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Network Data

e Network data record interactions (edges) between individuals

(nodes).

e From WIKIPEDIA: “... a complex network is a graph (network)
with non-trivial topological features ...”

e Examples of “non-trivial topological features”

CEINT3

— heavy-tail degree distribution (a.k.a “scale-free”, “power law”)
— large clustering coefficient (transitivity)
— community structure: the nodes can be grouped into subsets with

dense internal connection.



Example: Links Between Political Blogs

[Adamic & Glance ’05] The political blogosphere and the 2004 US election: divided they blog



Example: Co-purchase of Political Books
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[V. Krebs *04] Co-purchased political books on Amazon.



Exchangeable Random Graphs

o Symmetric binary array A = (A;: 1 <i<j<o0),A; € {0,1}.

e Joint exchangeability:
. d .
(Aj:1<i<j<oo) = (Ag(i)o(): 1 Si<j< o)
for all permutation o

i ifi¢ {io.jo},
oliy=1{ jo ifi=ip,

io ifi=jo.

e Idea: nodes are subjects, so the order does not matter.



A two-way de Finetti Theorem

de Finetti for two-way array (Hoover *79, Aldous *81, Kallenberg

’89): All such random graphs must be generated as
si X Unif(0,1), i>1.
(Agls) " Bernoulli(W(s;,s;)), 1 <i<j.

where W : [0,1]? + [0, 1], measurable and symmetric, is called a
graphon (graph function).



Popular Special Cases

The stochastic block model (SBM, Holland et al ’83): W is
block-wise constant.

The degree corrected block model (DCBM, Karrer & Newman
’11): W is block-wise rank-one.

Random dot product graph (RDPG, Tang et al, *13;
Rubin-Delanchy et al, *17): W is positive semidefinite and

low-rank.

Random geometric graphs (Penrose *03).



Inference Problems

e Estimation
e Community recovery: find block structure of W in SBM and
DCBM.
e Nonparametric estimation: estimate W from observed
A, =(4:1<i,j<n).



Inference Problems

e Estimation
e Community recovery: find block structure of W in SBM and
DCBM.
e Nonparametric estimation: estimate W from observed
A, =(4:1<i,j<n).
e Identifiability of W:

e Leth:[0,1]— [0, 1] be measure-preserving:
wu(h~(B)) = u(B), ¥V measurable B,

where U is Lebesgue Measure.
o W(-,-) and W(h(-),h(-)) lead to the same distribution of A,,.



ldentifiability of Graphons

e W, and W, lead to the same distribution of A if and only if there
exist measure-preserving i, hp such that

Wi(hi (), () = Wa(ha(-), ha(-)), ae.
e Cut-distance:

0o(W1,Ws) = inf sup
hihy g T

[ a0 (5)0 ) = Walha(s) o)

e When 6q(W;,W,) = 0, write W, wt W, (weakly isomorphic),
which defines an equivalence relationship on
Wo = {W:[0,1]*> — [0, 1], symmetric}.



ldentifiability of Graphons

e In general, we can only hope to recover W up to a

measure-preserving change-of-variable transform.

e Existing methods assume smoothness to specify a particular
member in the equivalence class (Wolfe & Olhede *13, Airoldi et
al’13, Gao et al ’15, Klopp et al *17).



The latent space approach

e Sample &, ..., &, independently from a distribution F on R,

e Connect nodes i,j by f(&;, &), for some simple function f, such
as inner products and distances [Hoff et al *02, Hoff 07, Tang et
al 13].

e The node embedding carries rich, interpretable structures about

the network.



The latent space approach

Sample &, ..., &, independently from a distribution F on R,

Connect nodes i,j by f(&;, &), for some simple function f, such
as inner products and distances [Hoff et al *02, Hoff 07, Tang et
al 13].

The node embedding carries rich, interpretable structures about
the network.

Question: Can we use latent space models with simple f to study
exchangeable random graphs, with better identifiability?



The latent space approach

Sample &, ..., &, independently from a distribution F on R,

Connect nodes i,j by f(&;, &), for some simple function f, such
as inner products and distances [Hoff et al *02, Hoff 07, Tang et
al 13].

The node embedding carries rich, interpretable structures about

the network.

Question: Can we use latent space models with simple f to study
exchangeable random graphs, with better identifiability?

Yes. Use graph root distributions on a separable Krein space.



