
Differential Privacy and Robust Statistics

Cynthia Dwork Jing Lei

November 14, 2008

Abstract

In the past several years a promising approach to private data analysis has emerged, based
on the notion of differential privacy. Informally, this ensures that any outcome of an analysis
is “roughly as likely” to occur independent of whether any individual opts in to, or to opts
out of, the database. In consequence, the specific data of any one individual can never greatly
affect the outcome of the analysis. General techniques for ensuring differential privacy have now
been proposed, and many datamining tasks can be carried out in a differentially private fashion,
frequently with very accurate results.

In this work we explore privacy-preserving parameter estimation. Privacy-preserving statis-
tics would appear to be connected to robust statistics, the subfield of statistics that attempts
to cope with several small errors due, for example, to rounding errors in measurements, as well
as a few arbitrarily wild errors occurring, say, from data entry failures. In consequence, in a
robust analysis the specific data for any one individual should not greatly affect the outcome
of the analysis. It would therefore seem that robust statistical estimators, or procedures, might
form a starting point for designing accurate differentially private statistical estimators, and the
approach based on influence functions is particularly suggestive of differential privacy.

We report here on a successful attempt to instantiate this intuition. We obtain differentially
private algorithms for estimating the data scale, median, α-trimmed mean, and linear regression
coefficients. Our algorithms always ensure privacy. Under mild statistical assumptions they
produce highly accurate outputs, with distortion vanishing in the size of the dataset; however,
when the statistical assumptions fail the algorithm may halt with an output “No Reply.”

Our algorithms follow a new paradigm for differentially private mechanisms, which we call
Propose-Test-Release (PTR). We give general composition theorems for PTR mechanisms.

1 Introduction and Background

1.1 Differential Privacy

Over the last few years a new approach to privacy-preserving data analysis, based on dif-
ferential privacy [8, 5], has born fruit [9, 2, 8, 1, 17, 16, 3, 14]. Intuitively, this notion says
that any possible outcome of an analysis should be “almost” equally likely, independent of whether
any individual opts in to, or opts out of, the data set. Still speaking intuitively, this ensures that
(almost, and quantifiably) no risk is incurred by joining a statistical database.

The key result for our purposes says, informally, that when presented with a query T map-
ping databases to Rk, differential privacy can be achieved by adding noise proportional to ∆T
independently to each of the k outputs of T , where ∆T is the maximum, over all databases D,D′

differing in a single row1, of ||T (D)− T (D′)||1. The quantity ∆T is called the L1 sensitivity of T 2.

1i.e., ||D −D′||0 = 1
2∆T is sometimes referred to as the global sensitivity of T , emphasizing that it is a worst-case (over all possible

pairs of neighboring data sets) measure.

1



The sensitivity of a sequence of queries is bounded by the sum of the sensitivities of the individual
queries (triangle inequality), so we can handle multiple queries by viewing them as a single, higher
sensitivity, query.

This has given rise to the development of low-sensitivity algorithms for various analytical tasks,
such as k-means clustering, singular value decomposition, learning of association rules, mutually
consistent contingency table release, private learning, generation of synthetic data sets, and several
tasks in learning theory [2, 17, 1, 14, 3]. Two remarks are in order.

1. The design of insensitive algorithms can require considerable re-thinking of existing algo-
rithms.

2. Sometimes the outputs will be of low quality. For example, when running the perceptron
algorithm, whether the privacy preserving version in [2] or the standard version, this occurs
whenever no good hyperplane separator exists for the data set in question. In this case there is
no reason to actually produce a separator, and a privacy-preserving algorithm that announced
this fact and failed to produce any other output would not be doing a disservice.

1.2 Statistics and Robustness

In this work we turn to statistics, specifically, parameter estimation, complementing the pre-
vious work on datamining algorithms. The question of sensitivity is a natural one in statistics. The
branch of statistics that focuses on insensitivity to outliers and small errors in data measurement
is robust statistics. As we next explain, robust statistics is to statistics what agnostic learning is to
learning.

A statistic is a quantity computed from a sample (the data set). Much of statistics assumes
the samples are drawn i.i.d. from a distribution F in a family of distributions F , and tries to
characterize the distribution. For concreteness, think of F as the family of all one-dimensional
normal distributions of the form N (θ, 1); the goal is to find the mean θ. In contrast, robust
statistics recognizes that in real life even the “best” distribution in F is only an approximation to
the underlying distribution; that is, real life provides at best an approximation to a distribution in
F .

A classical result in statistics shows that the sample mean is the most efficient estimator
of the mean of a normal distribution, under these ideal conditions, signifying that this estimator
converges more quickly than any other as the number of samples increases [10]. On the other
hand, a single very wild data point can move the sample mean arbitrarily. A much more robust
estimator of location is the sample median, which is a better choice when the samples may come
from a distribution that is only close to a normal, or perhaps not normal at all. Moreover, in
our setting statistical efficiency is not a concern, as data are plentiful (we do, however, care about
computational efficiency).

More generally, a robust procedure produces “essentially” the same output independent of
the value of a (small number of) data points. Indeed, this is also the popular intuition: statistics
about a population only are meaningful representations of properties of the population if the results
robust to small changes in the set of people included in a study.

1.3 From Robustness to Privacy: Propose-Test-Release Algorithms

Our hope when beginning this investigation was to base the design of privacy-preserving algo-
rithms for statistics on known robust procedures, allowing us to avoid the re-thinking of standard
algorithms that was necessary in the data mining case (cf. [2]). The robust procedures that we

2



investigated were indeed excellent starting points, supporting the conjecture that a substantial
amount of the re-thinking of classical estimators needed for ensuring privacy has already been done
by the designers of robust statistics. We demonstrate this with procedures for finding data scale
and location, and for linear regression (five algorithms in all).

One difficulty that we encountered is that in robust statistics the assumption is that there
exists an underlying distribution that is “close to” the distribution from which the data are drawn,
that is, that the real life distribution is a contamination of a “nice” underlying distribution, and
that mutual dependence is limited. The resulting claims of insensitivity (robustness) are therefore
probabilistic in nature even when the data are drawn iid from the nicest possible distribution.
On the other hand, to apply the results of [8], calibrating noise to sensitivity in order to achieve
differential privacy even in the worst case, we must cope with worst-case sensitivity. We address
this by including explicit, differentially private, tests of the sensitivity of our computations on the
given data set. A little more precisely, the algorithms propose a bound on sensitivity, either working
with a default proposal or obtaining the proposal by engaging in preliminary differentially private
computations; they then test the adequacy of the proposed bound, again in a privacy-preserving
fashion. If the responses indicate high sensitivity, the algorithm halts. Since this decision is made
based on the outcome of a differentially private test, no information is leaked by the decision itself.
If the responses indicate the proposed bound is adequate, then the quantity is computed and noise is
added according to a Laplace distribution with parameter depending on the proposal. For obvious
reasons we call this the Propose-Test-Release paradigm.

In this paper, the proofs that our algorithms give privacy will generally be straightforward.
The challenge will be to understand when they also give utility. For this, we rely on robust statistics,
basing our algorithms on robust estimators. Roughly speaking, the proof of robustness involves
showing that if the distribution has certain nice properties then the effect of adding a single arbitrary
data point to a data set consisting of n iid samples from the distribution has, with overwhelming
probability over the samples, a vanishing impact on the statistic. The quantification of “vanishing”
will yield our bound on sensitivity; the statistical nature of the claim (“overwhelming probability
over the samples”) will give us utility in the statistical setting.

High sensitivity of an estimator for a given data set may be an indication that the statistic in
question is not informative for the given data set, as in the bad cases for the perceptron algorithm,
and there is no point in insisting on an outcome. As an example, suppose we are seeking the
inter-quartile range of a data set in order to estimate scale. If the computed inter-quartile range is
highly sensitive, for example, if deleting a single sample would double the statistic, then it is not
an interesting statistic for this data set – it is certainly not telling us about the data set as a whole
– and there is little point in pressing for an answer.

This observation has proved very powerful; for example, it has allowed us to obtain the first
privacy-protective algorithm for finding the median when the range of the data is not known in
advance. To our knowledge, ours are the first privacy-preserving algorithms for all the other tasks.

1.4 Statistica Estimators and The Influence Function

The material in this section is useful for understanding how we obtain the proposed bounds
on sensitivity for the Propose-Test-Release paradigm, but it can be skipped without major impact
on the ability to read the remainder of the paper.

Let T be a statistical estimator for θ; very roughly, this is a procedure that maps data samples
to a real number or a vector of real numbers that approximates θ. We have in mind procedures
such as the computation of the sample median or sample average. Let Fn denote the distribution
on n-tuples obtained by taking n i.i.d. samples from random variable X whose distribution function

3



is F . Given n data points D = {x1, . . . , xn}, the statistical estimator T can be viewed as a function
on the set of data points: T (x1, . . . , xn), which is apparently random. However, most (reasonable)
statistical estimators will converge to a non-random quantity as the sample size n tends to infinity.
This limiting quantity depends only on the distribution F , denoted by T (F ). As a result, a
statistical estimator can be viewed as a functional mapping the space of distribution functions to
Euclidean space [12]. For example, suppose X ∈ R1 and T (x1, . . . , xn) =

∑n
i=1 xi/n is the sample

mean, then T (F ) =
∫
xf(x)dx = EFX, the expectation of F , given that EFX exists. Another

example is the median: T (x1, . . . , xn) = x(bn/2c) (the bn/2cth smallest data point), then T (F ) =
F−1(1/2), the median of the distribution, given that F has positive density at the median. In the
asymptotic perspective, the robustness of T is defined, roughly, as the maximum of |T (F )−T (G)|,
for a given F and for all G within a certain small distance of F . The intuition here is to ask “is it
still estimating the same thing, or something close, even when the true unknown distribution F is
a bit different from our assumption G?” Basing on such an intuition, a rigorous definition of (this
asymptotic) robustness is through the concept of “influence function” (see Definition 2 and also
[13, 12]).

In practice, it is often more interesting to look at the finite sample situation (the empirical
data situation), so we first introduce the empirical influence function, denoted by EIF(x, T ;D)
which describes the effect on T of introducing an additional data point x.

Definition 1. The empirical influence function is given by

EIF(x, T ; {x1, . . . , xn}) = (n+ 1)(T (x1, . . . , xn, x)− T (x1, . . . , xn)).

Since the empirical influence function depends on the observed data D, it is a random variable.
If we are in a statistical setting, meaning that the data are actually i.i.d. samples from a distri-
bution F , then a well-behaved empirical influence function should not depend too much on the
specific set of samples, and a good understanding of the empirical influence function gives guidance
regarding the expected local sensitivity.

To capture the statistical setting we are interested in supx EIF(x, T ;D)/(n + 1) when the
elements in D are drawn i.i.d. from the distribution F . To emphasize this, we will use the notation
| supx EIF(x, T ;Fn)|. For random data the local sensitivity is random, and local sensitivity is at
least 1/(n + 1) × supx |EIF (x, T, Fn)|. This is a lower bound on the expected magnitude of the
noise we need to add for privacy, using the techniques of [8] mentioned above. For example:

1. Let T be the sample mean. Then | supx EIF(x, T ;Fn)| =∞.

2. Let T be the sample median, and let F be a distribution with density 0 at the median
F−1(12). Then | supx EIF(x, T ;Fn)| = Θ(n). This yields bounded local sensitivity in the
statistical setting, independent of n.

3. Let T be the sample median, and let F be a distribution with positive density at F−1(12).
Then | supx EIF(x, T ;Fn)| = OP (1). That is, the EIF converges to a distribution3. Thus, in
the statistical setting, local sensitivity vanishes as n grows.

4. Let T be the α-trimmed mean, in which the top and bottom α/2 fraction of the data points
are discarded. Then | supx EIF(x, T ;Fn)| = OP (1) if F has positive and continuous density
on its support. Again, in the statistical setting, the local sensitivity vanishes.

The empirical influence function is typically approached via the influence function IF(x, T ;F ),
an asymptotic notion describing how an estimator T applied to samples from F changes if we replace

3See Notation 8, in Section 2, for the definition of OP (1).

4



F by a distribution G with an infinitesimal contamination at x: G = (1−t)F+t∆x, for very small t4.
More precisely:

Definition 2. The influence function of T at F is given by

IF(x, T ;F ) = lim
t→0

T ((1− t)F + tδx)− T (F )

t
.

The gross error sensitivity of T and F is defined by

γ∗(T, F ) = sup
x
|IF(x, T ;F )|.

The first principle in designing a robust estimator is to ensure that γ∗ is bounded, as otherwise
“an outlier might cause trouble” ([13]). By starting from estimators with bounded gross error
sensitivity, we are able to ensure that, in addition to preserving privacy, our algorithms ensure
excellent utility in the statistical setting.

1.5 Our Results

We investigate the use of robust estimators as starting points for privacy-preserving statisti-
cal procedures that obtain accurate outputs in the statistical setting. Our results are uniformly
positive. Indeed, after obtaining privacy-preserving versions of the interquartile, median, and α-
trimmed mean algorithms, we chose a very complicated analysis in the book Robust Statistics [12],
which turned out to be of a regression algorithm of Hampel, and verified that this algorithm, too,
quickly yielded a privacy-preserving variant. Along the way we found two other privacy-preserving
estimators: a variant of the α-trimmed mean and a short-cut regression algorithm.

Our algorithms:

• always ensure privacy;

• ensure utility with high probability: any answer produced will, with high probability over
the random choices made by the algorithm, and the choice of database (remember, we are
interested in the statistical setting), be highly accurate – the distortion vanishes as n, the size
of the data set, grows; and

• may produce the output “No Reply” (⊥) when the data fail to satisfy statistical assumptions.

Our notion of privacy is (ε, δ)-differential privacy with negligible δ, defined in Section 2.
Very roughly, our approach is to first propose a bound on the local sensitivity, and then test

in a privacy-preserving fashion if the bound is sufficiently high, and, if so, to release the quantity of
interest with noise calibrated to the proposed bound. Nissim, Raskhodnikova, and Smith were the
first to exploit low local sensitivity to improve accuracy in favorable cases [17]5. They demonstrated
an insensitive method of upper bounding the local sensitivity, and then add noise calibrated to the
computed bound. The theory they develop is inspiring, although their fully general techniques can
be difficult to work with. In contrast, our approach is “quick and dirty:” our “No Reply” option
considerably simplifies the algorithms. Intuitively, we are optimizing for the statistical setting.

4One technical difficulty is that the EIF does not always converge to the IF as n tends to infinity. Still, the
intuition described here is valid.

5Given a data set D and a function f , Nissim et al. define the local sensitivity of f at D to be
sup{D′:|D−D′|0=1} |f(D)− f(D′)|.

