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Uncertainties in Predictive Inference:

Out-of-Sample Fitting and Cross-Validation

Jing Lei
Department of Statistics, Carnegie Mellon University

Amazon Research Seminar, Palo Alto, Feb 19 2018



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Regression and Prediction

Data: (Xi,Yi)
n
i=1 i.i.d from joint distribution with

Y = µ(X)+ ε

where

E(ε | X) = 0.

Goal

1. learn about µ .

2. predict Y for future observations of X.
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Popular assumptions for µ̂ in statistics

• Classical nonparametric regression
• µ is smooth (e.g., Hölder class)
• X has density bounded away from 0
• (ε | X)∼ N(0,σ2) or similar

• High dimensional regression
• µ(x) = β Tx and β is sparse
• the design matrix is nice (incoherence, RIP, etc)
• (ε | X)∼ N(0,σ2) or similar

• We call these standard assumptions.

• These assumptions lead to practical procedures with good
insights, e.g. kernel, local polynomial, Lasso, OMP, etc.
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In machine learning

Assumptions about µ are more general and implicit. For example

• µ can be approximated using functions in an RKHS.

• µ can be represented by a neural network with a particular
structure.

• Other choices we make when fitting our model: loss function,
batch size, number of iterations, etc...

These choices reflect our belief (assumptions) about the underlying
function µ and the joint distribution of (X,ε).



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Predictive inference

• We would like to quantify the uncertainty of Y for each X
observed in the future or in the sample.

1. Noise uncertainty: even if we knew µ perfectly, we never observe
ε .

2. Sampling uncertainty: empirical distribution as approximation to
underlying population.

3. Modeling uncertainly: our assumptions may not be exactly
correct. For example, Gaussianity of ε , linearity/smoothness of µ .
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Outline

• Conformal inference: reliable prediction band under no
structural assumptions.

• Cross-validation with confidence: choosing tuning parameters
with better accuracy-interpretability trade-off.
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Conformal inference

• What it is
1. a general framework for predictive inference;
2. can be combined with (almost) any existing or new regression

estimator.

• What it does
1. converts a point estimate µ̂ to a prediction band
2. maintains good properties of the original estimator if standard

assumptions hold
3. always guarantees finite sample coverage, with no assumptions

other than iid.

• Key idea: when prediction is of interest, we include the potential
future data point in our fitting procedure (conformalization).
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The starting point: sample quantile

• If Y1, ...,Yn
iid∼ P.

• Let Y(1) ≤ Y(2) ≤ ...≤ Y(n) be the order statistics.

• Let α ∈ (0,1) be a constant.

• Then

P
[
Yn+1 ≤ Y(⌈(n+1)(1−α)⌉)

]
≥ 1−α .

• Reason: the rank of Yn+1 is uniform on {1, ...,n+1}.

• Roughly speaking, a (1−α) prediction set for Yn+1 is
(−∞, F̂−1

n (1−α)].
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How to apply it to regression?

• Data: (Xi,Yi)
n
i=1; Goal: predict Yn+1 for a future Xn+1.

• Estimate µ̂ (OLS, local polynomial, lasso, NN, etc)

• Ri = Yi − µ̂(Xi), or any other loss function.

• Naïve prediction band:
µ̂(Xn+1)± upper α-quantile of {|Ri| : 1 ≤ i ≤ n}.

• OK only if µ̂ is very accurate, which requires standard
assumptions, as well as good choices of tuning parameters.

• Overfitting: prediction band tends to be too narrow, because the
fitted residuals are smaller than the true values.
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Conformal Prediction

• Data: (Xi,Yi)
n
i=1; Goal: predict Yn+1 for a future Xn+1.

• For each y ∈R, let µ̂(y) be the fitted regression function using the
augmented data set (Xi,Yi)

n+1
i=1 with Yn+1 = y.

• Let R(y)
i = Yi − µ̂(y)(Xi), 1 ≤ i ≤ n+1.

• Quality score: πn(y) = 1
n+1 ∑n+1

i=1 1(|R(y)
i | ≤ |R(y)

n+1|)

• Output Ĉ(Xn+1) = {y ∈ R : πn(y)≤ 1−α}.

• The fitting of µ̂(y) involves (Xn+1,y), and hence Ĉ is immune to
overfitting.

• Theorem: P(Yn+1 ∈ Ĉ(Xn+1))≥ 1−α , if (Xi,Yi)
n+1
i=1 is iid.
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Conformal Prediction

• Data: (Xi,Yi)
n
i=1; Goal: predict Yn+1 for a future Xn+1.

• For each y ∈R, let µ̂(y) be the fitted regression function using the
augmented data set (Xi,Yi)

n+1
i=1 with Yn+1 = y.

• Let R(y)
i = Yi − µ̂(y)(Xi), 1 ≤ i ≤ n+1.

• Quality score: πn(y) = 1
n+1 ∑n+1

i=1 1(|R(y)
i | ≤ |R(y)

n+1|)

• Output Ĉ(Xn+1) = {y ∈ R : πn(y)≤ 1−α}.

• The fitting of µ̂(y) involves (Xn+1,y), and hence Ĉ is immune to
overfitting.

• Theorem: P(Yn+1 ∈ Ĉ(Xn+1))≥ 1−α , if (Xi,Yi)
n+1
i=1 is iid.
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Conformal Prediction

• Data: (Xi,Yi)
n
i=1; Goal: predict Yn+1 for a future Xn+1.

• For each y ∈R, let µ̂(y) be the fitted regression function using the
augmented data set (Xi,Yi)

n+1
i=1 with Yn+1 = y.

• Let R(y)
i = Yi − µ̂(y)(Xi), 1 ≤ i ≤ n+1.

• Quality score: πn(y) = 1
n+1 ∑n+1

i=1 1(|R(y)
i | ≤ |R(y)

n+1|)

• Output Ĉ(Xn+1) = {y ∈ R : πn(y)≤ 1−α}.

• The fitting of µ̂(y) involves (Xn+1,y), and hence Ĉ is immune to
overfitting.

