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Network Data

• Network data record interactions (edges) between individuals
(nodes).

• From WIKIPEDIA: “... a complex network is a graph (network)
with non-trivial topological features ...”

• Examples of “non-trivial topological features”
– heavy-tail degree distribution (a.k.a “scale-free”, “power law”)
– large clustering coefficient (transitivity)
– community structure: the nodes can be grouped into subsets with

dense internal connection.
– . . .



Example: Links Between Political Blogs

[Adamic & Glance ’05] The political blogosphere and the 2004 US election: divided they blog



Example: Co-purchase of Political Books

[V. Krebs ’04] Co-purchased political books on Amazon.



Exchangeable Random Graphs

• Symmetric binary array A = (Aij : 1≤ i < j < ∞), Aij ∈ {0,1}.

• Joint exchangeability:

(Aij : 1≤ i < j < ∞)
d
= (Aσ(i),σ(j) : 1≤ i < j < ∞)

for all permutation σ

σ(i) =


i if i /∈ {i0, j0},
j0 if i = i0,
i0 if i = j0 .

• Idea: nodes are subjects, so the order does not matter.



A two-way de Finetti Theorem

de Finetti for two-way array (Hoover ’79, Aldous ’81, Kallenberg
’89): All such random graphs must be generated as

si
iid∼ Unif(0,1), i≥ 1 .

(Aij|s)
indep.∼ Bernoulli(W(si,sj)) , 1≤ i < j .

where W : [0,1]2 7→ [0,1], measurable and symmetric, is called a
graphon (graph function).



Popular Special Cases

• The stochastic block model (SBM, Holland et al ’83): W is
block-wise constant.

• The degree corrected block model (DCBM, Karrer & Newman
’11): W is block-wise rank-one.

• Random dot product graph (RDPG, Tang et al, ’13;
Rubin-Delanchy et al, ’17): W is positive semidefinite and
low-rank.

• Random geometric graphs (Penrose ’03).



Inference Problems

• Estimation
• Community recovery: find block structure of W in SBM and

DCBM.
• Nonparametric estimation: estimate W from observed

An = (Aij : 1≤ i, j≤ n).

• Identifiability of W:
• Let h : [0,1] 7→ [0,1] be measure-preserving:

µ(h−1(B)) = µ(B) , ∀ measurable B,

where µ is Lebesgue Measure.
• W(·, ·) and W(h(·),h(·)) lead to the same distribution of An.
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Identifiability of Graphons

• W1 and W2 lead to the same distribution of A if and only if there
exist measure-preserving h1, h2 such that

W1(h1(·),h1(·)) = W2(h2(·),h2(·)), a.e.

• Cut-distance:

δ�(W1,W2)= inf
h1,h2

sup
S,T

∣∣∣∣∫S×T
[W1(h1(s),h1(t))−W2(h2(s),h2(t))]

∣∣∣∣
• When δ�(W1,W2) = 0, write W1

w.i.
= W2 (weakly isomorphic),

which defines an equivalence relationship on
W0 := {W : [0,1]2 7→ [0,1], symmetric}.



Identifiability of Graphons

• In general, we can only hope to recover W up to a
measure-preserving change-of-variable transform.

• Existing methods assume smoothness to specify a particular
member in the equivalence class (Wolfe & Olhede ’13, Airoldi et
al ’13, Gao et al ’15, Klopp et al ’17).



The latent space approach

• Sample ξ1, ...,ξn independently from a distribution F on Rd.

• Connect nodes i, j by f (ξi,ξj), for some simple function f , such
as inner products and distances [Hoff et al ’02, Hoff 07, Tang et
al 13].

• The node embedding carries rich, interpretable structures about
the network.

• Question: Can we use latent space models with simple f to study
exchangeable random graphs, with better identifiability?