5



Indeed, it is the statistical setting that enables us to propose a realistic bound on the variability of
the estimator, and we only require utility in this setting.

In more detail, we considered three estimation problems: data scale, data location, and linear
regression. The classical estimators are, respectively, standard deviation, mean, and least squares
regression, and their robust counterparts are, respectively, the interquartile range, the median (also
the α-trimmed mean), and Hampel’s most B-robust estimator (an L1 optimization that; we denote
by Algorithm H)6.

The robust estimators have the property that, for any given distribution F satisfying certain
mild assumptions, with overwhelming probability over the choice of the database drawn from Fn,

the local sensitivity is a random variable g(n) such that ng(n)
d→ f , where f is random and its

distribution depends only on the unknown underlying distribution F , independent of n. We need
to test sensitivity because of the randomness of the local sensitivity and because the model might
be incorrect, i.e., the data may not be drawn from F , or the draws may be bizarre.

For the scale algorithm, S, we test how far the database is from one with a sufficiently different
interquartile distance (the difference obtained by lopping off the top and bottom quartiles and
finding the spread of the remaining data points). If sufficiently far, then the algorithm proceeds;
otherwise it halts with output⊥. Certain technical questions arise: first, we work with the logarithm
of the scale, as our definition of “sufficiently different” is multiplicative. This is necessary, since an
additive notion for difference of scale makes no sense – what would be the right scale for the additive
amount? Second, for reasons related to privacy, we phrase the query by first fixing a discretization
of the real line (independent of the data set), and then asking how much the dataset has to change
in order to move the log of the interquartile range to a different bin in the discretization. Rather
than respond to the question exactly, noise is added in keeping with the results of [8], so that the
response is generated in a differentially private fashion (this will be the case for all the “how many
points” questions in our informal descriptions here; we won’t repeat this.) The test is problematic
if the log of the interquartile range is very close to the boudary of its bin, so if an unfavorable reply
is obtained we repeat the test with a discretization having bins of the same width, but “shifted” by
half a bin (this suffices). The noise added to the logarithm of the interquartile range is determined
by a Laplacian with parameter corresponding to the bin width the discretization. Again, in this
algorithm the bin width is independent of the dataset, and the “propose” part of the PTR paradigm
is just this fixed width.

The differentially private version of the α-trimmed mean is obtained easily from Algorithm S,
modified to find the α interquantile range; we defer further discussion to Section 5.

The median algorithm M has a scale input s which might be empty. If the scale is empty,
then the algorithm computes a value for s Algorithm S just described. If Algorithm S returns ⊥
then we output ⊥. Otherwise, we discretize the line with bins whose width depend on the scale,
and ask how much the database must change in order to drag the median out of its current bin.
If the answer is too small, the algorithm outputs ⊥; otherwise, noise is added to the median again
according to a Laplacian with parameter corresponding to the width of a bin (now a function of
the scale). For similar reasons to the previous case, if the first discretization yields ⊥ we repeat
the test for sensitivity of the median using a shifted discretization before producing ⊥.

Both algorithms require careful but fairly straightforward privacy and utility analyses.
The short-cut regression algorithm, RS , similar to an algorithm proposed by Siegel (see Sec-

tion 6.4.1 of [12]), and also reminiscent of the Subsample-and-Aggregate framework of Nissim,

6The “B” refers to bias; see [12], p. 87. The bias of an estimator for a quantity is the difference in expectation
between the expected value for this quantity (the expectation is taken over the sample) and the expected output of
the estimator (the expectation is taken over the sample and any randomness introduced by the estimation procedure).

6



Raskhodnikova, and Smith [17]. Here, we briefly describe the case in which the data points are
in the plane and we are seeking a line, specified by 2 parameters β = (β1, β2), that describes the
dataset (the algorithm works in general dimension). Assume 2 divides n. The algorithm first
randomly partitions the n inputs into disjoint blocks of 2 data points each. An approximation to
(both coordinates of) β is computed from each block. This gives n/2 independent approximations
to β. For each coordinate of β, run Algorithm M on a dataset consisting of the n/2 different
values obtained for this coordinate to obtain a single output value for this coordinate. Assuming
no invocation of Algorithm M results in ⊥, output the vector consisting of these 2 coordinates.

Arguing utility for the short-cut algorithm is straightforward. However, the privacy argument
is a little different due to the random partitioning and the aggregations of the n/2 independent
estimates for β. Rather than give a special privacy proof for this algorithm we defer the proof
of privacy to the section on (ε, δ)-PTR computations, where we explain how to apply the general
composition results of that section to this algorithm.

Finally, we come to Algorithm RH , a differentially private version of the H regression algo-
rithm. We examined algorithm H for two reasons: first, the complexity of its robustness analysis
suggested in would be a good test case of our thesis that robust estimators are good starting points
for privacy-preserving estimators. Second, it is more efficient, in the statistical sense (efficiency
captures the question of how large n must be in order for the error bars on the estimate to be
small), than the short-cut algorithm under certain circumstances7.

This is by far our technically most challenging result, as the proofs of the running time and
of utility in the statistical setting are complex.

The algorithm itself is not so hard to describe. Again, we focus in this high-level view on
the case on the dimension 2 case. First we compute β∗(D) = H(D), without privacy (this is not
released). As in the short-cut regression: the points are randomly partitioned into n/2 groups and
an estimate for β = (β1, β2) is obtained within each group. Now, rather than run the median
algorithm on the estimates for each of β1 and β2, we run the scale algorithm, once to determine the
scale of estimates for β1 and once to determine the scale for β2. We use these scales to determine
four two-dimensional axis-parallel discretizations of the plane (a basic one and three shifts, obtained
by shifting either one or both of the axis-parallel one-dimensional discretizations). We discuss the
processing on a single discretization; as with algorithms S and M, the remaining three need to be
invoked only if our efforts with the first one return ⊥; in general we try them in turn until a non-⊥
response is obtained. Note that the optimization problem might have multiple solutions, and we
cannot specify β∗(D) without knowing the exact optimization algorithm. Instead, we ask about
the solution set of the optimization problem, denoted B(D). Assume B(D) is completely covered
by one of cells of the discretization (we prove this to be the case whp in the statistical setting). We
ask how many points need to be added to or deleted from D in order to get a database D̂, such
that B(D̂) is not covered by the cell containing B(D). If the answer is at least 2, then modifying
the value of a single data point will not drag any part of B(D̂) out of the current cell, which implies
β∗(D′) will be in the same cell for all D′ adjacent to D. Note that if B(D) 6⊆ C(D), where C(D)
is the set containing β∗(D), then the answer to the question is 0.

Assuming a favorable response to the “How many points...” question, we will eventually add
noise to each coordinate of β∗(D) according to a Laplacian with parameter equal to the length of
the corresponding side of the cell.

Answering the question of how many points need to be added or deleted before the solution
set of the resulting database is no longer contained in the same cell as the cell containing B(D) is

7For example, in the regression model defined in Section 7, when φ is standard normally distributed, and
EFXX

T /||X|| is diagonal.

7



not straightforward. Our starting point is the structure of the objective function fD in the robust
estimator H (see Equation (23)). First the convexity of fD enables one to approach the minimum
from the subdifferential, which can be computed easily from the data. On the other hand, fD
is piece-wise linear, so that computing the answer of the testing query reduces to evaluating the
subdifferential of fD at a poylnomial (in n) number of points, where the degree of the polynomial
depends on the dimension. To carry out the computation it is sufficient to keep track of the
intersections and line segments.

The proof of utility resembles the median case. Under statistical assumptions the empirical
distribution is not far from the underlying distribution F . The main tool is simply law of large
numbers and large deviation theory. The technical challenge is that one needs to bound the large
deviation probability for infinitely many random variables simultaneously, (while for the median
one only needs to worry about finitely many variables). The reason is that in one dimension the
boundary of a bin is just two points, and in two dimensions, the boundary of a bin is a rectangle.
We deal with this challenge using a tool from the study of empirical processes.

As for the privacy, in all cases the intuition is simple, but full proofs may not be, since
some algorithms rely on the outputs of others – for example, both our regression and the location
algorithms invoke our algorithm for scale. We have actually proved privacy twice. The first time
involved brute force integration and conditional analysis. Noting large amounts of repetition in
the proofs we abstracted the propose-test-release framework mentioned above and then proved
composition theorems that captured the ways in which our algorithms were used in combination,
specifically,

1. Cascading: running a sequence of protocols until a non-⊥ reply is obtained;

2. Nested Computations: using the output of one computation as input to another computation;
and

3. Parallel Composition: running an algorithm multiple times, independently, for example in
estimating data scale along multiple axes.

Our composition theorems show that our intuition for why privacy was preserved was correct and
give tighter analyses than those available using other composition results in the literature.

1.6 Related Work

The most relevant related privacy results are the definitions of differential privacy [8, 5], its
relaxation (ε, δ)-differential privacy [7], and the calibration of noise to sensitivity for maintaining
privacy, already discussed [8].

Also mentioned above is the idea of calibrating noise to (something related to) local sensitivity,
rather than global sensitivity [17].

In parallel with our efforts, Smith [19] investigated maximum likelihood estimators, showing
that for well-behaved parametric probability models, one can construct an estimator whose distri-
bution converges to that of the MLE. In particular, the estimator is efficient and asymptotically
unbiased.

The relevant results from the statistics literature is the work on influence functions [13, 12]
and the most B-robust regression estimator H [12].

8



2 Definitions

A database is a set of rows. We say databases D and D′ are adjacent if they are of Hamming
distance one8. In such cases we may may also say that D and D′ are neighbors.

Definition 3. A randomized function K gives ε-differential privacy if for all nieghboring data sets
D and D′ and all S ⊆ Range(K),

Pr[K(D) ∈ S] ≤ exp(ε)× Pr[K(D′) ∈ S]. (1)

The probability is taken over the coin tosses of K.

Being differentially private is a property of the mechanism K, and is orthogonal to the auxiliary
information available to the adversary/user and its computational power. Differential privacy is
also an ad omnia (rather than ad hoc) guarantee, and addresses any concerns that an individual
might have about allowing her data to be included in a database (see [6] for further discussion of
this point).

The key result for differential privacy is due to Dwork, McSherry, Nissim, and Smith [8]. For
this, we require some definitions.

Definition 4. For f : D → Rd, the L1-sensitivity of f is

∆f = max
D,D′
‖f(D)− f(D′)‖1 (2)

for all neighboring D,D′.

For many types of queries the sensitivity ∆f will be quite small. In particular, the query
“How far is the dataset from a dataset with property P?” has sensitivity 1.

The scaled symmetric exponential distribution with standard deviation
√

2∆f/ε denoted
Lap(∆f/ε), has mass at x proportional to exp(−|x|(ε/∆f)). More precisely, let b = ∆f/ε. The
probability density function is p(x) = exp(−|x|/b)/2b and the cumulative distribution function is
D(x) = (1/2)(1 + sgn(x)(1− exp(|x|/b))).

Theorem 5 ([8]). Let D denote the universe of databases. For f : D → Rk, the mechanism Kf
that on input a database DB computes f(DB) and then adds independently generated noise with
distribution Lap(∆f/ε) to each of the k output terms and outputs these k sums, enjoys ε-differential
privacy.

Note that decreasing ε, a publicly known parameter, flattens out the Lap(∆f/ε) curve, yielding
larger expected noise magnitude. When ε is fixed, functions f with high sensitivity yield flatter
curves, again yielding higher expected noise magnitudes.

In this work we use the following relaxation of differential privacy.

Definition 6. A randomized function K gives (ε, δ)-differential privacy if for all data sets D and
D′ differing on at most one element, and all S ⊆ Range(K),

Pr[K(D) ∈ S] ≤ exp(ε)× Pr[K(D′) ∈ S] + δ (3)

8In the literature, the definition is frequently slightly different: D and D′ are adjacent, or differ in at most
one element, if one is a proper subset of the other and the larger database contains just one additional row. The
difference is generally insignificant and we work with whichever definition simplifies the task at hand. In our analyses
it is frequently convenient to assume that the size of the database is known, so we use the “wiggling” version. The
intuition for the definition is that now the adversary cannot tell if a member of the dataset has left and been replaced
with a comlpetely different person.

9



The probability is taken is over the coin tosses of K.

In this work we always have δ = δn ∈ ν(n), that is, δn grows more slowly than the inverse of
any polynomial in the database size. Following common parlance, we say that δ is negligible.

We briefly explain the principal way in which we employ this relaxation. Recall that in the
Propose-Test-Release framework, we first propose an upper bound on the local sensitivity, then test
to see if the bound suffices; only if the bound suffices do we continue with the release of the statistic.
For a given candidate bound B on the local sensitivity, let SB be a (not necessarily proper) subset
of the set of databases with local sensitivity at most B. Let D be the specific database. We ask
how far D is from the set SB, meaning, how many rows must be added to and deleted from D to
obtain a database in SB. The set SB will be chosen to have the property that if D and D′ are
neighbors, then the difference in answer to this question is at most 1; in other words, we ensure
that the query about distance to SB is of sensitivity 1. We use the differentially private mechanism
of [8] to respond to this question, say, adding noise according to the distribution Lap(1/ε) for fixed,
constant, ε. If the (differentially private) response is small, we do not proceed; however, if the
response is large, say, at least 1 + log2 n, we do proceed. The reasoning is that unless the coin
flips of the privacy mechanism were very unlucky, and the draw from Lap(1/ε) is at least log2 n –
an event that occurs with negligible probability ν(n) – B is indeed an upper bound on the local
sensitivity.

Note that even the decision of whether or not to proceed preserves privacy. A careful condi-
tional analysis thus yields (ε, δ)-differential privacy: for all D,D′ differing in at most one element,
for all possible subsets C of “No Response” union with the range of the estimator, the probability
of obtaining an output in C when the database is D is at most δ plus eε times the probability of
an output in C when the database is D′, where δ ∈ ν(n).

Intuitively, the only thing that can damage privacy is an unlucky coin flip sequence in the noise
generation process when responding to the test for sufficiency of the proposed noise magnitude, and
this occurs with only negligible probability. In reasoning about protocol composition, we wish to
factor out these unlikely events, arguing that “with overwhelming probability” we have differential
privacy. Strictly speaking, this is meaningless; the only formal guarantee we offer is (ε, δ)-differential
privacy. Nonetheless, the intuition helped in designing the protocols, and the composition theorems
for Propose-Test-Release algorithms capture turn the intuition into the rigorous guarantee.

3 Additional Notation

We first declare some notations and terms used throughout the following discussion.

1. D and D′: a pair of adjacent databases.

2. D: the space of all databases.

3. C (also C′): some general measurable space containing the range of the query function. Usually
we can think it as Rd for some integer d, e.g., in our examples of scale, median, regression,
etc. Note that the notation C (C′) may refer to different spaces in different expressions.