• Theorem: P(Yn+1 ∈ Ĉ(Xn+1))≥ 1−α , if (Xi,Yi)
n+1
i=1 is iid.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Conformal Prediction

• Data: (Xi,Yi)
n
i=1; Goal: predict Yn+1 for a future Xn+1.

• For each y ∈R, let µ̂(y) be the fitted regression function using the
augmented data set (Xi,Yi)

n+1
i=1 with Yn+1 = y.

• Let R(y)
i = Yi − µ̂(y)(Xi), 1 ≤ i ≤ n+1.

• Quality score: πn(y) = 1
n+1 ∑n+1

i=1 1(|R(y)
i | ≤ |R(y)

n+1|)

• Output Ĉ(Xn+1) = {y ∈ R : πn(y)≤ 1−α}.

• The fitting of µ̂(y) involves (Xn+1,y), and hence Ĉ is immune to
overfitting.

• Theorem: P(Yn+1 ∈ Ĉ(Xn+1))≥ 1−α , if (Xi,Yi)
n+1
i=1 is iid.
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Conformal Prediction

• Data: (Xi,Yi)
n
i=1; Goal: predict Yn+1 for a future Xn+1.

• For each y ∈R, let µ̂(y) be the fitted regression function using the
augmented data set (Xi,Yi)

n+1
i=1 with Yn+1 = y.

• Let R(y)
i = Yi − µ̂(y)(Xi), 1 ≤ i ≤ n+1.

• Quality score: πn(y) = 1
n+1 ∑n+1

i=1 1(|R(y)
i | ≤ |R(y)

n+1|)

• Output Ĉ(Xn+1) = {y ∈ R : πn(y)≤ 1−α}.

• The fitting of µ̂(y) involves (Xn+1,y), and hence Ĉ is immune to
overfitting.

• Theorem: P(Yn+1 ∈ Ĉ(Xn+1))≥ 1−α , if (Xi,Yi)
n+1
i=1 is iid.
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Conformal Prediction

• Data: (Xi,Yi)
n
i=1; Goal: predict Yn+1 for a future Xn+1.

• For each y ∈R, let µ̂(y) be the fitted regression function using the
augmented data set (Xi,Yi)

n+1
i=1 with Yn+1 = y.

• Let R(y)
i = Yi − µ̂(y)(Xi), 1 ≤ i ≤ n+1.

• Quality score: πn(y) = 1
n+1 ∑n+1

i=1 1(|R(y)
i | ≤ |R(y)

n+1|)

• Output Ĉ(Xn+1) = {y ∈ R : πn(y)≤ 1−α}.

• The fitting of µ̂(y) involves (Xn+1,y), and hence Ĉ is immune to
overfitting.

• Theorem: P(Yn+1 ∈ Ĉ(Xn+1))≥ 1−α , if (Xi,Yi)
n+1
i=1 is iid.
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Conformal Prediction

• Data: (Xi,Yi)
n
i=1; Goal: predict Yn+1 for a future Xn+1.

• For each y ∈R, let µ̂(y) be the fitted regression function using the
augmented data set (Xi,Yi)

n+1
i=1 with Yn+1 = y.

• Let R(y)
i = Yi − µ̂(y)(Xi), 1 ≤ i ≤ n+1.

• Quality score: πn(y) = 1
n+1 ∑n+1

i=1 1(|R(y)
i | ≤ |R(y)

n+1|)

• Output Ĉ(Xn+1) = {y ∈ R : πn(y)≤ 1−α}.

• The fitting of µ̂(y) involves (Xn+1,y), and hence Ĉ is immune to
overfitting.

• Theorem: P(Yn+1 ∈ Ĉ(Xn+1))≥ 1−α , if (Xi,Yi)
n+1
i=1 is iid.
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Conformal Prediction

Idea: The procedure essentially tests the null hypothesis that (Xn+1,y)
is an independent sample from the same distribution.

Proof: By iid assumption and symmetry, (R(Yn+1)
i )n+1

i=1 are
exchangeable. Thus πn(Yn+1) is a valid p-value.

Remark: Can replace R(y)
i by

σ (y)
i := f (Z1, ...,Zi−1,Zi+1, ...,Zn+1;Zi)

with Zi = (Xi,Yi), Yn+1 = y, for any f that is symmetric in the first n
arguments.
f is called the conformity score function.
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Example: conformal prediction interval using smoothing splines
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Suppose we want a prediction interval at Xn+1 = 4.75, α = 0.1
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Example: conformal prediction interval using smoothing splines
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Example: conformal prediction interval using smoothing splines
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Suppose we want a prediction interval at Xn+1 = 4.75, α = 0.1
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Example: conformal prediction interval using smoothing splines
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Suppose we want a prediction interval at Xn+1 = 4.75, α = 0.1
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Example: conformal prediction interval using smoothing splines
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Example: conformal prediction interval using smoothing splines
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Suppose we want a prediction interval at Xn+1 = 4.75, α = 0.1
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Example: conformal prediction interval using smoothing splines
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Example: conformal prediction interval using smoothing splines
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Example: conformal prediction interval using smoothing splines
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Example: conformal prediction interval using smoothing splines
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Example: conformal prediction interval using smoothing splines
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Example: conformal prediction interval using smoothing splines
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Example: conformal prediction interval using smoothing splines
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A high-dimensional example

• n = 200, p = 2000

• E(Y|X) is mixed additive B-splines on 5 variables.

• X ∼ N(0, I2000).

• (ε | X = x)∼ t2
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Observations

• The coverage is always 1−α , regardless of fitting method and
value of tuning parameter.

• Good methods and good tuning parameters give short prediction
intervals.
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Conformal Prediction

• Developed, since 1996, by V. Vovk and collaborators as a generic
tool for online sequential prediction.

• Lei, Robins, & Wasserman (2013): tolerance region.

• Lei & Wasserman (2014): nonparametric regression.

• Lei (2014): binary classification.

• Lei, Rinaldo, & Wasserman (2015): clustering.

• Sadinle, Lei, & Wasserman (2015): multi-class classification.

• Lei, G’Sell, Rinaldo, Tibshirani, Wasserman (2016): high
dimensional regression, variable importance, further insights, R
package “conformalInference”.

