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Outline

• Prediction sets: background and challenges.

• A new approach to nonparametric estimation of prediction sets.

• Extensions to more general statistical learning problems.



Prediction Sets: Motivation and Definition

• Prediction: observe Y1, ...,Yn
iid∼ P, Yi ∈ Rd. Yn+1 =?

• Want intervals (sets) rather than point predictions.

• Prediction set: C ⊂ Rd such that, for a given α ∈ (0,1),

P(Yn+1 ∈ C) = P(C)≥ 1−α.

• Look for estimator Cn = Cn(Y1, ...,Yn), such that

P(Cn)≥ 1−α

holds with some probabilistic guarantee.

• Applications: anomaly detection, quality control, clustering.



Prediction Sets: Examples
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How to Evaluate Prediction Sets?

• Validity: Cn has the desired coverage under P.
Finite sample validity: E(P(Cn))≥ 1−α for all n > 0 and all P.

• Efficiency: Cn has small Lebesgue measure.
1. “Oracle set”: C(α) = {y : p(y)≥ tα}, where tα is chosen such that

P(C(α)) = 1−α .
2. Asymptotic efficiency: µ

(
Cn4C(α)

)
P→ 0, where µ is the

Lebesgue measure.

• Existing methods such as plug-in density level sets (Hyndman
1996; Cadre 2006) do not give finite sample validity and
asymptotic efficiency at the same time.



Conformal Prediction Sets

We construct prediction sets that

1. always have finite sample validity with no assumptions on P;

2. are asymptotically efficient with near optimal rate under standard
smoothness conditions;

3. can be easily implemented with simple parameter tuning.

The approach is based on a novel combination of conformal
prediction (Vovk et al, 2009) with statistical principles.



Basic Idea

• Let Y = (Y1, ...,Yn). For any y ∈ Rd, let Yy be the augmented
data (Y1, ...,Yn,Yn+1) with Yn+1 = y.

• Let g(Y,y) ∈ R1 be a function that is symmetric in each element
of Y. E.g: g(Y,y) =−|Ȳ− y|.

• g(Yy,Yi), 1≤ i≤ n+1, are called the conformity scores.

• Rank g(Yy,Yn+1) = g(Yy,y) among all n+1 scores:

πn(y) = (n+1)−1
n+1

∑
i=1

1I [g(Yy,Yi)≤ g(Yy,Yn+1)] .

• Conformal prediction region: Cn = {y ∈ Rd : πn(y)≥ α}.
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Conformal Prediction with Kernel Density

• Kernel density:

p̂h(u) =
1

nhd

n

∑
i=1

K
(

u−Yi

h

)
, ∀ u ∈ Rd.

• Kernel density using augmented data Yy:

p̂y
h(u) =

1
(n+1)hd

n+1

∑
i=1

K
(

u−Yi

h

)
=

n
n+1

p̂h(u)+
1

(n+1)hd K
(

u− y
h

)
.

• Define g(Yy,Yi) = p̂y
h(Yi), for 1≤ i≤ n+1.



Example: Gaussian Mixture

Gaussian mixture with n = 20, α = 0.1, h = 0.1, 1, and 10.
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Bandwidth tuning: minimize the prediction set.



Theoretical Properties

Theorem

Cn has finite sample validity

E(P(Cn))≥ 1−α, for all n and P.

Moreover, it is asymptotically efficient under regularity conditions:

µ
(
Cn4C(α)

)
= OP

[(
logn

n

) βγ

2β+d∧
1
2

]
,

where β and γ are smoothness parameters of p.

Proof of validity is extremely simple and uses symmetry.
Proof of efficiency is based on approximating Cn by plug-in level sets.



Further Extensions

1. Prediction with covariates: conformal nonparametric regression
(Lei and Wasserman, 2012).

2. Other choices of conformity scores: Gaussian mixture density;
pseudo density (Lei, Rinaldo, and Wasserman 2012)

3. Tuning parameter selection by minimizing conformal sets (e.g.,
high-dimensional regression, k-means clustering).

4. Classification: connection to classification with rejection
(ongoing, with L. Wasserman).



Questions?


