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Preface

The subjective Bayesian viewpoint leads to a theory with“clean lines,” in that, having
declared a likelihood and prior distribution, only computational error would lead to differ-
ent posterior distributions. Similarly, having declared a utility or loss function, again only
computational error would lead to a decision that failed to maximize expected utility or
minimize expected loss.

So attention has to be focused on where the likelihood, prior distribution and utility
or loss “come from.” The subjective view holds that the specification of these is the re-
sponsibility of the author. If the author wishes others to read and take seriously the results
of the computations, those specifications have to be explained and justified in the context
of the application. While it is all very well to say that the judgments required are sub-
jective and context dependent, these observations do not help to offer useful guidance to
others attracted by the conceptual elegance and computational availability of subjective
Bayesianism.

A fair question to ask, then, of an advocate of subjective Bayesianism (which I am) is
“how would you do it?”. Not knowing the context of your problem, I can’t answer that. But
I can write about how I have done it in the past, and offer additional comments about the
context in which I was working. Thus this book.

The papers discussed in this volume span twenty-five years of statistical practice. With
each paper, I explain the context and give further thoughts on the specifications involved.

The papers are presented chronologically, with two thoughts in mind: to allow a reader to
see whether and how my ideas have developed over time, and to observe how the increasing
availability of computation has changed how I approach applied problems. The papers
themselves reflect my interests and opportunities at the time, and address a broad variety
of subjects.

In the Statistics Department at Carnegie Mellon, one of the requirements for the Ph.D.
is to do a year-long Advanced Data Analysis (ADA) project, on data that hasn’t been
analyzed before, with a client outside the department and a statistical advisor. Typically,
the way I handle this is that, once the project is set up, I do not contact the client. Instead,
I ask the student many questions, which requires the student to discuss the project in depth
with the client. These projects also introduce students to the issues that attend real data,
including missing data, recording errors, modeling and computation. Papers 6, 9, 10, 11 and
14 in this volume were ADA projects.

I thank Oxford University Press, J. Wiley and Sons, Taylor and Francis, the American
Statistical Association, and SAGE Publishers for permission to reproduce articles. I espe-
cially thank the Institute of Mathematical Statistics, the Royal Statistical Society and the
International Society for Bayesian Analysis for not requiring such permission.
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Chapter 1

Bayesian Paleoethnobotany (1988)

Foreword

I met Christine Hastorf in 1986 when we were both at the Center for Advanced Study in
the Behavioral Sciences at Stanford. She is an archeologist, and had been on an excavation
project in Peru in 1982. One of her specialities is the use of botanical remains as evidence of
social behavior in ancient sites. Because botanical remains deteriorate over time, only burnt
seeds tend to survive to be studied. Typically a bag of dirt would be dug at specific points
in the site being studied. The dirt would be placed in water, so the soil would fall to the
bottom, while the burnt seeds would float on top. These would be skimmed off, packaged,
and sent to a laboratory for species identification. Christine’s question was how could she
persuade her fellow archeologists that the botanical evidence she was finding would add to
their understanding of the social issues of the site.

From all their other sources of information, the archeologists already knew a lot. To find
information that duplicated what they already knew would not justify paying attention to
botanical evidence. Hence the emphasis is on the additional power that botanical evidence
might have.

To model this, we took all the non-botanical evidence as prior information. The botani-
cals would contribute the likelihood, and the comparison between prior and posterior would
show the extent to which the botanical evidence had added to knowledge.

The site easily divided into areas within structures, and patio areas between structures.
Within structures, we defined four categories of use: hearth, storage against walls, living
quarters and midden. Outside of structures, we defined storage against the wall, midden,
and activity center. The digging notes were used (by Christine) to give prior probabilities
for each possible use at each spot where botanical evidence was gathered. In some of these,
there was the possibility of more than one use of the spot. Our treatment of this issue is
described in Section 1.4.

The likelihood is the probability of the data given the parameters, viewed as a function
of the parameters. Here the data are the numbers of seeds of each species observed at a
particular spot, and the parameters are indicators of the use, whether in a structure or in
a patio. To divide the questions into meaningful chunks, we distinguished what may have
been present in AD 1460, when the site was abandoned, from what was found in 1982,
when the samples were taken. The second step was to divide the gross categories of use into
subcategories, with numbers indicating the proportion of burnt botanicals expected from
each subactivity, as given in Table 1.4. For each subactivity, Table 1.3 gives numbers pro-
portional to the expected number of burnt botanicals by species. At first, I asked Christine
for numbers that added up to 100. Then she realized that she had neglected some kinds
of seeds she thought were possible. Should she rejigger the numbers to make them add up,
once again, to 100? I saw that this was unnecessary, so we relaxed the constraint that the
numbers had to add to 100. Together Tables 1.3 and 1.4 yield numbers proportional to the
expected number of burnt botanicals by species for each activity, as of 1460.

There are two additional steps to creating the likelihood. The first, addressed in Ta-
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ble 1.5, is the expected number of seeds, by activity, expected to have been deposited in
1460. Together with Tables 1.3 and 1.4, this permits calculation of the expected numbers of
burnt botanical remains, by species, for each activity as of 1460. This is given in Table 1.6
(unfortunately the original printing of this paper recorded this as Table 1.7).

The final step is to address the preservation probabilities by species. Some species, like
tubers (think potatoes) would be unlikely to survive from 1460 to 1982, while others, such
as Chenopodium, are small, hard and tough, and much more likely to survive. The first
column of Table1.7 (unfortunately, again, Table 1.6 in the original version) gives Christine’s
preservation probabilities. The result is the remainder of Table 1.7, which gives the expected
number of botanical remains, by species, for each activity, as of 1982. The observed number
of burnt botanicals by species in 1982 is taken to have a Poisson distribution with means
specified in Table 1.7.

It is difficult to recall just how rudimentary the computers were at this time. I think
they were done on a Tandy-80 (known at the time as a Trash-80), probably in Fortran. I
remember the computer working for hours to do the integrals involved.

There were two observations worthy of special note. Float number 284 had 17,465
Chenopodium seeds, while the expected numbers were 17.60 for a hearth, 16.14 for midden,
and 7.72 for indoor storage as given in Table 1.7. As a result, the posterior put probability
1 on a hearth. But such a huge number of Chenopodium seeds really suggests that this is
an outlying observation deserving of special treatment. The second observation worthy of
special comment is float 299, where 66 Scirpus seeds were found. The likelihood put the
expected number of Scirpus seeds in a hearth at 0, but the prior put probability 1 on this
location being a hearth. When asked about it, Christine was still sure this location was a
hearth. Hence, the issue here was the likelihood, not the prior. We made the decision to
leave this in the paper as is, rather than to adjust the 0 expected number of Scirpus seeds
in a hearth to make everything look nicer.

So what is to be learned from this exercise? First, the posterior distributions on the
activities in many of the locations were different than the priors, substantiating Christine’s
belief in the informativeness of botanical remains for archeologists. Second, our analysis is
entirely transparent, in that all of the assumptions are stated and available for critique. It
took courage, I think, for Christine to put numbers on her views so publicly, but the payoff
is to make archeology more transparent. Of course their interpretations are influenced by
their beliefs as well as what they find at the site. Bayesian methods offer them a way of
communicating what those beliefs are, and allow dissenting archeologists to see whether
alternative beliefs lead to importantly different conclusions.

Philosophically, this is an example in which the likelihood is obviously subjective, and
in which the probabilistic statements are personal beliefs.

At the time, the dominant understanding of probability was through the concept of
relative frequency, for example, by associating the probability that a flipped coin would
come up heads with the fraction of times it would come up heads in many (independent)
flips. In this paper, the probabilities are avowedly subjective, and there isn’t a useful sense of
many independent trials. Thus working this problem requires a more general understanding
of probability, in which relative frequency is a special case.

This paper was originally published by Oxford University Press in Bayesian Statistics
III, edited by J. Bernardo, M. DeGroot, D.V. Lindley and A.F.M. Smith, pp. 243–259.
Reproduction in this volume by permission of Oxford University Press.

Christine Hastorf is Professor of Archeology at the University of California, Berkeley.
She has raised twins.
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Abstract

Paleoethnobotany is the use of burnt plant remains to investigate certain types of activity at
archaeological sites. Ethnographic studies are used to inform opinion on the various points
in the processing, storing, and cooking of grains at which the plants might come into contact
with fire. Combined with opinions about the relative decay rates of different species, botanical
remains are thus used to update an archaeologist’s opinion of the activities carried out in
various places at a prehistoric house in a large settlement. The extent of the shift from
prior to posterior is a measure of the importance of botanical evidence in archaeological
interpretation.

The methods are applied to excavations at a prehistoric site in Perú.

Keywords: archaeology; botany; burnt botanical remains; Cromwell’s Rule; patio; Perú

1.1 Styles of Data Analysis

There are many styles of data analysis and interpretation. The goal of all is to make the data
more meaningful and interpretable. To illustrate how Bayesian analysis can help with mean-
ingful interpretation, we have chosen to apply it to the archaeological problem of determining
prehistoric household activities.

For the record, and so that other data analysis may compare their methods to the one
used here, the full data set discussed in this paper is reported in Table 1.1. The columns in
that table are seed-types, the rows are specific excavated locations (proveniences), and the
entries are the number of burnt seeds found in soil from each place.

The method of analysis pursued here, is to set out in detail both the way the data came
into being and what else is known or believed about the data by archaeologists who study this
cultural area (section 1.2). In this case, these data are part of a larger archaeological research
project and database. We then discuss the kinds of questions that paleobotanical data, such
as those reported in the table, are collected to answer. For greater specificity, we choose one
archaeological question to address in detail, namely, what daily life activities might have been
conducted at each provenience or location within one prehistoric household (section 1.3). We
report priors for activities based on the field notes of the archaeologists digging at each
provenience (section 1.4) The botanical data yield a likelihood on activities (section 1.5),
which is used to update the priors to posteriors (section 1.6). All these specifications must
be regarded as tentative, as they represent our first attempt to quantify paleoethnobotanical
beliefs in this manner. Our conclusions are reported in section 1.7.

1.2 The Data

The archaeological data in this paper come from a region around the modern town of Jauja
in the central Andes of Perú. This region is approximately 250 km east of Lima, between
the two mountain ranges that run parallel to the west coast of South America. The specific
region of study is the northern portion of the Wanka ethnic territory. The Wanka have lived
in the area since approximately 200 B.C. In 1977, a research team, the Upper Mantaro
Archaeological Research Project (UMARP, directed by T. Earle, T.D’Altroy, C. Hastorf, and
C. Scott), began investigating the economy and political organization of this local group,
throughout prehistory, until the arrival of the Spanish conquistadores in A.D. 1532. This
temporal sequence has been divided into cultural periods characterized by changes in the
political organization and settlement pattern. The Wanka, living between 10,000 and 12,0000
feet above sea level, farmed locally adapted crops: potato (Solanum tuberosum L.); maize (Zea

1The authors are members of the Center for Advanced Study in the Behavioral Sciences, Stanford.
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Figure 1.1: Wanka II Period settlement pattern in the archaeological study area.

mays L.); quinoa (Chenopodium quinoa Wild.), a grain; lupine (Lupinus mutabilis Sweet), a
legume; and a series of Andean tubers. They also herded camelids, the Ilama (Llama glama
Linnæus 1758) and the alpaca (Llama pacos Linnæus 1758), and raised guinea pigs (cavia cf.
porcellus Linnæus 1759) in their house (Hastorf, 1983).

This project is based on data collected during the 1982 field season, during which the
excavations studied the organization of the Wanka economy during the late prehistoric pe-
riods: the Late Intermediate Period (A.D. 1350–1460), called the Wanka II Period and the
Late Horizon-Inca Period (1460–1532) called the Wanka III Period (Earle et al., 1987).

During the Wanka II era the local population was organized into chiefdoms composed
of groups numbering in the thousands. This organization is inferred from the settlement-
pattern and artifact distribution at centers and small associated satellites. Large towns, such
as Tunánmarca (label J7 in Figure 1.1), comprised habitation structures numbering in the
thousands. These were associated with smaller nearby settlements. Sites occupied in this
time period were located on high, rocky knolls, overlooking the small valleys and rolling
countryside (Figure 1.1). Within stone defensive walls, these sites were filled with hundreds
of household residences called patio areas (an example of which is shown in Figure 1.2). Each
patio area was composed of one or more circular structures that opened onto an enclosed
space and were joined together by stone walls. These patio areas were linked by narrow
winding pathways that wove through the settlement. From the artifacts found at the site and
this architectural layout, we believe that each patio area housed a family, either nuclear or
extended.

The archaeological evidence suggests that local political units competed with each other
for control of land and other resources. Within a polity, a large community appears to have
dominated smaller nearby villages. These polities had leaders who were especially important
in warfare (LeBlanc, 1981).
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Figure 1.2: A patio at Tunánmarca: An Axiometric view of J7 = 2 patio.

During Late Horizon, the Wanka society was transformed through imperial conquest
(D’Altroy, 1981, 1987). As the region was pacified and organized under Inca rule, the settle-
ment locations changed radically. The Wanka population was moved into smaller, unfortified
settlements at lower elevations.

