Network Model Comparison using Network Cross-Validation

Jing Lei

Department of Statistics, Carnegie Mellon University

Nonparametric Statistics Workshop, Ann Arbor, MI

Oct 6, 2016

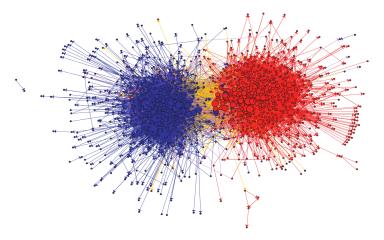
Based on joint work with Kehui Chen (U. Pitt.)

Network data

- Network data record interactions (edges) between individuals (nodes).
- From WIKIPEDIA: "... a complex network is a graph (network) with non-trivial topological features ..."
- Examples of "non-trivial topological features"
 - heavy-tail degree distribution (a.k.a "scale-free", "power law")
 - large clustering coefficient (transitivity)
 - community structure: the nodes can be grouped into subsets with dense internal connection.

- ...

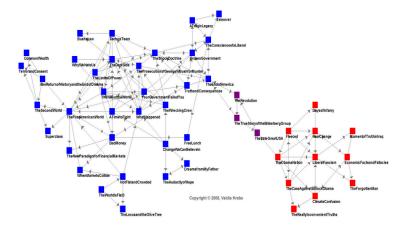
Example: U.S. Political Blogs



[Adamic & Glance '05] The political blogosphere and the 2004 US election: divided they blog

・ロト ・ 四ト ・ ヨト ・ ヨ

Example: Amazon Books



(日)

[V. Krebs '04] Co-purchased political books on Amazon.

The Exchangeable Random Graph Model

- Basic idea: the node ordering carries no information.
- In other words, the random graph is jointly row-column exchangeable.
- de Finetti for two-way array (Hoover '79, Aldous '81, Bickel & Chen '09): All such random graphs must be generated as

$$\begin{aligned} \xi_i &\stackrel{iid}{\sim} \operatorname{Unif}(0,1), \ i = 1, ..., n \,. \\ (A_{ij}|\xi) &\stackrel{indep.}{\sim} \operatorname{Bernoulli}(f(\xi_i, \xi_j)) \,. \end{aligned}$$

where $f : [0,1]^2 \mapsto [0,1]$, measurable and symmetric, is called a graphon.

Popular Special Cases

- The stochastic block model (SBM, Holland *et al* '83): *f* is block-wise constant.
- The degree corrected block model (DCBM, Karrer & Newman '11): *f* is block-wise rank-one.
- Smooth graphon (Wolfe & Olhede '13, Airoldi *et al* '13, Gao *et al* '15): *f* is smooth.

Inference Problems

- Estimation
 - Community recovery: find block structure of *f* in SBM and DCBM.
 - Graphon estimation: estimate *f*, assuming smoothness.
- Model selection
 - How many communities are there?
 - Shall I use SBM, or DCBM, or a smooth graphon to fit my data?

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• How smooth is *f*? What tuning parameter(s) shall I use in estimation?

Choosing number of communities in SBM/DCBM

- Information criteria: [Handcock *et al* '07], [Daudin *et al* '07], [Airoldi *et al* '08].
- Penalized likelihood: [Wang & Bickel '15], [Saldana et al '16].

- Hypothesis testing: [Bickel & Sarkar '15], [Lei '16].
- Spectral methods: [Le & Levina '15]

Network Cross-validation (Chen & Lei '16)

- Why cross-validation?
 - *1.* CV is conceptually simple, statistically principled, and easy to implement (the only tuning parameter is the number of folds).
 - 2. CV can be used to compare non-nested models, such as SBM vs DCBM vs smooth graphon.

Network Cross-validation (Chen & Lei '16)

- Why cross-validation?
 - *1.* CV is conceptually simple, statistically principled, and easy to implement (the only tuning parameter is the number of folds).
 - 2. CV can be used to compare non-nested models, such as SBM vs DCBM vs smooth graphon.
- Challenges
 - *1*. Cross-validation splits the data so that the fitted model can be validated on an independent sample.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

2. Challenges: How to split the network? Where to find independence?

Starting Example: Choosing K in SBM

• Data: $(A_{ij}: 1 \le i < j \le n)$ satisfying

$$A_{ij} \stackrel{indep.}{\sim} \text{Bernoulli}(B_{g_i g_j})$$

with unknown parameters

g ∈ {1,...,K}ⁿ, the membership vector;
B = B^T ∈ [0,1]^{K×K}, the community-wise edge probability matrix.