4. n: the size of database D, which can be released privately with high accuracy [8]. Here for
presentation simplicity we treat it as a known constant.

5. “change a data point” means modifying the value of a data point.

6. We do not worry about measurability. That is, for the sets considered in this paper we always
assume they are measurable in the corresponding probability space.

10



7. Many of the analyses and statements in this work are probability-theoretic. In our study
there are two sources of randomness.

(a) The first is the coin flips made by the (random) algorithms, typically, the generation
of Laplacian random variables. In these algorithms there is always an input database.
We usually want to compare the probabilities of the same event but with adjacent input
databases D and D′, for example, compare Prob(T (D) ∈ C|D) and Prob(T (D′) ∈
C|D′). In such a comparison we always condition on D and D′. In other words, the
databases are always considered as non-random. We use the convention P (·) to denote
the probability of a certain random event in the algorithm when the input database is D,
while P ′(·) refers to the probability when the input database is D′. Similarly p(X = x)
(p′(X = x)) denotes the probability density of random variable X at x, with the input
database D (D′); for example, we might have X = T (D). Here, again, the randomness
is provided by the algorithm and the database is considered to be fixed. Note that
sometimes the random variable has both a continuous part and a discrete part; then
p(X = x) denotes the density if x is in the continuous part and the probability mass if x
is in the discrete part. In particular, when T : D → R ∪ {⊥}, p(T (D) = 3.14159) is an
example of the continuous part, and p(T (D) = ⊥) is an example of the discrete part. In
the first case the expression denotes density, in the second it denotes probability mass.
Our statement about privacy will be in terms of P (·) and P ′(·).

(b) The second source of randomness is the randomness in creating the database. That is,
when we assume the database consists of independent random samples from a underlying
distribution F , the whole data set D is random. We use PF (·) to denote the probability of
the random event of this type. We also use EF (·) to denote expectation taken over choice
of a database consisting of independent random samples from an underlying distribution
F .

(c) P̃ (·) refers to the probability considering both sources of randomness. Our statement
about utility will be in terms of P̃ (·).

8. Let an be a (random) sequence. We say an = OP (1) if for any ε > 0, there exists M , such
that P (|an| > M) < ε for all n. In addition, if an, bn are two random sequences we say
an = OP (bn) if an/bn = OP (1).

4 The scale

The interquartile range (IQR) ([11]) is a well-known robust estimate for the scale (dispersion)
of the data, and is used in applications such as histogram construction9. We give a simple algorithm
for differentially private release of interquartile range. The main idea of our algorithm is to propose
a magnitude of noise for reporting the interquartile range and then test, privately, whether such
a magnitude suffices for privacy. If the test succeeds, which we prove will be the typical case in
the statistical setting, then the noisy interquartile range is released; otherwise the algorithm either
returns “⊥” (No Response) or suggests another noise magnitude.

Before going into details, consider the following rough intuition. Suppose the data are i.i.d.
samples drawn from an underlying distribution F . Then IQR(F ) may be defined as F−1(3/4) −
F−1(1/4); this is a constant, depending only on F . It might be very large, or very tiny, but either
way, if the density of F is sufficiently large at the two quartiles, then given enough samples from

9The interquartile range is the difference between the 3n/4th and (n/4 + 1)st order statistics.

11



F the sample interquartile distance should be close to IQR(F ). Still speaking intuitively, if the
sample interquartile range is very sensitive, for example, can double or halve if we change one data
point, then either we have been very unlucky with the samples or the data don’t come from a
“nice” distribution. Either way it makes sense to abort the procedure and output “⊥.” On the
other hand if, as in the typical case, the sample interquartile cannot change by a factor of 2 by
modifying a single point, then the logarithm base 2 of the sample interquartile has local sensitivity
bounded by 1. This lets us release an approximation to the logarithm by adding to the logarithm
noise with distribution Lap(1/ε) Alternatively, we can compute a noisy version y of this logarithm
and release 2y. Finally, we must ensure that the decision of whether or not to reply is not in itself
disclosive. This is done via query Q0 below. Finally, to ensure utility, we do not use 2 for the base
of the logarithm; rather, we use 1 + 1/ lnn.

We first explain our choice of base. If the data are independently drawn from an underly-
ing distribution F , then the deviation of the sample interquartile range IQR(D) from IQR(F ) is
OPF ( 1√

n
), and also ln(IQR(D))− ln(IQR(F )) = OPF ( 1√

n
), where IQR(D) and IQR(F ) denote the

sample interquartile range and the interquartile range of the underlying distribution, respectively.10

Intuitively, in order to achieve differential privacy, the proposed magnitude of the additive noise for
the logarithm of sample interquartile range must be large enough to dominate 1√

n
, the deviation

term ln(IQR(D)) − ln(IQR(F )). On the other hand, for the sake of good utility the noise should
be small enough to give accurate release, From this perspective 1

lnn >
1√
n

seems a good choice. We

use ln(1 + 1/ lnn), which is close to 1/ lnn but which makes the calculation easier.11

To test whether the magnitude of noise is sufficient for differential privacy, we discretize R1

into disjoint bins [kwn, (k + 1)wn)}k∈Z, where the interval length wn = ln(1 + 1/ lnn). Note that
looking at ln(IQR(D)) on the scale of wn is equivalent to looking at log1+ 1

lnn
(IQR(D)) on the scale

of 1, and here the scaled bins are just intervals whose endpoints are a pair of adjacent integers:

B
(1)
k = [k, k + 1), k ∈ Z. Let Hn(D) = log1+ 1

lnn
(IQR(D)). Then we can find k1 such that

Hn(D) ∈ [k1, k1 + 1). Consider the following testing query:

Q0 : How many data points need to change in order to get a new database D̂ such that

Hn(D̂) /∈ B(1)
k1

?

Denote the answer to Q0 by A0(D). If A0(D) ≥ 2, then all D′ adjacent to D satisfy |Hn(D′)−
Hn(D)| ≤ 1. As a result, it is sufficient to add noise with Lap(1/ε) distribution to Hn(D). However,
to ensure privacy, the algorithm uses R0(D) = A0(D) + z0 instead of A0(D), where z0 ∼ Lap(1/ε).
The algorithm releases Hn(D) with noise calibrated to 1/ε for large values of R0, and returns ⊥
(no response) for small values of R0(D).

There is one remaining problem. If Hn(D) lies close to an integer, i.e., Hn(D) is close to one
of the endpoints of the interval [k1, k1 + 1), the algorithm is likely to return ⊥. This problem could

be avoided by also considering a second discretization {B(2)
k = [k − 0.5, k + 0.5)}k∈Z. We denote

the two discretizations by B(1) and B(2) respectively.
We now present the full algorithm.

10Consider ln(x) as a function of x. Its derivative is 1/x. Then for y close to x we have, ln(y) − ln(x) =
(y − x)/x+ o(y − x). Now take x = IQR(F ) and y = IQR(D).

11Actually Ω(n−1/2+δ) with some small δ > 0 would work, here we just explain the feasibility but not focus on the
optimality of the magnitude of noise.

12



The algorithm S:

• Input: (D,n, ε).

1. For the jth discretization (j = 1, 2)

– Compute R0(D) = A0(D) + z0, where z0 is a random draw from Lap(1/ε).a

– If R0 ≤ ln2 n+ 1, let s(j) = ⊥.

– Otherwise let s(j) = IQR(D)× (1+ 1
lnn)z

(j)
s , where z

(j)
s is another random draw

from Lap(1/ε).

2. If s(1) 6= ⊥, return s(1).
Otherwise return s(2).

aIQR(D) = 0 is fine, since one can define log 0 = −∞, b−∞c = −∞, and let [−∞,−∞) = {−∞}.

Note that the algorithm can be optimized by only computing s(2) if s(1) = ⊥. For technical
reasons in Section 8 it is easier to write the unoptimized version here. We have the following
theorem describing the privacy and utility of the algorithm S:

Theorem 7. (a) The algorithm S is (4ε, n−ε lnn)-differentially private.

(b) The computation for S is O(n) assuming the data are sorted.

(c) If

D = (X1, ..., Xn), Xi
iid∼ F (4)

where F is differentiable with positive derivatives at both the lower and upper quartiles, then

P̃ (S(D) = ⊥) = O(n−ε lnn),

and

S(D)− IQR(F )
P̃→ 0.

(d) Under the same conditions as in (c), for any α > 0,

P
(
S(D) ∈ [n−αIQR(D), nαIQR(D)]

)
≥ 1−O(n−αε lnn).

As a result, we have

P̃

(
S(D) ∈

[
1

2
n−αIQR(F ), 2nαIQR(F )

])
≥ 1−O(n−αε lnn).

In Theorem 7, (a) and (b) ensure, respectively, the privacy and ease of computation of S,
(c) says that when the data come from a nice distribution the algorithm gives meaningful output
with high probability. and (d) ensures that the output of S will not be crazily absurd. Note that
although Theorem 7(c) says that the error vanishes with n, the rate of convergence is slow (1−n−c
for some c > 0). Nonetheless, Algorithm S is quite powerful: using this algorithm as a subroutine
to estimate scale allows us to devise the first differentially private median algorithm that does not
require range information for the data.

Proof of theorem 7 We first focus on a single discretization, and omit the index (j), j = 1, 2.

13



Lemma 8. The sensitivity of query Q0 is at most 1.

Proof. If Hn(D) and Hn(D′) are in different bins, then A0(D) = A0(D
′) = 1. Otherwise, they

are in the same bin, then A0(D) ≤ A0(D
′) + 1 and A0(D) ≤ A0(D

′) + 1. In both cases we have
|A0(D)−A0(D

′)| ≤ 1.

If A0(D) ≥ 2, then changing a single data point can not move the logarithm of the interquartile
range out of the current bin; therefore the change is at most the bin width. Thus, it suffices to
calibrate the noise to the bin width. Here we use D0 to denote such nice databases:

Definition 9. D0 = {D : A0(D) ≥ 2}.

Then we have the following lemma.

Lemma 10. Let s be shorthand for the result obtained with a single discretization.

(a) P (s = ⊥) ≤ eεP ′(s = ⊥).

(b) P (s 6= ⊥) ≤ 1
2n
−ε lnn for all D /∈ D0.

(c) P (s ∈ C) ≤ e2εP ′(s ∈ C), for all C ⊆ R+ and D ∈ D0.

Proof. (a) Note that for all D ∈ D, s(D) = ⊥ ⇔ R0(D) ≤ ln2 n + 1. The desired inequality
follows by applying Theorem 5 on query Q0 which is of (global) sensitivity at most 1 (by
Lemma 8).

(b) When D /∈ D0, then A0(D1) ≤ 1. As a result

P (s 6= ⊥) ≤ P (R0 > ln2 n+ 1)

= P (A0 + z0 > ln2 n+ 1)

≤ P (z0 ≥ ln2(n))

≤ 1

2
n−ε ln(n).

(c) The assumption D ∈ D0 implies A0(D) ≥ 2, whence |Hn(D)−Hn(D′)| ≤ 1, so

P (s ∈ C)

=

∫
v∈C

∫
u>ln2(n)+1

p(R0 = u)p
(
Hn + zs = log1+ 1

lnn
(v)
∣∣∣R0 = u

)
dudv

=

∫
v∈C

∫
u>ln2(n)+1

p(R0 = u)p
(
zs = log1+ 1

lnn
(v)−Hn

)
dudv

≤
∫
v∈C

∫
u>ln2(n)+1

eεp′(R0 = u)eεp′
(
zs = log1+ 1

lnn
(v)−Hn

)
dudv

=e2εP ′(s ∈ C).

Here the inequality holds because |A0(D1)−A0(D2)| ≤ 1 and |Hn(D1)−Hn(D2)| ≤ 1.

Lemma 10 (c) implies the following useful corollary on the density of the outcome S(D):

14



Corollary 11. If D ∈ D0, then for all s0 ∈ R+

P (s ∈ ds0) ≤ e2εP ′(s ∈ ds0).

It is clear that all the results in Lemma 8, Lemma 10 and Corollary 11 hold for both dis-

cretizations, so we can replace s by s(j) and D0 by D(j)
0 in those results with j = 1, 2.

Proof of theorem 7. (a) (Privacy.) First notice, by Lemma 10, that both s(1) and s(2) are (2ε, 12n
−ε lnn)-

differentially private. That is, for any C∗ ⊆ R≥0 ∪ {⊥}, we have

P (s(j) ∈ C∗) ≤ e2εP ′(s(j) ∈ C∗) +
1

2
n−ε lnn.

Then by independence it is straightforward to show that, using similarly the conditional argu-
ment in Lemma 10 (which also appears in the proof of Lemma 16), for any C ⊆

(
R≥0 ∪ {⊥}

)
,

we have

P (S ∈ C)

≤P (s(1) ∈ C\{⊥}) + P (s(1) = ⊥, s(2) ∈ C\{⊥})
+ P (s(1) ∈ C ∩ {⊥}, s(2) ∈ C ∩ {⊥})

≤e2εP ′(s(1) ∈ C\{⊥}) +
1

2
n−ε lnn + e3εP ′(s(1) = ⊥, s(2) ∈ C\{⊥}) +

1

2
n−ε lnn

+ e2εP ′(s(1) ∈ C ∩ {⊥}, s(2) ∈ C ∩ {⊥})
≤e3εP ′ (S ∈ C) + n−ε lnn,

which indicates that S is (3ε, n−ε lnn)-differentially private.

(b) (Ease of computation.) It suffices to show that A0 can be computed in linear time. In fact,
it is easy to check that one can compute A0(D) by considering O(n) sliding intervals with
width (1 + 1

lnn)k1 and (1 + 1
lnn)k1+1, and with one end point in D, while the computation for

each interval is O(1).

(c) (Good behavior in the statistical setting.) Let q1 and q2 be the lower and upper quartiles of
F , respectively. Let lj = qj − n−1/3, rj = qj + n−1/3, l′j = qj − 2n−1/3, r′j = qj + 2n−1/3, for
j = 1, 2, by differentiability and continuity of the derivatives, one can find constant ξ > 0
which depends only on F , such that for large enough n

1. r′1 < l′2.

2. F ′(x) > ξ, for all x ∈ [l′1, r
′
1] ∪ [l′2, r

′
2].

3. ξn2/3 > 4 ln2 n+ 4.

4.
(
r′2−l′1
l′2−r′1

)4
< 1 + 1

lnn .