To understand the overall Wanka economy, UMARP began by investigating the domestic
household economy. The researchers wanted to understand the daily tasks and occupations
of household groups, and consequently were interested in the activities that took place in
patios. In the 1982 field season UMARP excavated patios at four different sites. In that
year, six patios were excavated totally to retrieve data on a complete distribution of artifacts
within individual households. In 1983 23 more patios were sampled to improve the patio
sample size. Patio selection was based on a series of architectural and spatial criterial that
were used to define two economic statuses within the society: elites and commoners. In each
patio, excavators divided the space into units no bigger than 2× 2 m. In each of these units,
they tried to collect all cultural material: ceramic fragments (sherds), stone tools (lithics),
animal bone, plant remains, metal, shell, and other miscellaneous objects that the Wanka
managed to bring home. However, not all objects that were used and deposited in the past
are still present in the soil. Erosion, scavenging by later people, and decomposition all affect
the artifact assemblage of an archaeological site.

Of major interest to archaeologists, therefore, are (1) the relationship (spatial, temporal,
or social) of the excavated objects to each other; (2) the conjectural recreation of the original
deposited assemblage from the incomplete record that is actually excavated; and (3) the
differential preservation of various types of artifacts. To understand the economics and politics
of a group, we must begin with a reconstruction of the activities that occurred in the excavated
areas. Once we know something about the activities, we can consider the causes of change.

Commonly, the excavated artifacts are divided by type and analyzed by specialists (e.g., a
ceramic specialist, an osteological specialist). Each artifact type can inform us about certain
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aspects of the prehistoric past. For example, ceramic sherds are often used to infer trade
relations between villages and groups; lithic tools tell us about a group’s complexity and
type of technology.

Of special interest here are the botanical remains collected from the patios, because
their information is rarely applied in archaeological research and they offer an important
window into the past. Because plants and plant use in the past have a direct link with their
collection and agricultural production, they should be able to give us a unique perspective
on agricultural activities and the related economics (Hastorf, 1988). Because of the long
time between deposition and excavation (over 500 years for the Wanka II samples), and the
weathering process, only charred botanical remains survive. Such remains are quite fragile,
and require special procedures. When, as here, these procedures are utilized, however, the
analysis results in a viable archaeological data set. In the past, botanical remains have not
been considered important in archaeology both because of the difficulty of the procedures
and because of the special assumptions that need to be made, particularly concerning the
differential preservation between plant taxa. We address this issue below.

1.3 Research Plan

How much can archaeological data inform us about prehistoric activities? Toward this general
question, we have chosen to focus on the more specific question, what were the activities in
different places within a Wanka household patio? Even more specifically, what can botanical
data tell us about these activities? The purpose of this paper is to see how much paleoeth-
nobotanical data can inform us about the past in one prehistoric location. The steps in the
study are:

1. Conversion of the archaeological field notes into probabilities, here treated as prior probabilities,
for the activities at each location.

2. Development of a model for the botanical remains conditional on each activity, which plays the
role of the likelihood.

3. Computation of posterior probabilities given the actual botanical data.

4. Comparison of prior to posterior probabilities as an indication of the extent to which botanical
remains are useful in informing the archaeologists about activities at sites.

We have chosen one household patio J7 = 2 (the second patio excavated on site J7), as
our test case in this exploratory study. It was excavated in 1982. It was the dwelling of an
elite family on the central site of Tunánmarca and included six structures and a large inner
patio space (Figure 1.3). The excavation units divide the patio into manageable areas. The
excavation procedure included two sampling strategies. First, within each of 88 excavation
sub-units (determined by location and depth) a bag of soil, 6 kg in weight, was collected.
The specific soil collection locations are shown by pie charts in Figures 1.3 and 1.4, which are
discussed in detail later. This soil then was processed by a mechanical water flotation system
(Watson, 1976) that gently separated the plant remains from the soil matrix. Charred or
carbonized plant remains have a lighter specific gravity than water, and as the soil is lightly
agitated by moving water, the plant fragments float to the surface and can be skimmed off.
This procedure also collects a systematic subsample of the very small artifacts at the site.

In the second data collection strategy, all the remaining excavated soil was processed
through 1

4
” screens. This allowed the artifacts greater than 1

4
” to be collected and placed in

coded bags. Naturally, most seeds are too small to be recovered by this sifting procedure,
although occasional wood or tuber fragments are collected. Systematically retrieved botanical
remains come from the equal-sized bags of soil processed by water flotation, and are the data
reported in Table 1.1.
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Figure 1.3: Plan of patio J7 = 2. Structures and excavation units labeled by number. Soil
sample flotation locations indicated by pie charts representing the prior probabilities.

Figure 1.4: Plan of patio J7 = 2. Structures and excavation units labeled by number. Soil
sample flotation locations indicated by pie charts representing their posterior probabilities.
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The cultural description of each of provenience at J7 = 2 is based on the excavation
notes, the soil changes, and the artifacts that came from the screening. The observations we
are comparing to the prior descriptions are the identified plants from the individual samples
of bagged and floated soil. What can the botanical data tell us about the cultural activities
in this prehistoric elite patio compound? Let us now turn to the construction of the prior
probabilities.

1.4 Prior Probabilities of Activities

The first step in determining the prior probabilities of prehistoric activities is to be specific
about the categories used. For this paper we have chosen a rather coarse division of activities.
We are treating the inside of the circular structures differently from the patio space. Within
a structure, the activity areas we recognize are hearths, storage against the walls, living
quarters, and midden. In the patio outside of the structures, we divide the activity areas into
storage against the wall, midden, and activity center. These activities and their locations are
defined by modern daily life activities, recorded from observing the Wanka who live in the
region today. A hearth (A) is a place where food is cooked and heat is generated. It is a
very localized spot, identified by dense carbon and in situ burning of the soil. Storage inside
the structure (F) is located against the walls of the house structure. It is where fuel and
food are stored. Living quarters (G) within the structure are where the residents eat, sleep,
and socialize; the guinea pigs also reside there and eat the food scraps dropped on the floor.
Midden (E) is a localized place, often near a wall, where objects and refuse are discarded. The
activity of storage in the patio area (H) remains the same, with more emphasis on storing
fuel, ash, and wild collectables. Midden (E) in the patio has the same use as in the structure.
An activity center (I) is an area where many tasks are performed. The most common are
food processing, such as winnowing, sorting, drying, bagging; household goods construction
or repair, such as wool carding, dyeing, weaving; tool construction, such as digging-stick
making, mat weaving, pottery making, leather working, etc. A particular spot may or may
not have been used for only one of these categories. Thus we must consider the possibility of
mixed usage, where appropriate.

For each provenience, the notes of the archaeologist who excavated it provide the basis
for an opinion about use of the location where the soil sample was collected. The notes
incorporate evidence other than the botanical specimens recovered by flotation, of which the
excavating archaeologist would have no knowledge. For each provenience, the archaeologist
on our team (Hastorf) gave her opinion of the prior probabilities of usage, based on the notes
and ethnographic knowledge. These probabilities are given in Table 1.2.

The probabilities given in Table 1.2 are incomplete, as the following example
demonstrates. Consider provenience #283, a sample recovered from inside a struc-
ture. The prior probabilities given in Table 1.2 are:

P (AEFG) = 0.25

P (AEFG) = 0.25

P (AEFG) = 0.50

Thus Hastorf is sure provenience 283 was not used as hearth (A) or midden (E). It
might have been used solely as storage (F) (probability 1

4 ) solely as living quarters
(G) (probability 1

4 ), or both (probability 1
2 ). If it had been used as both, what is the

probability that a given deposited botanical specimen came from a storage area or
from living quarters?

We have chosen to treat this as a beta distribution, and here in particular a uni-
form distribution. In general we choose the hyper parameters α and β of this beta
distribution as follows: The mean of the beta distribution is chosen to be the same
as the mean of the distribution of uses conditional on the provenience being used for
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1 275 133 1
2 276 13 56 2 1 2 24
3 264 7 25 3 1 4 3 9 2 14
4 288 41 45 2 2 7 2 1 21 1
5 290 3 33 1 1 1 2
6 314 1 1 3 1 1 6
7 299 20 66 2 14 66 2 9
8 191 1
9 302 51 1 4 1 11 6 2

10 337 14 5
11 284 2 17465 26 3 3 90
12 283 1 6 1
13 273 1 1 29 1 2 1 4 2 12
14 175 14 7 2
15 174 1 22 1 1 4 1 2
16 407 7 6 47 1 1 2
17 342 1
18 204 2 44
19 300 1 3 1 9 3 1
20 396 22 1 2
21 164 1 5 1 1 3
22 170 2 1 1 3
23 172 7
24 165 1 3 1 1
25 181 5 1 1
26 185 4 1
27 159 7 1 2 1 7
28 167 1
29 160 1 1 4
30 171 48 13 1 7 8 2 1 7 1 1 200 5
31 184 1 5 2 5 2
32 169 1 3 5
33 182 4 26 41 15 24
34 155 3 10 37 4 6
35 157 2 3 14
36 301 2 8 1 10 1 5 5 3
37 156 1 4 13 2 50
38 423 1 79 63 24 63 61 989
39 177 1 4
40 419 32 11 1 17 44 11 13 37 1
41 158 2 1 9
42 279 10 1 10 7 3 25
43 310 1
44 322 5 2 2 2 4 7
45 144 5 1 5 3
46 326 3 24 1 6
47 292 48 6 31 6 8 1
48 154 1 1
49 148 1 1
50 289 3 7 1

Table 1.1: Burnt Botanical remains by Provenience as found. (1982). Paleoethnobotanical
data by flotation number from J7 = 2
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51 291 3 9
52 319
53 321 1
54 327 3 3
55 325 13 1 3 1 1
56 333 3 4
57 142 2 1 1
58 336 3
59 340
60 305 1 1
61 285 2 45 2 4
62 149 2 1 161 1
63 312 1 16 1
64 139 14 1 13 1 3 1
65 168 2 42
66 161 9 1
67 146 2
68 152 1
69 188 1 2 6 4 1
70 186 12 9 5
71 187 21 18 8 1 9 1 3 10 3
72 282 12 1 20 1 4
73 147 1
74 145 4 4 2 3
75 281 10 5 1 4 5 4
76 286 1 9 1 13 4 29
77 287 210 15 5 1 47 1
78 330 47 18 3 2 15 2 2
79 339 38 1 2 1 1
80 324 2 3 1 1
81 303 25
82 422 20 5 1
83 280 1 2 26
84 329 1 1 9 6 3
85 313 1
86 332 2 1 2
87 274 0 2
88 277 1 1 4

Table 1.1: (continued) Burnt Botanical remains by Provenience as found. (1982). Paleoeth-
nobotanical data by flotation number from J7 = 2

only one purpose. Thus if in general

P (AEFG) = p1

P (AEFG) = p2

then α and β would be chosen so that

α

α+ β
=

p1

p1 + p2
.

The sum α + β is an indication of how much total information is available in a beta
distribution. (The variance of a beta distribution is E(p)E(1− p)(1/(α+ β + 1).) We
chose α+ β to indicate considerable uncertainty about the mixture. In fact, we chose
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Proviences Inside Structures
Key A: Hearth; F: Storage(I): G: Living quarters, E: Midden

(all no Act Area, no midden, no storage (O))
FLOTATION SAMPLE

NUMBER P (AFG) P (AFG) P (AFG)
283 0.25 0.25 0.50
273 0.33 0.33 0.34
172 0.25 0.25 0.50
156 0.25 0.25 0.50
175 0.80 0.10 0.10
275 0.70 0.10 0.20
290 0.70 0.10 0.20
174 0.20 0.30 0.50
314 0.30 0.20 0.50
302 0.30 0.20 0.50
297 0.30 0.20 0.50
396 0.30 0.20 0.50
164 0.60 0.20 0.20
170 0.60 0.20 0.20
165 0.60 0.20 0.20
181 0.60 0.20 0.20
185 0.60 0.20 0.20
159 0.60 0.20 0.20
167 0.60 0.20 0.20
160 0.60 0.20 0.20
184 0.50 0.30 0.20
169 0.50 0.30 0.20
182 0.50 0.30 0.20
155 0.50 0.30 0.20
157 0.70 0.10 0.20
177 0.70 0.10 0.20
301 0.70 0.10 0.20
158 0.70 0.10 0.20
423 0.70 0.10 0.20
419 0.70 0.10 0.20
279 0.70 0.10 0.20
FLOTATION SAMPLE FLOTATION SAMPLE
NUMBER NUMBER

