Distribution Free Prediction Sets

Jing Lei

Department of Statistics, CMU

Collaborators: James Robins (Harvard), Larry Wasserman (CMU)

July 2012

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline

- Prediction sets: background and challenges.
- A new approach to nonparametric estimation of prediction sets.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

• Extensions to more general statistical learning problems.

Prediction Sets: Motivation and Definition

- Prediction: observe $Y_1, ..., Y_n \stackrel{iid}{\sim} P, Y_i \in \mathbb{R}^d$. $Y_{n+1} = ?$
- Want intervals (sets) rather than point predictions.
- Prediction set: $C \subset \mathbb{R}^d$ such that, for a given $\alpha \in (0, 1)$,

$$\mathbb{P}(Y_{n+1} \in C) = P(C) \ge 1 - \alpha.$$

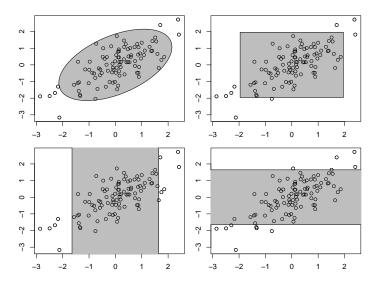
• Look for estimator $C_n = C_n(Y_1, ..., Y_n)$, such that

$$P(C_n) \geq 1-\alpha$$

holds with some probabilistic guarantee.

• Applications: anomaly detection, quality control, clustering.

Prediction Sets: Examples



▲ロ▶▲畳▶▲豆▶▲豆▶ 豆 少々で

How to Evaluate Prediction Sets?

- <u>Validity</u>: C_n has the desired coverage under *P*. Finite sample validity: $\mathbb{E}(P(C_n)) \ge 1 - \alpha$ for all n > 0 and all *P*.
- Efficiency: C_n has small Lebesgue measure.
 - 1. "Oracle set": $C^{(\alpha)} = \{y : p(y) \ge t_{\alpha}\}$, where t_{α} is chosen such that $P(C^{(\alpha)}) = 1 \alpha$.

- 2. Asymptotic efficiency: $\mu\left(C_n \triangle C^{(\alpha)}\right) \xrightarrow{P} 0$, where μ is the Lebesgue measure.
- Existing methods such as plug-in density level sets (Hyndman 1996; Cadre 2006) do not give finite sample validity and asymptotic efficiency at the same time.

Conformal Prediction Sets

We construct prediction sets that

- 1. always have finite sample validity with no assumptions on P;
- 2. are asymptotically efficient with near optimal rate under standard smoothness conditions;

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

3. can be easily implemented with simple parameter tuning.

The approach is based on a novel combination of conformal prediction (Vovk et al, 2009) with statistical principles.

• Let $\mathbf{Y} = (Y_1, ..., Y_n)$. For any $y \in \mathbb{R}^d$, let \mathbf{Y}^y be the augmented data $(Y_1, ..., Y_n, Y_{n+1})$ with $Y_{n+1} = y$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Let $\mathbf{Y} = (Y_1, ..., Y_n)$. For any $y \in \mathbb{R}^d$, let \mathbf{Y}^y be the augmented data $(Y_1, ..., Y_n, Y_{n+1})$ with $Y_{n+1} = y$.
- Let g(Y, y) ∈ ℝ¹ be a function that is symmetric in each element of Y. E.g: g(Y, y) = −| 𝔅 − y|.

- Let $\mathbf{Y} = (Y_1, ..., Y_n)$. For any $y \in \mathbb{R}^d$, let \mathbf{Y}^y be the augmented data $(Y_1, ..., Y_n, Y_{n+1})$ with $Y_{n+1} = y$.
- Let g(Y, y) ∈ ℝ¹ be a function that is symmetric in each element of Y. E.g: g(Y, y) = −| 𝔅 − y|.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• $g(\mathbf{Y}^{y}, Y_{i}), 1 \leq i \leq n+1$, are called the conformity scores.