Graph Root Distributions on a Krein Space

Definition: Krein Space

3
<

A Krein space #" = J¢, © 7 is the direct sum of two Hilbert
spaces ¢, , A, with inner product (for x,x' € 5., y,y € 7))

((6:3), (Yo = (0, ) oe. — (3033 ) -

 is isomorphic to a Hilbert space 77 = ¢, & 7 with norm
||l : forz = (x;y) €

1/2
Izl = NG = (Ixll32, + Iyl1%) -



Graph Root Distributions on a Krein Space

Definition: Graph Root Distribution (GRD)

A graph root distribution is a probability distribution F on .#" such
that for Z,Z’ i F,

P((Z,Z)» €[0,1]) =1.



From GRD’s to Exchangeable Random Graphs

Given a GRD F on %', one can generate exchangeable random

graphs as follows.
1. Generate (Z;:i>1) iy

2. Generate A;; independently from Bernoulli((Z;,Z;) ).

Related work
e Eigenmodel [Hoff *07]

e Random dot-product graph [Tang et al *13; Rubin-Delanchy et al
"17]



Interpretation of GRD

e Edge probability = (Z;,Z;) » = (X;,X;) — (V1. Y})
e Nodes i,j are more likely to connect if

o ||X;||,|X;|| are large (active nodes)
o (Xi/|IX:l,X;/ | X;l|) is large (good match)

e Analogous interpretations for negative components Y;, Y;.



Questions to be answered about GRD’s

Existence: What kind of exchangeable random graphs can be
generated by GRD’s?

Uniqueness/Identifiability: When do two GRD’s lead to the same
distribution of exchangeable random graphs?

What is the relationship between GRD and graphon?
What is an interesting topology in the space of GRD’s?

How to estimate the generating GRD from an observed network?



Existence of GRD Representation

e View a graphon W as the kernel of an integral operator on

L?([0,1]). By compactness, W admits spectral decomposition

Z’l‘PJ Z%‘/’J

where Ay > A1, > ... >0, n=>r>..>0.



Existence of GRD Representation

Theorem

If W is trace-class (i.e. Yj>1(A;+7%) < o), then there exists a GRD F
on a separable Krein space .#" such that W and F lead to the same

exchangeable random graph distribution.



Idea of Proof

Recall that

Z’I‘PJ Z??‘VJ
Z(s)=(X(s);Y(s)) : [0,1] — & with

X(s) = (A 205(5) i = 1), Y(s) = (4 wi(s) = 1),

summability of 4;,% = || X||,||Y]| < o0 a.s. = Z is well-defined.
F is the measure induced by Z with s ~ U(0, 1).
summability of A;,% = W(-,-) = (Z(-),Z(-)).» a.e.



Idea of Proof

Recall that

Z’I‘PJ Z??‘VJ
Z(s)=(X(s);Y(s)) : [0,1] — & with

X(s) = (A 205(5) i = 1), Y(s) = (4 wi(s) = 1),

summability of 4;,% = || X||,||Y]| < o0 a.s. = Z is well-defined.
F is the measure induced by Z with s ~ U(0, 1).
summability of A;,% = W(-,-) = (Z(-),Z(-)).» a.e.

Z can be viewed as the square root of W.



Existence of GRD Representation

Special cases:

e Continuity: W = W, — W_ with continuous and positive

semidefinite W, W_ (Mercer’s theorem).

e Smoothness: W is smooth.



ldentifiability of GRD’s

e When do two GRD’s lead to the same sampling distribution of
exchangeable random graphs?

e Concatenation. Let Z = (X;Y) ~ F, and R an arbitrary random
variable. Let Z = (X;¥) with X = (X,R), ¥ = (Y,R).
e Inner product preserving transforms. H : # +— % such that
(z,7)y = (Hz,H7) . Let Z ~ F and Z = HZ.
e Direct sum of orthogonal transforms. Let O, Q_ be orthogonal
transforms on J%, #7.. Let Z= (X;Y) ~ F, and
Z=(0:X:0-7).



ldentifiability of GRD’s

e When do two GRD’s lead to the same sampling distribution of
exchangeable random graphs?

e Concatenation. Let Z = (X;Y) ~ F, and R an arbitrary random
variable. Let Z = (X;¥) with X = (X,R), ¥ = (Y,R).

e Inner product preserving transforms. H : # +— % such that
(z,7)y = (Hz,H7) . Let Z ~ F and Z = HZ.

e Direct sum of orthogonal transforms. Let O, Q_ be orthogonal
transforms on J%, #7.. Let Z= (X;Y) ~ F, and
Z=(0:X;0_Y).

e Hyperbolic rotations.