283
}

P (EFG) = 0.50 P (AFG) = 0.8

273 P (EFG) = 0.05 407 P (AFG) = 0.1

172 P (EFG) = 0.05 P (AFG) = 0.1

288 P (EFG) = 0.15

264 P (EFG) = 0.15 P (AFG) = 0.05

276 P (EFG) = 0.05 P (AFG) = 0.05

P (EFG) = 0.05 P (AFG) = 0.20

191 P (AFG) = 0.40

P (AFG) = 0.05 P (AFG) = 0.10

P (AFG) = 0.10 P (AFG) = 0.20
284 P (AFG) = 0.10

P (AFG) = 0.05 P (AEF ) = 0.05

P (AFG) = 0.65 P (AEF ) = 0.20

P (AFG) = 0.05 337 P (AEF ) = 0.10

P (AEF ) = 0.10
P (AEF ) = 0.20

299 P (AFG) = 1.0
300

}
342 P (AFG) = 1.0
172
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Proviences Outside Structures
Key I: Activity Area in Patio; H: Storage (O); E: Midden

(all no Hearth, no storage (I), no Living Quarters)
FLOTATION
SAMPLE

NUMBER P (IHE) P (IHE) P (IHE) P (IHE) P (IHE) P (IHE) P (IHE)
310 0.02 0.02 0.02 0.05 0.33 0.33 0.23
325 0.05 0.05 0.07 0.10 0.15 0.43 0.15
285

0.20 0.20 0.80 0.17 0.15 0.50 0.15
149
139 0.30 0.35 0.05 0.10 0.10 0.05 0.50
332 0.03 0.07 0.10 0.10 0.30 0.20 0.20
292 0.01 0.01 0.01 0.09 0.19 0.19 0.50
187

0.01 0.01 0.01 0.10 0.47 0.20 0.20
281
289 0.50 0.10 0.05 0.10 0.10 0.05 0.10
291 0.50 0.15 0.05 0.10 0.10 0.05 0.55
319 0.63 0.10 0.05 0.10 0.05 0.05 0.02
321 0.63 0.10 0.05 0.10 0.05 0.05 0.02
327 0.60 0.15 0.05 0.05 0.10 0.05 0.02
142 0.63 0.10 0.05 0.10 0.05 0.05 0.02
340 0.10 0.10 0.10 0.10 0.20 0.10 0.30
305 0.55 0.15 0.04 0.05 0.10 0.01 0.10
312 0.55 0.15 0.04 0. 05 0.10 0.01 0.10
161 0.20 0.20 0.10 0.15 0.20 0.05 0.10
152 0.50 0.15 0.05 0.05 0.15 0.05 0.05
339 0.80 0.10 0.00 0.00 0.10 0.0 0.00
324 0.80 0.10 0.00 0.00 0.10 0.0 0.00
329 0.05 0.10 0.05 0.10 0.20 0.20 0.30
277 0.10 0.10 0.10 0.10 0.20 0.20 0.20
154 0.20 0.35 0.04 0.05 0.30 0.02 0.04
336 0.30 0.30 0.10 0.10 0.10 0.05 0.05
147

0.30 0.30 0.05 0.10 0.15 0.05 0.05287
330
303 0.30 0.30 0.05 0.05 0.20 0.05 0.05
144 0.20 0.30 0.10 0.10 0.10 0.10 0.10
326 0.10 0.20 0.05 0.10 0.30 05 0.20
188 0.10 0.10 0.10 0.10 0.30 0.20 0.30
186

0.05 0.05 0.05 0.10 0.25 0.20 0.30
286
148 0.01 0.01 0.04 0.04 0.40 0.20 0.30
168 0.15 0.20 0.50 0.20 0.20 0.05 0.05
146 0.55 0.20 0.05 0.10 0.10 0.0 0.0
282 0.02 0.02 0.02 0.05 0.50 0.19 0.20
145 0.05 0.02 0.05 0.10 0.25 0.28 0.30
422 0.80 0.10 0.00 0.00 0.10 0.0 0.0
280 0.20 0.25 0.10 0.15 0.15 0.05 0.10
274 0.10 0.10 0.10 0.10 0.20 0.20 0.20
322 0.05 0.05 0.05 0.15 0.15 0.15 0.40
333 0.05 0.05 0.05 0.10 0.15 0.20 0.40
313 0.60 0.20 0.05 0.05 0.05 0.05 0.0

Table 1.2: Priors of Activities by Floatation Sample Number
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it so that it is the same as it would be for a uniform distribution, i.e., α+β = 2. These
choices imply α = 2p1/(p1 + p2) and β = 2p2/(p1 + p2). This specifies the prior in all
cases in which only two uses were given positive probability.

These ideas can be extended easily to cases of three or more possible activities.
First, the prior probability on each combination of two activities is specified using the
principles above. If k activities are possible, that they individually have probabilities,
respectively, of p1, . . . , pk. Then, analogous to the work before, a Dirichlet prior would
be imposed, with parameters α, . . . , αk. These hyper parameters αi would be chosen
to satisfy

αi∑k
j=1 αj

=
pi∑k
j=1 pj

i = 1, . . . , k.

Also, to make the uniform distribution a possibility, (α1 = · · · = αk = 1), the sum of
the alphas is constrained by

k∑
i=1

αi = k.

These equations have the solution

αi =
kpi∑k
j=1 pj

,

which defines the prior on each k-dimensional space. This assumes each pi > 0, i =
1, . . . , k.

1.5 Botanical Remains: The Likelihood Function

For convenience, we accept a Poisson model for the number X of burnt botanical
remains believed to have been at a provenience at the time of site abandonment (ca.
A.D. 1460, when the Inca conquered and relocated the population). Suppose the X has
mean λ. If the process determining whether the seed survives until 1982 is binomial
with probability p, then the number of botanical remains found in 1982, Y , is Poisson
with mean λp. For each kind of possible botanical specimen, then the probability p
must be specified. In addition, for each activity and specimen the mean λ (as of 1460)
must be specified.

Leaving aside for the moment the issue of preservation, it is necessary to elicit
Poisson rates λ for botanical remains expected by use of the provenience as, of A.D.
1460. As a first step, the group of subactivities was identified, and botanical remains
were associated with each. Points were then distributed, sometimes on the basis of 100,
but sometimes with other totals. The totals were chosen only for convenience, and are
not regarded as having archaeological meaning. The results are listed in Table 1.3.

The next step was to subdivide the six activities into sub activities. These decom-
positions are given in Table 1.4. Again the totals are not regarded as meaningful, but
simply as devices to get the proportions of botanical remains internal to each activity
correct. Finally, we considered how may botanical remains would be expected (as of
A.D. 1460) were the provenience used for each activity or combination of activities.
These expectations are given in Table 1.5. The information in Tables 1.3, 1.4 and 1.5
jointly implies Poisson rates by activity in A.D. 1460, as reported in Table 1.6.

With respect to preservation, our first step was to rank botanical remind by how
likely they are to survive. The ranking was as follows, from most to least likely to
survive; small seeds, wood, Zea mays kernels, legume cotyledons, grass stalks, animal,
dung, and tubers. After that the archaeologist chose probabilities for the survival of
each kind of botanical specimen. Those are reported in column 1 of Table 1.7. Finally
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Food Sweepings Tool Construction
Zea mays kernels 3 Chenopodium spp. 20 wood 4
Chenopodium spp. 11 Amaranthus 8.3
tubers 4 Scirpus 2.5 Scirpus 1
domestic legumes 2 wild legumes 8.3

20 Verbena 8.3 Polygonum 1
Hearth Misc. Plantago 2.5
Amaranthus 11 Malvastrum 2.5 Cyperaceae 1
wild legumes 11 Asteraceae 8.3
Verbena sp. 11 wood 2.5 grass 1
Piantago sp. 11 grass stalks 2.5 8
Asteraceae 11 Papaveraceae 2.5
Erthroxylum coca 1 Galium 2.5
Vitaceae 1 Vitaceae 2.5
Sisyrinchium 11 Sysrinchium 2.5
Polygonum 11 Relbunium 0.5
Cyperaceae 11 Polygonum 8.3
grass 11 Cyperaceae 8.3

101 grass 2.5
Medicinals tubers 2.5
Verbena sp. 3 domestic legumes 2.5
Plantago sp. 3 animal dung 4.0
Sysrinchium 1 104.3
orgiga colorado 1 Winnowing
Vaccinium sp. 1 Zea mays kernels 10
Valeriana sp. 1 Chenopodium spp. 30

10 Amaranthus 15
Fuel Scirpus spp. 15
Zea mays cobs & cupules 5 Malvastrum sp. 15
wood 30 Asteraceae 15
grass stalks 10 domestic legume pods 10
grass 20 110
animal dung 30 Stored Food

95 Zea mays kernels 3
Household Good Fabrication Chenopodium spp. 11
Verbena 10 Scirpus 2
Asteraceae 2.5 Asteraceae 2
wood 60 Cyperaceae 2
grass stalks 2.5 grass 4
Relbunium 2.5 tubers 4
Polygonum 10 domestic legumes 2
Cyperaceae 10 Minthostachys sp. 4
grass 2.5 34

100

Table 1.3: Botanical Remains by Subactivity (1460)
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Hearth Storage (outside
food 20 fuel 1
fuel 70 sweepings 1
hearth misc. 5 household good fabrication 1
medicinals 5 3

100 Open Area in Patio
Midden household good fabrication 4
hearth misc. 70 tools 4
sweepings 30 winnowing 1

10 9
Storage (inside) Living Quarters
stored food 30 food 6
fuel 20 sweepings 6
sweepings 50 medicinals 0.5

100 tools 1
13.5

Table 1.4: Activities Partitioned into Subactivities

the other columns of Table 1.7 report the expected Poisson rates of botanical remains
as found in 1982, and are the rates in Table 1.6 multiplied by the probabilities in
column 1 of Table 1.7. This specifies the likelihood for the problem.

It is perhaps noteworthy that the likelihood in this problem is just as subjective as
the prior. That such might be the case has been remarked many times in the Bayesian
literature, and is consistent with the view of Bayarri et al. (1987) that only the product
of likelihood and prior has unique status from a Bayesian perspective. We have taken
extra space to report the reasoning that leads to this specification because we think
it might be interesting in its own right.

1.6 Computation of Posterior Distributions

The problem as posed is not a convenient family to report a conjugate posterior
distribution. We have chosen to report it in terms of the predictive probability of each
activity. For convenience of comparison, the prior has been reformulated that way as
well.

This computation distinguished each subset of possible activities. These subsets
contained one to three activities each. First, each subset was checked to see if a botan-
ical specimen, believed impossible for some of its constituents, has been found there. If
so, this subset was eliminated. For the others, a computation was done: in the subsets
of size one, a simple calculation of Poisson probability, for the subsets of size two, a
1-dimensional integral, and finally for subsets of size 3, a 2-dimensional integral.

The posteriors were calculated for 1-dimensional integrals using a 10-point grid,
and for the 2-dimensional problems with a truncated 10 × 10 grid. Although these
methods were adequate for such low-dimensional integrals, we would anticipate moving

Hearth 200 Living Quarters 30
Midden 150 Storage (0) 50
Storage (I) 50 Open Area in Patio 10

Table 1.5: Expected Total Botanical Remains (in 1460) by Activity
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Preservation INDOOR LIVING OUTDOOR ACTIVITY
Probability HEARTH MIDDEN STORE QTR STORE CENTER

Mzkernels 0.50 3.00 1.58 0.66 1.00 0.00 0.05
cupcobs 0.40 2.95 1.55 0.21 0.00 0.35 0.00
Chenopodium 0.80 17.60 16.14 7.72 7.91 2.56 0.24
Amaranthus 0.80 0.87 3.32 1.59 0.85 1.06 0.12
Scirpus 0.80 0.00 0.86 1.19 0.48 1.65 0.92
wild legumes 0.80 0.87 3.32 1.59 0.85 1.06 0.00
Verbena 0.80 3.27 4.58 1.59 1.12 1.06 0.00
Plantago 0.80 3.27 2.58 0.48 0.52 0.32 0.00
Malvalstrum 0.80 0.00 0.86 0.48 0.26 0.32 0.12
Asteracae 0.80 0.87 3.32 2.30 0.85 1.39 0.21
wood 0.60 26.53 14.57 2.25 0.86 9.40 2.93
grass stalks 0.30 14.74 8.82 1.65 0.32 2.57 0.11
Coca 0.30 0.03 0.02 0.00 0.00 0.00 0.00
Papaveracae 0.80 0.00 0.86 0.48 0.26 0.32 0.00
Galium 0.80 0.00 0.86 0.48 0.26 0.32 0.00
Vitaceae 0.80 0.08 0.90 0.48 0.26 0.32 0.00
Sisyrinchium 0.80 1.67 1.74 0.48 0.34 0.32 0.00
Relbunium 0.80 0.00 0.17 0.10 0.05 0.40 0.09
Polygonum 0.80 0.87 3.32 1.59 1.07 2.39 0.80
Cyperaceae 0.80 0.87 3.32 2.30 1.07 2.39 0.80
grass 0.80 24.45 13.70 3.58 0.48 3.46 0.53
tubers 0.10 0.80 0.53 0.24 0.30 0.04 0.00
dom. legumes 0.30 1.20 0.95 0.44 0.50 0.12 0.00
dung 0.30 13.26 7.48 1.24 0.15 1.77 0.00
Minthostachys 0.80 0.00 0.00 1.41 0.00 0.00 0.00
ortiga 0.80 0.80 0.42 0.00 0.09 0.00 0.00
Vaccinium 0.80 0.80 0.42 0.00 0.09 0.00 0.00
Valeriana 0.80 0.80 0.42 0.00 009 0.00 0.00
Legume pods 0.40 0.00 0.00 0.00 0.00 0.00 0.04

TOTAL 119.60 96.61 34.53 20.03 33.59 6.96

Table 1.6: Preservation Probabilities and Expected Botanical Remains by Usage as of 1982.

to more sophisticated methods (Smith et al., 1985; Tierney and Kadane, 1986) as the
dimensionality of the integrals grows.