• Lei (2017) Fast computation for the Lasso.

• Chernozhukov et al (2018): time series.
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Extensions

• Fast computation: can we avoid having to re-fit µ̂ with extra data
point (Xn+1,y) for all values of Xn+1 and all y?

• Variable selection/importance?
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Extensions

• Fast computation: can we avoid having to re-fit µ̂ with extra data
point (Xn+1,y) for all values of Xn+1 and all y?

• Variable selection/importance?
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Fast computation by sample splitting

• Original conformal prediction requires re-fitting µ̂ with new data
point (Xn+1,y) for all values of Xn+1 and y.

• Fast approximation available for kernel smoothing methods (Lei,
Robins, & Wasserman 13; Lei & Wasserman 14).

• Fast exact conformalization available for Lasso (Lei, 2017).

• A general solution by detaching the fitting and ranking steps
(Lei, Rinaldo, & Wasserman 15).
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Split Conformal (Lei, Rinaldo, Wasserman 15)

• Randomly split the data into two subsets, say, D1 and D2.

• Fit µ̂ on D1.

• Let F̂ be the empirical CDF of {|Yi − µ̂(Xi)| : (Xi,Yi) ∈ D2}.

• Output C̃(Xn+1)

C̃(Xn+1) = [µ̂(Xn+1)± F̂−1(1−α)]

• Can compute Ĉ(Xn+1) for all values of Xn+1 with a single fitted
µ̂ .

• Theorem: P(Yn+1 ∈ C̃(Xn+1))≥ 1−α .
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Y = sin(X)+N(0,1), µ̂: smooth.spline, df= 12
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Split conformal offers in-sample validity

• Conformal prediction works for a future observation Xn+1 not
yet in the training sample.

• Can we get valid prediction at points (Xi : 1 ≤ i ≤ n) in the
sample?

• Theorem: P(Y ′
i ∈ C̃(Xi))≥ 1−α , for all Xi ∈ D2, where Y ′

i is an
independent copy of (Y|X = Xi), and

P

[
(2/n) ∑

i∈D2

1(Yi ∈ C̃(Xi))≥ 1−α − ε

]
≥ c1 exp(−c2nε2) .

• Switch D1 and D2 to cover points in D1.
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Extensions

✓ Fast computation: can we avoid having to re-fit µ̂ with extra data
point (Xn+1,y) for all values of Xn+1 and all y.

• Variable selection/importance?
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Extensions

✓ Fast computation: can we avoid having to re-fit µ̂ with extra data
point (Xn+1,y) for all values of Xn+1 and all y.

• Variable selection/importance?



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Variable importance

• Assume X ∈ Rd, where d can be large.

• For j = 1, ...,d, let µ̂−j be fitted without the jth coordinate of X.

• The jth variable is important if |Y − µ̂−j(X)| is larger than
|Y − µ̂(X)|.

• Need to watch out for overfitting when using
|Yi − µ̂−j(Xi)|− |Yi − µ̂(Xi)|.

• Can use conformal prediction to obtain a valid prediction interval
for

Vij = |Y ′
i − µ̂−j(Xi)|− |Y ′

i − µ̂(Xi)|

where Y ′
i is a fresh draw from (Y|X = Xi).
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Variable importance

• Assume X ∈ Rd, where d can be large.

• For j = 1, ...,d, let µ̂−j be fitted without the jth coordinate of X.

• The jth variable is important if |Y − µ̂−j(X)| is larger than
|Y − µ̂(X)|.

• Need to watch out for overfitting when using
|Yi − µ̂−j(Xi)|− |Yi − µ̂(Xi)|.

• Can use conformal prediction to obtain a valid prediction interval
for

Vij = |Y ′
i − µ̂−j(Xi)|− |Y ′

i − µ̂(Xi)|

where Y ′
i is a fresh draw from (Y|X = Xi).
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Variable importance
• Recall that we want a prediction interval for

Vij = |Y ′
i − µ̂−j(Xi)|− |Y ′

i − µ̂(Xi)|

where Y ′
i is a fresh draw from (Y|X = Xi).

• Let C̃(Xi) be a valid prediction interval for Yi and define

Dij = {|y− µ̂−j(Xi)|− |y− µ̂(Xi)| : y ∈ C̃(Xi)}

• Fact: Y ′
i ∈ C̃(Xi)⇒ Vij ∈ Dij, and P(Vij ∈ Dij, ∀ j)≥ 1−α .

• Corollary: If C̃(Xi) is obtained from split conformal, then

P

[
n−1

n

∑
i=1

1(Vij ∈ Dij, ∀ j)≥ 1−α − ε

]
≥ 1−2e−cnε2
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Example: Additive Model

Y = ∑6
j=1 fj(X(j))+N(0,1)
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How do Dij’s look like?

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8

Component 1

X

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

−1.0 −0.5 0.0 0.5 1.0
0.

0
0.

5
1.

0

Component 2

X

Y

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8

Component 3

X

Y
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

−
0.

03
−

0.
01

0.
01

0.
02

0.
03

Component 4

X

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

−
0.

03
−

0.
01

0.
00

0.
01

0.
02

0.
03

Component 5

X

Y

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

−
0.

06
−

0.
02

0.
02

0.
06

Component 6

X
Y

The jth variable is likely to be important if some of {Dij : 1 ≤ i ≤ n}
are above 0.
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A higher dimensional example

• n = 200, p = 100

• Y = XTβ + ε

• ε ∼ N(0,1), independent of X

• β = (2,2,2,0, ...,0)T

• Design matrix
Case 1: E(XXT) = I (all standard assumptions hold)
Case 2: corr(X(j),X(j′)) = 0.7 if j ̸= j′ (strong correlation)

• Fitting methods
(a) Lasso with λ = 0.3
(b) Forward Stepwise with 3 steps
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Uncorrelated case, Lasso
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Uncorrelated case, Forward Stepwise
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Correlated case, Lasso
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Correlated case, Lasso
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Correlated case, Forward Stepwise
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Extensions

✓ Fast computation: can we avoid having to re-fit µ̂ with extra data
point (Xn+1,y) for all values of Xn+1 and all y.