Intuitively, the last condition is not unreasonble, since (IQR(F )+4n−1/3)/(IQR(F )−4n−1/3)
is very close to 1; even more to the point it ensures that log1+1/ lnn(IQR(F ) + 4n−1/3) −
log1+1/ lnn(IQR(F ) − 4n−1/3) < 1/4, whence the two logarithms will lie in the same bin in
at least one of the discretizations. We consider the two following random events, where the
randomness comes from the random draw of D from F , i.e. PF (·): (denote the lower and
upper sample quantiles by q1(D) and q2(D), respectively)

15



(i) E1 = {q1(D) ∈ (l1, r1), q2(D) ∈ (l2, r2)}. We have for j = 1, 2

PF (qj(D) /∈ (lj , rj))

=PF (qj(D) ≤ lj) + P (qj(D) ≥ rj)
≤2PF (sup

x
|F (x)− Fn(x)| ≥ n−1/3ξ)

≤2c1e
−c2n1/3

,

the last inequality is a well known result about the deviations of the empirical distribution
(see [15]), where c1 and c2 are numerical constants depending only on F , and they may
take different value when they appear in different places throughout this paper.

Therefore we have
PF (E1) ≥ 1− c1e−c2n

1/3
. (5)

(ii) Define ρ := minj min
(
|D ∩ (l′j , lj)|, |D ∩ (rj , r

′
j)|
)
. The second event is E2 := {ρ ≥

1
2ξn

2/3}. We first investigate |D ∩ (l′1, l1)|. Define the Bernoulli random variable Y by

Y =

{
1 if X ∈ (l′1, l1),
0 otherwise.

By our second criterion in the condition on n, we have PF (Y = 1) ≥ ξn−1/3, then by
Heoffding’s inequailty

PF

(
|D ∩ (l′1, l1)| <

1

2
ξn2/3

)
≤PF

(∣∣∣∣∣
n∑
i=1

Yi − nEY

∣∣∣∣∣ ≥ 1

2
ξn2/3

)
≤2e−ξ

2n1/3/8.

Clearly the same argument applies to the other 3 intervals, therefore we have

PF (E2) ≥ 1− c1e−c2n
1/3
. (6)

Now consider Hn(F ) and the intervals covering it. We say that a point is well covered by
an interval if it is inside that interval and at least 1

4 away from both endpoints. There are
two discretizations, so there are two bins covering Hn(F ), one in each discretization, namely

B
(1)
k1

and B
(2)
k2

. By our construction of B(1) and B(2), at least one of B
(1)
k1

and B
(2)
k2

well covers
Hn(F ).

Suppose Hn(F ) is well covered by an interval B. On event E1 ∩ E2, if one changes at most
1
2ξn

2/3 data points, letting D̂ be the resulting database we still have qj(D̂) ∈ [l′j , r
′
j ]. Therefore

on E1 ∩ E2, |Hn(D̂) − Hn(F )| < 1
4 because of the fourth criterion in our conditions on n.

Apparently |Hn(D)−Hn(F )| < 1
4 on E1 ∩E2. So we have Hn(D) ∈ B and Hn(D̂) ∈ B, with

probability at least 1− c1e−c2n
1/3

.

By our construction of B
(1)
k1

and B
(2)
k2

, at least one of them well covers Hn(F ), as a result, for at

least one discretization, we have A0(D) ≥ 2 ln2 n+2, with probability at least 1−c1e−c2n
−1/3

,

then the corresponding sj is not ⊥ (note that n−ε lnn = ω(e−c2n
1/3

) for any constant c2).

16



Then we have the desired result:

P̃ (S(D) = ⊥) = P̃ (s1(D) = ⊥ and s2(D) = ⊥) = O(n−ε lnn). (7)

The second claim, ie, that S(D)−IQR(F )
P̃→ 0, follows from consistency of sample quantiles12

and the fact that (1 + 1
lnn)z

(j)
s

P→ 1, for j = 1, 2.

(d) (Accuracy.)

P
(
S(D) ∈ [n−αIQR(D), nαIQR(D)]

)
≥1− P (S(D) = ⊥)− 2P

(1 +
1

lnn

)z(1)s
/∈ [n−α, nα]


≥1−O(n−ε lnn)− 2P

(
|z(1)0 | ln

(
1 +

1

lnn

)
> α lnn

)
≥1−O(n−ε lnn)− 2P

(
|z(1)0 | > α ln2 n

)
=1−O(n−ε lnn)− 2n−αε lnn

≥1−O(n−c1 lnn).

The second statement follows from the fact that under the assumptions, on E1,

1

2
IQR(F ) ≤ IQR(D) ≤ 2IQR(F ).

5 α-Trimmed Mean

Let D = (x(1), . . . , x(n)) be an ordered data set, such that x(i) ∈ R1, x(1) ≤ x(2) ≤ · · · ≤ x(n).
For any α ∈ (0, 1), the α-trimmed mean is defined as

mα(D) =

∑bn(1−α/2)c−1
i=dnα/2e+1 x(i)

bn(1− α/2)c − dnα/2e − 1
.

Then an (ε, δ)-differentially private algorithm for the α-trimmed mean follows almost imme-
diately from the scale algorithm. First note that the scale algorithm can be used to compute any
inter-quantile range of the data set by simply replacing the lower and upper quartiles by another
pair of lower and upper quantiles.

Suppose D′ = (x(1), . . . , x
′
(j), . . . , x(n)) is an adjacent data set, with the value of x(j) modified

to x′(j), in an arbitrary way. Then we have

|mα(D′)−mα(D)| ≤
xbn(1−α/2)c − xdnα/2e

(1− α)n− 2
. (8)

Observe that the numerator on the right hand side of (8) is just the distance between the α
2 and

1− α
2 quantiles, denoted by IQRα(D). So our algorithm for α-trimmed mean is, supposing κ ∈ (0, 1)

12Consistency says that |IQR(D)− IQR(F )| converges to 0 in probability.

17



is some pre-chosen parameter,

The algorithm TM

• Input: (D,n, ε, α).

• Algorithm

1. Run algorithm S on (D,n, ε) computing the distance between lower and upper
α quantiles. Denote the output by sα.

2. If sα = ⊥, then return ⊥. Otherwise return

mα(D) +
sαn

κz

(1− α)n− 2

where z is a random draw from Lap(1).

It follows from Theorem 7 (d) that with probability 1−O(n−cn
1/3

) we have sαn
κ ≥ IQRα(D),

indicating the algorithm TM is (3ε, ν(n))-differentially private, by a conditional argument similar
as in Lemma 16.

On the other hand the algorithm TM enjoys nice utility, since it returns⊥ only if the algorithm
S returns outputs ⊥ which happens with ν(n) probability when the data set is “nice”. Moreover,
as we have shown that S(D) is a consistent estimator of F−1(1 − α/2) − F−1(α/2), the additive
noise on the α-trimmed mean is of order O(n−1+κ), which can be arbitrarily close to O(n−1).

6 The median

We extend the idea used in the previous section to the sample median, where the output of the
scale algorithm is used to construct the disretizations. In the previous section we used ln(1 + 1

lnn)
as the order of magnitude of additive noise for the natural logarithm of the interquartile range.
However, for the median case, we need to incorporate in the magnitude of noise some quantity
describing the “spread” of the distribution. The reason is easy to see in two ways: first, intuitively,
the magnitude of noise should depend on how far the data points are from each other, so the
dispersion of the data matters; second, theoretically, if the data are drawn from distribution F , the
uncertainty (asymptotic variance) of the sample median is 1/2F ′(m(F )), i.e., the inverse of twice
the density at the median, where m(F ) denotes the median of the distribution F . If we re-scale the
distribution by a factor of h, then the density at median becomes F ′(m(F ))/h, consequently the
asymptotic variance of the median becomes h/2F ′(m(F )) . So roughly speaking, the uncertainty of
sample median is proportional to the scale of data, and it is natural to require that the magnitude
of additive noise be proportional to the scale, of which the IQR is a good robust estimator ([11]).

Suppose the algorithm S returns a number s 6= ⊥, we can discretize R1 in two ways: B(1) ={
B

(1)
k = [kh, (k + 1)h)

}
k∈Z

, and B(2) =
{
B

(2)
k = [(k − 0.5)h, (k + 0.5)h)

}
k∈Z

, where h = h(s) =

sn−1/3 is the proposed magnitude of additive noise, the testing is similar to that used in algorithm
S. To be concrete, for a particular discretization B(j), we can find the bin containing the data
median m(D), denoted by B(j)(D). Consider the following query:

Q1 : How many data points need to change in order to get a new database D̂ such that
m(D̂) /∈ B(j)(D)?

18



Clearly, the sensitivity of query Q1 is at most 1, for the same reason as in the proof of Lemma

8. Let A
(j)
1 (D) be the answer to Q1, under discretization B(j), let R

(j)
1 (D) = A

(j)
1 (D) + z1, where

z1 ∼ Lap(1/ε). If A1 ≤ 2, then adding noise calibrated to h will ensure differential privacy because
|m(D′) −m(D)| ≤ h for all adjacent D′. The algorithm proceeds with noise calibrated to h if R1

is large; otherwise it returns ⊥ or looks for another discretization.

The algorithm M

• Input: (D,n, ε, s).

• Algorithm

1. If s = Λ then set s = S(D,n, ε).

2. If s = ⊥, then return ⊥, otherwise let h = sn−1/3 as defined earlier. a

3. For each discretization, (j = 1, 2)

– Find B(j)(D).

– Compute R
(j)
1 .

– If R
(j)
1 ≤ ln2 n+ 1, let m(j) = ⊥. Otherwise let m(j) = m(D) + z

(j)
m , where

z
(j)
m is randomly drawn from Lap(h/ε).

4. If m(1) 6= ⊥, return m(1).
Otherwise return m(2).

aIf s = 0, we can define h(0) to be any positive number, e.g., can choose h(0) = n−
1
2 . Since h is a fixed

mapping and s is (ε, δ)-differentially private, we have h is also (ε, δ)-differentially private.

As with Algorithm S, this algorithm can be optimized by only computing m(2) if m(1) = ⊥.

Theorem 12. (a) The algorithm M is (6ε, ν(n))-differentially private.

(b) The computation cost for M is O(n) assuming the data are sorted.

(c) Under the conditions in theorem 7 (c), and if F is differentiable with positive derivative at
the median, then

P̃ (M(D) = ⊥) = O(n−ε lnn),

and

M(D)
P̃→ m(F ), as n→∞.

Apparently, everything is analogous to the algorithm S, except that in Step 1 we call S to get
s in order to obtain a reasonable scale of precision at which the median will be released.

Proof of theorem 12 We first study the query Q1. Q1 involves s, the output of S, therefore
the statement about Q1 should be conditional on s.

Lemma 13. The sensitivity of Q1 is at most 1, given s.

Proof. The proof is the same as that of Lemma 8.

For a given s 6= 0, if A1(D) ≥ 2, then changing 1 data point can change the median by at
most h = s/n1/3. Here we define a partition of the possible values of h, i.e., R≥0, into two sets,
based on a given database D:

19



Definition 14. H(j)
D =

{
s ∈ R≥0 : A

(j)
1 (D) ≥ 2

}
.

In the following discussion we use H(j) = H(j)
D for short.

We have the following simple lemma analogous to lemma 10 (b):

Lemma 15. For any s ∈ R≥0\H(j)
D , we have P

(
m(j) 6= ⊥|s

)
≤ 1

2n
−ε lnn.

Proof. Same as in Lemma 10 (b).

Lemma 16. For j = 1, 2, the computation of m(j) is (5ε, n−ε lnn)-differentially private.

Proof. Since it does not matter which disretization to look at, we omit the index j and use m̃ in the
place of m(j). All the indices j in the following proof refer to the discretization in the Algorithm S.
The notation “S = ⊥” is shorthand for “the output of Algorithm S is ⊥.”

Starting from the ⊥ case, by Lemma 10 (a)

P (m̃ = ⊥)

=P (S = ⊥) + P (S 6= ⊥, m̃ = ⊥)

≤eεP ′(S = ⊥) + P (S 6= ⊥, m̃ = ⊥)

=eεP ′(S = ⊥) + P
(
s(1) 6= ⊥, m̃ = ⊥

)
+ P

(
s(1) = ⊥, s(2) 6= ⊥, m̃ = ⊥

)
. (9)

For j = 1, 2, define D(j)
0 = {D : A

(j)
0 (D) ≤ 2}. When D /∈ D(1)

0 , we have, by Lemma 10 (b),

P
(
s(1) 6= ⊥, m̃ = ⊥

)
≤P (s(1) 6= ⊥)

≤1

2
n−ε lnn. (10)

When D ∈ D(1)
0 , we have, by Corollary 11 and Lemma 13,

P
(
s(1) 6= ⊥, m̃ = ⊥

)
=P

(
s(1) 6= ⊥, R1 ≤ ln2 n+ 1

)
=

∫
s>0

P
(
R1 ≤ ln2 n+ 1

)
p
(
s(1) = s

)
≤
∫
s>0

eεP ′
(
R1 ≤ ln2 n+ 1

)
e2εp′

(
s(1) = s

)
=e3εP ′

(
s(1) 6= ⊥, R1 ≤ ln2 n+ 1

)
=e3εP ′

(
s(1) 6= ⊥, m̃ = ⊥

)
. (11)

Combining (10) and (11), we have

P (s(1) 6= ⊥, m̃ = ⊥)

≤e3εP ′(s(1) 6= ⊥, m̃ = ⊥) +
1

2
n−ε lnn. (12)

20



As for the third term on the right hand side of (9), apply exactly the same argument as in (10),
(11), and (12) to obtain

P
(
s(2) 6= ⊥, m̃ = ⊥

∣∣∣ s(1) = ⊥
)

≤e3εP ′
(
s(2) 6= ⊥, m̃ = ⊥

∣∣∣ s(1) = ⊥
)

+
1

2
nε lnn. (13)

Finally, we have

P
(
s(1) = ⊥, s(2) 6= ⊥, m̃ = ⊥

)
=P

(
s(1) = ⊥

)
P
(
s(2) 6= ⊥, m̃ = ⊥

∣∣∣ s(1) = ⊥
)

≤P
(
s(1) = ⊥

)
×
(
e3εP ′

(
s(2) 6= ⊥, m̃ = ⊥

∣∣∣ s(1) = ⊥
)

+
1

2
n−ε lnn

)
≤eεP ′

(
s(1) = ⊥

)
× e3εP ′

(
s(2) 6= ⊥, m̃ = ⊥

∣∣∣ s(1) = ⊥
)

+
1

2
n−ε lnn

≤e4εP ′
(
s(1) = ⊥, s(2) 6= ⊥, m̃ = ⊥

)
+

1

2
n−ε lnn. (14)

So putting (12) and (14) on the right hand side of (9) we have

P (m̃ = ⊥) ≤ e4εP ′(m̃ = ⊥) + n−ε lnn. (15)

Next we consider non-⊥ case, i.e., for some C ⊆ R consider P (m̃ ∈ C). Now we have

P (m̃ ∈ C)

=P (S 6= ⊥, m̃ ∈ C)

=P
(
s(1) 6= ⊥, m̃ ∈ C

)
+ P

(
s(1) = ⊥, s(2) 6= ⊥, m̃ ∈ C

)
. (16)

Let us investigate the first term on the right hand side of (16).