Several proveniences posed special computational difficulty. In an earlier draft of
this paper, numerical problems of overflow and underflow prevented calculation of
posteriors in proveniences 275, 284, 171, 423, 292, 148, 149, 188, 286, 287, 330, and
329. However, careful study of these proveniences showed that multiplying the Poisson
probabilities by a well-chosen constant made it possible to calculate all of the posteri-
ors. Some of the difficulty that appears to be numerical is perhaps better thought of
as being a modeling problem. For example, float number 284, the observation of more
than 17,000 Chenopodium seeds is astonishing given the likelihoods here, or anything
close to them. That the posterior puts probability 1 on float number 284 being a
hearth is an artifact of the huge number of Chenopodium seeds observed and the fact
that hearths have the highest expected number of Chenopodim seeds among activities
given positive prior weight.

A second difficulty caused one provenience (299) not to be computable. The prior
puts probability one on its being a hearth. But 66 Scirpus seeds were found there,
an impossible event because the expect number of Scirpus seeds found in a hearth is
zero according to Table 1.7. This problem is a straight issue of beliefs incompatible
with the data. The difficulty is due to disregard of “Cromwell’s Rule” (Lindley, 1985,
p. 104), which says to avoid putting zero probabilities on anything. Provenience 299
is still regarded by Hastorf as a hearth, so the problem lies in the expected numbers
of seeds (Tables 1.6 and 1.7), and not in the priors (Table 1.2). As more experience is
jointly gained in this kind of analysis, we expect this problem not to recur.
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INDOOR LIVING OUTDOOR ACTIVITY
HEARTH MIDDEN STORE QTR STORE CENTER

Mzkernels 6.00 3.15 1.32 2.00 0.00 0.10
cupcobs 7.37 3.87 0.53 0.00 0.88 0.00
Chenopodium 22.00 20.18 9.65 9.89 3.20 0.30
Amaranthus 1.09 4.15 1.99 1.06 1.33 0.15
Scirpus 0.00 1.08 1.48 0.60 2.07 1.15
wild legumes 1.09 4.15 1.99 1.06 1.33 0.00
Verbena 4.09 5.73 1.99 1.39 1.33 0.00
Plantago 4.09 3.23 0.60 0.65 0.40 0.00
Malvalstrum 0.00 1.08 0.60 0.32 0.40 0.15
Asteracae 1.09 4.15 2.87 1.06 1.74 0.26
wood 44.21 24.29 3.76 1.43 15.66 4.89
grass stalks 14.74 8.82 1.65 0.32 2.57 0.11
Coca 0.10 0.05 0.00 0.00 0.00 0.00
Papaveracae 0.00 1.08 0.60 0.32 0.40 0.00
Galium 0.00 1.08 0.60 0.32 0.40 0.00
Vitaceae 0.10 1.13 0.60 0.32 0.40 0.00
Sisyrinchium 2.09 2.18 0.60 0.43 0.40 0.00
Relbunium 0.00 0.22 0.12 0.06 0.50 0.11
Polygonum 1.09 4.15 1.99 1.34 2.99 1.00
Cyperaceae 1.09 4.15 2.87 1.34 2.99 1.00
grass 30.56 17.12 4.47 0.60 4.32 0.67
tubers 8.00 5.28 2.36 2.99 0.40 0.00
dom. legumes 4.00 3.18 1.48 1.65 0.40 0.00
dung 44.21 29.94 4.12 0.51 5.90 0.00
Minthostachys 0.00 0.00 1.76 0.00 0.00 0.00
ortiga 1.00 0.53 0.00 0.11 0.00 0.00
Vaccinium 1.00 0.53 0.00 0.11 0.00 0.00
Valeriana 1.00 0.53 0.00 0.11 0.00 0.00
Legume pods 0.00 0.00 0.00 0.00 0.00 0.10

TOTAL 200.00 150.00 50.00 30.00 50.00 10.00

Table 1.7: Expected Botanical Remains by Usage as of 1460.

1.7 Conclusion

The most significant aspects of our study are (1) the new method by which paleoeth-
nobotany can shed light on prehistoric behaviors, (2) the usefulness of botanical data
to prehistoric interpretation generally, and (3) an application of Bayesian statistics.

Culturally, the botanical remains help us interpret the structures more explicitly.
Each structure of Patio J7 = 2 now reveals a new pattern of use activity that had not
been identified before our analysis. Figures 1.3 and 1.4 have presented the priors and
posteriors for each flotation sample respectively. Glancing between these two figures
one can begin to see the amount of information the botanical remains contribute to
the priors.

In general, our statistical exercise shifted the posterior of some proveniences sys-
tematically toward one activity. Specifically, samples that produced few seeds tended to
be identified with more certainty as either living quarters (inside structures) or patios-
activity areas (outside). In a cultural interpretation that shift makes intuitive sense.
Both in and outside the structures, the posterior pattern is quite strongly changed
from the priors. The reinterpretation is notable in the proveniences against the walls
in the open patio, with a dominance in patio use over midden or storage. Within the
structures there is a shift toward living quarters with less storage. In the structures,
the posteriors shifted the storage areas into more discrete locations, seen in five of the
six structures. All six structures increased their probabilities for being living quarters
with a bit of storage.

Both the priors and the posteriors define the patio use areas less clearly than the
structures. The patio areas were probably used for many more amorphous and diverse
activities. These activities were probably not as constrained to specific locations as
those within the structures. Overall each location was used for many more activities,
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Samples Inside Structures
Patio

Storage Living Storage Activity
Hearth Midden Inside Quarters Outside Center Structure

Float Number Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
275 PRIOR 125 (331) 875 (331) 1

POST 003 (016) 997 (016)
276 PRIOR 459 (494) 082 (275) 459 (198) *

POST 424 (131) 001 (010) 574 (132)
264 PRIOR 459 (498) 082 (275) 459 (198) *

POST 391 (099) 006 (032) 603 (103)
288 PRIOR 459 (498) 082 (275) 459 (498) *

POST 731 (158) 001 (009) 267 (158)
290 PRIOR 125 (331) 875 (331) *

POST 005 (022) 995 (022)
314 PRIOR 400 (490) 600 (490) 2

POST 502 (229) 498 (229)
299* *
191 PRIOR 074(261) 176 (301) 750 (433) *

POST 000 (002) 006 (024) 993 (024)
302 PRIOR 400 (490) 600( 490) *

POST 805 (206) 195 (206)
337 PRIOR 387 (487) 480 (500) 133( 340) *

POST 000 (004) 1000 (004)
284 PRIOR 064 (244) 876 (330) 060 (238) *

POST 1000 (000) 000 (000) 000 (0000)
283 PRIOR 500 (500) 500 (500) *

POST 069 (136) 931 (136)
273 PRIOR 5000 (500) 500 (500) *

POST 973 (075) 027 (075)
175 PRIOR 111 (314) 889 (314) 3

POST 006 (031) 994 (031)
174 PRIOR 600 (490) 400 (490) *

POST 182 (221) 618 (221)
407 PRIOR 889 (314) 111 (314) *

POST 000 (004) 1000 (004)
342 PRIOR 1000 (000) *

POST 1000 (000)
294 PRIOR 400 (490) 600 (490) *

POST 993 (028) 007 (028)
300 PRIOR 1000 (000) *

POST 1000 (000)
396 PRIOR 400 (490) 600 ( 490) *

POST 016 (047) 984 (047)
164 PRIOR 250 (133) 750 (433) *

POST 028 (083) 972 (083)
170 PRIOR 250 (433) 750 (433) *

POST 035 (090) 965 (090)

Table 1.8: Prior and Posterior Means and Standard Deviations by Flotation Number and
Use (probabilities multiplied by 1000)

with only limited midden areas and minor evidence of storage than was supposed in
the priors. Storage in the patio occupied two corners, areas 56 and 58. Patio midden
was only along the north wall of the patio.

Both inside and outside the structures, the botanical data provided more exact
information about the proveniences than we had from the field notes. Doubtless, more
precision in the priors is a critical exercise, but it is clear nevertheless that the botanical
data have aided our interpretation of prehistoric activities in this specific example and
are likely to do so in other investigations.

Interpreting the posteriors generated by Bayesian analysis, structure 1 was used for
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Samples Inside Structures (continued)
Patio

Storage Living Storage Activity
Hearth Midden Inside Quarters Outside Center Structure

Float Number Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
172 PRIOR 500 (500) 500(500) 4

POST 055 (118) 945 (118)
165 PRIOR 250 (433) 750 (433) *

POST 006 (027) 994 (027)
181 PRIOR 250 (433) 750 (433) *

POST 008 (032) 992 (032)
185 PRIOR 250 (433) 750 (433) *

POST 015 (053) 985 (053)
159 PRIOR 250 (433) 750 (433) *

POST 643 (313) 357 (313)
167 PRIOR 250 (433) 750 (433) *

POST 007 (028) 993 (028)
160 PRIOR 250 (433) 750 (433) *

POST 055 (116) 945 (116)
171 PRIOR 1000 (000) *

POST 10000 (000)
184 PRIOR 375 (484) 625 (484) 5

POST 179 (221) 821 (221)
169 PRIOR 375 (484) 625 (484) *

POST 311 (294) 689 (294)
182 PRIOR 375 (484) 625 (484) *

POST 988 (054) 012 (054)
155 PRIOR 375 (484) 625 (484) *

POST 994 (035) 006 (035)
157 PRIOR 125 (331) 875 (331) 6

POST 005 (021) 995 (021)
301 PRIOR 125 (331) 875 (331) *

POST 929 (162) 071 (162)
156 PRIOR 500 (500) 500 (500) *

POST 295 (146) 705 (146)
423 PRIOR 125 (331) 875 (331) *

POST 434 (054) 566 (054)
177 PRIOR 125 (331) 875 (311) *

POST 004 (018) 996 (018)
419 PRIOR 125 (331) 875 (331) *

POST 1000 (003) 000 (003)
158 PRIOR 125 (331) 875 (331) *

POST 004 (019) 996 (019)
279 PRIOR 125 (331) 875 (331) *

POST 791 (255) 209 (255)

Table 1.8: (continued) Prior and Posterior Means and Standard Deviations by Flotation
Number and Use

living quarters but shows some midden deposit near the entrance. This is supported by
a disturbed human burial toward the front of structure. Structure 2 data show storage
use in the center, with some daily living activities evident, supported by a hearth.
Structure 3 was used mainly for living activities with some storage in the eastern
half. Structure 4 was used predominantly for living activities, with a bit of storage in
the western part near the entrance. Structure 5 was used for both storage and living
quarters. Structure 6, like 3 and 5, also had living quarters, a hearth (not illustrated),
and some storage areas. Evidently only structure 1 was used predominantly for living
quarters throughout its life history, without evidence of storage. As mentioned above,
this structure has additional artifactual data suggesting that it was abandoned while
the patio was still occupied. This supports the lack of storage in the structure, and
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Samples Outside Structures
Patio

Storage Living Storage Activity Patio
Hearth Midden Inside Quarters Outside Center Area

Float Number Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
310 PRIOR 488 (500) 488(500) .024 ( 152) 51

POST 000 (001) 000 (005) 1000 (005)
322 PRIOR 452 (193) 452 (498) 096 (295) *

POST 209 (059) 060 (106) 731 (108)
144 PRIOR 215 (117) 208 (406) 517 (500) 52

POST 117 (037) 008 (035) 845 (017)
326 PRIOR (603 (163) 106 (308) 206 (104) *

POST 078 (118) 766 (361) 156 (261)
292 PRIOR 493 (500) 493 (500) 013 (115) *

POST 919 (090) 059 (089) 002 (013)
154 PRIOR 576 (491) 028 (465) 396 (489) *

POST 000 (002) 002 (010) 998 (010)
159 PRIOR 199 (.499) 098 (294) 706 (456) *

POST 027 (028) 029 (064) 944 (069)
291 PRIOR 174 (379) 079 (270) 747 (435) *

POST 024 (028) 028 (066) 948 (070)
319 PRIOR 074 (262) 071 (256) 855 (352) *

POST 000 (002) 001 (006) 999 (007)
321 PRIOR 074 (262) 071 (256) 855 (352) 53

POST 000 (002) 001 (007) 999 (007)
327 PRIOR 144 (351) 079 (194) 817 (386) *

POST 079 (012) 011 (034) 910 (030)
325 PRIOR 250 (433) 672 (469) 078 (268) *

POST 172 (064) 084 (203) 714 (173)
333 PRIOR 250 (433) 672 (469) 078 (268) *

POST 003 (012) 010 (049) 988 (051)
142 PRIOR 074 (262) 071 (256) 855 (352) *

POST 004 (013) 003 (017) 993 (023)
336 PRIOR 231 (121) 092 (289) 677 (467) 54

POST 000 (005) 003 (015) 996 (015)
340 PRIOR 517 (500) 275 (447) 208 (406) *

POST 000 (001) 002 (012) 998 (012)
305 PRIOR 222 (415) 021 (442) 758 (428) *

POST 000 (005) 001 (009) 998 (010)
289 PRIOR 412 (492) 125 (330) 463 (499) *

POST 620 (090) 018 (041) 362 (099)
149 PRIOR 412 (492) 125 (330) 463 (199) *

POST 966 (069) 014 (069) 000 (004)
312 PRIOR 222 (115) 021 (142) 758 (128) *

POST 010 (023) 024 (069) 966 (074)
139 PRIOR 243 (129) 085 (279) 672 (469) *

POST 285 (070) 038 (117) 677 (110)
168 PRIOR 454 (498) 122 (328) 423 (494) *

POST 194 (197) 719 (316) 087 (145)