✓(?) Variable selection/importance?

• Higher order correction: can we produce prediction band with
adaptive width?

• Theory: when µ̂ is a good estimator, then the conformal band is
nearly optimal (requires standard assumptions).
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Extensions

✓ Fast computation: can we avoid having to re-fit µ̂ with extra data
point (Xn+1,y) for all values of Xn+1 and all y.

✓(?) Variable selection/importance?

• Higher order correction: can we produce prediction band with
adaptive width?

• Theory: when µ̂ is a good estimator, then the conformal band is
nearly optimal (requires standard assumptions).
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Cross-validation with confidence
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From conformalization to cross-validation

• Another look at the variable importance method:
1. Is the prediction worse without variable j?
2. Split the sample, fit both with and without Xj using half data.
3. Compare the risk on the other half.

• This looks very much like cross-validation/sample-splitting, with
just one difference:

CV looks at the empirical mean of the validated loss, but
conformal looks at the empirical quantiles.

• Idea: there is probably more information in the validated loss
than just the empirical mean.
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Overview

Parameter est. Model selection

Point est. MLE, M-est., ... Cross-validation
Interval est. Confidence interval CVC
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In the regression setting

• Data: D = {(Xi,Yi) : 1 ≤ i ≤ n}, i.i.d from joint distribution P on
Rp ×R1

• Y = µ(X)+ ε , with E(ε | X) = 0

• Loss function: ℓ(·, ·) : R2 7→ R

• Goal: find µ̂ ≈ µ so that

Q(µ̂)≡ E [ℓ(µ̂(X),Y) | µ̂]

is small.

• The framework can be extended to unsupervised learning
problems, including network data.
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In the regression setting

• Data: D = {(Xi,Yi) : 1 ≤ i ≤ n}, i.i.d from joint distribution P on
Rp ×R1

• Y = µ(X)+ ε , with E(ε | X) = 0

• Loss function: ℓ(·, ·) : R2 7→ R

• Goal: find µ̂ ≈ µ so that

Q(µ̂)≡ E [ℓ(µ̂(X),Y) | µ̂]

is small.

• The framework can be extended to unsupervised learning
problems, including network data.
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Model selection

• Candidate set: M = {1, ...,M}. Each m ∈ M corresponds to a
candidate model.

1. m can represent a competing theory about P (e.g., µ is linear, µ is
quadratic, variable j is irrelevant, etc).

2. m can represent a particular value of a tuning parameter of a
certain algorithm to calculate µ̂ (e.g., λ in the lasso, choice of
loss function, structure of NN)

• Given m and data D, there is an estimate µ̂(D,m) of µ .

• Model selection: find the best m such that it minimizes Q(µ̂)
over all m ∈ M with high probability.
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Cross-validation

• Sample split: Let Itr and Ite be a partition of {1, ...,n}.

• Fitting: µ̂m = µ̂(Dtr,m), where Dtr = {(Xi,Yi) : i ∈ Itr}.

• Validation: Q̂(µ̂m) = n−1
te ∑i∈Ite ℓ(µ̂m(Xi),Yi).

• CV model selection: m̂cv = argminm∈M Q̂(µ̂m).

• V-fold cross-validation:
1. For V ≥ 2, split the data into V folds.
2. Rotate over each fold as Itr to obtain Q̂(v)(µ̂(v)

m )

3. m̂ = argminV−1 ∑V
v=1 Q̂(v)(µ̂(v)

m )

4. Popular choices of V: 10 and 5.
5. V = n: leave-one-out cross-validation
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A simple negative example

• Model: Y = µ + ε , where ε ∼ N(0,1).

• M = {1,2}. m = 1: µ = 0; m = 2: µ ∈ R.

• Truth: µ = 0

• Consider a single split: µ̂1 ≡ 0, µ̂2 = ε̄tr.

• m̂cv = 1 ⇔ 0 < Q̂(µ̂2)− Q̂(µ̂1) = ε̄2
tr −2ε̄trε̄te.

• If ntr/nte ≍ 1, then
√

nε̄tr and
√

nε̄te are independent normal
random variables with constant variances. So P(m̂cv = 1) is
bounded away from 1.

• (Shao 93, Zhang 93, Yang 07) m̂cv is inconsistent unless
ntr = o(n).

• V-fold does not help!
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A simple negative example

• Model: Y = µ + ε , where ε ∼ N(0,1).

• M = {1,2}. m = 1: µ = 0; m = 2: µ ∈ R.

• Truth: µ = 0

• Consider a single split: µ̂1 ≡ 0, µ̂2 = ε̄tr.

• m̂cv = 1 ⇔ 0 < Q̂(µ̂2)− Q̂(µ̂1) = ε̄2
tr −2ε̄trε̄te.

• If ntr/nte ≍ 1, then
√

nε̄tr and
√

nε̄te are independent normal
random variables with constant variances. So P(m̂cv = 1) is
bounded away from 1.

• (Shao 93, Zhang 93, Yang 07) m̂cv is inconsistent unless
ntr = o(n).

• V-fold does not help!
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A simple negative example

• Model: Y = µ + ε , where ε ∼ N(0,1).

• M = {1,2}. m = 1: µ = 0; m = 2: µ ∈ R.

• Truth: µ = 0

• Consider a single split: µ̂1 ≡ 0, µ̂2 = ε̄tr.

• m̂cv = 1 ⇔ 0 < Q̂(µ̂2)− Q̂(µ̂1) = ε̄2
tr −2ε̄trε̄te.

• If ntr/nte ≍ 1, then
√

nε̄tr and
√

nε̄te are independent normal
random variables with constant variances. So P(m̂cv = 1) is
bounded away from 1.

• (Shao 93, Zhang 93, Yang 07) m̂cv is inconsistent unless
ntr = o(n).

• V-fold does not help!
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A fix for the simple example: hypothesis testing

• The fundamental question: When we see Q̂(µ̂2)< Q̂(µ̂1), do we
feel confident to say Q(µ̂2)< Q(µ̂1)?