• If D1 /∈ D(1)
0 , we have, by Lemma 10 (b)

P
(
s(1) 6= ⊥, m̃ ∈ C

)
≤ P

(
s(1) 6= ⊥

)
≤ 1

2
n−ε lnn. (17)

• On the other hand, if D1 ∈ D(1)
0 , then, by Corollary 11 and Lemmas 13 and 15,

P
(
s(1) 6= ⊥, m̃ ∈ C

)
=

∫
p
(
s(1) = s

)
P
(
R1 > ln2 n+ 1

)
P
(
z(1)m +m ∈ C

)
ds

=

∫
s∈H(1)

D

p
(
s(1) = s

)
P
(
R1 > ln2 n+ 1

)
P
(
z(1)m +m ∈ C

)
ds

+

∫
s/∈H(1)

D

p
(
s(1) = s

)
P
(
R1 > ln2 n+ 1

)
P
(
z(1)m +m ∈ C

)
ds

≤
∫
s∈H(1)

D

e2εp′
(
s(1) = s

)
eεP ′

(
R1 > ln2 n+ 1

)
eεP ′

(
z(1)m +m ∈ C

)
ds

21



+

∫
s/∈H(1)

D

p
(
s(1) = s

) 1

2
n−ε lnnP

(
z(1)m +m ∈ C

)
ds

≤e4εP ′
(
s(1) 6= ⊥, m̃ ∈ C

)
+

1

2
n−ε lnn. (18)

Combining (17) and (18), we have

P
(
s(1) 6= ⊥, m̃ ∈ C

)
≤ e4εP ′

(
s(1) 6= ⊥, m̃ ∈ C

)
+

1

2
n−ε lnn. (19)

The same analysis also gives an inequality concerning the second term in the right hand side
of (16),

P
(
s(2) 6= ⊥, m̃ ∈ C

∣∣∣ s(1) = ⊥
)

≤e4εP ′
(
s(2) 6= ⊥, m̃ ∈ C

∣∣∣ s(1) = ⊥
)

+
1

2
n−ε lnn,

indicating that

P
(
s(1) = ⊥, s(2) 6= ⊥, m̃ ∈ C

)
=P

(
s(1) = ⊥

)
P
(
s(2) 6= ⊥, m̃ ∈ C

∣∣∣ s(1) = ⊥
)

≤P
(
s(1) = ⊥

)
×
(
e4εP ′

(
s(2) 6= ⊥, m̃ ∈ C

∣∣∣ s(1) = ⊥
)

+
1

2
n−ε lnn

)
≤eεP ′

(
s(1) = ⊥

)
× e4εP ′

(
s(2) 6= ⊥, m̃ ∈ C

∣∣∣ s(1) = ⊥
)

+
1

2
n−ε lnn

≤e5εP ′
(
s(1) = ⊥, s(2) 6= ⊥, m̃ ∈ C

)
+

1

2
n−ε lnn. (20)

Put (19) and (20) in the right hand side of (16), we have

P (m̃ ∈ C) ≤ e5εP ′ (m̃ ∈ C) + n−ε lnn. (21)

Proof of theorem 12. (a) The result is straightforward based on Lemma 16 and the fact that m(1)

and m(2) are independent, using similar argument as in the proof of Theorem 7 part (a). A
detailed proof under a general framework is given in Section 8.

(b) Suppose the data points in D are sorted as x(1) ≤ x(2) ≤ .... To compute A
(j)
1 (D), it is

sufficient to compute min{i : x(i) ∈ B
(j)
kj
} and max{i : x(i) ∈ B

(j)
kj
}, which can be done in

O(n) time.

(c) The proof is essentially the same as that of Theorem 7 (c), except doing the conditional
analysis on the event

E0 :

{
S(D) ∈

[
1

2
n−1/20IQR(F ), 2n1/20IQR(F )

]}
.

22



By the results in Theorem 7 (c) and (d),

P̃ (E0) ≥ 1−O(n−c1 lnn).

Let l = m(F ) − n−2/5, r = m(F ) + n−2/5, l′ = m(F ) − 2n−2/5, r′ = m(F ) + 2n−2/5. By
differentiability of F , we can find constant ξ > 0 such that for all large enough n,

1. F ′(x) ≥ ξ on (l′, r′).

2. ξnh/4 > 4 ln2 n+ 4.

Define similar random events as in theorem 7 (c):

(i) E1 = {m(D) ∈ [l, r]}.

PF (E1) =1− PF (m(D) < l, or m(D) > r)

≥1− PF (m(D) < l)− PF (m(D) > r)

≥1− 2PF

(
sup
x
|F (x)− Fn(x)| > ξn−2/5

)
≥1− c0e−c1n

1/5
. (22)

(ii) E2 =
{

min (|D ∩ (l′, l)|, |D ∩ (r, r′)|) ≥ ξn3/5/2
}

, using Hoeffding’s inequality as we did
in the proof of Theorem 7 (c), part (ii), we have

PF (E2) ≥ 1− c0e−c1n
1/5
.

Note that on E0, h = Ω
(
n−23/60

)
, then for large enough n, n−2/5 < 1

8h. By our construction of

B(j), j = 1, 2, there exists at least one B(j), such that [l′, r′] ⊂ B(j)(D). Then on E0∩E1∩E2

we have A
(j)
1 (D) ≥ ξn3/5/2 ≥ 2 ln2 n+ 2. So we have

P
(
m(j)(D) = ⊥|E0 ∩ E1 ∩ E2

)
≤ O

(
n−ε lnn

)
.

Remember that P̃ (E0 ∩ E1 ∩ E2) ≥ 1−O(n−c1 lnn), we have

P̃
(
m(j)(D) = ⊥

)
≤ O

(
n−c1 lnn

)
,

which indicates
P̃ (M(D) = ⊥|S(D) 6= ⊥) ≤ O

(
n−c1 lnn

)
.

On the other hand, we know that under the assumptions, P̃ (S(D)) 6= ⊥ ≥ 1−O
(
n−c1 lnn

)
,

then we finally have the desired result in part (c) of Theorem 12

P̃ (M(D) = ⊥) ≤ O
(
n−c1 lnn

)
.

The other claim holds trivially based on the above results.

23



7 Linear regression.

The linear regression model is
Y = XTβ + φ,

where Y ∈ R1, X,β ∈ Rp, P (||X|| > 0) = 1 , and φ ∈ R1 is independent of X and its distribution
is continuous and symmetric about 0.

The data set D = {(xi, yi)ni=1} consists of n iid samples from the joint distribution of (X,Y ),
and the inference task is to estimate β. In this section we first introduce a simple short-cut
regression algorithm which fully utilizes the previous scale and median algorithms, then we describe
a differentially private algorithm based on a particular robust regression estimator.

7.1 A short-cut method

A simple way to carry out an (ε, δ)-differentially private regression analysis is to transform the
regression problem to a simpler one which has been worked out already, such as the scale and/or
median. We propose the following “short-cut” regression algorithm.

At a high level, the algorithm first randomly partitions the inputs into disjoint blocks of p
data points each. An approximation to β is computed from each block. This gives n/p independent
approximations to β. For each coordinate, run Algorithm M on a dataset consisting of the n/p
different values obtained for this coordinate to obtain a single output value for this coordinate.
Output the vector consisting of these p coordinates.

We now define φ̃, which, as we will presently explain, gives an approximation to β. Intuitively,
the “p copies of X” mentioned below correspond to the data items in one of the n/p blocks in the
informal description above (recall each data item is of the form (xi, yi) for xi ∈ Rp). Let φ̃ = X−1~φ,
where ~φ = {φ1, . . . , φp}T is a p×1 vector consisting of p i.i.d. copies of φ, and X = (X1, . . . , Xp)

T is
a matrix that consists of p i.i.d copies of X (assume that X is invertible with probability 1, which
is just requiring the design matrix is of full rank with probability 1). Also letting Y = Xβ + ~φ be
the associated vector of Y , then X−1Y is an approximation to β. In fact, multiply both sides of
the equation

Y = Xβ + ~φ

by X−1 to get X−1Y = β + X−1~φ. By the assumption that φ is symmetrically distributed and
independent of X, we have that each coordinate of φ̃ is symmetrically distributed. For 1 ≤ d ≤ p,
let IQRd = IQR(φ̃d). We will use this in the next section.

For now, we obtain the following short-cut linear regression algorithm:

24



The algorithm RS

• Input: (D,n, ε).

• Algorithm

1. Randomly partition the data points into m = bn/pc groups of size p.

2. In each group, compute the least square estimator of β, i.e., X−1Y, and store
it.

3. Let D(d), 1 ≤ d ≤ p be the dataset consisting of all the dth coordinates of the
stored vectors.

4. For 1 ≤ d ≤ p
Run M on

(
D(d), bn/pc, ε,Λ

)
. Return M(D(d)) as the estimate for βd,

where β = (β1, . . . , βp)
T .

Readers familiar with the Subsample-and-Aggregate framework of Nissim, Raskhodnikova, and
Smith [17] can view Algorithm RS in this light: the observations are partitioned into blocks (sub-
sampling), where each block yields a value for β; these values are then aggregated by p invocations
of M.

Algorithm RS is a direct application of the algorithmM, and based on our previous analysis,
RS is (6pε, ν(n))-differentially private (say, for constant p, independent of n). Clearly the computa-
tion time is O(n), assuming the data are sorted, O(n log n) otherwise, and under mild distributional
assumptions on X and φ, such as continuous and positive density, the probability of getting ⊥ is
negligible in n and the estimator is consistent. The proof of the differential privacy of RS is a bit
different from the previous ones and we will prove a more general form in section 9.

7.2 A Robust Regression Estimator

In this subsection we follow the framework: that is, starting from a robust regression estimator
of β, proposing a scale of additive noise based on the order of magnitude of an expected deviation,
and then testing if that scale is enough for differential privacy. The particular robust regression
estimator H whose output β̂ is defined as follows (see [12] for more detail):

β̂ = arg min
β
fD(β), where fD(β) =

n∑
i=1

|yi − xTi β|/||xi||. (23)

The specific output β̂ may depend on the optimization algorithm used.
Here for presentation simplicity we illustrate the algorithm and discuss its validity in the case

p = 2, and the generalization to other value of p is straightforward.
Suppose we are given any algorithm which computes β(D) ∈ B(D), where B(D) is the whole

solution set to the optimization problem (23). Now β ∈ R2, and a discretization in R2 should be
the product of two discretizations in R1 which corresponds to the two coordinates of β. As a result,
R2 is discretized into rectangle cells:

{Ckl = [kh1, (k + 1)h1)× [lh2, (l + 1)h2)}k,l∈Z ,

where hd, d = 1, 2 is the proposed magnitude of additive noise for each coordinate of β. Similarly,
in order to avoid the “end point problem” (i.e., the situation that β(D) happens to be on the

25



edge of the cell), one can consider multiple discretization. Since for each coordinate two different

discretizations B
(1)
k = [kh, (k+ 1)h) and B

(2)
k = [(k− 0.5)h, (k+ 0.5)h) would be sufficient, we will

need to consider four product discretizations (in general p-dimensional problem this number is 2p).
For definiteness we list the four product discretizations as follows:

C(1) =
{
C

(1)
kl = [kh1, (k + 1)h1)× [lh2, (l + 1)h2)

}
k,l∈Z

,

C(2) =
{
C

(2)
kl = [(k − 0.5)h1, (k + 0.5)h1)× [lh2, (l + 1)h2)

}
k,l∈Z

,

C(3) =
{
C

(3)
kl = [kh1, (k + 1)h1)× [(l − 0.5)h2, (l + 0.5)h2)

}
k,l∈Z

,

C(4) =
{
C

(4)
kl = [(k − 0.5)h1, (k + 0.5)h1)× [(l − 0.5)h2, (l + 0.5)h2)

}
k,l∈Z

.

Now for each discretization define C(j)(D) to be the bin in the jth discretization such that β(D) ∈
C(j)(D). It is generally hard to track β(D) since it depends on which particular optimization
algorithm is used, but it is easier to consider B(D) which is an intrinsic property of the optimization
problem determined totally by D. As we will see, in the cases of interest to us B(D) will typically
be small and covered by one of {C(j)(D)}j=1,...,4. Here the testing query is slightly different from
the previous ones:

Q2 : How many data points need to add or delete in order to get a database D̂ such that
B(D̂) is not covered by C(j)(D)?

Note that we view (h1, h2) as fixed, so we don’t explicitly list them as inputs to Q2. A
(j)
2 (the true

answer) and R
(j)
2 (the true answer plus noise) are defined similarly as before. Because changing one

data point could be viewed as equivalent to deleting one original data point and adding one with

the modified value, if A
(j)
2 ≥ 3 for some j, then for all adjacent databases D′ such that |D′| = |D|,

we have |βd(D′)− βd(D)| ≤ hd for d = 1, 2.
Then a differentially private algorithm for this estimator can be described as:

26



The algorithm RH

• Input: (D,n, ε).

• Algorithm:

1. Compute β(D).

2-4. The same as steps 1-3 in RS (Partition; within each group compute β; define
the sets D(d), d = 1, 2.).

5. For 1 ≤ d ≤ 2

Run S on
(
D(d), bn/2c, ε

)
. If any of the outputs is ⊥, then return ⊥.

Otherwise denote the outputs as sd, 1 ≤ d ≤ 2, and let hd = sd/n
1/4.

Also, if sd = 0, let hd = n−1/2.

6. For 1 ≤ j ≤ 4

– Compute R
(j)
2 (D, (h1, h2)).

– If R
(j)
2 (D, (h1, h2)) ≤ lnn2 + 2, let β(j) = ⊥. Otherwise β(j) = β(D) + z(j),

where z(j) = (z
(j)
1 , z

(j)
2 ) and z

(j)
d ∼ Lap(hd/ε) for d = 1, 2.

7. Find the smallest j such that β(j) 6= ⊥. If such a j exists, return RH(D) = β(j),
otherwise return RH(D) = ⊥.

We have the following theorem ensuring the property of algorithm RH :

Theorem 17. (a) The algorithm RH is (11ε, ν(n))-differentially private13.

(b) RH runs in O(n3) time14.

(c) If

(i) For all 1 ≤ d ≤ p, φ̃d has continuous and positive density; and

(ii) f(β) = EF |Y − XTβ|/||X|| is twice continuously differentiable, and EFXX
T /||X|| is

positive definite, then
P̃ (RH(D) = ⊥) = O(n−c lnn).

and

RH(D)
P̃→ β∗,

where β∗ is the true value of regression coefficient in the model.