Table 1.8: (continued) Prior and Posterior Means and Standard Deviations by Flotation
Number and Use
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Samples Outside Structures (continued)
Patio

Storage Living Storage Activity Patio
Hearth Midden Inside Quarters Outside Center Area

Float Number Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
161 PRIOR 447 (197) 107(389) 447 ( 497) 55

POST 068 (042) 029 (072) 904 (074)
146 PRIOR 165 (371) 028 (166) 806 (395) *

POST 000 (003) 001 (008) 999 (009)
152 PRIOR 233 (123) 071 (256) 697 (160) *

POST 000 (002) 001 (007) 999 (008)
188 PRIOR 585 (493) 220 (414) 195 (196) 56

POST 143 (041) 018 (019) 838 (053)
186 PRIOR 508 (500) 413 (492) 078 (269) *

POST 242 (096) 240 (319) 518 (252)
148 PRIOR 636 (481) 351 (477) 013 (112) *

POST 001 (014) 100 (072) 896 (063)
282 PRIOR 699 (159) 277 (417) 024 (151) *

POST 050 (096) 923 (170) 027 (098)
147 PRIOR 318 (166) 080 (271) 603 (189) *

POST 001 (006) 002 (011) 997 (013)
145 PRIOR 379 (485) 550 (497) 071 (257) *

POST 101 (062) 165 (203) 734 (173)
281 PRIOR 689 (463) 299 (458) 012 (110) *

POST 025 (065) 914 (228) 061 (171)
286 PRIOR 508 (500) 411 (492) 078 (269) *

POST 677 (113) 072 (116) 250 (146)
287 PRIOR 318 (166) 080 (271) 603 (189) *

POST 1000 (000) 000 (000) 000 (000)
330 PRIOR 318 (466) 080 (271) 603 (189) *

POST 985 (042) 003 (015) 011 (099)
339 PRIOR 111 (314) 839 (314) 57

POST 488 (075) 512 (075)
324 PRIOR 111 (311) 889 (311) *

POST 051 (009) 949 (009)
303 PRIOR 378 (485) 072 (258) 550 (497) *

POST 002 (011) 631 (317) 368 (315)
422 PRIOR 111 (311) 889 (311) *

POST 267 (057) 713 (057)
280 PRIOR 388 (187) 114 (318) 498 (500) 58

POST 007 (036) 978 (099) 016 (071)
329 PRIOR 474 (499) 414 (496) 091 (233) *

POST 193 (059) 049 (115) 758 (112)
313 PRIOR 069 (253) 057 (233) 874 (332) *

POST 000 (003) 001 (007) 999 (007)
332 PRIOR 540 (498) 405 (491) 055 (228) *

POST 000 (004) 001 (013) 998 (014)
274 PRIOR 407 (491) 407 (491) 187 (390) *

POST 000 (001) 001 (010) 999 (010)
277 PRIOR 407 (491) 407 (491) 187 (390) *

POST 061 (031) 008 (080) 929 (014)

Table 1.8: (continued) Prior and Posterior Means and Standard Deviations by
Flotation Number and Use
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also its use as a garbage dump. Over all, the priors and posteriors reflect multiple
usage in all structures, either sequentially or simultaneously.

In general, our analysis supports the usefulness of botanical remains in the inter-
pretation of prehistoric dwelling patterns by a method that has not previously been
tested or even applied to archaeological research. This type of analysis offers great
potential for the refinement of in-field data collection and location description.

This paper suggests an approach to archaeological data interpretation not often
taken. The ramifications may be several. First, our work may encourage other archae-
ologists to be more explicit and precise about operating assumptions in their data
analysis and interpretations. Second, it may influence the way archaeological data will
be analyzed. Third, it may influence the way archaeological field notes are recorded.
The review of the field dig notes revealed that often they were not as informative as
one might have hoped. Perhaps in a future excavation, the archaeologists will record
their probabilities by provenience as part of their field recordings.

The posteriors suggest that in many proveniences the botanical data are strong
enough to affect radically the archaeologist’s opinion of the activities conducted there.
The results of this paper thus affirm both the usefulness of botanical evidence in
archaeology and the usefulness of Bayesian methods to analyze such data.

We look forward to future successful collaboration between Bayesian statisticians
and paleoethnobotanists.
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Jauja Region of Perú. Ann Arbor: University Microfilms. 4

— (1988). Current Paleoethnobotany (to appear), chap. The study of paleoethnobotanical
data in prehistoric crop production, processing, and consumption. University of Chicago
Press. 6

LeBlanc, C. (1981). Late Prehispanic Settlement Patterns in the Yanamarca Valley, Perú.
Ann Arbor: University Microfilms. 4



Pragmatics of Uncertainty 23

Lindley, D. (1985). Making Decisions. 2nd ed. New York: Wiley. 16

Smith, A., Skene, A., Shaw, J., Naylor, J., and Dransfield, M. (1985). “The Implementation
of the Bayesian Paradigm.” Commun. Statist. Theory and Meth., 14, 5, 1079–1102. 16

Tierney, L. and Kadane, J. (1986). “Accurate Approximations for Posterior Moments and
Marginal Densities.” J. Amer. Statist. Assoc., 81, 82–86. 16

Watson, P. (1976). “In pursuit of prehistoric subsistence: A comparative account of some
contemporary flotation techniques.” Midcontinental Journal of Archaeology , 1, 77–100.
6

DISCUSSION

I.POLI (Universita di Bologna)

This paper is to be welcomed for providing a clear illustration of the Bayesian predic-
tive approach to a special topic such as applied archaeological research. It is original in
proposing new methodology which performs well, and in investigating a type of data
(burnt botanical remains) rarely considered in this area of research.

The main question that the authors consider deals with the possible activities,
that might have been carried out by the Wanka people at a particular site up to 1460,
to infer, subsequently, something about their economic and political system. Such
problems in quantitative archaeology are often described by models that suppose a
preferential distribution of archaeological items assuming that certain activities took
place. Literature on this topic is mainly concerned with taxonomy procedures, factor
and principal components analysis and sometimes with spatial point or lattice pro-
cesses, and is mostly related to distributional patterns of artifacts (H. J. Hietala 1984,
and C.R. Orton 1982).

The research described here is developed from a Bayesian point of view. The ar-
chaeologist with her own beliefs, derived from field notes, is asked to quantify such
beliefs in the form of prior probabilities for a set of excavated sites. The likelihood
function is thus defined, noting however that the likelihood is to be for activities oc-
curring in 1460 while the data refers to burnt botanical remains found in 1982. A
time dimension is therefore introduced into the model and subjective elements enter
into both the definition of activities with respect to the plants involved and in the
assessment of the survival probability of each plant. In general we can then see that
the posterior probabilities of activities in each provenience show the relevance of plant
remains in studying prehistorical activity patterns and the adequacy of the Bayes
procedures in investigating such special areas of applied research. However it should
be noticed that comments on the results are developed on aggregates of locations,
namely structures and patio areas, which apparently have not been considered in the
development of the research. In fact, the analysis has been conducted with respect to
each single provenience, spread over all the area of interest, with no consideration of
their location. Inside each provenience an hypothesis of space independence is assumed
(e.g. the Poisson model) but inside the patio no hypothesis on the space distribution
of data is considered. This could have undesirable consequences.

In fact, the authors mention the serious problems which arise in evaluating poste-
rior distributions of activities because the observation of botanical remains is sometime
in conflict with the definition of activity areas given by the archaeologist. These prob-
lems are related both to the number of remains (e.g. Chenopodia seeds, or the mixture
assumed for the hearth activity) and to the type of remains (e.g. seeds extraneous to
the activity area defined). Finding remains on a provenience could, of course, be the
direct result of the location of human activities, but there could also be the effects of
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wind and water disturbance, differential erosion or simple reorganization of the sites.
Actually, the authors seem to tackle this problem by assigning zero prior probability
to those activities which they regard as most uncertain in a specific archaeological
site. In this way, however, they prevent the data from ever influencing prior beliefs,
thus denying any evidential value for the remains found in the site. This represents a
violation of the well-known “Cromwell’s Rule” and seems not to be a satisfactory an-
swer to the problem. I wonder, instead, whether the archaeological mechanism which
governs the preferential distributions of botanical remains in activity areas might not
be more adequately described by a random process that accounts explicitly for the
space dimension of each provenience. The whole patio has be be regarded, therefore,
as a random field in which the structures and the patio areas (see Figure 1.3) that
contains proveniences, enter into the model analysis. Specifically, structure and patio
areas are clusters of proveniences that seem defined by archaeological remains such as
the wall around the areas or specific patterns of artifacts which receive no mention in
the paper. The spatial distribution of the proveniences could then be analysed by first
identifying some form of nearest neighbor structure characterizing them; afterwards,
the distribution of plant remains, given the locations of sites, can be considered. In
this way, we could derive a likelihood function for the problem which accounts both for
the time and the spatial dimensions of data and respects Cromwell’s Rule by assign-
ing strictly positive probability to each activity. This seems to me a more flexible and
useful way of learning from the data, taking into due account all of its special features.

D.A. BERRY (University of Minnesota)

This is a terrific application of Bayesian ideas and was a high point of the confer-
ence for me. There is, however, one small aspect of the approach that I think could be
improved. An explanation being considered as part of a universe of models should sel-
dom (if ever!) be assigned zero probability. I would have placed a positive lower bound
on all prior probabilities (people are notoriously bad at assessing small probabilities).
It does no harm to carry along improbable explanations whose likelihoods also turn
out to be small. On the other hand, I would have been interested to see how many of
these “impossible” events became the most likely of all a posteriori!

W. POLASEK (University of Basel)

I think the paper is a good example demonstrating the subjective nature of like-
lihoods and priors. Instead of listing long table with prior-posterior probabilities, I
would recommend some graphical summaries in order to facilitate the reporting pro-
cess.

REPLY TO THE DISCUSSION

We welcome the comment of Poli, Berry, Polasek, and have no fundamental dis-
agreements with any of them.

To Professor Berry:
Berry proposes that a small positive lower on prior probability be routinely used

in connection with each of the models. This is an interesting suggestion. However,
we doubt that it would have helped with our problem proveniences. With respect to
provenience 284, the prior did put positive probability on hearth, indoor storage, and
living quarters. The only conceivable addition would have been midden. But adding
midden would not have saved us from the embarrassment of a truly huge number of
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Chenopodium seeds, far more than were to be expected under any prior. Our second
kind of problem provenience was number 299, where we observed an impossible result:
Scirpus seeds in a hearth. Had Berry’s suggestion been followed in this instance, and
we had put positive probability on storage and living quarters, the computed pos-
terior would have eliminated hearths as a possibility. Since Hastorf is still sure that
provenience 299 was a hearth, this would have led the computed posteriors to be far
from the believed posterior, and would not have given the warning we got when we
discovered our violation of Cromwell’s rule. Perhaps extending Berry’s suggestion to
the likelihood as well would be a good idea. This would help with provenience 299,
but not with 284.

To Professor Polasek:
We agree entirely with Polasek about the usefulness of graphical methods for dis-

playing priors and posteriors. Figures 1.3 and 1.4 were added to the paper after the
Valencia meeting to address this concern. A second method of graphical display for
these priors and posteriors is given in Larkin (1989).

To Professor Poli:
Poli suggests the use of random field models to take better account of the spatial

aspect of the problem. We think this would be a promising direction for future research.
One aspect that would have to be considered is elicitation, both of priors and of
likelihoods.

We believe that our assumptions about preservations are the strongest and most
questionable. We regard with skepticism the idea that the events of each of two burnt
botanical remains from the same provenience surviving for five hundred years are
independent events with a probability known to us. This would be our first priority
to relax in further work on this problem.
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Chapter 2

Statistical Sampling in Tax Audits (1988)

Foreword

This paper arose from the effort of the Pennsylvania Department of Revenue to audit
a retailer’s collection of sales taxes. In Pennsylvania, food, clothing and medicine are
not subject to sales tax. Thus, for example, Scope, a mouthwash with no medication
is taxed, but Listerine, a mouthwash with medication is not taxed. It is even the case
that the identity of the item purchased may not be sufficient to establish whether the
purchase is subject to sales tax. Thus wool sold to someone to knit socks or a sweater
is not taxed, but the same wool sold to someone to make a wall-hanging is taxed.