• Yes. Use graph root distributions on a separable Kreı̌n space.
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Graph Root Distributions on a Kreı̌n Space

Definition: Kreı̌n Space

A Kreı̌n space K = H+	H− is the direct sum of two Hilbert
spaces H+, H−, with inner product (for x,x′ ∈H+, y,y′ ∈H−)

〈(x;y),(x′;y′)〉K = 〈x,x′〉H+
−〈y,y′〉H− .

K is isomorphic to a Hilbert space H = H+⊕H− with norm
‖ · ‖K : for z = (x;y) ∈K

‖z‖K = ‖(x,y)‖=
(
‖x‖2

H+
+‖y‖2

H−

)1/2
.



Graph Root Distributions on a Kreı̌n Space

Definition: Graph Root Distribution (GRD)

A graph root distribution is a probability distribution F on K such
that for Z,Z′ iid∼ F,

P
(
〈Z,Z′〉K ∈ [0,1]

)
= 1 .



From GRD’s to Exchangeable Random Graphs

Given a GRD F on K , one can generate exchangeable random
graphs as follows.

1. Generate (Zi : i≥ 1) iid∼ F.

2. Generate Aij independently from Bernoulli(〈Zi,Zj〉K ).

Related work

• Eigenmodel [Hoff ’07]

• Random dot-product graph [Tang et al ’13; Rubin-Delanchy et al
’17]



Interpretation of GRD

• Edge probability = 〈Zi,Zj〉K = 〈Xi,Xj〉−〈Yi,Yj〉
• Nodes i, j are more likely to connect if

• ‖Xi‖,‖Xj‖ are large (active nodes)
• 〈Xi/‖Xi‖,Xj/‖Xj‖〉 is large (good match)

• Analogous interpretations for negative components Yi, Yj.



Questions to be answered about GRD’s

• Existence: What kind of exchangeable random graphs can be
generated by GRD’s?

• Uniqueness/Identifiability: When do two GRD’s lead to the same
distribution of exchangeable random graphs?

• What is the relationship between GRD and graphon?

• What is an interesting topology in the space of GRD’s?

• How to estimate the generating GRD from an observed network?



Existence of GRD Representation

• View a graphon W as the kernel of an integral operator on
L2([0,1]). By compactness, W admits spectral decomposition

W(s,s′) =
∞

∑
j=1

λjφj(s)φj(s′)−
∞

∑
j=1

γjψj(s)ψj(s′)

where λ1 ≥ λ2 ≥ ...≥ 0, γ1 ≥ γ2 ≥ ... > 0.



Existence of GRD Representation

Theorem

If W is trace-class (i.e. ∑j≥1(λj + γj)< ∞), then there exists a GRD F
on a separable Kreı̌n space K such that W and F lead to the same
exchangeable random graph distribution.



Idea of Proof

• Recall that

W(s,s′) =
∞

∑
j=1

λjφj(s)φj(s′)−
∞

∑
j=1

γjψj(s)ψj(s′)

• Z(s) = (X(s);Y(s)) : [0,1] 7→K with

X(s) = (λ
1/2
j φj(s) : j≥ 1) , Y(s) = (γ

1/2
j ψj(s) : j≥ 1) .

• summability of λj,γj⇒‖X‖,‖Y‖< ∞ a.s. ⇒ Z is well-defined.

• F is the measure induced by Z with s∼ U(0,1).

• summability of λj,γj⇒ W(·, ·) = 〈Z(·),Z(·)〉K a.e.

• Z can be viewed as the square root of W.
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Existence of GRD Representation

Special cases:

• Continuity: W = W+−W− with continuous and positive
semidefinite W+, W− (Mercer’s theorem).

• Smoothness: W is smooth.



Identifiability of GRD’s

• When do two GRD’s lead to the same sampling distribution of
exchangeable random graphs?

• Concatenation. Let Z = (X;Y)∼ F, and R an arbitrary random
variable. Let Z̃ = (X̃; Ỹ) with X̃ = (X,R), Ỹ = (Y,R).