Remark 18. In the algorithm RH , the magnitude of noise does not have to be on the order of n−1/4

(for general p our conservative choice is n−1/2p, although n−1/2+c would work). As can be seen later
in the proof, under the assumptions of Theorem 17, one can choose hd = sdn

−1/2+ζ , for some small
positive constant ζ. The value n−1/4 is chosen from a practical perspective that the discretized cell
contains approximately 1/

√
n proportion of the data (the group of β’s generated by the random

partition of D).

13The number 11 becomes 2p + 3p+ 1 for general value of p.
14For general value of p, the running time is O(np+1)

27



Proof of Theorem 17. The proof of part (a) (differential privacy) is analogous to that of theorem
12 (a), and we omit it here, the only possible difference is that the analysis is conditional on the
random partition. We give a general proof in section 9.

To show part (b) (ease of computation), we need to study the answer to query Q2. Let us
start from another query

Qβ : For a particular β ∈ R2, how many data points need to be added or deleted in order

to get a database D̂, such that β ∈ B(D̂)?

Let A(D) be the answer to Q2, on database D. Clearly A(D) = infβ/∈C(D)Aβ(D), where
Aβ(D) is the answer to the query Qβ on database D.

To compute Aβ(D), we need to explore the structure of function fD(β). A first observation is
that fD(β) is convex and piecewise linear. The convexity is trivial since each term in the sum in
(23) is convex. To see piecewise linearity, define `i = {γ ∈ R2 : yi − xTi γ = 0}. Then the ith term
in (23) is just the distance from β to `i. The space R2 is partitioned into O(n2) convex regions by
these n lines, and the lines themselves are cut by each other into O(n2) line segments or half lines
with O(n2) intersections. In the later discussion, the terms “region”, “line segment”, “half line”
and “intersection” all refer to those described above.

Note inside each region, fD(β) is a linear function, since now for each i, |yi − xTi β|/||xi|| is
linear confined in the region.

The minimum of a convex function can be characterized by the subgradient :

Definition 19 (Subgradient). A vector γ is called a subgradient of f at β, if

f(β + ∆) ≥ f(β) + γT∆, ∀∆.

The set of all subgradients at β is called subdifferential, denoted by ∂f(β). Clearly, if f is
convex and differentiable at β, then ∂f(β) = {df/dβ}, a set with a single element.

A result in convex optimization gives the characterization of the minimum of f in terms of
∂f :

Theorem 20 ([4]). For any convex function f and β ∈ Domain(f), β is a global minimizer of f
if and only if 0 ∈ ∂f(β).

The next question is how to compute ∂fD(β). For β in the interior of a region, fD(β) is linear
inside that region, so ∂f(β) has only a single vector df/dβ. When β is on the line segments, half
lines or intersections, fD(β) is not differentiable and ∂fD(β) contains multiple elements. Now such
a β is surrounded by several regions. For example, if β is in the interior of a line segment or half
line, it is surrounded by two neighboring regions; if β is the intersection of two lines, there are four
surrounding regions. Denote these surrounding regions by Rr, r = 1, . . . , r0, and let fr(·) be the
linear function that agrees with fD(·) on Rr. Then we have, on a small open neighborhood of β,

fD = max {fr, r = 1, . . . , r0} ,

and
fr(β) = fD(β), r = 1, . . . , r0.

Another basic result in convex analysis and optimization gives the description of ∂f(β):

Theorem 21. If f = maxr=1,...,r0 fr, then

∂f(β) = CH
⋃

r:fr(β)=f(β)

{∂fr(β)} ,

28



where CH means the convex hull.

Therefore, for any β ∈
⋃n
i=1 `i, i.e., those not in the interior of a region, denote the derivatives

of the linear functions fr by γr for r = 1, . . . , r0, then ∂fD(β) = CH {γ1, . . . , γr0}.
With these preliminary knowledge about the structure of fD and its minimum, we have the

following lemma:

Lemma 22. Aβ(D) =
⌈
infγ∈∂fD(β) ||γ||

⌉
.

Proof. Suppose β is surrounded by r0 regions15, namely, Rr, r = 1, . . . , r0. For r = 1, . . . , r0, let
γr be the derivative of fr at β, where fr is the linear function that agrees with fD on Rr.Then
∂fD(β) = CH(γ1, ..., γr), where CH(·) denotes the convex hull.

Let D̂ be another database obtained by changing k data points of D, and the correspond-
ing objective function in (23) is fD̂(β). Note that adding/deleting data points is equivalent to
adding/deleting the lines `i, since each data point (xi, yi) corresponds to a line `i. A consequence
of such a adding/deleting is that two regions might merge (in case of deleting), and a region might
be cut into smaller regions (in case of adding). Note also that modifying a data point is equivalent
to deleting it and inserting a new point with the modified value. As a result, the set of regions
that surrounds β, namely {Rr, r = 1, . . . , r0}, might be changed to {R̂t, t = 1, . . . , t0}. Let gt be
the linear function that agrees with fD̂ on R̂t, and λt be its derivative at β. We have

∂fD̂(β) = CH(λ1, ..., λt0),

and
λt = γrt + ηt, t = 1, ..., t0, rt ∈ {1, ..., r0},

where ηt = ∂gt(β)
∂β −

∂frt (β)
∂β is the change of ∂fD (also ∇fD) at some particular βt ∈ Rrt∩R̂t incurred

by changing the data points.
Note that if β minimizes fD̂(·), then 0 ∈ ∂fD̂(β), that is, there exists µ1, ..., µt0 ≥ 0,

∑t0
t=1 µt =

1, such that

0 =

t0∑
t=1

µtλt.

Then we have

0 =

t0∑
t=1

µt(γrt + ηt)

⇒
t0∑
t=1

µtγrt = −
t0∑
t=1

µtηt

⇒
r0∑
r=1

µ′rγr = −
t0∑
t=1

µtηt, µ′r ≥ 0,
∑
r

µ′r = 1

⇒

∣∣∣∣∣
∣∣∣∣∣
r0∑
r=1

µ′rγr

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣
t0∑
t=1

µtηt

∣∣∣∣∣
∣∣∣∣∣ ≤ max

t
||ηt||

⇒max
t
||ηt|| ≥ inf

γ∈∂f(β)
||γ||.

15In case that β is in the interior of a region, r0 = 1

29



The second implication follows by adding coefficients of the ri, and the third because for all i, the
ith term is bounded by µi maxt ||ηt||. Note that ηt is the change on the subgradient at a certain
point βt ∈ Rrt ∩ R̂t incurred by changing k data points in D, and that the magnitude of change
on the subgradient by a single addition or deletion is at most 1. So one needs to add or delete
at least d||ηt||e data points to induce a change on the subgradient by ηt. As a result, to make
β to be the solution of (23), one needs to change at least

⌈
infγ∈∂fD(β) ||γ||

⌉
data points. Thus

Aβ(D) ≥
⌈
infγ∈∂fD(β) ||γ||

⌉
.

On the other hand, let γ0 ∈ ∂fD(β) such that ||γ0|| = infγ∈∂fD(β) ||γ||. Then one can always
add

⌈
infγ∈∂fD(β) ||γ||

⌉
data points such that ∂fD̂(β) = ∂fD(β)− γ0, making β the solution of (23).

To see this, let k = d||γ||e. One can always find (x′i, y
′
i), i = 1, ..., k, such that ||x′i|| = 1,

∑k
i=1 x

′
i = γ

and y′i > x′Ti β. Then fD̂(β) = fD(β) +
∑k

i=1(y
′
i − x′Ti β). As a result

∂fD̂(β) = ∂fD(β)−
k∑
i=1

xi = ∂fD(β)− γ,

which implies 0 ∈ ∂fD̂(β). Therefore Aβ(D) ≤
⌈
infγ∈∂fD(β) ||γ||

⌉
.

As for part (b) of Theorem 17, a first observation is that to compute A2(D), it is enough to
find the infimum of Aβ(D) among all β /∈ C(j)(D), for any given j. Due to the piecewise linearity of
fD, Aβ(D) is the same for all β’s inside a region, line segment, or half line. As a result, it is enough
to consider all the regions, line segments, half lines and intersections. One further observation is
that for any β inside a region R, one can always find a β′ on the boundary of R, i.e., on the line
segments, half lines or intersections. Then by the argument above we have Aβ′(D) ≤ Aβ(D), since
∂fD(β) ⊆ ∂fD(β′). So it suffices to focus on all the line segments and intersections. For each line,
a pass through the data set can find out all the line segments, half lines and intersections on it,
by simply computing its intersection with other lines. This takes O(n) time in computing all the
intersections, and another O(n log n) time to sort the intersections which gives the line segments
and half lines on it. So it takes O(n2 log n) time to compute and store all the line segments, half
lines and intersections. For each of them, it takes O(n) time to compute the subdifferential and
hence Aβ(D). Finally, finding the smallest of them takes O(n2) time. Summing up, all of these
can be done in O(n3) time (O(np+1)for general p).

It remains to show part (c) of Theorem 17 (good behavior on nice distributions) . The main
idea is the same as previous: use law of large numbers to ensure, with high probability, Aβ(D) are
not far from its average over all random D drawn from F . However, here we have infinitely many
β in the set R2\C(j)(D), which means we need to control the maximum of a stochastic process
instead of finite number of random variables. To be concrete, one subgradient of f at β can be
written as:

g(β) =
n∑
i=1

sign(yi − xTi β)xi/||xi||,

the norm of which, under the condition in part (c) of theorem 17, approximates Aβ(D) within a
constant of 4, since there are at most two lines crossing β which indicates diam(∂f(β)) ≤ 4.

Then we need to show that minβ/∈C(j)(D) ||g(β)|| � ln2 n for some j, with high probability.
The scheme is similar to the proof of theorem 12 (c). Recall that

f(β) = EF |Y −XTβ|/||X||,

then our assumption ensures that f has a unique minimum β∗.

30



Consider the cell

L =

[
β∗1 −

1

8
h1, β

∗
1 +

1

8
h1

]
×
[
β∗2 −

1

8
h2, β

∗
2 +

1

8
h2

]
.

Define event E0 =
{
sd ∈

[
1
2n
−1/20IQRd, 2n

1/20IQRd
]
, 1 ≤ d ≤ p

}
. From the proof of Theo-

rem 12 (c) we know that P̃ (E0) ≥ 1−O(n−c1 lnn).
On E0 we have ||h|| → 0, and by the strict convexity and differentiability of f , there exists

constant c such that for large enough n,

||∇f(β)|| ≥ c||h||, for all β ∈ LC . (24)

Intuitively g(β) (and hence Aβ(D)) can be approximated by ||n∇f(β)||, and L is small enough for
large n, hence well covered by C(j)(D), for some j. So we expect that ||Aβ(D)|| = Ω(nh).

Rigorously, consider the stochastic process

g(D;β) =
1

n

n∑
i=1

sign
(
φi −XT

i (β − β∗)
)
Xi/||Xi||.

Note that

ng(D;β) = ∇fD(β), for all β ∈

(
n⋃
i=1

`i

)C
,

as a result

Aβ(D) ≥ n||g(D;β)|| − 1, for all β ∈

(
n⋃
i=1

`i

)C
. (25)

The sketch of proof is first to use the uniform bound on empirical processes to get a lower
bound of infβ∈((

⋃
`i)
⋃
L)C Aβ(D). Then we extend the result to all β ∈ LC , using the continuity of

the distribution of φ and X.
First let B be a countable dense subset of LC , ∇df(β) and gd(D;β) be the dth coordinate

of the corresponding vectors for d = 1, 2. The theory of empirical processes gives us the following
lemma follows largely the argument used in [18, Ch II.3]:

Lemma 23. For d = 1, 2

PF

(
sup
β∈B
|gd(D;β)−∇df(β)| > n−1/3

)
≤ O

(
n2e−c1n

1/3
)
.

Denote by E1 the event
{

supβ∈B |gd(D;β)−∇df(β)| ≤ n−1/3
}

. Then

PF (E1) ≥ 1−O
(
n2e−c1n

1/3
)
.

Next we confine the analysis on E0 ∩E1, where we have ||h|| = Ω(n−3/10), so for large enough
n, n−1/3 ≤ 1

2c||h||. Then (24) and (25) implies

inf
β∈B

Aβ(D) ≥ n||∇f(β)|| − n||∇f(β)− g(D;β)|| − 1 ≥ 2−
√

2

2
cn||h|| − 1 = Ω

(
n7/10

)
. (26)

31



BecauseB is dense in LC , (26) simply implies that the same bound hold for all β ∈ ((
⋃n
i=1 `i)

⋃
L)C ,

i.e.,

inf
β∈((

⋃n
i=1 `i)

⋃
L)

C
Aβ(D) ≥ Ω

(
n7/10

)
.

Furthermore, for those β ∈ `i ∩ LC for some i, since there are at most two lines crossing β,16

based on the fact that diam(∂fD(β)) ≤ 4 and that B is dense in LC , we have

Aβ(D) ≥ inf
β∈((

⋃n
i=1 `i)

⋃
L)

C
Aβ(D)− 4.

Then we finally have

inf
β∈LC

Aβ(D) ≥ Ω
(
n7/10

)
. (27)

Clearly (27) implies that β(D) ∈ L because Aβ(D)(D) = 0. Furthermore, by the construction

of C(j)(D), j = 1, . . . , 4, and the definition of L, there exists at least one j, such that L ⊂ C(j)(D).

Then (27) implies A
(j)
2 (D) ≥ Ω

(
n7/10

)
. So for large enough n, we have A

(j)
2 (D) ≥ 2 ln2 n + 2,

which implies P̃ (RH(D) = ⊥|E0 ∩ E1, s 6= ⊥) = O(n−ε lnn). But as shown in theorem 7 (c),
P̃ (s 6= ⊥) ≥ 1−O(n−c1 lnn) under our assumptions, as a result, we have the desired inequality for
theorem 17 (c):

P̃ (RH(D) = ⊥) ≤ O(n−c lnn).