Starting Example: Choosing K in SBM

• Data: $(A_{ij}: 1 \le i < j \le n)$ satisfying

$$A_{ij} \stackrel{indep.}{\sim} \text{Bernoulli}(B_{g_i g_j})$$

with unknown parameters

- *1.* $g \in \{1, ..., K\}^n$, the membership vector;
- 2. $B = B^T \in [0, 1]^{K \times K}$, the community-wise edge probability matrix.

3. K, the number of communities.

Starting Example: Choosing K in SBM

• Data: $(A_{ij}: 1 \le i < j \le n)$ satisfying

$$A_{ij} \stackrel{indep.}{\sim} \text{Bernoulli}(B_{g_i g_j})$$

with unknown parameters

- *1.* $g \in \{1, ..., K\}^n$, the membership vector;
- 2. $B = B^T \in [0, 1]^{K \times K}$, the community-wise edge probability matrix.

- 3. K, the number of communities.
- Goal: estimate *K* for a given *A*.

A naive node splitting method

- For a given *K*, treat the node memberships as random and independent: $P(g_i = k) = \pi_k$, where $\sum_{k=1}^{K} \pi_k = 1, \pi_k \ge 0$.
- Split the nodes into two subsets.
- Estimate $(\hat{\pi}, \hat{B})$ using sub-network on the training nodes.
- Validate the estimate using the sub-network on testing nodes, treating node memberships as missing variables.

A naive node splitting method

- For a given *K*, treat the node memberships as random and independent: $P(g_i = k) = \pi_k$, where $\sum_{k=1}^{K} \pi_k = 1, \pi_k \ge 0$.
- Split the nodes into two subsets.
- Estimate $(\hat{\pi}, \hat{B})$ using sub-network on the training nodes.
- Validate the estimate using the sub-network on testing nodes, treating node memberships as missing variables.
- Drawbacks:
 - 1. Missing memberships make it computationally hard.
 - 2. Does not use the edges between the training and testing nodes.

Network cross-validation (NCV)

- For a given realization of an SBM,
 - *1.* useful information for inference is mostly contained in edge formulation;

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

2. given the membership vector, edges are independent.

Network cross-validation (NCV)

- For a given realization of an SBM,
 - *1.* useful information for inference is mostly contained in edge formulation;
 - 2. given the membership vector, edges are independent.
- The sample splitting shall be made on the node-pairs, not the nodes.

Step 1: block-wise node-pair splitting

• Given $n_1 < n$, consider a block-split of *A*:

$$A = \begin{pmatrix} A^{(11)} & A^{(12)} \\ A^{(21)} & A^{(22)} \end{pmatrix},$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where $A^{(11)}$ is the adjacency matrix on n_1 nodes chosen at random.

- Training set of node pairs: $A^{(1)} = (A^{(11)}, A^{(12)})$
- Testing set of node pairs: $A^{(22)}$

Step 2: model fitting for a given K

- Observation: the rectangular submatrix $A^{(1)}$ contains full information of the model, provided that n_1 is not too small.
- Most community recovery methods can be extended to the rectangular submatrix.
- We have implemented three estimators of *g*: profile likelihood, least squares, and spectral clustering.
- Given \hat{g} , \hat{B} is obtained by taking sample means of the Bernoulli random variables in corresponding blocks of $A^{(1)}$.

Step 3: validation on the testing sample

The validated predictive loss is

$$\hat{L}(A,K) = \sum_{A^{(22)}} \ell(A_{ij},\hat{P}_{ij}),$$

where

- the summation is over all pairs (i,j) in $A^{(22)}$ and $i \neq j$;
- $\hat{P}_{ij} = \hat{B}_{\hat{g}_i \hat{g}_j};$
- $\ell(\cdot, \cdot)$ is a loss function, for example
 - 1. negative log-likelihood: $\ell(a,p) = -a \log p (1-a) \log(1-p);$

- 2. squared loss: $\ell(a,p) = (a-p)^2$.
- Can treat other observation models, such as Poisson, Gaussian, etc.

V-fold network cross validation

• Randomly split A into $V \times V$ equal-sized blocks.

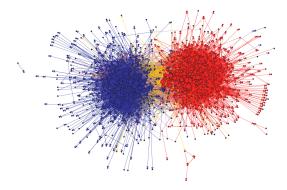
$$A = (A^{(rs)} : 1 \le r, s \le V).$$

- For each $1 \le v \le V$, each Ktraining: $A^{(-v)} = (A^{(rs)} : r \ne v, 1 \le r, s \le V)$ testing: $A^{(vv)}$ parameter estimate: $(\hat{g}^{(v)}, \hat{B}^{(v)})$ using $A^{(-v)}$ predictive loss: $\hat{L}^{(v)}(A, K) = \sum_{A^{(vv)}} \ell(A_{ij}, \hat{P}_{ij}^{(v)}), \hat{P}_{ij}^{(v)} = \hat{B}_{\hat{g}_i^{(v)}\hat{g}_j^{(v)}}$.
- Model selection: $\hat{K} = \min_K \sum_{\nu=1}^V \hat{L}^{(\nu)}(A, K)$.

