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Overview

• Sparse PCA and subspace estimation.

• A convex relaxation.

• Consistency and sparsistency.

• Sparse PCA with differential privacy.



Principal Components Analysis

• I have iid data points X1, ...,Xn on p variables.

• p may be large, so I want to use principal components analysis
(PCA) for dimension reduction.



Principal Components Analysis

• Σ = E(XXT) is the population covariance matrix (say EX = 0).

• Eigen-decomposition

Σ = λ1v1vT
1 +λ2v2vT

2 + ...+λpvpvT
p

λ1 ≥ λ2 ≥ ...≥ λp ≥ 0, (eigenvalues)

vT
i vj = δij, (eigenvectors)

• “Optimal” d-dimensional projection: X→ΠdX

Πd = VdVT
d , Vd = (v1,v2, ...,vd) .



Classical Estimator

• Sample covariance matrix: Σ̂ = n−1(X1XT
1 + ...+XnXT

n ).

• Estimate (λ̂j, v̂j) by eigen-decomposition of Σ̂.
V̂d = (v̂1, ..., v̂d), Π̂d = V̂dV̂T

d .

• These are consistent and asymptotically normal when p is fixed
and n→ ∞.



High-Dimensional PCA: Challenges

• When p
n → c ∈ (0,∞], PCA can be inconsistent (Johnstone & Lu

09), and/or hard to interpret.

• Sparse PCA offers dimension reduction with better statistical
properties and interpretability.



Subspace Sparsity [Vu & L 2013]

• Identifiability. If λ1 = λ2 = ...= λd, then one cannot distinguish
Vd and VdQ from observed data for any orthogonal Q.

• Intuition: a good notion of sparsity must be rotation invariant.

• Row sparsity:

At most s rows of Πd (and hence Vd) are non-zero. s� p.

• Interpretation: the projection involves at most s variables.



The Sparse PCA Model

s︷ ︸︸ ︷ p−s︷︸︸︷
Σ =

(
UDUT 0

0 0

)
+

(
Γ1 Γ12

Γ21 Γ2

)
, Πd =

(
UUT 0

0 0

)
︸ ︷︷ ︸

signal
︸ ︷︷ ︸

noise

• “signal” = λ1v1vT
1 + ...+λdvdvT

d .
“noise” = λd+1vd+1vT

d+1 + ...+λpvpvT
p .

• U ∈ Rs×d is the non-zero block of Vd.

• D = diag(λ1, ...,λd).

• This decomposition is unique when λd > λd+1.



Sparsity Reduces the Error Rate

Theorem: (Vu & L 2013)

Under the sparse PCA model, the optimal error rate of estimating Πd

is

‖Π̂d−Πd‖2
F � s

λ1λd+1

(λd−λd+1)2
d+ logp

n
,

and can be achieved by

Π̂d = argmax
Π

Tr(Σ̂Π) ,

where the maximization is over all s-sparse d-dimensional projection
matrices.



Proof of Upper Bound

• Curvature Lemma

(λd−λd+1)‖Π̂d−Πd‖2
F ≤ 2Tr(Σ(Πd− Π̂d))

• Π̂d optimizes the objective function.

0≤ Tr(Σ̂(Π̂d−Πd))

• Combine the above two.

‖Π̂d−Πd‖2
F ≤

2
λd−λd+1

Tr
[
(Σ̂−Σ)(Π̂d−Πd)

]
• Empirical process ...



Computationally Feasible Methods?

• This theorem gives optimal dependence on
(n,p,s,d,λ1,λd,λd+1).

• No additional structural assumptions on Γ (a popular assumption
Γ = σ2I is known as the spiked covariance model).

• But the proposed minimax optimal estimator is NP-hard to
compute.

• Convex relaxation?



Convex Relaxation of Sparse PCA

Fantope Projection and Selection (FPS) [VCLR13]

maxZ Tr(Σ̂Z)−ρ‖Z‖1, s.t. 0� Z � I, Tr(Z) = d .︸ ︷︷ ︸
PCA

︸︷︷︸
sparsity

︸ ︷︷ ︸
convex hull of

all d-dim projection

The constraint set Fp,d = {Z : 0� Z � I, Tr(Z) = d} is called the
Fantope (Fillmore & Williams 71, Dattorro 05), named after Ky Fan .

FPS can be solved efficiently using alternating direction method of
multipliers (ADMM).