The rules concerning collection of sales tax are as follows: if the retailer fails to
collect sales tax it should have collected, the retailer owes the tax to the state. On the
other hand, if the retailer collects sales tax it should not have collected, it owes that
money to the state. (Is it clear who makes the rules?)

Furthermore, there is an underlying principle in taxation that if the taxpayer offers
records to the taxing authority, it has the right to have those records examined in
establishing how much tax is owed. Yet in some situations it is infeasible to look at
all the records, and sampling seems like a cost-effective alternative. What constraints
on the taxing authority are reasonable to ensure the rights of the taxpayer in such a
circumstance?

In the audit in question, the accountant arrived at the retailer’s office on Friday,
and announced that, although he had never done a sample before, he would read a
book on sampling on the weekend and begin his audit on Monday. The retailer had
the right to have a witness observe the audit. On Monday he told his team to choose
paper tapes to audit, and to be sure to include any tapes they found that included
a purchase of Scope. Proceeding on that basis, the audit team found some $4.84 of
tax owed in the tapes they examined, and extrapolated that to some $300,000 they
thought the taxpayer owed.

I was hired as an expert by the taxpayer. I testified that I thought the taxpayer
did owe the $4.84 found by the team, but not the extrapolation to $300,000, because
the latter was based on a biased and unrandom sample. (Later the state redid the
audit with a proper random sample, and still later, the retailer went bankrupt).

After the tax matter was resolved, I discussed it with Daniel Nagin, whom I had
taught when he was a graduate student, and was later a colleague.

At the time, Daniel was Deputy Secretary of Revenue for the state, and had over-
seen the audit. We realized that the most that could be learned from a sample was a
probability distribution for how much is owed. But that’s a difficult amount to write
a check for. What principles should guide the determination of the amount owed? We
realized that there were legal issues involved, and at Dan’s suggestion reached out to
Joe Bright, who had been the Legal Counsel for the Department of Revenue. This
paper is the result of our discussions.

There are two considerations to take into account in recommending a policy about
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how much is owed. The first is pragmatic. Suppose the retailer delivered to the De-
partment of Revenue a huge truckload of paper tapes of all the transactions made by
its stores in Pennsylvania in a given year. It is absurd to contemplate going through
each tape by hand to find errors that would benefit the state. A random sample leaps
to mind as an efficient way to get a reasonable gauge on the amount owed.

On the other hand, the law favors the taxpayer by requiring the examination of
the taxpayer’s records, perhaps all the taxpayer’s records. The issue, then, is to find
a reasonable compromise.

In the paper we review the fundamentals of statistical sampling and the legal prece-
dent cases on sampling in the context of taxation. We then argue on efficiency grounds
that sampling may be in the interests of both the taxpayer and the government. But
we also argue that the taxpayer should be compensated for the risk of over-assessment
that sampling implies. Additionally, the state relies on voluntary compliance with
taxation, and hence cannot put itself in the position where over-collection is likely.
These considerations lead us to ask how many dollars of under-collection has the same
consequence to the state as a single dollar of over-collection. We denote this number
“k”.

In practice, we could identify audits assessed at the mean (k = 1), at the .025 level
(k = 39), and the 0.05 level (k = 19). (The latter is the policy of the federal Internal
Revenue Service). We argue that the choice is really a legislative matter, and suggest
that k’s between 2 and 4 strike us as reasonable.To my knowledge, no legislature has
yet taken up the issue we address.

This paper uses Bayesian analysis to address a question of public policy. Inter-
estingly, the issue comes down to the question of what the public’s loss (or utility)
function is or ought to be.

This paper was originally published in the Journal of Law and Social Inquiry, 13,
pp. 305–338. Republished by permission of J. Wiley and Sons.

Where are they now? Joseph C. Bright is an attorney with Cozen O’Connor in
their Business Law Department in Philadelphia. David S. Nagin is Teresa and H. John
Heinz III University Professor of Public Policy and Statistics at Carnegie Mellon Uni-
versity.
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Joseph C. Bright, Jr., J.B. Kadane and Daniel S. Nagin

Abstract

The courts, with some important qualifications, have been reluctant to uphold tax assess-
ments based on a review of only a sample of all transactions. In this article we argue that audit
assessments based on appropriately drawn and analyzed statistical samples do not suffer from
the defects that the courts have correctly concluded mar assessments based on nonstatistical
samples. We do, however, argue that because of the inherent imprecision of assessments based
on a less-than-complete review of all records, the calculation of the assessment should include
a factor to take into account the risk that the taxpayer has been overassessed. We suggest an
assessment rule that does just this and also recommend guidelines for the use of statistical
sampling in tax audits.

2.1 Introduction

Consider the following situation: A large department store is notified by a state revenue
agency that it has been selected for a sales and use tax audit. The auditors conclude
that it would be prohibitively time consuming to audit all the store’s transactions.
Instead they review only a sample of the transactions and estimate the total deficiency
based on the sample. Is this a sufficient basis for determining the taxpayer’s unpaid
liability or must the state review all the transactions to determine the exact amount
of tax owed? While the courts with some important qualifications have come down on
the side of a complete review, this article suggests a different answer. We argue that
audit assessments based on appropriately drawn and analyzed statistical samples do
not suffer from the defects that the courts have concluded mar assessments based on
nonstatistical samples. We do argue, however, that because of the inherent imprecision
of an assessment based on less than a complete review of all records, the calculation of
the assessment should include a factor to take into account the risk that the taxpayer
has been overassessed. The article suggests an assessment rule that does just this.

The cases and data we rely on involve consumption taxes, primarily sales and use
taxes. Such taxes are typically imposed on high-volume, recurring transactions for
which sampling is an appropriate tool of analysis. The conclusions we draw, how-
ever, are applicable to other taxes, such as the income tax. Indeed, unlike most state
and local governments, the Internal Revenue Service has the general authority to use

Joseph C. Bright is a partner in the law firm of Drinker Biddle and Reath, Philadelphia. J.D. 1970,
University of Pennsylvania Law School

Joseph B. Kadane is Leonard J. Savage Professor of Statistics and Social Sciences, Carnegie Mellon
University. Ph.D. 1966, Stanford University

Daniel S. Nagin is associate professor of management, Carnegie Mellon University, Ph.D. 1976, Carnegie
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The authors wish to thank Ms. Kristin Johnston and several anonymous reviewers for helpful comments
and editorial assistance.
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statistical sampling in the conduct of audits of all taxes that it is responsible for
administering.1

The article is organized as follows. In section 2.1 we discuss some key concepts
in statistical theory that distinguish statistical estimates from informal, nonstatistical
inferences. In section 2.2 we review and analyze certain judicial decisions that have
involved the use of sampling in tax audits. In section 2.3 we argue that the legal
objections to sampling can be addressed if the sampling and analysis are based on
well established and routinely applied statistical procedures. In section 2.4 we present
a model that provides an analytic basis for translating sample findings into an overall
audit assessment. In section 2.5 we make some concluding remarks.

2.2 The Theory of Statistical Sampling: An Overview

Every day of our lives we make decisions, both trivial and significant, based on in-
ference from a sample. We choose from a luncheon menu based on experience from
prior outings to the restaurant, decide what route to take home based on previous
experience with travel times at different times of day, pick among potential employ-
ees based on experience with individuals with similar backgrounds and personalities,
and make important business decisions based on prior experience with comparable
products in similar markets. We may not think of this as sampling, but it is. We are
drawing inferences based on a limited sample of information we deem relevant to the
issue at hand. Occasionally we are wrong, but mostly we are right, which is why we
keep doing it.

Statistical sampling is distinguished from casual inference both by method and
consequence. The method requires a sampling frame, a random sampling mechanism
that is independent of influence by either the taxpayer or the auditor, a sampling
plan, and an appropriate analysis. The consequence is that, unlike their counterparts
based on casual inferences, conclusions based on statistical samples can be rigorously
evaluated in terms of reliability.

A sample frame is a group of items from which a sample is chosen. In the case
of a tax audit, the sample frame is the universe of documented transactions available
for audit. Generalization from statistical samples extends only to the sampling frame.
Thus the application discussed below, in which a tax auditor sampled a taxpayer’s
inadequate records, is an example of statistical sampling, but the statistical conclusions
extend only to the sampling frame – to those records available for examination. The
extrapolation of results from records kept to records unkept is made by the courts on
legal principles, not statistical ones.

A hallmark of a careful statistical sample is the proper choice of a sample frame.
For example, in determining sales tax deficiencies, an auditor might choose to exclude
certain untaxed transactions, such as sales of food, if the total food sales are known.
However, it is not legitimate to change sampling frames in the midst of an audit.

The second key to adequate statistical sampling is that the items from the frame
must be chosen by a random mechanism with known probabilistic properties. The
items must be chosen without knowledge of or regard for their tax or other conse-
quences. Failure to observe this principle can invalidate the statistical inference. For
example, auditors are often asked to examine records to check certain facts. If they
have preconceived ideas about where the problems might be, and exploit either their
ideas or their initial findings in deciding where to look further, they are surely entitled
to report the discrepancies they find. Nonetheless, they are not entitled to treat the

1It is our understanding, however, that as a matter of practice the IRS typically restricts its use of
statistical sampling to audits of large corporate taxpayers.
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cases they examined as a statistical sample, since they chose them purposely. Proper
statistical sampling is a skill distinct from auditing.

The third key to successful statistical sampling is a sampling plan, determined
before the process begins, that specifies the frame, the random mechanism to be
employed and the probability of selection of each item or set of items, and the rule to
be used to decide when to stop sampling. The sampling plan should be so explicit that
two auditors with the same plan and the same random number generator for selecting
transactions to be included in the sample should report the same results. Deviations
from the sampling plan should be avoided.

The simplest sampling plan is called “simple random sampling.” In this plan each
item has the same chance of appearing in the sample as any other, and items appear
or do not appear independently of each other. Another sampling plan is stratified
sampling.2 Here the sampling frame is divided into strata, each of which has its own
separate sampling plan. For example, examining all transactions above one million
dollars and randomly sampling the others can be thought of as a stratified sampling
plan. Preconceived ideas about where problems might exist can be an excellent basis
for stratification.

The use of “test periods” as a sampling plan is common in tax audits and requires
special comment. In a test period analysis, a few time periods are selected and audit
findings are extrapolated to the entire audit period. For this discussion, assume that
the test periods are chosen by a random mechanism, even though in practice they
are not. As explained above, if they are not randomly chosen, the sample is not a
statistical sample. It is typical of a test period design that all the transactions in the
selected months are analyzed, while none of those in unselected months are examined.
The design is inefficient because a simple random sample among all transactions will
provide a more precise estimate of the deficiency, as would a design stratified by month.
Furthermore, either alternative design will permit estimation of the reliability of the
tax assessment, as discussed later.

Consider the implications of the typical practice of purposely choosing test peri-
ods. After long discussions with management, market analysts, and other experts, one
might be able to mount a strong argument that the estimated deficiency extrapolated
from the test period audit is plausible. Nonetheless, it is important to distinguish infer-
ences based on statistical sampling from the everyday notion of plausibility. Statistical
sampling imposes rigorous standards, and a fundamental pillar of those standards is
that the sample not be purposely chosen.

The final key element of statistical sampling is an analysis appropriate to the chosen
design. For even a moderately complex statistical design, the services of a statistical
expert or special training for the auditors may be required.

Four elements, then, constitute a statistical sample: (1) the sampling frame, (2)
the random sampling mechanism, (3) the sampling plan, and (4) appropriate analysis.

The benefit of conducting a statistical sample is that the samplers can address the
following technical questions: (1) What is the probability that the estimate deviates
from the true value sought by some specific amount? The question concerns the re-
liability of the estimate. (2) How large a sample must be drawn for the estimate to
reach a desired level of precision? This question concerns the sample size necessary to
reach a particular level of reliability. We will discuss each of these concepts in turn.

2See W. G. Cochran, Sampling Techniques (3d ed. John Wiley & Sons, 1977).
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Reliability

Reliability refers to the precision of the estimate. In formal statistical terms, an es-
timate may meet the standards for making statistical inferences but still be highly
unreliable. For example, consider again the problem of estimating a sales tax defi-
ciency based on a random sample of transactions from one month. Suppose that over
the course of the month 1,000,000 transactions occurred. Random samples of 10, 100,
1,000, or 10,000 of these transactions will all provide a basis for estimating the defi-
ciency. However, intuition suggests, and statistical theory confirms, that an estimate
based on 10 or even 100 transactions may be so imprecise – or in formal statistical
terms unreliable – that the sample is useless for assessing taxes.

