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Outline

• PCA in high dimensions.

• Sparsity of principal components.

• Consistent estimation and minimax theory.

• Feasible algorithms using convex relaxation.



Principal Components Analysis

• I have iid data points X1, ...,Xn on p variables.

• p may be large, so I want to use principal components analysis
(PCA) for dimension reduction.
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Principal Components Analysis

• Σ = E(XXT) is the population covariance matrix (say EX = 0).

• Eigen-decomposition
Σ = VDVT = λ1v1vT

1 +λ2v2vT
2 + ...+λpvpvT

p

D = diag(λ1,λ2, ...,λp), λ1 ≥ λ2 ≥ ...≥ λp ≥ 0 (eigenvalues)
VVT = Ip, V = (v1,v2, ...,vp) (eigenvectors)

• “Optimal” d-dimensional projection: X→ΠdX
Πd = VdVT

d (d-dimensional projection matrix),
Vd = (v1, ...,vd).



Classical Estimator

• Sample covariance matrix: Σ̂ = n−1(X1XT
1 + ...+XnXT

n ).

• Estimate (λ̂j, v̂j) by eigen-decomposition of Σ̂.
V̂d = (v̂1, ..., v̂d), Π̂d = V̂dV̂T

d .

• Standard theory for p fixed and n→ ∞:
Π̂d→Πd a.s. if λj−λj+1 > 0.



High-Dimensional PCA: Challenges

• Estimation accuracy. Classical theory fails when p/n→ c > 0:
λ̂1→ c′ > 1, and v̂T

1 v1 ≈ 0 under a simple model (Johnstone &
Lu 2009).

• Interpretability. Π̂dX may be hard to interpret when it involves
linear combination of many variables.

• Sparsity is a possible solution.



Sparsity for Principal Subspaces [Vu & L 2012b]

• Identifiability. If λ1 = λ2 = ...= λd, then one cannot distinguish
Vd and VdQ from observed data for any orthogonal Q.

• Intuition: a good notion of sparsity must be rotation invariant.

• Matrix (2,0) norm: for any matrix V ∈ Rp×d,
‖V‖2,0 = # of non-zero rows in V

• Row sparsity: ‖Vd‖2,0 ≤ R0� p . Vd = (v1,v2, ...,vd).

• Loss function: ‖Π̂d−Πd‖2
F (‖ · ‖F: the Frobenius norm).

Recall: Π̂d = VdVT
d , Π̂d = V̂dV̂T

d .



Two Sparse PCA Models

1. Spiked model:

Σ = (λ1−λd+1)v1vT
1 + ...+(λd−λd+1)vdvT

d +λd+1Ip .

2. General model:

Σ = λ1v1vT
1 + ...+λdvdvT

d +λd+1Σ
′

where Σ
′ � 0, ‖Σ′‖= 1, Σ

′vj = 0, ∀1≤ j≤ d .



Spiked Model is a Special Case of General Model

Black cell: |Σ(i, j)| ≤ 0.01, White cell: |Σ(i, j)|> 0.01
In spiked model, all black cells outside the upper 20×20 are 0.
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How Does Sparsity Help?

• Question: how does sparsity help with the estimation?
1. How well can we do if sparsity is assumed?
2. How to estimate under sparsity assumption?

• Intuition: Estimation is easy if
1. n is large.
2. p is small.
3. λd+1 is close to 0.
4. λd−λd+1 is away from 0.
5. R0 is small.

• Under the spiked model, [Johnstone & Lu 2009] gives a
consistent estimator of v1 when p/n→ c > 0, and others fixed.



A Minimax Framework

Find f (n,p,R0,λ1,λ2) such that

sup
Σ

E‖Π̂d−Πd‖2
F & f (n,p,R0,~λ ), ∀ estimator Π̂d ,

and a particular estimator Π̂d such that

E‖Π̂d−Πd‖2
F . f (n,p,R0,~λ ), ∀ Σ.

Σ is taken over all matrices in the sparse PCA model.



Answer to the Minimax Question

Theorem: Minimax Error Rate of Estimating Vd (Vu and Lei 2012b)

Under the general model, the minimax rate of estimating VdVT
d is

fd(n,p,R0,~λ )� R0
λ1λd+1

(λd−λd+1)2
d+ logp

n
,

and can be achieved by

V̂d = arg max
VT

d Vd=Id,‖Vd‖2,0≤R0

Tr(VT
d Σ̂Vd) .



About This Result

• Good news
• Exact minimax error rate in (n,p,d,R0,~λ ) for general models.
• First consistency result for `1 constrained/penalized PCA (Jolliffe

et al 2003, Zou et al 2006).

• Price to pay
• Finding the global maximizer is computationally demanding.

• Extensions
• Soft sparsity: `q-ball with q ∈ [0,1] [Vu & L 2012a,b].
• Feasible algorithms [Vu, Cho, L, Rohe 2013].



Related Work

• When d = 1, [Birnbaum et al 2012, and Ma 2013] established
the minimax rate under the spiked model, where the estimator is
obtained by power method and thresholding.

• For subspace estimation, the minimax rate is independently
obtained by [Cai et al 2012] under a Gaussian spiked model.



Feasible Algorithm Via Convex Relaxation

• For d = 1, the optimal estimator (consider Z = v1vT
1 ) is

Ẑ = argmax
Z

Tr(Σ̂Z)−λ‖Z‖0,

s.t. rank(Z) = 1, Z � 0, Tr(Z) = 1.

• [d’Aspremont et al 2004] proposed an SDP relaxation

Ẑ = argmax
Z

Tr(Σ̂Z)−λ‖Z‖1, s.t. Z � 0, Tr(Z) = 1 ,

• Ẑ gives consistent variable selection with optimal rate under a
stringent spiked model, provided that Ẑ is rank 1 [Amini &
Wainwright 2009].



Preliminary Results for SDP Relaxation

Theorem: Error Bound for SDP Relaxation [VCLR 2013]

When d = 1 under the general model, assume ‖v1‖0 ≤ R0 and choose
λ � λ1

λ1−λ2

√
logp/n in the SDP relaxation. Then w.h.p the global

optimizer Ẑ satisfies

‖Ẑ− v1vT
1‖2

2 . R2
0

λ 2
1

(λ1−λ2)2
logp

n
.



SDP Reslaxation is *Near* Optimal

• Recall the SDP rate and minimax rate (d = 1, q = 0)

R2
0

λ 2
1

(λ1−λ2)2
logp

n
vs. R0

λ1λ2

(λ1−λ2)2
logp

n

• These are off by a factor of

R0
λ1

λ2
.

• The R0 factor is unavoidable for polynomial time algorithms in a
hypothesis testing context [Berthet & Rigollet 2013].

• λ1/λ2 factor may be removable using finer analysis.



Summary

• Sparsity helps improve both estimation accuracy and
interpretability of PCA in high dimensions.

• Sparsity can be defined for principal subspaces.

• Minimax error rates are established for general covariance
models.

• Convex relaxation using SDP is near-optimal.



Ongoing Work

• Statistical properties for SDP relaxation under soft sparsity.

• SDP relaxation for subspaces (d > 1).

• Other penalties than `1, such as the group lasso penalty.
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