• Inner product preserving transforms. H : K 7→K such that
〈z,z′〉K = 〈Hz,Hz′〉K . Let Z ∼ F and Z̃ = HZ.

• Direct sum of orthogonal transforms. Let Q+, Q− be orthogonal
transforms on H+, H−. Let Z = (X;Y)∼ F, and
Z̃ = (Q+X;Q−Y).

• Hyperbolic rotations.
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Hyperbolic Rotations: An Example

• Let H+ = H− = R, z = (x;y) ∈ R2.

• An example of hyperbolic rotation is, for θ ∈ R1,

H[(x,y)T ] =

(
eθ + e−θ

2
x+

eθ − e−θ

2
y,

eθ − e−θ

2
x+

eθ + e−θ

2
y
)T

=

[
cosh(θ) sinh(θ)
sinh(θ) cosh(θ)

](
x
y

)

=Hθ

(
x
y

)
.

• HT
θ

[
1 0
0 −1

]
Hθ =

[
1 0
0 −1

]
.



Identifiability of GRD’s: Where is the Hope?

Key observation:

• Both concatenation and hyperbolic rotation necessarily mix up
the positive and negative components, so they can be precluded
by disentangling the positive and negative components.



Identifiability of GRD’s

Let Q+, Q− be orthogonal transforms on H+, H−. Define
Q = (Q+⊕Q−) : K 7→K as Q(x;y) = (Q+x;Q−y).

Theorem

Two square-integrable GRD’s F1, F2 with uncorrelated positive and
negative components lead to the same sampling distribution of
exchangeable random graphs if and only if there exists Q = Q+⊕Q−
such that Z1 ∼ F1⇔ Z2 = QZ1 ∼ F2 (denoted as F1

o.t.
= F2).



Proof Sketch of Identifiability

• For i = 1,2, let Zi(·) : [0,1] 7→K be an inverse transform
sampling (ITS) mapping such that s∼ U(0,1)⇒ Zi(s)∼ Fi.

• Let Wi(·, ·) = 〈Zi(·),Zi(·)〉K .

• By assumption, W1
w.i.
= W2.

• Can choose appropriate orthogonal transforms so that
Wi(·, ·) = 〈Zi(·),Zi(·)〉K indeed corresponds to the spectral
decomposition of Wi.

• Apply Kallenberg’s representation theorem of exchangeable
random arrays using spectral decompositions.



Existence and Identifiability of GRD: Summary

Corollay

There exists a one-to-one correspondence between trace-class
graphons (up to “w.i.

= ”) and square-integrable GRD’s with uncorrelated
positive and negative components (up to “o.t.

=”).

Canonical GRD. Given a square integrable GRD, one can always
make the positive and negative components uncorrelated and choose a
canonical pair of orthogonal transforms so that the covariance is
diagonalized.



Distances between GRD equivalence classes

• Given two GRD’s F1 and F2, each representing their own
equivalence class, how do we measure the difference between
them?

• For graphons, the cut-distance is linked to the large-sample
subgraph densities.

δ�(W1,W2)= inf
h1,h2

sup
S,T

∣∣∣∣∫S×T
[W1(h1(s),h1(t))−W2(h2(s),h2(t))]

∣∣∣∣
• Taking inf over h1 and h2 is to find a common ITS for two

distributions, which is essentially coupling.



Wasserstein Distance

• Let F1, F2 be two distributions on K , the Wasserstein distance
between F1, F2 is

dw(F1,F2) = inf
ν∈V (F1,F2)

E(Z1,Z2)∼ν‖Z1−Z2‖ ,

where V (F1,F2) is the set of all distributions ν on K ×K with
marginals being F1, F2.



Orthogonal Wasserstein Distance

Definition: Orthogonal Wasserstein Distance

The orthogonal Wasserstein distance between two square-integrable
GRD’s F1, F2 is

dow(F1,F2) = inf
Q+,Q−

inf
ν∈V (F1,F2)

E(Z1,Z2)∼ν‖Z1− (Q+⊕Q−)Z2‖ ,

where the first inf is taken over all pairs of orthogonal transforms on
H+, H−.