What statistics adds to intuition is a formal analytical method for quantifying the
degree of precision of a specified estimate – such as tax due – computed from a sample
of some specific size and having some particular sample characteristics. Concretely,
statistical theory provides the ability to make statements about the likely precision of
an estimate. Returning to our sales tax auditing sample, suppose that from a sample
of 1,000 transactions we estimate a tax deficiency of $500,000. Statistical theory allows
us to quantify the imprecision of this estimate with such statements as: There is a 95%
chance that the deficiency is as little as $450,000 or as much as $550,000.3 In short,
statistics tells the auditor how likely he is to have erred, and by how much.

Sample Size

Statistical theory not only allows ex post facto quantification of the reliability of an
estimate based on a specific sample size, it also provides the basis for determining
the sample size required to achieve a desired level of reliability. This capability has
practical importance; it provides the tax administrator with an opportunity to control
the level of precision of an audit assessment based on a statistical sample. Auditors can
draw an initial sample, analyze the sample characteristics, and determine from their
analysis the sample size required to meet a specified level of precision. Thus, unlike
assessments based on an extrapolation of a test period, audit assessments based on
statistical sampling may be tested against formal standards of reliability.

2.3 Judicial Decisions

In this section, we review judicial decisions on the use of samples to project audit
findings. The principal issues raised are (1) the adequacy of taxpayer records, (2) the
statutory authority for auditing, (3) whether the taxpayer consented to the sample, (4)
the administrative burden of a complete audit, and (5) the reliability of an assessment
based on a statistical sample.

By now, it is incontrovertible that a tax administrator may use sampling to project
a tax assessment in the absence of accurate and reliable records kept by the taxpayer.
While there was at least one false start when a statute did not require that records be

3For clarity, it is necessary to discuss some fine points of statistical theory. From the point of view of
classical statistical theory, a 95% confidence interval means that if the same procedure is used many times,
95% of the uses will include the true tax deficiency. Confidence intervals do not purport to apply to any
specific instance. By contrast, a 95% credible interval means that the probability is 95% that the true tax
deficiency is in the interval specified in the given instance. Such intervals require added assumptions and
a different, Bayesian statistical framework. Thus a confidence interval tells you what proportion of times
you will bracket the right amount if you follow a set procedure and a credible interval tells you what the
chances are that you bracketed the right amount this time. See L. J. Savage, The Foundations of Statistical
Inference (New York: John Wiley & Sons, 1962), for a general discussion of the distinction. The relation
between classical and Bayesian inference is treated in more detail in sec. 4.
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kept,4 the cases are now legion in which assessments based on samples are enforced
against taxpayers who, in one way or another, failed to keep proper records.5 Even
when the lack of records has not been the taxpayer’s fault, the courts have permit-
ted sampling by auditors.6 The cases are bottomed on the common sense premise
that a taxpayer cannot escape tax liability through his own failures or even his own
misfortunes.

It is equally clear that sampling may be used with a taxpayer’s consent, even if
implicitly given.7 Indeed, taxpayer consent is the rule, not the exception. The willing-
ness of most taxpayers to accept sampling suggests not only an interest in keeping the
expense and disruption of an audit to a tolerable level but also a reasonable level of
confidence in the process itself.

What is not clear, however, is whether, absent statutory authority or taxpayer
consent, a tax examiner may assess a liability from a sample when the taxpayer’s
records are sufficient to determine a liability by a 100% audit. It has been suggested
that a 100% audit is not always required when complete records are available,8 but
where the issue has been directly confronted, it has been decided in favor of the
taxpayer.

An early and particularly well articulated case was decided by New York’s Appel-
late Division in 1957. In In re Babylon Milk & Cream Co.,9 the taxpayer successfully
challenged the extrapolation of the results of a fuel tax audit of four “test months”
to the remaining eight months of a one-year audit period in which the taxpayer had
records. The company, however, failed in challenging an assessment based on a pro-
jection over a period for which the taxpayer did not have records.

With respect to the first issue, the taxpayer did not dispute the audit findings
for the four months actually examined; rather the question was whether the findings
could be projected over the period of an entire year. The court held for the taxpayer,
ruling that as a matter of law the tax commissioner had no authority to project the
results of a sample if complete records were available. The court stated:

The records of the petitioner were all available for year 1953 and the
exact amount of the understatement of mileage could have been deter-
mined for the remaining eight months in the same manner in which it
was determined for the four months chosen for the test months. The only
reason given for not determining the understatement in this manner was
that it would have required additional work.... The use of the average
method, at best, produced only an approximation of the amount of the
tax owing.10

Thus the court took comfort in its conclusion from the observations that there did not

4State ex rel. Foster v. Evatt, 144 Ohio 65, 56 N.E.2d 265 (1944).
5E.g., Schwegmann Bros. Giant Supermarkets, Inc. v. Mouton, 309 S.2d 686 (La. 1975); Bouchard v.

Johnson, 170 A.2d 372 (Me. 1961); Ridolfi v. Director, 1 N.J. Tax 198 (1980); In re Babylon Milk & Cream
Co., 5 A.D.2d 712, 169 N.Y.S.2d 124 (1957); King Drug of Dayton v. Bowers, 171 Ohio 461, 172 N.E.2d
3 (1961). Other cases are cited in H. Leib, Using Sampling Techniques to Assess State Taxes, 3 J. St. Tax
(1985) and L. Fournier & W. Raabe, Statistical Sampling Methods in State Tax Audits, 2 J. St. Tax 115
(1983).

6In re Grecian Square, Inc., 119 A.D.2d 948, 501 N.Y.S.2d 219 (1986); Pato Foods, Inc. v. Lindley, 7
Ohio App. 3d 22, 453 N.E.2d 1274 (1982); Torridge Corp. v. Commissioner of Revenue, 84 N.M. 610, 506
P.2d 354 (1972).

7E.g., Mitchell Bros. Truck Lines v. Hill, 363 P.2d 49 (Ore. 1961) (fuel use tax case); W. T. Grant Co.
v. Joseph, 2 N.Y.2d 196, 140 N.E.2d 244 (1957). Compare In re Hard Face Welding & Machine Co., 81
A.D.2d 967, N.Y.S.2d 744 (1981).

8E.G., Yonkers Plumbing & Heating Supply Corp. v. Tully, 62 A.D.2d 18, 402 N.Y.S.2d 792 (1978). 674
P.2d 785 (Abs.1983).

95 A.D.2d 712, 169 N.Y.S.2d 124 (1957).
10Id.
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seem to be any reason for projecting a sample other than to avoid work and that the
projection would result only in an approximation or even, perhaps, a guess.

However, on the second issue the court held for the tax commission, sustaining
an assessment based on a projection over 27 months of an examination of two-week
records. No doubt because the two-week records were the only ones available to the
tax commission, the court did not disparage use of the projection. Rather the court
stated: “The result reached by the auditors was consistent with other findings made
when the trucks and loads were weighed in 1954 and 1955. The method used by the
auditors was a reasonable one in view of the petitioner’s failure to keep any records.
The petitioner has not demonstrated that the amount of the assessment was to any
extent unjustified.”11

Babylon Milk is a microcosm of many cases that followed it. If a taxpayer fails to
keep adequate records, courts usually approve the projection of a sample, often rein-
forcing the result by pointing out factors supporting the accuracy of the projection.
Historically, judges have not often criticized the reliability of a sample when a taxpayer
has failed to keep adequate records. A high-water mark of judicial tolerance occurred
in New York in Markowitz v. State Tax Commission.12 Three of five judges approved
projecting the results of an audit of one day’s cash register tapes over a three-year
period. With remarkable understatement, the majority observed, “Although it is prob-
ably true that cash register tapes of several days would give a better picture of the
business of the petitioner and thus his tax liability, exactness is not required where
the party’s own failure to maintain the proper records prevents it.”13

A more balanced approach was taken by an Ohio court in McDonald’s of Spring-
field, Ohio v. Kosydar.14 The taxpayer did not have adequate records, and the tax
examiner made two assessments based on statutorily authorized spot checks. Pointing
to certain statutory language, the court sustained one assessment but struck down the
other on the grounds that the second sample was not representative.15

Recently, New York judges have become more critical than they were in Markowitz.
In In re Grecian Square, Inc.,16 a taxpayer did not keep adequate records and an
assessment was made on a sample. However, the court held:

Here, respondent’s auditor found petitioner sales figures to be much lower
than other establishments which he audited. Accordingly, he increased pe-
titioner’s estimated sales figure by 200%. However, the record does not
disclose any specific information concerning the bars which McKenna
[the auditor] had audited and found to have been comparable to peti-
tioner’s. As best as we can determine, no such information was given
petitioner in advance of the hearing. At the hearing, McKenna merely
stated that he had estimated sales by calling upon his wide experience in
auditing other bars. Considerable latitude is given an auditor’s method
of estimating sales under such circumstances as exist in this case.... Nev-
ertheless, there was insufficient evidence for the auditor’s computation.
By the same token, without some information about the size, location,
number of employees and nature of the operation, this court is unable
to make a determination as to the existence of a rationale [sic] basis.

11Id.
1254 A.D.2d 1023, 38 N.Y.S.2d 176, 177 (1976), aff’d, 44 N.Y.2d 684, 405 N.Y.S.2d 454, 376 N.E.2d 927.
13Id.
1443 Ohio 2d 5, 330 N.E.2d 699 (1975).
15See also Zapitelli v. Lindley, 1981 Westlaw 4376 (Ohio App. N.E.2d 1981).
16119 A.D.2d 948, 501 N.Y.S.2d 219 (1986) (citation omitted).
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Hence, the matter must be remitted to respondent for further testimony
of McKenna in accordance with this decision.17

Whatever may be the latitude given to auditors when proper records are not kept,
as a general rule sampling has not been permitted in the absence of consent if adequate
records are kept. Various reasons are given why sampling is not authorized in such
cases, but invariably the reasons are accompanied, as in Babylon, by judicial comments
on the unreliability of the sampling procedure.

For example, in a 1965 Maine case,18 the records of a wholesaler and retailer of au-
tomotive parts and supplies were examined for a four-month period. The examination
showed that the tax liability was understated. From their review of the four-month pe-
riod, the auditors calculated what was described as a margin of error - that is, a ratio
of understated liability to reported liability. An assessment was based on a projection
of the margin of error over a 23-month period. The court struck down the projected
assessment. After observing that the taxpayer had kept adequate records as required
by the statute, the court observed: “The legislature required an audit based upon
an examination of the taxpayers records and not the establishment of tax liability by
surmise and conjecture” (emphasis added).19 The court added: “We understand and
appreciate the problem faced by the auditors in such a time-consuming task as they
were confronted with but according to our analysis of the sales and use tax statute
in its entirety, we find no alternative. This may constitute a serious administrative
problem time-wise for the Tax Assessor’s Department but it is one for the Legislature
to consider and not the Courts.”20

The court’s decision was expressly based on the conclusion that the revenue agency
had no statutory authority to base a tax liability on estimates, except in the limited
circumstances “where a taxpayer fails to make a report, or where the departure from
the State of a taxpayer is imminent.” Nonetheless, it is evident from the opinion that
the court was driven to its conclusion by anxieties about the reliability of sampling
procedures and by a suspicion that governmental advocacy of the efficiency of sampling
might be an excuse for laziness.