Hyperbolic Rotations: An Example

o Let #, = H# =R, z=(x;y) € R%

e An example of hyperbolic rotation is, for 8 € R!,

e® —|—e’9 e —e 0 0 _o0 e? +

H[(x,yﬂ:( KRS AT A

cosh(0) sinh(6) x
| sinh(8) cosh(6) y



ldentifiability of GRD’s: Where is the Hope?

Key observation:

e Both concatenation and hyperbolic rotation necessarily mix up
the positive and negative components, so they can be precluded

by disentangling the positive and negative components.



ldentifiability of GRD’s

Let Q.+, Q_ be orthogonal transforms on 7Z, 5Z . Define
0=(0+®0-): A = X as Q(x;y) = (Q+x;0-).

Theorem

Two square-integrable GRD’s F, F» with uncorrelated positive and
negative components lead to the same sampling distribution of
exchangeable random graphs if and only if there exists Q = Q0 &0
such that Z; ~ F| < Z, = QZ; ~ F; (denoted as F; %t F).



Proof Sketch of Identifiability

Fori=1,2,let Zi(-) : [0,1] — ¢ be an inverse transform
sampling (ITS) mapping such that s ~ U(0,1) = Z;(s) ~ F;.
Let Wi(,-) = (Zi(-), Zi(-))r -

By assumption, W i Ws.

Can choose appropriate orthogonal transforms so that
Wi(-,-) =(Zi(+),Zi(-)) » indeed corresponds to the spectral
decomposition of W;.

Apply Kallenberg’s representation theorem of exchangeable

random arrays using spectral decompositions.



Existence and Identifiability of GRD: Summary

Corollay

There exists a one-to-one correspondence between trace-class

graphons (up to “W:"i"’) and square-integrable GRD’s with uncorrelated

positive and negative components (up to “%™).

Canonical GRD. Given a square integrable GRD, one can always
make the positive and negative components uncorrelated and choose a
canonical pair of orthogonal transforms so that the covariance is
diagonalized.



Distances between GRD equivalence classes

e Given two GRD’s F| and F, each representing their own
equivalence class, how do we measure the difference between
them?

e For graphons, the cut-distance is linked to the large-sample

subgraph densities.

65(W1, W2) = inf sup
hiha g T

[ W10 (9). I () = Walhas) o)

e Taking inf over h; and A, is to find a common ITS for two
distributions, which is essentially coupling.



Wasserstein Distance

Let F'y, F» be two distributions on %", the Wasserstein distance

between F'q, F» is

dw(F1,Fp) = inf [E ~vllZ1 — 2|,
W( 1, 2) VG'VI(IIITI,Fz) (Zl,Zz) V|| 1 2||

where ¥ (F,F,) is the set of all distributions v on ¢ x ¢ with
marginals being F, F.



Orthogonal Wasserstein Distance

Definition: Orthogonal Wasserstein Distance

The orthogonal Wasserstein distance between two square-integrable
GRD’s Fl, F2 18

dow(F1,F2) = inf  inf  Ez 21|21 — V2,
ow(F1,F2) 01,0 ve¥ (Fi,F,) @z |4~ (0+ ©0-)2|

where the first inf is taken over all pairs of orthogonal transforms on
I, T

Remark: OWD measures the distance between two equivalence
classes of GRD’s.



Stronger Topology: dow(-,-) = 6a(-,")

Theorem

Let F, F1, F», ..., Fy, ..., be square-integrable GRD’s and W, Wy, W,
...y Wh, ..., the corresponding graphons. Then

(Wi, W) < (Er, [|Z]| +Er, |1Z]|)dow (F1, F2)

Moreover, if dow (Fy,F) — 0, then 85(Wy, W) — 0.



Estimating the GRD

Data: A, = (A;: 1 <i,j <n), symmetric, A; = 0.
Model: A;; ind. Bernoulli((Z;, Zj) » ), 1 <i<j <n, where
(Zi:1<i<n) “F,a square-integrable GRD on a .¢".
Let 7, = A ={x € RN : Yo %7 <oo}.

To identify, let Z = (X;Y) ~ F have diagonal covariance:

EXX" = diag(A,A2,...), EYYT = diag(p1,p,...), EXYT =0.



Truncated Weighted Signed Spectral Embedding

o LetA, =}, ;lj&j&f -y )7jl3jl3j-T be the eigen decomposition of A,
with positive eigenvalues ij and (absolute) negative eigenvalues

}; ranked in decreasing order.
e Let py, po be positive integers to be specified later.

e For 1 <i<nletZ = (X;;¥;) with

% 21/24 A1/24
%= Pay, o Aap,0,.0)
© ~1/22 A1/24
Yi= ('}/1/ by, ..., ’)/pz/ bpzi , 0,)

o F is the distribution that puts 1 /7 mass at each Z;.