Remark: OWD measures the distance between two equivalence
classes of GRD’s.



Stronger Topology: dow(·, ·)� δ�(·, ·)

Theorem

Let F, F1, F2, ..., FN , ..., be square-integrable GRD’s and W, W1, W2,
..., WN , ..., the corresponding graphons. Then

δ�(W1,W2)≤ (EF1‖Z‖+EF2‖Z‖)dow(F1,F2) .

Moreover, if dow(FN ,F)→ 0, then δ�(WN ,W)→ 0.



Estimating the GRD

• Data: An = (Aij : 1≤ i, j≤ n), symmetric, Aii = 0.

• Model: Aij
ind.∼ Bernoulli(〈Zi,Zj〉K ), 1≤ i < j≤ n, where

(Zi : 1≤ i≤ n) iid∼ F, a square-integrable GRD on a K .

• Let H+ = H− = {x ∈ RN : ∑j≥1 x2
j < ∞}.

• To identify, let Z = (X;Y)∼ F have diagonal covariance:

EXXT = diag(λ1,λ2, ...) , EYYT = diag(γ1,γ2, ...) , EXYT = 0 .



Truncated Weighted Signed Spectral Embedding

• Let An = ∑j λ̂jâjâT
j −∑j γ̂jb̂jb̂T

j be the eigen decomposition of An,
with positive eigenvalues λ̂j and (absolute) negative eigenvalues
γ̂j ranked in decreasing order.

• Let p1, p2 be positive integers to be specified later.

• For 1≤ i≤ n let Ẑi = (X̂i; Ŷi) with
X̂i = (λ̂

1/2
1 â1i , ... , λ̂

1/2
p1 âp1i , 0 , ...)

Ŷi = (γ̂
1/2
1 b̂1i , ... , γ̂

1/2
p2 b̂p2i , 0 , ...)

• F̂ is the distribution that puts 1/n mass at each Ẑi.



Regularity Conditions

• Eigen decay and eigen gap: for some 1 < α ≤ β and all j≥ 1

λj,γj � j−α , min(λj−λj+1, γj− γj+1)& j−β

• Fourth moment bounded: EZ∼F‖Z‖4 < ∞.

• These are standard assumptions in functional data analysis,
where truncated PCA is used to recover sample curves in
L2([0,1]).



Estimation Error Bound

Let F̃ be the distribution that puts 1/n mass at Z̃i = (X̃i, Ỹi), with
X̃i = (Xi1, ...,Xip,0, ...), Ỹi = (Yi1, ...,Yip,0, ...)

Theorem

Under the regularity conditions, if p1 = p2 = p = o(n1/(2β+α)) then

dw(F̂, F̃) = OP(p−(α−1)/2)

and
dw(F̂,F) = OP(p−(α−1)/2 +n−1/p) .



Proof Sketch

• Treat positive and negative components separately.

• Xi = (Xij : j≥ 1)
X̂i = (λ̂

1/2
1 â1i , ... , λ̂

1/2
p âpi , 0 , ...)

X̃i = (Xi1 , ... , Xip , 0 , ...)

• Gn = (〈(Xi;Yi),(Xj;Yj)〉K : 1≤ i, j≤ n) = E(An|Z1, ...,Zn).

• Gn,X = (〈Xi,Xj〉 : 1≤ i, j≤ n), Gn = Gn,X−Gn,Y

• G̃n,X = (〈X̃i, X̃j〉 : 1≤ i, j≤ n)

• Spectral perturbation: An ≈Gn

⇒ X̂i ≈ T.W. spectral embedding of Gn.

• Uncorrelatedness+eigen-decay: Gn ≈Gn,X ≈ G̃n,X in leading
subspace⇒ X̂i ≈ X̃i ⇒ dw(F̂, F̃)≈ 0.



Sparse Graphs

• GRD’s, as graphons, can only generate dense graphs with total
number of edges proportional to n2 .