- Let $\mathbf{Y} = (Y_1, ..., Y_n)$. For any $y \in \mathbb{R}^d$, let \mathbf{Y}^y be the augmented data $(Y_1, ..., Y_n, Y_{n+1})$ with $Y_{n+1} = y$.
- Let g(Y, y) ∈ ℝ¹ be a function that is symmetric in each element of Y. E.g: g(Y, y) = −|Ȳ − y|.
- $g(\mathbf{Y}^{y}, Y_{i}), 1 \leq i \leq n+1$, are called the conformity scores.
- Rank $g(\mathbf{Y}^{y}, Y_{n+1}) = g(\mathbf{Y}^{y}, y)$ among all n+1 scores:

$$\pi_n(\mathbf{y}) = (n+1)^{-1} \sum_{i=1}^{n+1} \mathrm{I\!I} \left[g(\mathbf{Y}^{\mathbf{y}}, Y_i) \le g(\mathbf{Y}^{\mathbf{y}}, Y_{n+1}) \right].$$

- Let $\mathbf{Y} = (Y_1, ..., Y_n)$. For any $y \in \mathbb{R}^d$, let \mathbf{Y}^y be the augmented data $(Y_1, ..., Y_n, Y_{n+1})$ with $Y_{n+1} = y$.
- Let g(Y, y) ∈ ℝ¹ be a function that is symmetric in each element of Y. E.g: g(Y, y) = −|Ȳ − y|.
- $g(\mathbf{Y}^{y}, Y_{i}), 1 \leq i \leq n+1$, are called the conformity scores.
- Rank $g(\mathbf{Y}^{y}, Y_{n+1}) = g(\mathbf{Y}^{y}, y)$ among all n+1 scores:

$$\pi_n(\mathbf{y}) = (n+1)^{-1} \sum_{i=1}^{n+1} \mathbb{I}[g(\mathbf{Y}^{\mathbf{y}}, Y_i) \le g(\mathbf{Y}^{\mathbf{y}}, Y_{n+1})].$$

• Conformal prediction region: $C_n = \{y \in \mathbb{R}^d : \pi_n(y) \ge \alpha\}.$

Conformal Prediction with Kernel Density

• Kernel density:

$$\hat{p}_h(u) = \frac{1}{nh^d} \sum_{i=1}^n K\left(\frac{u-Y_i}{h}\right), \ \forall \ u \in \mathbb{R}^d.$$

• Kernel density using augmented data **Y**^y:

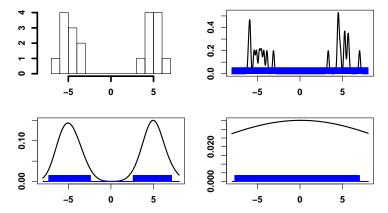
$$\hat{p}_{h}^{y}(u) = \frac{1}{(n+1)h^{d}} \sum_{i=1}^{n+1} K\left(\frac{u-Y_{i}}{h}\right) \\ = \frac{n}{n+1} \hat{p}_{h}(u) + \frac{1}{(n+1)h^{d}} K\left(\frac{u-y}{h}\right)$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• Define $g(\mathbf{Y}^y, Y_i) = \hat{p}_h^y(Y_i)$, for $1 \le i \le n+1$.

Example: Gaussian Mixture

Gaussian mixture with n = 20, $\alpha = 0.1$, h = 0.1, 1, and 10.



Bandwidth tuning: minimize the prediction set.

Theoretical Properties

Theorem

 C_n has finite sample validity

 $\mathbb{E}(P(C_n)) \ge 1 - \alpha$, for all *n* and *P*.

Moreover, it is asymptotically efficient under regularity conditions:

$$\mu\left(C_n \triangle C^{(\alpha)}\right) = O_P\left[\left(\frac{\log n}{n}\right)^{\frac{\beta\gamma}{2\beta+d}\wedge \frac{1}{2}}\right],$$

where β and γ are smoothness parameters of *p*.

Proof of validity is extremely simple and uses symmetry. Proof of efficiency is based on approximating C_n by plug-in level sets.

Further Extensions

- *1.* Prediction with covariates: conformal nonparametric regression (Lei and Wasserman, 2012).
- 2. Other choices of conformity scores: Gaussian mixture density; pseudo density (Lei, Rinaldo, and Wasserman 2012)
- *3.* Tuning parameter selection by minimizing conformal sets (e.g., high-dimensional regression, k-means clustering).

4. Classification: connection to classification with rejection (ongoing, with L. Wasserman).

Questions?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●