Regularity Conditions

e Eigen decay and eigen gap: for some 1 < a < f3 and all j > 1
Ay =%, min(hy = Aer, %= Y1) 25 7P

e Fourth moment bounded: Ez_r||Z||* < co.

e These are standard assumptions in functional data analysis,
where truncated PCA is used to recover sample curves in
L*([0,1]).



Estimation Error Bound

Let F be the distribution that puts 1/n mass at Z; = (X;,¥;), with

Xi =X, Xip,0,...), ¥i = (Yir,..., ¥, 0,...)

Theorem

Under the regularity conditions, if p; = p, = p = o(n'/(?A+®) then
dy(F,F) = 0p(p~1*~D/?)

and
dy(F,F) = 0p(p~(* /2 4 p=1/py,



Proof Sketch

Treat positive and negative components separately.

X,—(X,:/I]>1)

< A1/24 A1/24
Xl:(a'l/ 1i 7)Lp/ ap1707 )
X=X, .., Xip, 0, ...)

G, =({((Xi;Y:), (X3 Y))) . : 1 <i,j<n)=E(A,|Zi,...,Zy).
G.x = ((Xi,Xj) : 1<i,j<n),G,=Gpx—Gpny

Gux = (X, X)) : 1<i,j<n)

Spectral perturbation: A, ~ G,

= X; ~ T.W. spectral embedding of G,,.

Uncorrelatedness+eigen-decay: G, ~ G, x ~ me in leading
subspace = X; ~X; = d,,(F,F)~0.



Sparse Graphs

e GRD’s, as graphons, can only generate dense graphs with total

number of edges proportional to n” .

e Given graphon W and node sample size n, one can consider
sparse sampling with a sparsity rate p, = o(1) (see e.g. [Bickel
& Chen ’09]):

Ajj ~ Bernoulli(p, W (s;,s;)) -

¢ In GRD representation, the sparse sampling is equivalent to

generating the network using p,} 3 (scaling down F by a factor
1/2
of p," 7).



Sparse Graphs

Theorem
Assume A, is generated by a GRD F with sparsity parameter pj,.

Under the regularity conditions, if f > 30/2 and
(nl/(2ﬁ+a) A (npy )1/ 2B) ) then

p=o0

Cihe B—(a-1)/2
dy(pa "*F,F) = Op (‘W +p@-/2 +n1/P> :

Other values of 3 and p are allowed, but complicated to present.



How to Choose p,p>?

e The truncated empirical eigen decomposition resembles methods
in functional principal components analysis, where one can
choose the number of PC’s by fraction of variance explained.

e However, network data are different

e Low-rank: the number of significant eigen components is usually
small;

e High noise: network data are observed with entry-wise
independent noise.

e Singular value thresholding [Chatterjee *14]: use eigenvalues
larger than /n.



Examples

Bc [O,I]KXK,B:BT.

Stochastic block models: mixture of point mass
E(A;) =Bg. ¢, gi€{l,...K}.
Degree corrected block models: mixture of 1-D subspaces
E(Aj) = ViVjBg. g gi€{1,...K}, y;eR".
Mixed membership block models: convex polytope

E(Ay) = al Ba;, a; € (K—1) dim. simplex.



Simulation, K =3

K =3, g; ~ Multinomial(0.3,0.3,0.4), n = 1000.
1/4 1/2 1/4
B=|1/2 1/4 1/4
1/4 1/4 1/6
Three communities but rank(B) = 2, with one positive and one
negative component.

DCBM node activeness: y; ~ U(0.7,1.4).
MMBM node mixture: a; ~ Dir(0.5,0.5,0.5).
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Data example: U.S. political blogs

e [Adamic & Glance ’05] Snapshots of weblogs shortly before
2004 U.S. Presidential Election. Nodes: weblogs; edges:
hyperlinks.

e Fitted well by a DCBM with two clusters.
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Political Books Data
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Next

. C o 11 . 1
GRD with logistic link: A;; ~ Bernoulli (W)

Two sample testing: are A and A, from the same GRD?

Bi-partite graph: .o/ is asymmetric. e.g. gene-cell matrix.

Multiple networks: modeling and predicting the movement of
latent node embeddings.



Thank You! Questions?

1. Lei, J. “Network Representation Using Graph Root
Distributions”, arXiv:1802.09684

2. Code: easy to write but also available upon request

3. Slides: www.stat.cmu.edu/~Jjinglei/talk.shtml


www.stat.cmu.edu/~jinglei/talk.shtml