• A standard solution uses hypothesis testing

H0 : Q(µ̂1)≤ Q(µ̂2)

conditioning on µ̂1, µ̂2.

• Can do this using a paired sample t-test, say with type I error
level α .
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A fix for the simple example: hypothesis testing

• The fundamental question: When we see Q̂(µ̂2)< Q̂(µ̂1), do we
feel confident to say Q(µ̂2)< Q(µ̂1)?

• A standard solution uses hypothesis testing

H0 : Q(µ̂1)≤ Q(µ̂2)

conditioning on µ̂1, µ̂2.

• Can do this using a paired sample t-test, say with type I error
level α .
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A fix for the simple example: hypothesis testing

• The fundamental question: When we see Q̂(µ̂2)< Q̂(µ̂1), do we
feel confident to say Q(µ̂2)< Q(µ̂1)?

• A standard solution uses hypothesis testing

H0 : Q(µ̂1)≤ Q(µ̂2)

conditioning on µ̂1, µ̂2.

• Can do this using a paired sample t-test, say with type I error
level α .
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CVC for the simple example

• Recall that H0 : Q(µ̂1)≤ Q(µ̂2).

• When H0 is not rejected, does it mean we shall just pick m = 1?

• No. Because if we consider H′
0 : Q(µ̂2)≤ Q(µ̂1). H′

0 will not be
rejected either (probability of rejecting H′

0 is bounded away from
0.)

• Most likely, we do not reject H0 or H′
0.

• We accept both fitted models µ̂1 and µ̂2, as they are very similar
and the difference cannot be noticed from the data.
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• No. Because if we consider H′
0 : Q(µ̂2)≤ Q(µ̂1). H′

0 will not be
rejected either (probability of rejecting H′

0 is bounded away from
0.)

• Most likely, we do not reject H0 or H′
0.

• We accept both fitted models µ̂1 and µ̂2, as they are very similar
and the difference cannot be noticed from the data.
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CVC for the simple example

• Recall that H0 : Q(µ̂1)≤ Q(µ̂2).

• When H0 is not rejected, does it mean we shall just pick m = 1?

• No. Because if we consider H′
0 : Q(µ̂2)≤ Q(µ̂1). H′

0 will not be
rejected either (probability of rejecting H′

0 is bounded away from
0.)

• Most likely, we do not reject H0 or H′
0.

• We accept both fitted models µ̂1 and µ̂2, as they are very similar
and the difference cannot be noticed from the data.
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Existing work

• Hansen et al (2011, Econometrica): sequential testing, only for
low dimensional problems.

• Ferrari and Yang (2014): F-tests, need a good variable screening
procedure in high dimensions.

• Our approach: one step, with provable coverage and power under
mild assumptions in high dimensions.

• Key technique: high-dimensional Gaussian comparison of
sample means (Chernozhukov et al).
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• Hansen et al (2011, Econometrica): sequential testing, only for
low dimensional problems.

• Ferrari and Yang (2014): F-tests, need a good variable screening
procedure in high dimensions.

• Our approach: one step, with provable coverage and power under
mild assumptions in high dimensions.

• Key technique: high-dimensional Gaussian comparison of
sample means (Chernozhukov et al).
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Existing work

• Hansen et al (2011, Econometrica): sequential testing, only for
low dimensional problems.

• Ferrari and Yang (2014): F-tests, need a good variable screening
procedure in high dimensions.

• Our approach: one step, with provable coverage and power under
mild assumptions in high dimensions.

• Key technique: high-dimensional Gaussian comparison of
sample means (Chernozhukov et al).
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CVC in general

• Now suppose we have a set of candidate models M = {1, ...,M}.

• Split the data into Dtr and Dte, and use Dtr to obtain µ̂m for each
m.

• Recall that the model quality is Q(µ̂) = E [ℓ(µ̂(X),Y) | µ̂].

• For each m, test hypothesis (conditioning on µ̂1, ..., µ̂M)

H0,m : min
j ̸=m

Q(µ̂j)≥ Q(µ̂m) .

• Let p̂m be a valid p-value.

• Acvc = {m : p̂m > α} is our confidence set for the best fitted
model: P(m∗ ∈ Acvc)≥ 1−α , where m∗ = argminm Q(µ̂m).
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• For each m, test hypothesis (conditioning on µ̂1, ..., µ̂M)
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• Let p̂m be a valid p-value.

• Acvc = {m : p̂m > α} is our confidence set for the best fitted
model: P(m∗ ∈ Acvc)≥ 1−α , where m∗ = argminm Q(µ̂m).
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• Now suppose we have a set of candidate models M = {1, ...,M}.

• Split the data into Dtr and Dte, and use Dtr to obtain µ̂m for each
m.

• Recall that the model quality is Q(µ̂) = E [ℓ(µ̂(X),Y) | µ̂].

• For each m, test hypothesis (conditioning on µ̂1, ..., µ̂M)

H0,m : min
j ̸=m

Q(µ̂j)≥ Q(µ̂m) .

• Let p̂m be a valid p-value.

• Acvc = {m : p̂m > α} is our confidence set for the best fitted
model: P(m∗ ∈ Acvc)≥ 1−α , where m∗ = argminm Q(µ̂m).
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Calculating p̂m

• Recall that Dtr is the training data and Dte is the testing data.

• The test and p-values are conditional on Dtr.

• Data: nte × (M−1) matrix (Ite is the index set of Dte)[
ξ (i)

m,j

]
i∈Ite, j̸=m

, where ξ (i)
m,j = ℓ(µ̂m(Xi),Yi)− ℓ(µ̂j(Xi),Yi)

• Multivariate mean testing. H0,m : E(ξm,j)≤ 0, ∀ j ̸= m.

• Challenges

1. High dimensionality: M can be large.
2. Potentially high correlation between ξm,j and ξm,j′ .
3. Vastly different scaling: Var(ξm,j) can be O(1) or O(n−1).



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Calculating p̂m

• Recall that Dtr is the training data and Dte is the testing data.

• The test and p-values are conditional on Dtr.

• Data: nte × (M−1) matrix (Ite is the index set of Dte)[
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• Recall that Dtr is the training data and Dte is the testing data.