Extension to DCBM

- NCV can be extended to the degree corrected block model: $A_{ij} \sim \text{Bernoulli}(B_{g_ig_j}\psi_i\psi_j).$
- ψ can be estimated up to scaling when \hat{g} is available.
- NCV can simultaneously select between the regular SBM and the DCBM, and choose *K*.
- Just calculate $\hat{L}_{sbm}(A, K)$ and $\hat{L}_{dcbm}(A, K)$ for all *K*, and pick the overall minimum.

Data example: U.S. political blogs

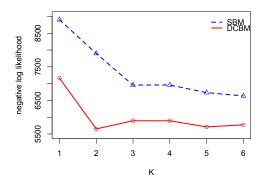


• [Adamic & Glance '05] Snapshots of weblogs shortly before 2004 U.S. Presidential Election. Nodes: weblogs; edges: hyperlinks.

・ ロ ト ・ 御 ト ・ ヨ ト ・ ヨ ト

• Fitted well by a DCBM with two clusters.

NCV on political blog data



- Plotted: cross-validated predictive loss.
- Spherical spectral clustering with K = 2 recovers with 95% accuracy.

Code is available at www.stat.cmu.edu/~jinglei/code.shtml.

Reducing Variability via Split-Aggregate

• The random data splitting introduces additional variability in the selected model.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Split-aggregate: repeat NCV many times using independent splits, and output the most frequent estimate.

Political Books Data

Co-purchase of political books on Amazon (V. Krebs '04)

3-fold NCV results from 100 random splits

Ŕ	1	2	3	4	5	≥ 6
Frequency	0	11	52	15	13	9

Competing methods: $\hat{K}_{BIC} = 4$, $\hat{K}_{BHm} = 3$, $\hat{K}_{BHa} = 4$.

Code is available at www.stat.cmu.edu/~jinglei/code.shtml.

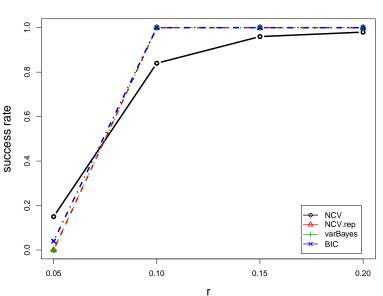
Simulation: choosing K in SBM

- *n* = 600
- K = 3, 4, 5 balanced communities

• *B*:
$$B_{k,k'} = 2r$$
 for $k \neq k'$, and

•
$$diag(B) = (3r, 2r, r)$$
 for $K = 3$

- diag(B) = (3r, 3r, r, r) for K = 4
- diag(B) = (3r, 3r, 2r, r, r) for K = 5
- Compare NCV with aggregated NCV over 20 repetitions, and other methods.



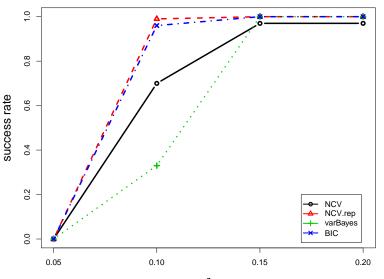
K = 3

ヘロト ヘロト ヘビト ヘビト

200

æ

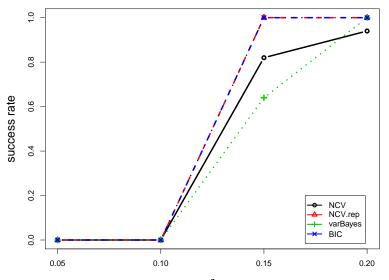
K = 4



r

(日)

$$K = 5$$



r

(日)

Beyond SBM and DCBM

- Can we bring smooth graphons in the comparison?
- Yes
 - 1. When f is smooth, it is approximately low rank.
 - 2. Under block-wise node-pair splitting, the spectral decomposition of rectangular adjacency matrix provides estimation of $\mathbb{E}(A_{ij})$ for all $1 \le i < j \le n$.
 - *3.* NCV can be applied to select the number of components, as well as to compare the low rank graphon fit with other models such as SBM and/or DCBM.

References

- Chen, K. & Lei, J. (2016+) "Network Cross-Validation for Determining the Number of Communities in Network Data", JASA T&M, to appear. arXiv:1411.1715.
- 2. Code: www.stat.cmu.edu/~jinglei/code.shtml

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

3. Slides: www.stat.cmu.edu/~jinglei/201610_ nonparametric.pdf Thank You!

Questions?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●