8 (ε, δ)-PTR Functions

So far we have seen several examples of (ε, δ)-differentially private release for robust estimators.
These mechanisms share the same spirit. First an insensitive magnitude is proposed, then we test
privately whether this magnitude is big enough such that the an additive Laplacian random noise
calibrated to it is enough to provide the ε-differential privacy. We call such a framework Propose-
Test-Release (PTR). Now we study the in general random functions of the form T (D, s), where
D is a database and s is a second input used in computing a proposed bound on local sensitivity.
This computation, call it g(D, s), can be independent of D (as in Algorithm S, where g(D, s) = 1
is the bin width used in the discretization of R for the logarithm of the interquartile range, or it
can depend on D, as in Algorithm M, where a scale g(D, s) = S(D) is computed and then used
to obtain the bin width for testing the sensitivity of the median. From now on we always treat D
and D′ as non-random, and the probability is over the coin flips of the random function T , which
are always independent of everything else. Similarly, P (·) refers to the probability when the input
database is D and P ′(·) refers to the corresponding probability when the input database is D′. The
following definition is the main building block of this framework, which abstracts the key properties
of our previous algorithms such as S, M and RS :

Definition 24 ((ε, δ)-PTR function). A function T (D, s) : D × (C ∪ {⊥}) 7→ C′ ∪ {⊥} is called
(ε, δ)-PTR if

1. P (T = ⊥|s = ⊥) = 1, for all D.

16Because the distribution of φ is continuous, the probability of having three or more lines intersecting at one point
is 0.

32



2. For all s ∈ C, D and D′ adjacent,

P (T = ⊥|s) ≤ eεP ′(T = ⊥|s),
P (T 6= ⊥|s) ≤ eεP ′(T 6= ⊥|s). (28)

3. There exists G(T,D) ⊆ C, such that if s ∈ G(T,D), then for all D′ adjacent to D and all
C ′ ⊆ C′

P (T ∈ C ′|s) ≤ e2εP ′(T ∈ C ′|s), (29)

4. if s /∈ G(T,D), then for all D ∈ D, P (T 6= ⊥|s) ≤ δ.

In our discussion, for notational simplicity we will drop the dependence on (ε, δ), by just saying
PTR.

It is clear that when s does not depend on D, then a mechanism that computes the PTR
function is (2ε, δ)-differentially private. However, in the three examples we have seen, only the
algorithm S falls into this category; in this case s is the bin width17 In the other algorithms the
input s, depends on D; indeed the inputs are themselves produced by a PTR function with D as
part of its input. In addition there are still issues such as considering many discretizations, using
the random partition as the input data base, etc. So we need a to consider a wider class of functions
in the PTR framework.

Definition 25 (Cascade). Let t1, . . . , tJ be a sequence of elements in C∪{⊥}. The cascade function,
Cas, applied to the sequence is the leftmost (that is, smallest indexed) tj that is not ⊥, 1 ≤ j ≤ J ,
if such an element exists, and ⊥ if no such element exists. That is,

CasJj=1tj = tj0 ,

where j0 = min{j ≤ J : tj 6= ⊥} and if tj = ⊥ for all j, Casj≥1tj = ⊥. We call the number J the
length of the cascade.

We abuse notation and, when there is no possibility of confusion, refer to a computation
whose output is the result of applying a cascade operator over the outputs of a sequence of PTR
computations as a cascade, or a cascade computation. Algorithm S is an example of a length 2
cascade, since up to two different discretizations are used in a computation, and the algorithm
outputs the first non-⊥ value obtained. The input s is the bin width in the discretizations.

Sometimes the values in the sequence to which the cascade operator is applied are themselves
the result of a (function of a) cascade. This is the case in the median AlgorithmM, whose output
is a length 2 cascade where the elements in the sequence are computed using a value produced by
Algorithm S, itself a length 2 cascade computation. This suggests a cascade hierarchy, defined as
follows.

Definition 26 (Level-K (ε, δ)-Cascade). A function VK(D, s) : D × (C0 ∪ {⊥}) 7→ CK ∪ {⊥} is a
level-K cascade if

VK(D, s) = CasJj=1T
(j)
K (D,VK−1(D, s)),

where VK−1 : D × (C0 ∪ {⊥}) 7→ CK−1 ∪ {⊥} is a level-(K − 1) (ε, δ)-cascade computation, all

T
(j)
K , 1 ≤ j ≤ J : D×(CK−1∪{⊥}) 7→ CK∪{⊥}, are (ε, δ)-PTR functions, conditionally independent

given the inputs, and V0(D, s) = s.

17Strictly speaking, the bin width, being a function of n = |D|, actually depends on D. However, as noted above,
in this work we assume n is known.

33



Note that in VK(D, s), there are 2
∑K

k=1 Jk (ε, δ)-PTR functions which are (2ε, δ)-differentially

private. Intuitively, VK(D, s) should be (ε′, δ′)-differentially private, with ε′ = 2
∑K

k=1 Jkε and

δ′ =
∑K

k=1 Jkδ. This is true, by the next theorem:

Theorem 27 (Composition theorem for general (ε, δ)-differentially private algorithms). Let T1 :
D 7→ T1(D) be (ε, δ)-d.p., and for all J ≥ 2, TJ : (D, s1, . . . , sJ−1) 7→ TJ(D, s1, . . . , sJ−1) ∈ CJ
be (ε, δ)-d.p., for all given (s1, . . . , sJ−1) ∈

⊗J−1
j=1 Cj. Then for all neighboring D,D′ and all S ⊆⊗J

j=1 Cj
P ((T1, . . . , TJ) ∈ S) ≤ eJεP ′((T1, . . . , TJ) ∈ S) + Jδ.

First note that in Theorem 27, for any j, the space Cj may contain ⊥. It is not hard to see
that the cascade composition VK(D, s) is a special case of the general composition. One just needs

to arrange all the T
(j)
k in a sequence (T1, . . . , TJ), where J =

∑K
k=1 Jk, and TJ1+···+Jk−1+j = T

(j)
k

for all k and 1 ≤ j ≤ Jk. Then Vk(D, s) is just a function of (T1, . . . , TJ), which indicates for any
C ⊆ CK ∪ {⊥}, P (VK(D, s)) ∈ C = P ((T1, . . . , TJ) ∈ SC) for some SC ⊆

⊗K
k=1 (Ck ∪ {⊥})Jk .

As a result, we can directly apply Theorem 27 to get the the result that any level K (ε, δ)-
cascade is (ε′, δ′)-differentially private, with ε′ = 2

∑K
k=1 Jkε and δ′ =

∑K
k=1 Jkδ.

A simple proof of Theorem can be given by induction, basing on the following lemma:

Lemma 28. Let T1(D) : D 7→ T1(D) ∈ C1 be an (ε, δ)-d.p. function, and for any s1 ∈ C1,
T2(D, s1) : (D, s1) 7→ T2(D, s1) ∈ C2 be an (ε, δ)-d.p. function given the second input s1. Then we
show that for any neighboring D,D′, for any S ⊆ C2×C1, we have, using the notation in our paper

P ((T2, T1) ∈ S) ≤ e2εP ′((T2, T1) ∈ S) + 2δ. (30)

Proof. For any C1 ⊆ C1, define

µ(C1) =
(
P (T1 ∈ C1)− eεP ′(T1 ∈ C1)

)
+
,

then µ is a measure on C1 and µ(C1) ≤ δ since T1 is (ε, δ)-d.p. . As a result, we have for all s1 ∈ C1,

P (T1 ∈ ds1) ≤ eεP ′(T1 ∈ ds1) + µ(ds1). (31)

Also note that by the definition of (ε, δ)-d.p. , for any s1 ∈ C1,

P ((T2, s1) ∈ S) ≤
(
eεP ′((T2, s1) ∈ S) + δ

)
∧ 1

≤
(
eεP ′((T2, s1) ∈ S)

)
∧ 1 + δ. (32)

Then (31) and (32) give (30):

P ((T2, T1) ∈ S) ≤
∫
S1

P ((T2, s1) ∈ S)P (T1 ∈ ds1)

≤
∫
S1

((
eεP ′((T2, s1) ∈ S)

)
∧ 1 + δ

)
P (T1 ∈ ds1)

≤
∫
S1

((
eεP ′((T2, s1) ∈ S)

)
∧ 1
)
P (T1 ∈ ds1) + δ

≤
∫
S1

((
eεP ′((T2, s1) ∈ S)

)
∧ 1
) (
eεP ′(T1 ∈ ds1) + µ(ds1)

)
+ δ

≤ e2ε
∫
S1

P ′((T2, s1) ∈ S)P ′(T1 ∈ ds1) + µ(S1) + δ

34



≤ e2εP ′((T2, T1) ∈ S) + 2δ. (33)

In the equations above, S1 denotes the projection of S onto C1. The event {(T2, s1) ∈ S} refers
to {(T2(D, s1), s1) ∈ S} (or {(T2(D′, s1), s1) ∈ S}).

However, the special structure for (ε, δ)-PTR function and the cascade composition enables
us to get better ε′ and δ′ for the differential privacy of (ε, δ)-cascade compositions. Note that in

a level-K (ε, δ)-cascade composition, many T
(j)
k may take value ⊥, and with such an output, T

(j)
k

contributes (ε, 0) rather than (2ε, δ) to the total bound of probability. A more careful investigation
gives the next theorem:

Theorem 29. A level-K (ε, δ)-cascade is (ε′, δ′)-differentially private, with ε′ =
(
K +

∑K
k=1 Jk

)
ε,

and δ′ =
(∑K

k=1 Jk

)
δ, where Jk is the length of the cascade at level k.

Roughly speaking, at each level there are at most Jk PTR functions, and their corresponding
ε’s add up, with all but one being simply ε and at most one being 2ε (according to ⊥ or not). So
the final privacy coefficient ε′ is simply adding up the ε’s at each level. The theorem says that the
δ terms accumulate gracefully.

Before proving Theorem 29, we introduce some new notation. Since the randomness of an
(ε, δ)-PTR computation (and hence a cascade) comes from only the coin tosses, independent of D
and s, we write the probability of the random event {V (D, s) ∈ C} as P (C|s) whenever there is no
confusion. Furthermore, suppose VK(D, s0) is a level-K (ε, δ)-cascade with inputs D and s0, and
for any C ⊆ C ∪{⊥}, and any sequence (j1, . . . , jK), 1 ≤ jk ≤ Jk + 1, ∀ k, we write the probability

of the event {T (j)
k = ⊥, ∀ j < jk, T

(jk)
k 6= ⊥, ∀ k, VK ∈ C} as P (j1, . . . , jK , C|s0). The case

jk = Jk + 1 means that T
(j)
k = ⊥ for all j, and for convenience we let T

(Jk+1)
k ≡ ⊥. Consequently

we use the convention that G(T
(Jk+1)
k , D) to be the whole space Ck∪{⊥}. As above, for convenience

we use P ′ to denote the probability when the input is database D′.

Lemma 30. If VK(D, s0) is a level-K (ε, δ)-cascade, then for all C ⊆ C ∪ {⊥}, and any 1 ≤ j1 ≤
J1 + 1,

P (j1, C|s0) ≤ e(K+
∑K
k=1 Jk)εP ′(j1, C|s0) +

(
K∑
k=2

Jk

)
δP (j1|s0) + δ1j1≤J1 .

Proof. We argue by induction. First, when K = 1,

P (j1, C|s0)

=P
(
T
(j)
1 = ⊥, ∀j < j1, T

(j1)
1 ∈ C

∣∣∣ s0)
=P

(
T
(j)
1 = ⊥, ∀j < j1

∣∣∣ s0)∫
C
d(s, j1; J1)P (T

(j1)
1 ∈ ds|s0), (34)

where the function d(s, j; J) indicates the region of integration according to the value of j:

d(s, j; J) =


1, if s 6= ⊥, and j ≤ J,
1, if s = ⊥, and j = J + 1,
0. otherwise.

By the assumption of PTR mechanisms, if j1 ≤ J1 and s0 /∈ G(T
(j1)
1 , D), then the above

product is bounded by P (T
(j1)
1 6= ⊥) ≤ δ. Otherwise, letting 1j1≤J1 denote the indicator function

35



that takes value 1 if j1 ≤ J1 (in which case some non-⊥ value is returned by the cascade) and 0 if
j1 = J1 + 1 (in which case the cascade has value ⊥), we always have

d(s, j1; J1)P (T
(j1)
1 ∈ ds|s0) ≤ e2ε1j1≤J1d(s, j1; J1)P

′(T
(j1)
1 ∈ ds|s0), ∀s.

As a result,

P (j1, C|s0)

≤e(j1−1)εP ′
(
T
(j)
1 = ⊥,∀j < j1

∣∣∣ s0)∫
C
e2ε1j1≤J1d(s, j1; J1)P

′
(
T
(j1)
1 ∈ ds

∣∣∣ s0)
≤e(J1+1)εP ′(j1, C|s0). (35)

Therefore,
P (j1, C|s0) ≤ e(J1+1)εP ′(j1, C|s0) + δ1j1≤J1 ,

i.e., the statement holds for K = 1.
Now assume K ≥ 2 and the statement holds for 1, 2, . . . ,K − 1, then from the induction

assumption we have:

P (C|V1 = s)

=

J2+1∑
j2=1

P (j2, C|V1 = s)

≤
J2+1∑
j2=1

{
e(K−1+

∑K
k=2 Jk)εP ′(j2, C|V1 = s) +

(
K∑
k=3

Jk

)
δP (j2|V1 = s) + δ1j2≤J2

}

≤e(K−1+
∑K
k=2 Jk)εP ′(C|V1 = s) +

(
K∑
k=2

Jk

)
δ. (36)

Then we check the validity of the statement for K:

P (j1, C|s0)

=P
(
T
(j)
1 = ⊥,∀j < j1

∣∣∣ s0)∫ P (C|V1 = s)d(s, j1; J1)P
(
T
(j1)
1 ∈ ds |s0

)
. (37)

If j1 ≤ J1 and s0 /∈ G(T
(j1)
1 , D), then the above product is bounded by δ. Otherwise we have, by

(36) and the fact that d(s, j1; J1) ≤ 1,∫
P (C|V1 = s)d(s, j1; J1)P

(
T
(j1)
1 ∈ ds

∣∣∣ s0)
≤
∫ (

e(K−1+
∑K
k=2 Jk)εP ′(C|V1 = s) +

(
K∑
k=2

Jk

)
δ

)
d(s, j1; J1)P

(
T
(j1)
1 ∈ ds

∣∣∣ s0)
≤
∫
e(K−1+

∑K
k=2 Jk)εP ′(C|V1 = s)e2ε1j1≤J1d(s, j1; J1)P

′
(
T
(j)
1 ∈ ds

∣∣∣ s0)
+

(
K∑
k=2

Jk

)
δ

∫
d(s, j1; J1)P

(
T
(j1)
1 ∈ ds

∣∣∣ s0)

36



=e(K−1+
∑K
k=2 +2×1j1≤J1 )ε

∫
P ′(C|V1 = s)d(s, j1; J1)P

′(T
(j1)
1 ∈ ds|s0)

+

(
K∑
k=2

Jk

)
δ

∫
d(s, j1; J1)P

(
T
(j1)
1 ∈ ds

∣∣∣ s0) . (38)

Plugging inequality (38) into the right hand side of (37), we have, when s0 ∈ G(T
(j1)
1 , D),

P (j1, C|s0)

≤P
(
T
(j)
1 = ⊥,∀j < j1

∣∣∣ s0)
× e(K−1+

∑K
k=2 Jk+2×1j1≤J1 )ε

∫
P ′(j2, C|V1 = s)d(s, j1; J1)P

′
(
T
(j1)
1 ∈ ds

∣∣∣ s0)
+ P

(
T
(j)
1 = ⊥,∀j < j1

∣∣∣ s0)( K∑
k=2

Jk

)
δ

∫
d(s, j1; J1)P

(
T
(j1)
1 ∈ ds

∣∣∣ s0)
≤e(j1−1)εP ′

(
T
(j)
1 = ⊥,∀j < j1|s0

)
× e(K−1+

∑K
k=2 Jk+2×1j1≤J1 )ε

∫
P ′(C|V1 = s)d(s, j1; J1)P

′
(
T
(j1)
1 ∈ ds

∣∣∣ s0)
+

(
K∑
k=2

Jk

)
δP (j1|s0)

≤e(K+
∑K
k=1 Jk)εP ′(j1, C|s0) +

(
K∑
k=2

Jk

)
δP (j1|s0). (39)

Finally, for all s0 we have

P (j1, C|s0) ≤ e(K+
∑K
k=1 Jk)εP ′(j1, C|s0) +

(
K∑
k=2

Jk

)
δP (j1|s0) + δ1j1≤J1 ,

that is, the statement holds for K.

