Z)+λ‖Z‖1, s.t. Z ∈Fp,d .

Theorem: FPS Error Bound [VCLR 2013]

Under the general PCA model, with R0-sparsity on Vd, the global
optimizer Ẑ satisfies (w.h.p)

‖Ẑ−Πd‖2
F . R2

0
λ1λd+1

(λd−λd+1)2
logp

n
.

When d is small, this has an extra factor of R0 (compare to minimax
rate), which may be unavoidable for polynomial time algorithms.



How to solve FPS?



A Hard Problem at First Glance

minZ −Trace(Σ̂Z)+λ‖Z‖1, s.t. Z ∈Fp,d .

• FPS minimizes a linear function of Z over the intersection of two
convex sets:

1. The `1 ball;
2. The Fantope Fp,d.

• Similar to the `1-penalized inverse covariance matrix estimation
(graphical Lasso)

• Traditional algorithms may be slow.

• There are powerful tools designed for problems like these.



Alternating Direction Method of Multipliers

Equivalent formulation using convex indicator 1Fp,d(·):

minZ −Trace(Σ̂Z)+1Fp,d(Z)+λ‖Z‖1 .

Z appears in three terms. We split these into Z and Y

minZ,Y −Trace(Σ̂Z)+1Fp,d(Z)+λ‖Y‖1, s.t. Z = Y .

Augmented Lagrangian with dual variable W

minZ,Y,W −Trace(Σ̂Z)+1Fp,d(Z)+λ‖Y‖1

+Trace((Z−Y)W)+
ρ

2
‖Z−Y‖2

F .

ρ is a penalty parameter (like the step size).



Update Scheme is Simple

From current state (Zold,Yold,Wold), the variables are updated by
iteratively optimizing the Lagrangian over Z and Y .

Znew = PFp,d(Y
old +(Σ̂−Wold)/ρ) , Fantope projection

Ynew = STλ/ρ(Z
new +Wold/ρ) , soft thresholding

Wnew = Wold +ρ(Znew−Ynew) , dual update

Then (Zold,Yold,Wold)← (Znew,Ynew,Wnew) and repeat until
convergence is observed.
Detail: Fantope projection ≈ soft thresholding singular values.



How does it work?



Wine Data Again. Added 487 Noise Columns.



Where else can we use it?

• Variable clustering: finding sets of variables with similar
correlation patterns.

• Intuition: These variables will point to similar directions in the
bi-plot.

• Example: S&P 500 data.
500 (n) daily returns for 500 (p) stocks.



Example: S&P 500 data



Example: S&P 500 data



Example: S&P 500 data



Another Example

• New York Times data shows similar variable clustering effect.
Some of the clusters are

1. “bowl”, “butter”, “chopped”, “cup”, “add”, “tablespoon”,
“gram”, “oil”, “pan”, “water”, ...

2. “fund”, “investment”, “market”, “price”, “stock”, ...
3. “administration”, “meeting”, “bush”, “congress”, “washington”

“white house”, ...



Future & Ongoing Work

• Applications
1. Linear discriminant analysis
2. Clustering
3. Network data

• Theory & methods
1. Sparsistency
2. Hypothesis testing
3. Sparse singular value decomposition



Summary

• Sparsity PCA offers simultaneous dimension reduction and
variable selection.

• It makes more sense to focus on the subspace.

• It can be estimated at optimal rate.

• Near optimal practical method: Fantope + ADMM.

• It works, but its behavior needs better understanding.



Thank You!

Questions?