• The test and p-values are conditional on Dtr.

• Data: nte × (M−1) matrix (Ite is the index set of Dte)[
ξ (i)

m,j

]
i∈Ite, j̸=m

, where ξ (i)
m,j = ℓ(µ̂m(Xi),Yi)− ℓ(µ̂j(Xi),Yi)

• Multivariate mean testing. H0,m : E(ξm,j)≤ 0, ∀ j ̸= m.

• Challenges
1. High dimensionality: M can be large.
2. Potentially high correlation between ξm,j and ξm,j′ .

3. Vastly different scaling: Var(ξm,j) can be O(1) or O(n−1).
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Calculating p̂m

• Recall that Dtr is the training data and Dte is the testing data.

• The test and p-values are conditional on Dtr.

• Data: nte × (M−1) matrix (Ite is the index set of Dte)[
ξ (i)

m,j

]
i∈Ite, j̸=m

, where ξ (i)
m,j = ℓ(µ̂m(Xi),Yi)− ℓ(µ̂j(Xi),Yi)

• Multivariate mean testing. H0,m : E(ξm,j)≤ 0, ∀ j ̸= m.

• Challenges
1. High dimensionality: M can be large.
2. Potentially high correlation between ξm,j and ξm,j′ .
3. Vastly different scaling: Var(ξm,j) can be O(1) or O(n−1).
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Calculating p̂m

• H0,m : E(ξm,j)≤ 0, ∀ j ̸= m.

• Let µ̂m,j and σ̂m,j be the sample mean and standard deviation of
(ξ (i)

m,j : i ∈ Ite).

• Naturally, one would reject H0,m for large values of

max
j ̸=m

µ̂m,j

σ̂m,j
.

• Approximate the null distribution using high dimensional
Gaussian comparison.
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Studentized Gaussian Multiplier Bootstrap

1. Tm = max
j̸=m

√
nte

µ̂m,j

σ̂m,j

2. Let B be the bootstrap sample size. For b = 1, ...,B,
2.1 Generate iid standard Gaussian ζi, i ∈ Ite.

2.2 T∗
b = max

j ̸=m

1
√

nte
∑

i∈Ite

ξ (i)
m,j − µ̂m,j

σ̂m,j
ζi

3. p̂m = B−1
B

∑
b=1

1(T∗
b > Tm).

- The studentization takes care of the scaling difference.

- The bootstrap Gaussian comparison takes care of the
dimensionality and correlation.
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2.2 T∗
b = max
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1
√
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∑
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3. p̂m = B−1
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- The studentization takes care of the scaling difference.

- The bootstrap Gaussian comparison takes care of the
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Properties of CVC

• Acvc = {m : p̂m > α}.

• Let m̂cv = argminm Q̂(µ̂m). By construction Tm̂cv ≤ 0.

Proposition

If α < 0.5, then P(m̂cv ∈ Acvc)→ 1 as B → ∞.

• Proof:

[
1

√
nte

∑
i∈Ite

ξ (i)
m,j − µ̂m,j

σ̂m,j
ζi

]
j ̸=m

is a zero-mean Gaussian

random vector. So the upper α quantile of its maximum must be
positive.

• Can view m̂cv as the “center” of the confidence set.
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Coverage of Acvc

• Recall ξm,j = ℓ(µ̂m(X),Y)− ℓ(µ̂j(X),Y), with independent
(X,Y).

• Let µm,j = E [ξm,j | µ̂m, µ̂m], σ2
m,j = Var [ξm,j | µ̂m, µ̂m].

Theorem

Assume that (ξm,j −µm,j)/(Anσm,j) has sub-exponential tail for
all m ̸= j and some An ≥ 1 such that for some c > 0

A6
n log7(M∨n) = O(n1−c).

1. If maxj̸=m

(
µm,j
σm,j

)
+
= o

(√
1

n log(M∨n)

)
, then

P(m ∈ Acvc)≥ 1−α +o(1).

2. If maxj̸=m

(
µm,j
σm,j

)
+
≥ CAn

√
log(M∨n)

n for some constant C,

and α ≥ n−1, then P(m ∈ Acvc) = o(1).
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Proof of coverage

• Let Z(Σ) = maxN(0,Σ), and z(1−α,Σ) its 1−α quantile.

• Let Γ̂ and Γ be sample and population correlation matrices of
(ξ (i)

m,j)i∈Ite,j ̸=m. When B → ∞,

P(p̂m ≤ α) = P
[

max
j

√
nte

µ̂m,j

σ̂m,j
≥ z(1−α, Γ̂)

]
• Tools (2, 3 are due to Chernozhukov et al.)

1. Concentration:
√

nte
µ̂m,j
σ̂m,j

≤√
nte

µ̂m,j−µm,j
σm,j

+o(1/
√

logM)

2. Gaussian comparison: maxj
√

nte
µ̂m,j−µm,j

σm,j

d≈ Z(Γ)
d≈ Z(Γ̂)

3. Anti-concentration: Z(Γ̂) and Z(Γ) have densities ≲
√

logM
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V-fold CVC

• Split data into V folds.

• Let vi be the fold that contains data point i.

• Let µ̂m,v be the estimate using model m and all data but fold v.

• ξ (i)
m,j = ℓ(µ̂m,vi(Xi),Yi)− ℓ(µ̂m,vi(Xi,Yi)), for all 1 ≤ i ≤ n.

• Treat folds as independent samples with group mean effects.

• Calculate Tm and T∗
b correspondingly using the n× (M−1)

cross-validated error difference matrix (ξ (i)
m,j)1≤i≤n,j ̸=m.

• Rigorous justification is hard due to dependence between folds.
But empirically much better.
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But empirically much better.
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• Split data into V folds.

• Let vi be the fold that contains data point i.

• Let µ̂m,v be the estimate using model m and all data but fold v.

• ξ (i)
m,j = ℓ(µ̂m,vi(Xi),Yi)− ℓ(µ̂m,vi(Xi,Yi)), for all 1 ≤ i ≤ n.
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• Calculate Tm and T∗
b correspondingly using the n× (M−1)

cross-validated error difference matrix (ξ (i)
m,j)1≤i≤n,j ̸=m.