`2 Error Bound for FPS

Theorem: FPS Error Bound [VCLR 2013]

Under the PCA model with s-sparsity on Πd, if (for C large enough)

ρ = C
√

p
n
,

the global optimizer Ẑ of FPS satisfies (w.h.p)

‖Ẑ−Πd‖2
F . s2 λ1λd+1

(λd−λd+1)2
logp

n
.

Roughly, this has an extra factor of s (compare to minimax rate),
which may be unavoidable for polynomial time algorithms [BR13].



Proof

Curvature Lemma extends to the Fantope!
Same trick as before (use ρ ≥ ‖Σ̂−Σ‖∞)

λd−λd+1

2
‖Ẑ−Πd‖2

F .Tr
[
(Σ̂−Σ)(Ẑ−Πd)

]
−ρ(‖Ẑ‖1−‖Πd‖1)

≤ρ‖Ẑ−Πd‖1−ρ(‖Ẑ‖1−‖Πd‖1)

Then apply triangle inequality and Cauchy-Schwartz.
Do no need empirical process.



Variable Selection

• Can we estimate the set of relevant variables in Πd?

• The case of d = 1 is analyzed by Amini & Wainwright (2009) .

• We are able to
1. remove a common assumption Γ21 = 0 (zero correlation between

relevant and irrelevant variables);
2. extend to d > 1.



Variable Selection Consistency of FPS

Theorem: (L & Vu 2013)

FPS correctly selects the relevant variables with high probability, if

n & s2 logp , (sample complexity)

‖Γ21(j, :)‖. s−1 , ∀j , (incoherence)

min
1≤j≤s

Πjj & s

√
logp

n
, (signal strength)

ρ = C

√
logp

n
. (tuning parameter)

Remarks

• The information-theoretic lower bound is n & s logp [AW09].

• The omitted constants depend on the eigenvalues of Σ.



Key Ingredients of Proof

Also only needs ‖Σ̂−Σ‖∞ to be small.

• Strong duality and KKT.

• Curvature lemma.

• Linear algebra, perturbation theory.



FPS with Differential Privacy

• The analysis of FPS only needs Σ̂ to satisfy entry-wise accuracy):

max
jk
|Σ̂jk−Σjk|= OP

(√
logp

n

)
.

Proof: Bernstein + union bound.

• The results for FPS still hold if we add entry-wise perturbations
to Σ̂, on the order of

√
logp/n.



Method 0: Laplace Noice

• Goal: d.p. release of Σ̂, with entry-wise accuracy
√

logp/n.

• Assume EX = 0, |Xij| ≤ 1.

• Naive idea: adding entry-wise independent double exponential
noise.

• The entry-wise noise is of order p2/n.



Method 1: Counting Queries

• Goal: d.p. release of Σ̂, with entry-wise accuracy
√

logp/n.

• Assume EX = 0, |Xij| ≤ 1.

• Observation: each entry of Σ̂ is a sample average (counting
query).

• The method of [Hardt, Ligett, & McSherry 12] reduces the

entry-wise error to O
(√

logp
nε

(logp log 1
δ
)1/4
)

for (ε,δ )-d.p.



Method 2: Stability Test

• Perturbation stability: for a given ρ (a good one), how many data
points need to be modified in order to obtain a different variable
selection result?

• Applied to the LASSO in [Smith & Thakurta 13]. See also
[Dwork & L 09].

• Idea: Estimate Πd with d.p. after variable selection.

• Challenge: the query is insensitive but may be hard to compute
in general.



Method 3: Random Projection

• Let X ∈ Rn×p be the data matrix, then Σ̂ = n−1XTX.

• Σ̂ij measures the covariance/correlation between variables j and
k.

• Johnson-Lindenstrauss Transform has been proved to preserve
pairwise similarity and d.p. [Kenthapadi, Korolova, Mironov, &
Mishra, 12], [Blocki, Blum, Datta, & Sheffet, 12].

• Idea: Use sample covariance of Y = RX(+∆), where R and ∆ are
random matrices (iid normal).



Summary

• Sparse PCA is an important topic with interesting structure and
lots of recent developments.

• The statistical analysis of sparse PCA fits well into some existing
differential privacy methods.

1. D.p. release of p2 related counting queries in continuous space.
2. Stability test for sparse PCA (and more general settings).
3. Sparse PCA with private J-L transform.
4. D.p. ADMM (?).



Thank You!


