Estimating Sparse Principal Components and Subspaces

Jing Lei

Department of Statistics, CMU

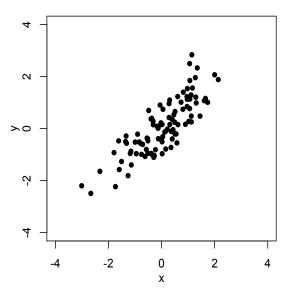
Joint work with V. Q. Vu (OSU), J. Cho, and K. Rohe (U. of Wisc.)

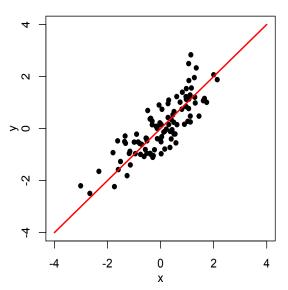
July 1, 2013

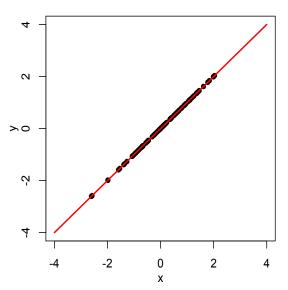
Outline

- PCA in high dimensions.
- Sparsity of principal components.
- Consistent estimation and minimax theory.
- Feasible algorithms using convex relaxation.

- I have iid data points $X_1,...,X_n$ on p variables.
- *p* may be large, so I want to use principal components analysis (PCA) for dimension reduction.







- $\Sigma = \mathbb{E}(XX^T)$ is the population covariance matrix (say $\mathbb{E}X = 0$).
- Eigen-decomposition

$$\begin{split} \Sigma &= VDV^T = \lambda_1 v_1 v_1^T + \lambda_2 v_2 v_2^T + ... + \lambda_p v_p v_p^T \\ D &= \operatorname{diag}(\lambda_1, \lambda_2, ..., \lambda_p), \ \lambda_1 \geq \lambda_2 \geq ... \geq \lambda_p \geq 0 \ (\text{eigenvalues}) \\ VV^T &= I_p, \ V = (v_1, v_2, ..., v_p) \ (\text{eigenvectors}) \end{split}$$

• "Optimal" d-dimensional projection: $X \to \Pi_d X$ $\Pi_d = V_d V_d^T$ (d-dimensional projection matrix), $V_d = (v_1, ..., v_d)$.

Classical Estimator

- Sample covariance matrix: $\hat{\Sigma} = n^{-1}(X_1X_1^T + ... + X_nX_n^T)$.
- Estimate $(\hat{\lambda}_j, \hat{v}_j)$ by eigen-decomposition of $\hat{\Sigma}$. $\hat{V}_d = (\hat{v}_1, ..., \hat{v}_d)$, $\hat{\Pi}_d = \hat{V}_d \hat{V}_d^T$.
- Standard theory for p fixed and $n \to \infty$: $\hat{\Pi}_d \to \Pi_d$ a.s. if $\lambda_j - \lambda_{j+1} > 0$.

High-Dimensional PCA: Challenges

- Estimation accuracy. Classical theory fails when $p/n \to c > 0$: $\hat{\lambda}_1 \to c' > 1$, and $\hat{v}_1^T v_1 \approx 0$ under a simple model (Johnstone & Lu 2009).
- Interpretability. $\hat{\Pi}_d X$ may be hard to interpret when it involves linear combination of many variables.
- Sparsity is a possible solution.

Sparsity for Principal Subspaces [Vu & L 2012b]

- Identifiability. If $\lambda_1 = \lambda_2 = ... = \lambda_d$, then one cannot distinguish V_d and V_dQ from observed data for any orthogonal Q.
- Intuition: a good notion of sparsity must be rotation invariant.
- Matrix (2,0) norm: for any matrix $V \in \mathbb{R}^{p \times d}$, $||V||_{2,0} = \#$ of non-zero rows in V
- Row sparsity: $||V_d||_{2,0} \le R_0 \ll p$. $V_d = (v_1, v_2, ..., v_d)$.
- Loss function: $\|\hat{\Pi}_d \Pi_d\|_F^2$ ($\|\cdot\|_F$: the Frobenius norm). Recall: $\hat{\Pi}_d = V_d V_d^T$, $\hat{\Pi}_d = \hat{V}_d \hat{V}_d^T$.

Two Sparse PCA Models

1. Spiked model:

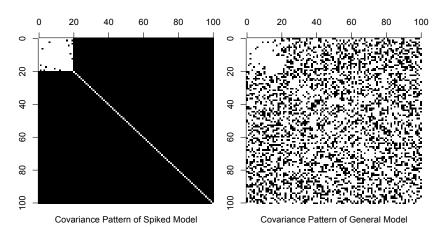
$$\Sigma = (\lambda_1 - \lambda_{d+1}) v_1 v_1^T + ... + (\lambda_d - \lambda_{d+1}) v_d v_d^T + \lambda_{d+1} I_p.$$

2. General model:

$$\begin{split} \Sigma &= \lambda_1 v_1 v_1^T + ... + \lambda_d v_d v_d^T + \lambda_{d+1} \Sigma' \\ \text{where } \Sigma' \succeq 0, \ \|\Sigma'\| = 1, \ \Sigma' v_j = 0, \ \forall 1 \leq j \leq d \,. \end{split}$$

Spiked Model is a Special Case of General Model

Black cell: $|\Sigma(i,j)| \le 0.01$, White cell: $|\Sigma(i,j)| > 0.01$ In spiked model, all black cells outside the upper 20×20 are 0.



How Does Sparsity Help?