• Rigorous justification is hard due to dependence between folds.
But empirically much better.
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V-fold CVC

• Split data into V folds.

• Let vi be the fold that contains data point i.

• Let µ̂m,v be the estimate using model m and all data but fold v.

• ξ (i)
m,j = ℓ(µ̂m,vi(Xi),Yi)− ℓ(µ̂m,vi(Xi,Yi)), for all 1 ≤ i ≤ n.

• Treat folds as independent samples with group mean effects.

• Calculate Tm and T∗
b correspondingly using the n× (M−1)

cross-validated error difference matrix (ξ (i)
m,j)1≤i≤n,j ̸=m.

• Rigorous justification is hard due to dependence between folds.
But empirically much better.
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• Split data into V folds.

• Let vi be the fold that contains data point i.

• Let µ̂m,v be the estimate using model m and all data but fold v.

• ξ (i)
m,j = ℓ(µ̂m,vi(Xi),Yi)− ℓ(µ̂m,vi(Xi,Yi)), for all 1 ≤ i ≤ n.

• Treat folds as independent samples with group mean effects.

• Calculate Tm and T∗
b correspondingly using the n× (M−1)

cross-validated error difference matrix (ξ (i)
m,j)1≤i≤n,j ̸=m.

• Rigorous justification is hard due to dependence between folds.
But empirically much better.
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V-fold CVC

• Split data into V folds.

• Let vi be the fold that contains data point i.

• Let µ̂m,v be the estimate using model m and all data but fold v.

• ξ (i)
m,j = ℓ(µ̂m,vi(Xi),Yi)− ℓ(µ̂m,vi(Xi,Yi)), for all 1 ≤ i ≤ n.

• Treat folds as independent samples with group mean effects.

• Calculate Tm and T∗
b correspondingly using the n× (M−1)

cross-validated error difference matrix (ξ (i)
m,j)1≤i≤n,j ̸=m.

• Rigorous justification is hard due to dependence between folds.
But empirically much better.
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V-fold CVC

• Split data into V folds.

• Let vi be the fold that contains data point i.

• Let µ̂m,v be the estimate using model m and all data but fold v.

• ξ (i)
m,j = ℓ(µ̂m,vi(Xi),Yi)− ℓ(µ̂m,vi(Xi,Yi)), for all 1 ≤ i ≤ n.

• Treat folds as independent samples with group mean effects.

• Calculate Tm and T∗
b correspondingly using the n× (M−1)

cross-validated error difference matrix (ξ (i)
m,j)1≤i≤n,j ̸=m.

• Rigorous justification is hard due to dependence between folds.
But empirically much better.
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Example: the diabetes data (Efron et al 04)
• n = 442, with 10 covariates: age, sex, bmi, blood pressure, etc.
• Response is diabetes progression after one year.
• Including all quadratic terms, p = 64.
• 5-fold CVC with α = 0.05, using Lasso with 50 values of λ .
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Triangle: models in Acvc, solid triangle: m̂cv.
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The most parsimonious model in Acvc

• Let Jm be the subset of variables selected using model m

m̂cvc.min = arg min
m∈Acvc

|Jm| .

• m̂cvc.min is the simplest model that gives a similar predictive risk
as m̂cv.
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The diabetes data revisited

• Split n = 442 into 300 (estimation) and 142 (risk approximation).
• 5-fold CVC applied on the 300 sample points, with a final re-fit.
• The final estimate is evaluated using the 142 hold-out sample.
• Repeat 100 times, using Lasso with 50 values of λ .
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Summary

• Conformal prediction uses symmetry and out-of-sample fitting to
add protection against model misspecification.

• CVC uses hypothesis tests to produce confidence sets for model
selection

• Both methods are applicable to many learning algorithms, even
black-box type algorithms.
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Thanks!

Questions?

“Distribution Free Predictive Inference for Regression”

arXiv:1604.04173

“Cross-Validation with Confidence”, arxiv.org/1703.07904

http://www.stat.cmu.edu/~jinglei/talk.shtml

http://www.stat.cmu.edu/~jinglei/talk.shtml
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Theoretical analysis: basic setup

• Assume iid data from model Y = µ(X)+ ε , where the density of
ε is symmetric, decreasing on [0,∞).

• Let µ̂n(·) be any point estimator from a sample of size n.

• Super oracle band: C∗
s (x) = [µ(x)±qα ], where qα is the upper α

quantile of |ε|.

• Oracle band: C∗
o(x) = [µ̂n(x)±qn,α ], where qn,α is the upper α

quantile of |Y − µ̂n(X)|.
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Approximating the oracle

Let νn be the width of the split conformal band obtained from µ̂n.

Theorem

If µ̂n satisfies the sampling stability

P(∥µ̂n −µ0∥∞ ≥ ηn)≤ ρn

for some function µ0, and ηn ∨ρn = o(1), then

νn −2qn,α = oP(1).

Remark

• Similar result is available for full conformal bands.

• µ0 can be different from µ (e.g., undersmoothing).
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Approximate the super oracle

Theorem

If the density function of |ε | has continuous derivative that is
uniformly bounded by a constant M, then

|qα −qn,α |≲ ME(µ̂n(X)− µ̂(X))2.

where the expectation is taken over both µ̂n and a freshly
drawn X.

As a consequence, the two oracle bands are close to each other if
µ̂n(x)≈ µ(x).
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Approximate the super oracle (cont’d)

Theorem

Assuming additionally that E(µ̂n(X)−µ(X))2 = o(1), then

Leb(Csplit(X)△C∗
s (X)) = oP(1) .
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Simulations: coverage of Acvc

• Y = XTβ + ε , X ∼ N(0,Σ), ε ∼ N(0,1), n = 200, p = 200

• Σ = I200 (identity), or Σjk = 0.5+0.5δjk (correlated).

• β = (1,1,1,0, ...,0)T (simple), or
β = (1,1,1,0.7,0.5,0.3,0, ...,0)T (mixed).