• Given graphon W and node sample size n, one can consider
sparse sampling with a sparsity rate ρn = o(1) (see e.g. [Bickel
& Chen ’09]):

Aij ∼ Bernoulli(ρnW(si,sj)) .

• In GRD representation, the sparse sampling is equivalent to
generating the network using ρ

1/2
n F (scaling down F by a factor

of ρ
1/2
n ).



Sparse Graphs

Theorem

Assume An is generated by a GRD F with sparsity parameter ρn.
Under the regularity conditions, if β ≥ 3α/2 and
p = o(n1/(2β+α)∧ (nρn)

1/(2β )) then

dw(ρ
−1/2
n F̂,F) = OP

(
pβ−(α−1)/2

(nρn)1/2 +p−(α−1)/2 +n−1/p

)
.

Other values of β and p are allowed, but complicated to present.



How to Choose p1,p2?

• The truncated empirical eigen decomposition resembles methods
in functional principal components analysis, where one can
choose the number of PC’s by fraction of variance explained.

• However, network data are different
• Low-rank: the number of significant eigen components is usually

small;
• High noise: network data are observed with entry-wise

independent noise.

• Singular value thresholding [Chatterjee ’14]: use eigenvalues
larger than

√
n.



Examples

• B ∈ [0,1]K×K , B = BT .

• Stochastic block models: mixture of point mass

E(Aij) = Bgi,gj , gi ∈ {1, ...,K} .

• Degree corrected block models: mixture of 1-D subspaces

E(Aij) = ψiψjBgi,gj , gi ∈ {1, ...,K} , ψi ∈ R+ .

• Mixed membership block models: convex polytope

E(Aij) = aT
i Baj , ai ∈ (K−1) dim. simplex .



Simulation, K = 3

• K = 3, gi ∼Multinomial(0.3,0.3,0.4), n = 1000.

• B =

 1/4 1/2 1/4
1/2 1/4 1/4
1/4 1/4 1/6


• Three communities but rank(B) = 2, with one positive and one

negative component.

• DCBM node activeness: ψi ∼ U(0.7,1.4).

• MMBM node mixture: ai ∼ Dir(0.5,0.5,0.5).



SBM: Point Mass Mixture
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DCBM: Subspace Mixture

●

●

●

−0.8 −0.6 −0.4 −0.2 0.0

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

x

y

DCBM

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●
● ●

●

●

●
●

● ●
●

●

●

●

●

● ●
● ●

●

●

● ●
●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

● ●
●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●
●

●● ●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●●●
●

●●

●

●

●

●

●
●

●
●

●

●
●

●

● ●

●

●

●

●
●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

● ●

●

●

●● ●●

●
●

● ●

●

●

●

●
● ●

●
●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

● ●

●
●

●
●

●●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

● ●

●

●

●

●

●

● ●

●●

●

●

●

●

●

● ●



MMBM: Convex Polytope
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Data example: U.S. political blogs

• [Adamic & Glance ’05] Snapshots of weblogs shortly before
2004 U.S. Presidential Election. Nodes: weblogs; edges:
hyperlinks.

• Fitted well by a DCBM with two clusters.



Political Blogs Data
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Political Books Data

Co-purchase of political books on Amazon (V. Krebs ’04)
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Next

• GRD with logistic link: Aij ∼ Bernoulli
(

1
1+e−〈Zi ,Zj〉K

)
• Two sample testing: are A1 and A2 from the same GRD?

• Bi-partite graph: A is asymmetric. e.g. gene-cell matrix.

• Multiple networks: modeling and predicting the movement of
latent node embeddings.



Thank You! Questions?

1. Lei, J. “Network Representation Using Graph Root
Distributions”, arXiv:1802.09684

2. Code: easy to write but also available upon request

3. Slides: www.stat.cmu.edu/~jinglei/talk.shtml

www.stat.cmu.edu/~jinglei/talk.shtml