Proof of Theorem 29. The statement of theorem 29 is obtained by summing the result of Lemma
30 over all 1 ≤ j1 ≤ J1 + 1.

By the composition Theorem 27, Theorem 29 can be generalized easily to obtain differential
privacy of multiple independent cascades.

Definition 31 (Parallel Composition). A random mechanism W (D, s) : D ×
⊗L

l=1(C0,l ∪ {⊥}) 7→⊗L
l=1(CK,l ∪ {⊥}) is a level-K L-(ε, δ)-parallel composition, if

W (D, s) = (V1,K(D, s1), V2,K(D, s2), . . . , VL,K(D, sL)) ,

where s = (s1, . . . , sL), and Vl,K , (1 ≤ l ≤ L) are level-K (ε, δ)-cascades conditionally independent
given D and s. We call L the number of components in the parallel composition.

Corollary 32. A level-K L-(ε, δ)-parallel composition is (ε′, δ′)-differentially private, with ε′ =
(LK +

∑
l,k Jl,K)ε, and δ′ =

∑
l,k Jl,kδ.

37



9 General input

Through the discussion in the previous section, one might note that in the definition of level-K

(ε, δ)-parallel composition, the first input of T
(j)
l,k (that is, the database, let us call it Dl,k,j) does not

have to be the same for all values of (l, k, j). Such differences can arise in several natural ways. For
example, at the beginning of the shortcut algorithm the inputs are partitioned into n/p disjoint sets
of size p, and some computation is performed on each subset independently. This would look like
an ordinary (non-PTR) subroutine call on n/p distinct databases (all are drawn from the original
database).

Now let us take a close look at random partitions. Suppose |D| = |D′| = n = mp+ q, 0 ≤ q ≤
p − 1, and D = {x1, . . . , xn}. The random partition πp(D,σ) = {πip(D,σ)}mi=1, where πip(D,σ) ={
xσ((i−1)p+1), . . . , xσ(ip)

}
, and σ = (σ(1), . . . , σ(n)) is a random permutation of (1, . . . , n) generated

inside the procedure πp.
If D and D′ are adjacent, i.e., they differ at only one individual, with out loss of generality,

suppose D′ = {x1, . . . , xn−1, x′n}. Clearly, for a given σ, πp(D,σ) and πp(D
′, σ) has the same

number of elements and differ at no more than one element. Note that π1(D,σ) = D for all σ.
Of course, the databases in subroutine calls can be drawn more generally from the original

D, and not only by partitioning. In the case of partitioning, if most of the partitions of D′ look
just like those of D; there will only be a difference in one of the partitions. In the more general
case there may be more differences. For example, the databases in the subroutine calls may be
independent random subsamples of the original database. In this case, if the subsampling is done
without replacement, then for any fixed sequence of random coins, corresponding subroutine calls
will have databases differing in at most one element when the original input is D′ and not D.

This motivates the observation that the results of the previous section hold when the first

input of T
(j)
l,k becomes Dl,k,j , provided that Dl,k,j and D′l,k,j are adjacent for all (l, k, j).

Definition 33 (Generalized cascade). For a sequence of databases, D = (D1, . . . , DK), and s ∈
(C0 ∪ {⊥}), a function GVK(·, ·) : (D, s) 7→ GVK(D, s) ∈ CK ∪ {⊥} is a level-K generalized (ε, δ)-
cascade, if

GVK(D, s) = CasJKj=1T
(j)
K (DK , GVK−1(D1:K−1, s)) ,

where GVK−1 is a level-(K − 1) generalized (ε, δ)-cascade and T
(j)
K are (ε, δ)-PTR functions con-

ditionally independent given the inputs. Here, D1:K−1 denotes the submatrix of D consisting of
columns 1 through (K − 1).

Similarly we can define generalized (ε, δ)-parallel composition. Let Dl,1:K−1 denotes the sub-
matrix of D consisting of the lth row and columns 1 through (K − 1).

Definition 34 (Generalized parallel composition). Let D = (Dl,k)1≤l≤L,1≤k≤K , Dl,k ∈ D and

s ∈
⊗L

l=1(C0,l ∪ {⊥}), a function GW (·, ·) : (D, s) 7→ GW (D, s) ∈
⊗L

l=1 (CK,l ∪ {⊥}) is a level-K
generalized L-(ε, δ)-parallel composition if

GW (D, s) = (Vl,K(Dl,K , Vl,K−1(Dl,1:K−1, sl)))
L
l=1 ,

where Vl,K are level-K generalized (ε, δ)-cascade conditionally independent given the inputs.

Corollary 35. Let D = (Dl,k)1≤l≤L,1≤k≤K and D′ = (D′l,k)1≤l≤L,1≤k≤K . Suppose (Dl,k, D′l,k) is
adjacent for all (l, k). If GW (·, ·) is a level-K generalized L-(ε, δ)-parallel composition, then for

38



any s ∈
⊗L

l=1(C0,1 ∪ {⊥}) and C ⊆
⊗L

l=1 (CK,l ∪ {⊥}),

P (GW ∈ C) ≤ e(LK+
∑
l,k Jl,k)εP ′(GW ∈ C) +

∑
l,k

Jl,kδ.

Example 36 (Short-cut regression). In the short-cut regression algorithm, suppose the random
partition is given by πp(D,σ), where σ is generated by the procedure πp, independently of everything
else. Let βi be the β determined by the data points in πip(D,σ), if any. Then in the short-cut
regression algorithm, we have L = p, K = 2, Jl,k = 2, and Dl,k = {βi}mi=1 for all l, k.

Conditioning on σ, Dl,k and D′l,k are adjacent, then by corollary 35, we have

P (RS(D) ∈ C|σ) ≤ e6pεP (RS(D′) ∈ C|σ) + 4pδ.

Summing over all possible σ, we conclude that the short-cut regression algorithm RS is (6pε, 4pδ)-

differentially private. It should be noted that here δ = 1
2

(
n
p

)−ε ln(n
p

)
∈ ν(n).

What about the regression algorithm RH? Note that the algorithm RH consists of two steps,
where the first step estimates the scale of the uncertainty of the regression coefficient given by the
data, which is a level-1 2-(ε, δ)-parallel composition. The second step is a level-1 (ε, δ)-cascade given
the scale estimation in the first step. Also note that the regression coefficients are not estimated
coordinate-wise, but estimated as a single vector in Rp. This is none of the situations we considered
above. So we need to consider one more level of complication, that is, the sequential composition
of generalized parallel compositions.

Suppose t = 1, . . . , T , and Ct,k,l are general measurable spaces. For st ∈
⊗Lt

l=1 (Ct,0,l ∪ {⊥}) and
set of databases Dt,∗,∗ (defined below, with corresponding dimensionality), GWt(·, ·) : (Dt,∗,∗, s) 7→
GWt(Dt,∗,∗, s) ∈

⊗Lt
l=1 (Ct,K,l ∪ {⊥}), a level-Kt generalized L-(ε, δ)-parallel composition. Define

(D)t,l,k, with D = (Dt,l,k)1≤t≤T,1≤l≤Lt,1≤k≤Kt , and let T
(jt,l,k)
t,l,k (Dt,l,k, ·) be the jt,l,kth PTR function

at kth level in the lth component in GWt, and the length of cascade in Vt,l,k is Jt,l,k. Consider
the nested subroutine composition of a sequence of generalized parallel compositions. That is, let
GW1, . . . , GWT be a sequence of generalized Lt-(ε, δ)-parallel compositions, for 1 ≤ t ≤ T − 1,
GWt+1 calls GWt as the second input. Then, by general composition Theorem 27 we have the
following theorem:

Theorem 37. Assume D = (Dt,l,k)1≤l≤Lt,1≤K≤Kt and D′ =
(
D′t,l,k

)
1≤l≤Lt,1≤K≤Kt

are two sets of

data bases. If Dt,l,k and D′t,l,k are adjacent for all (t, l, k), then for any s ∈
⊗L1

l=1(C1,0,l ∪ {⊥}) and

C ⊆
⊗LT

l=1 (CT,KT ,l ∪ {⊥}),
P (C|s) ≤ eε′P ′(C|s) + δ′,

with ε′ =
∑

t

(
LtKt +

∑
l,k Jt,l,k

)
ε, and δ′ =

∑
t,l,k Jt,l,kδ.

Example 38 (Robust regression). The regression algorithm RH consists of two steps, first a scale
estimation on the set of intersections determined by a random partition of D, then the estimated
regression coefficient based on the scale estimation. The first step itself is a level-1 generalized p-
(ε, δ)-parallel composition, with D1,l,1 = πp(D,σ), where σ is the random permutation independent
of everything else.

The second step of regression algorithm RH is the test and release of the regression coefficient,
which is not done coordinate-wise. So this step is not a parallel composition but a level-1 (ε, δ)-
cascade, with C = (R ∪ {⊥})p and output in Rp ∪ {⊥}, and the length of cascade is 2p. Summing

39



up, we have K1 = 1, L1 = p, j1,l,k = 2, and K2 = 1, L2 = 1, j2,l,k = 2p. As a result, by theorem
37 we know that the regression algorithm RH is ((2p + 3p+ 1)ε, (2p+ 2p)δ)-differentially private.

Similarly, here δ = 1
2

(
n
p

)−ε ln(n
p

)
∈ ν(n).

10 Conclusions and Open Problems

The purpose of this work was two-fold: to obtain accurate, privacy-preserving, statistical
estimators, and to test the theory that robust estimators form a good starting point for differential
privacy. The outcome was uniformly positive: we succeeded in every attempt to adapt a robust
estimator to obtain differential privacy, and the distortion always vanishes as n grows.

We remark that this work began with a median finding algorithm inspired by the fact that
the empirical influence function for the sample median converges to a distribution if the underlying
distribution F has positive density at F−1(1/2). The algorithm privately tests density of the em-
pirical distribution at the sample median; if the density is sufficiently high, the algorithm proceeds;
otherwise it outputs ⊥. We eventually found a simpler algorithm, M, described above.

The density test initiates a study of privacy-preserving hypothesis testing, an excellent topic
for future research.

Acknowledgement

The potential connection between robustness and privacy was suggested by Werner Steutzle,
before the invention of differential privacy. We warmly thank him for this contribution.

References

[1] B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry, and K. Talwar. Privacy, accuracy,
and consistency too: A holistic solution to contingency table release. In Proceedings of the
26th Symposium on Principles of Database Systems, pages 273–282, 2007.

[2] A. Blum, C. Dwork, F. McSherry, and K. Nissim. Practical privacy: The SuLQ framework.
In Proceedings of the 24th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, June 2005.

[3] A. Blum, K. Ligett, and A. Roth. A learning theory approach to non-interactive database
privacy. In Proceedings of the 40th ACM SIGACT Symposium on Thoery of Computing, 2008.

[4] J. M. Borwein and A. S. Lewis. Convex analysis and nonlinear optimization, theory and
examples. Springer, 2006.

[5] C. Dwork. Differential privacy. In Proceedings of the 33rd International Colloquium on Au-
tomata, Languages and Programming (ICALP)(2), pages 1–12, 2006.

[6] C. Dwork. An ad omnia approach to defining and achieving private data analysis. In F. Bonchi,
E. Ferrari, B. Malin, and Y. Saygin, editors, Privacy, Security, and Trust in KDD, First ACM
SIGKDD International (PinKDD), Revised Selected Papers, volume 4890 of Lecture Notes in
Computer Science, pages 1–13. Springer, 2007.

40



[7] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor. Our data, ourselves: privacy
via distributed noise generation. In Advances in Cryptology: Proceedings of EUROCRYPT,
pages 486–503, 2006.

[8] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private
data analysis. In Proceedings of the 3rd Theory of Cryptography Conference, pages 265–284,
2006.

[9] C. Dwork and K. Nissim. Privacy-preserving datamining on vertically partitioned databases.
In Proceedings of CRYPTO 2004, volume 3152, pages 528–544, 2004.

[10] R. A. Fisher. On the mathematical foundations of theoretical statistics. Philosophical Trans-
actions of the Royal Society of London, Series A, 222:309–368, 1922.

[11] D. Freedman and P. Diaconis. On the histogram as a density estimator: l2 theory. Z.
Wahrscheinlichkeitstheorie verw. Gebiete, 57:453–476, 1981.

[12] F. Hampel, E. Ronchetti, P. Rousseeuw, and W. Stahel. Robust Statistics: The Approach
Based on Influence Functions. John Wiley, New York, 1986.

[13] P. Huber. Robust statistics. John Wiley & Sons, 1981.

[14] S. Kasiviswanathan, H. Lee, K. Nissim, S. Raskhodnikova, and A. Smith. What can we learn
privately? In Proceedings of FOCS 2008, 2008.

[15] J. Kiefer and J. Wolfowitz. On the deviations of the empiric distribution function of vector
chance variables. Transactions of the American Mathematical Society, 87:173–186, January
1958.

[16] F. McSherry and K. Talwar. Mechanism design via differential privacy. In Proceedings of the
48th Annual Symposium on Foundations of Computer Science, 2007.

[17] K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitivity and sampling in private data
analysis. In Proceedings of the 39th ACM Symposium on Theory of Computing, pages 75–84,
2007.

[18] D. Pollard. Convergence of Stochastic Processes. Springer-Verlag, 1984.

[19] A. Smith. Efficient, differentially private point estimators, 2008.

41