• 5-fold CVC with α = 0.05 using Lasso with 50 values of λ

setting of (Σ,β ) coverage |Acvc| cv is opt.

identity, simple .92 (.03) 5.1 (.19) .27 (.04)
identity, mixed .95 (.02) 5.1 (.18) .37 (.05)

correlated, simple .96 (.02) 7.5 (.18) .18 (.04)
correlated, mixed .93 (.03) 7.4 (.23) .19 (.04)
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Simulations: coverage of Acvc

• Y = XTβ + ε , X ∼ N(0,Σ), ε ∼ N(0,1), n = 200, p = 200

• Σ = I200 (identity), or Σjk = 0.5+0.5δjk (correlated).

• β = (1,1,1,0, ...,0)T (simple), or
β = (1,1,1,0.7,0.5,0.3,0, ...,0)T (mixed).

• 5-fold CVC with α = 0.05 using forward stepwise

setting of (Σ,β ) coverage |Acvc| cv is opt.

identity, simple 1 (0) 3.7 (.29) .87 (.03)
identity, mixed .95 (.02) 5.2 (.33) .58 (.05)

correlated, simple .97 (.02) 4.1 (.31) .80 (.04)
correlated, mixed .93 (.03) 6.3 (.36) .44 (.05)
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How to use Acvc?

• We are often interested in picking one model, not a subset of
models.

• Acvc provides some flexibility of picking among a subset of
highly competitive models.

1. Acvc may contain a model that includes a particularly interesting
variable.

2. Acvc can be used to answers questions like “Is fitting procedure A
better than procedure B?”

3. We can also simply choose the most parsimonious model in Acvc.
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How to use Acvc?

• We are often interested in picking one model, not a subset of
models.

• Acvc provides some flexibility of picking among a subset of
highly competitive models.

1. Acvc may contain a model that includes a particularly interesting
variable.

2. Acvc can be used to answers questions like “Is fitting procedure A
better than procedure B?”

3. We can also simply choose the most parsimonious model in Acvc.
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How to use Acvc?

• We are often interested in picking one model, not a subset of
models.

• Acvc provides some flexibility of picking among a subset of
highly competitive models.

1. Acvc may contain a model that includes a particularly interesting
variable.

2. Acvc can be used to answers questions like “Is fitting procedure A
better than procedure B?”

3. We can also simply choose the most parsimonious model in Acvc.
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How to use Acvc?

• We are often interested in picking one model, not a subset of
models.

• Acvc provides some flexibility of picking among a subset of
highly competitive models.

1. Acvc may contain a model that includes a particularly interesting
variable.

2. Acvc can be used to answers questions like “Is fitting procedure A
better than procedure B?”

3. We can also simply choose the most parsimonious model in Acvc.
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A classical setting

• Y = XTβ + ε , X ∈ Rp, Var(X) = Σ has full rank.

• ε has mean zero and variance σ2 < ∞.

• Assume that (p,Σ,σ 2) are fixed and n → ∞.

• M contains the true model m∗, and at least one overfitting
model.

• ntr/nte ≍ 1.

• Using squared loss, the true model and all overfitting models
give

√
n-consistent estimates.

• Early results (Shao 93, Zhang 93, Yang 07) show that
P(m̂cv ̸= m∗) is bounded away from 0.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Consistency of m̂cvc.min

Theorem

Assume that X and ε are independent and sub-Gaussian, and
Acvc is the output of CVC with α = o(1) and α ≥ n−1, then

lim
n→∞

P(m̂cvc.min = m∗) = 1 .

• Sub-Gaussianity of X and ε implies that (Y −XTβ )2 is
sub-exponential.

• Can allow p to grow slowly as n using union bound.
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Consistency of m̂cvc.min

Theorem

Assume that X and ε are independent and sub-Gaussian, and
Acvc is the output of CVC with α = o(1) and α ≥ n−1, then

lim
n→∞

P(m̂cvc.min = m∗) = 1 .

• Sub-Gaussianity of X and ε implies that (Y −XTβ )2 is
sub-exponential.

• Can allow p to grow slowly as n using union bound.
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Consistency of m̂cvc.min

Theorem

Assume that X and ε are independent and sub-Gaussian, and
Acvc is the output of CVC with α = o(1) and α ≥ n−1, then

lim
n→∞

P(m̂cvc.min = m∗) = 1 .

• Sub-Gaussianity of X and ε implies that (Y −XTβ )2 is
sub-exponential.

• Can allow p to grow slowly as n using union bound.
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Example in low-dim. variable selection
• Synthetic data with p = 5, n = 40, as in [Shao 93] .
• Y = XTβ + ε , β = (2,9,0,4,8)T , ε ∼ N(0,1).
• Generated additional rows for n = 60,80,100,120,140,160.
• Candidates: (1,4,5),(1,2,4,5),(1,3,4,5),(1,2,3,4,5)
• Repeated 1000 times, using OLS with 5-fold CVC.
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Simulations: variable selection with m̂cvc.min

• Y = XTβ + ε , X ∼ N(0,Σ), ε ∼ N(0,1), n = 200, p = 200

• Σ = I200 (identity), or Σjk = 0.5+0.5δjk (correlated).

• β = (1,1,1,0, ...,0)T (simple)

• 5-fold CVC with α = 0.05 using forward stepwise

setting of (Σ,β ) oracle m̂cvc.min m̂cv

identity, simple 1 1 .87
correlated, simple 1 .97 .80

Proportion of correct model selection over 100 independent data sets.

Oracle method: the number of steps that gives smallest prediction risk.
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Simulations: variable selection with m̂cvc.min

• Y = XTβ + ε , X ∼ N(0,Σ), ε ∼ N(0,1), n = 200, p = 200

• Σ = I200 (identity), or Σjk = 0.5+0.5δjk (correlated).

• β = (1,1,1,0, ...,0)T (simple)

• 5-fold CVC with α = 0.05 using Lasso + Least Square

setting of (Σ,β ) oracle m̂cvc.min m̂cv

identity, simple 1 1 .88
correlated, simple .87 .85 .71

Proportion of correct model selection over 100 independent data sets.

Oracle method: the λ value that gives smallest prediction risk.