- Question: how does sparsity help with the estimation?
 - 1. How well can we do if sparsity is assumed?
 - 2. How to estimate under sparsity assumption?
- Intuition: Estimation is easy if
 - 1. n is large.
 - 2. *p* is small.
 - 3. λ_{d+1} is close to 0.
 - 4. $\lambda_d \lambda_{d+1}$ is away from 0.
 - 5. R_0 is small.
- Under the spiked model, [Johnstone & Lu 2009] gives a consistent estimator of v_1 when $p/n \rightarrow c > 0$, and others fixed.

A Minimax Framework

Find $f(n, p, R_0, \lambda_1, \lambda_2)$ such that

$$\sup_{\Sigma} \mathbb{E} \|\hat{\Pi}_d - \Pi_d\|_F^2 \gtrsim f(n, p, R_0, \vec{\lambda}), \ \forall \text{ estimator } \hat{\Pi}_d,$$

and a particular estimator $\hat{\Pi}_d$ such that

$$\mathbb{E}\|\hat{\Pi}_d - \Pi_d\|_F^2 \lesssim f(n, p, R_0, \vec{\lambda}), \ \forall \Sigma.$$

 Σ is taken over all matrices in the sparse PCA model.

Answer to the Minimax Question

Theorem: Minimax Error Rate of Estimating V_d (Vu and Lei 2012b)

Under the general model, the minimax rate of estimating $V_dV_d^T$ is

$$f_d(n,p,R_0,\vec{\lambda}) \approx R_0 \frac{\lambda_1 \lambda_{d+1}}{(\lambda_d - \lambda_{d+1})^2} \frac{d + \log p}{n},$$

and can be achieved by

$$\hat{V}_d = \arg\max_{V_d^T V_d = I_d, \|V_d\|_{2,0} \leq R_0} \operatorname{Tr}(V_d^T \hat{\Sigma} V_d).$$

About This Result

Good news

- Exact minimax error rate in $(n, p, d, R_0, \vec{\lambda})$ for general models.
- First consistency result for ℓ_1 constrained/penalized PCA (Jolliffe et al 2003, Zou et al 2006).

• Price to pay

• Finding the global maximizer is computationally demanding.

Extensions

- Soft sparsity: ℓ_q -ball with $q \in [0,1]$ [Vu & L 2012a,b].
- Feasible algorithms [Vu, Cho, L, Rohe 2013].

Related Work

- When d = 1, [Birnbaum et al 2012, and Ma 2013] established the minimax rate under the spiked model, where the estimator is obtained by power method and thresholding.
- For subspace estimation, the minimax rate is independently obtained by [Cai et al 2012] under a Gaussian spiked model.

Feasible Algorithm Via Convex Relaxation

• For d = 1, the optimal estimator (consider $Z = v_1 v_1^T$) is

$$\begin{split} \hat{Z} &= \arg\max_{Z} \ \, \mathrm{Tr}(\hat{\Sigma}Z) - \lambda \, \|Z\|_{0}, \\ &\text{s.t. } \, \, \mathrm{rank}(Z) = 1, \, Z \succeq 0, \, \mathrm{Tr}(Z) = 1. \end{split}$$

• [d'Aspremont et al 2004] proposed an SDP relaxation

$$\hat{Z} = \arg\max_{Z} \mathrm{Tr}(\hat{\Sigma}Z) - \lambda \|Z\|_1, \ \text{ s.t. } \ Z \succeq 0, \ \mathrm{Tr}(Z) = 1\,,$$

• \hat{Z} gives consistent variable selection with optimal rate under a stringent spiked model, provided that \hat{Z} is rank 1 [Amini & Wainwright 2009].



Preliminary Results for SDP Relaxation

Theorem: Error Bound for SDP Relaxation [VCLR 2013]

When d=1 under the general model, assume $||v_1||_0 \le R_0$ and choose $\lambda \asymp \frac{\lambda_1}{\lambda_1 - \lambda_2} \sqrt{\log p/n}$ in the SDP relaxation. Then w.h.p the global optimizer \hat{Z} satisfies

$$\|\hat{Z} - v_1 v_1^T\|_2^2 \lesssim R_0^2 \frac{\lambda_1^2}{(\lambda_1 - \lambda_2)^2} \frac{\log p}{n}$$
.

SDP Reslaxation is *Near* Optimal

• Recall the SDP rate and minimax rate (d = 1, q = 0)

$$R_0^2 \frac{\lambda_1^2}{(\lambda_1 - \lambda_2)^2} \frac{\log p}{n}$$
 vs. $R_0 \frac{\lambda_1 \lambda_2}{(\lambda_1 - \lambda_2)^2} \frac{\log p}{n}$

• These are off by a factor of

$$R_0 \frac{\lambda_1}{\lambda_2}$$
.

- The *R*₀ factor is unavoidable for polynomial time algorithms in a hypothesis testing context [Berthet & Rigollet 2013].
- λ_1/λ_2 factor may be removable using finer analysis.

Summary

- Sparsity helps improve both estimation accuracy and interpretability of PCA in high dimensions.
- Sparsity can be defined for principal subspaces.
- Minimax error rates are established for general covariance models.
- Convex relaxation using SDP is near-optimal.

Ongoing Work

- Statistical properties for SDP relaxation under soft sparsity.
- SDP relaxation for subspaces (d > 1).
- Other penalties than ℓ_1 , such as the group lasso penalty.

Main References

- 1. V. Vu and J. Lei (2012) "Minimax rates of estimation for sparse PCA in high dimensions", *AISTATS'12*
- Vincent Vu and Jing Lei (2013) "Minimax Sparse Principal Subspace Estimation in High Dimensions", revision submitted.
- 3. Vincent Q. Vu, Juhee Cho, Jing Lei, and Karl Rohe (2013), ongoing work.