Such reservations were repeated in a 1978 New York case.21 The taxpayer argued
that a sample should not have been used to project liability because his records were
adequate to determine any deficiency. Without expressly commenting on the adequacy
of the records, the court held for the petitioner and stated: “There is no inflexible rule
that an item-by-item audit be made whenever it is possible, but it should be utilized if
the records are available and the test check method is insufficient to afford a reasonable
calculation of the taxes due.”22

In 1980, the same court in Names in the News v. New York State Tax Commission23

held:

According to the testimony of an Associate Sales Tax Examiner for the
State, the test period approach was utilized by the Tax Bureau because
petitioners records were “too voluminous” and it was the bureau’s normal
auditing procedure to use a trial period. This same examiner conceded,
however, that petitioner’s general ledger, purchase invoices, sales invoices
and Federal tax returns were available to the bureau and that no request
for information or documents was refused or rejected by petitioners, and

17Id.
18Farrar Brown Co. v. Johnson, 207 A.2d 406 (Me. 1965).
19Id.
20Id.
21Yonkers Plumbing & Heating Supply Corp. v. Tully, 62 A.D.2d 18, 402 N.Y.S.2d 792 (1978).
22Id.
23429 N.Y.S.2d 755 (App. Div. 1980).
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upon the present record it can only be concluded that the State’s audi-
tors had access to petitioner’s detailed records for the whole three year
period, a vastly different situation from that encountered in Matter of
Meyer v. State Tax Comm., [61 A.D.2d 223, 402 N.Y.S.2d 74 (1978),] . .
. where the court approved an analysis of purchases and that in the mat-
ter of Markowitz v. State Tax Comm., [54 A.D.2d 1023, 38 N.Y.S.2d 176,
177 (1976), aff’d, 44 N.Y.2d 684, 405 N.Y.S.2d 454, 376 N.E.2d 927,]
... where we approved a test period or spot check only because of the
inadequacies in methods and procedures and failure to maintain proper
records... Under these circumstances, the bureau’s use of the test period
to compute petitioner’s tax liability was plainly unnecessary, arbitrary
and capricious, and petitioners were entitled to have their tax assessment
calculated based upon a detailed audit of their records for the three-year
period under consideration. [Mohawk Airlines v. Tully, 429 N.Y.S.2d 759
(App. Div. 1980) [emphasis added]; In re Chartair, Inc. v. State Tax
Comm., 65 A.D.2d 44, 411 N.Y.S.2d 41 (App. Div. 1978).]24

Recently, the law of New York was summarized in In re Christ Cella, Inc.:25

Section 1138 ... of the Tax Law governs when external indices tests may
be used. The statute provides that: “if a return when filed is incorrect
or insufficient, the amount of tax due shall be determined by the tax
commission from such information as may be available. If necessary, the
tax may be estimated on the basis of external indices, such as stock on
hand, purchases, rental paid, number of rooms, location, scale of rents
or charges, comparable rents or charges, type of accommodations and
service, number of employees or other factors.” The department, however,
may not use such external indices unless it is “virtually impossible to
verify taxable sales receipts and conduct a complete audit” with available
records ....26 Petitioner’s contention that the department violated this
rule by not requesting the records covering the three-year period, but
rather proceeding directly to the markup test, has merit. The auditors
testified that, “We do markup tests in approximately every restaurant
to determine whether the particular restaurant has the proper records
or not.” This procedure violates Chartair, where this court stated: “The
honest and conscientious taxpayer who maintains comprehensive records
as required has a right to expect that they will be used in any audit
to determine his ultimate tax liability.” Consequently, the markup test
could not be used unless petitioner’s records were so insufficient that its
sales could not be verified or such records were unavailable.27

What authority there is on the subject indicates that the same rules are applied in the
case of a claim by a taxpayer for a refund. In an early case, a court determined that
where adequate records were available, a petitioner could not claim a refund calculated
from a sample, even when the sampling was apparently done on a statistically sound
basis.28 The court therefore directed a complete audit, which yielded a number very
close to the result of the statistical sample.

24Names in the News v. New York State Tax Comm., 429 N.Y.S.2d 755 (App. Div. 1980) (emphasis
added).

25102 A.D.2d 352, 477 N.Y.S.2d (1984).
26In re Korba, 84 A.D.2d 655, 444 N.Y.S.2d 312 (1981), appeal denied 56 N.Y.2d 502, 435 N.E.2d 1099;

In re Chartair, Inc., 65 A.D.2d 44, 411 N.Y.S.2d 41 (App. Div. 1978).
27Id.
28Sears, Roebuck & Co. v. City of Inglewood (Los Angeles Super. Ct. 1955), discussed in Sprowls, Ad-

missibility of Sample Data into a Court of Law, 4 U.C.L.A. L. Rev. 222, 226 (1957).
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Conversely, a taxpayer without required records was entitled to a refund based on
a sample, albeit with assistance from certain statutory language. In Belgrade Gardens,
Inc. v. Koysdar,29 a restaurant incorrectly determined the amount of sales tax collected
and therefore overpaid the tax. A tax examiner made a “test check” of guests’ checks
and determined that an overpayment had been made, but the tax commissioner denied
the refund claim on the grounds that the taxpayer had not maintained the required
records. The court held for the taxpayer, holding that the absence of records does not,
in itself, preclude a refund. The court stated:

The audit period herein exceeded three years. There is no question that
a test check conducted to determine the appropriate tax liability for that
period could provide an accurate figure for the amount of overpayment.
An audit of guest checks and cash register tapes maintained by the tax-
payer for the period would provide a more accurate figure than the calcu-
lated approximation provided by a test check. However, adequate records
were not available in this case, and the Tax Commissioner conducted a
test check to fulfill his mandatory duty to investigate the facts in con-
nection with the taxpayer’s claim. Neither party has contested the accu-
racy of the test check.... However, the Tax Commissioner proposes that a
valid test check conducted by him cannot be used to the advantage of the
taxpayer.... This court has never held that any specific burden of proof
attaches to a taxpayer who claims to have made an erroneous overpay-
ment of sales tax. Indeed, [state law] places the duty of ascertaining the
amount of overpayment upon the Tax Commissioner.30

Perhaps the closest a court has come to an unconditional authorization of sampling was
in Underwood v. Fairbanks North Star Borough.31 After lengthy procedural litigation,
the taxpayer agreed to a sales tax audit by the borough, and a judgment was entered in
favor of the borough. Shortly thereafter, the borough moved to amend the judgment to
correct a clerical mistake in favor of the taxpayer. The taxpayer in response attacked
the audit that led to the judgment in the first place. The court stated:

Underwood argues that the sampling method was unreasonable because
a better method of determining tax liability existed, namely, audit all the
records. We agree that the figures a full-scale audit would have produced
would have been more accurate than the estimate on which the Borough
relies, but we see no reason to force the Borough to bear the expense of
interpreting all the records Underwood has surrendered. The difference
between the deficiency figure a statistically valid estimate produces and
the deficiency a full-scale audit suggests will usually be far less than the
added expense of conducting a full audit. If courts force a taxing author-
ity to bear this additional cost even though a taxpayer’s miscalculations
have caused the problem, they rob it of resources with which it could be
providing services.... The parties stipulated that Underwood “shall pro-
duce for [the Borough] for purpose of audit by [the Borough], all of the
documents and records requested to be produced.” . . . After the material
is produced, how any tax arrearages are to be proven in court is a mat-
ter properly committed to the appropriate rules of evidence. Samples are
generally receivable in evidence “to show the quality or condition of the
entire lot or mass from which” they are taken. 2 J. Wigmore, Evidence
439, at 522 (Chadbourn rev. ed. 1979). The question becomes whether

2938 Ohio 2d 135, 311 N.E.2d 1 (1974).
30Id. at 141-43.
3126 174 P.2d 785 (Alaska 1983).
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the sample used was large enough to be statistically reliable and, if so,
whether there is something about the sample period that makes it atyp-
ical. These questions can go to both the admissibility and to the weight
of the evidence. Here the evidence has been stipulated as admissible, and
thus the only question is what weight should be given it. Underwood has
not contended that the sample is too short a period to be reliable, or that
the period was atypical. Therefore, we conclude that the trial court did
not err in relying on the evidence presented on the grounds that it was a
sample.32

The Alaska court perhaps for the first time addressed policy issues that we believe
should be at the core of any discussion of the use of statistical sampling. Nonetheless,
the unique procedural posture and the effect of the prior court settlement on the
decision cloud any claim that the case is reliable precedent for nonconsensual statistical
sampling cases.

The judicial responses are not surprising. The courts have not been provided with
standards for balancing the interests of tax administrators against the concerns of
taxpayers about the reliability of an assessment based on a sample. In this vacuum
of standards, the courts have given the benefit of the doubt to the citizen, not to the
state. Only where the taxpayer has failed to keep adequate records have the courts
generally rejected challenges to the tax administrator’s authority to use samples and
other analytical methods to make plausible estimates of the taxpayer’s liability. The
reason has simply been that if the tax is to be enforceable, there is no choice.

When there is a choice – that is, when records are available – the authority has
not been found. Probably it could be found if the judges were willing. The no-records
cases support the use of sampling on the grounds that the taxpayer failed to comply
with a statutory requirement to keep accurate records. However, the tax statutes also
require that an accurate return be filed, and in every case in which sampling has not
been approved, the sample has determined definitively that with respect to the sample
the return was not accurate, and by likely inference that the returns for the balance
of the period were not accurate either. As a matter of logic, there is no reason why
the failure to file an accurate return could not justify the use of sampling. Statistical
sampling is a specialized form of circumstantial evidence. As in other cases involving
circumstantial evidence, there is no reason per se why it should not be used with
appropriate safeguards. Yet no court has so held when complete records are available.

We believe the reason for the failure to approve audits using statistical sampling is
that once the facts move beyond a no-choice situation, the courts are quite at sea about
how the balance should be struck between administrability and reliability and have
been given no help by any legislature or litigant. No statute provides even minimal
guidance for sampling – when it may be used by a tax administrator and with what
required degree of accuracy. Neither does it appear that any tax administrator has
ever argued the case for sampling using well-established statistical theory. Perhaps the
only statistically sound presentation was made 30 years ago by the taxpayer in the
Sears Roebuck refund case noted above – but unsuccessfully. It is no wonder courts
have refused to wade in alone.

If statistical sampling is to be used in a nonconsensual situation in which records
are available, the guidance gap will have to be filled. The lines must be drawn with
an eye to the concerns of both administrators and taxpayers. What are the relevant
concerns?

The tax administrator is responsible for collecting the maximum amount of taxes
legally due as equitably and efficiently as possible. Sampling techniques properly ap-

32Id.



Pragmatics of Uncertainty 39

plied can advance this objective, principally because they allow improved economies
in the use of government resources.33 But the taxpayer’s concerns are equally real.
Tax assessments based on statistical samples are always estimates and therefore are
inherently imprecise. Although we do not believe that the imprecision should be fatal,
the taxpayer does have the right to know the magnitude of the uncertainty; he should
be protected by appropriate standards requiring a minimum level of precision; and
arguably some accommodation should be made in the assessment to compensate for
the risk that it exceeds the true liability. For both parties, there are some common ob-
jectives. Audits are disruptive, time-consuming, and inherently confrontational. Like
the administrator, the taxpayer has an interest in minimizing their duration. Sampling
can contribute to achieving this goal.

In the next section, we discuss how properly conducted statistical sampling, com-
bined with well established procedures for extrapolating results, can provide the ana-
lytical basis for balancing the competing concerns of tax administrators and taxpayers.

2.4 The Case for Statistical Samples

In this section we draw upon the concepts developed in section 2.1 and apply them
to the judicial concerns discussed in section 2.2. The judicial cases have expressed
three principal concerns: (1) sampling may be used as a device to rationalize bureau-
cratic indolence; (2) assessments projected from sample results may be distorted by
unobserved or unique factors and, therefore, the sample results are of unknown reli-
ability; and (3) there is no statutory authority for the use of samples where records
are complete.

The first objection is that sampling may be used as a rationalization for avoiding a
thorough audit or, in the extreme, as a ruse to camouflage laziness. Certainly sampling,
like almost all well-established procedures for improving efficiency can be abused. But
statistical theory provides formal quality standards for detecting and insuring against
such abuses. Moreover, sampling may be the tax administrator’s only effective remedy
if a taxpayer files an inaccurate return and simply insists that the tax assessor correct
it. Although the practice of filing inaccurate returns may be only a minor nuisance
that is adequately dealt with by penalties for understatement, the authority to use
statistical sampling in the conduct of an audit can be tactically important when dealing
with a taxpayer who conducts a large volume of transactions. Without sampling, it
may be literally impossible for a tax examiner with a limited staff to audit an entire
period before the statute of limitations runs. With proper safeguards, a tax examiner
ought to be entitled to use statistical sampling to avoid such a result. Otherwise, not
only will the state’s fiscal position be injured, but tax equity will suffer by a shifting
of the tax burden from noncomplying to complying taxpayers.

The second judicial concern is whether, in the words of one court, sampling is

33While the courts have placed tight constraints on its use, sampling is routinely used in sales and use
tax audits. The reasons are that taxpayers without complete records are prime audit targets and that many
taxpayers with complete records consent to the use of sampling. To illustrate sampling’s contribution to
efficient enforcement, consider the case of Pennsylvania’s Department of Revenue. In fiscal year 1984-85,
the department conducted about 6,500 sales and use tax audits that identified over $44 million in assessed
deficiencies. The total direct personnel commitment charged to these audits was nearly 150 person years. In
about 85% of these audits, some sort of test-period procedure was used. A restriction of test period auditing
to instances where taxpayer records were incomplete would have required a 15-fold increase in auditors at
an annual cost of about $75 million-a commitment of 2,500 additional auditors, which is more than the
department’s entire personnel complement. Alternatively, the no-sampling audit strategy would require a
reduction in the number of audits of about 85%, resulting in a direct revenue loss of about $35 million. The
direct reduction in audit productivity would have resulted in deficits for the Commonwealth in four of the
past eight fiscal years.



40 Tax Audits

“plainly unnecessary, arbitrary and capricious.”34 Although perhaps overstated, the
criticism goes to the heart of judicial discomfort with sampling. We believe that sta-
tistical sampling is none of those things. In every taxpayer challenge of sampling we
have identified, the sampling procedure did not meet the requirements necessary for
drawing formal statistical inferences. In every case, the taxpayer was challenging the
extrapolation of findings from a 100% sample of one or more purposely chosen test
periods to an entire audit period.

The use of test periods to extrapolate tax assessments is a routine practice in
state revenue agencies. Despite the high probability of a successful legal challenge to a
test period audit assessment in most jurisdictions, few such challenges are made. The
reasons, we believe, are threefold. First, as a general rule, taxpayers have reasonable
confidence in the procedure. If the audits are conducted carefully and a sufficient num-
ber of test periods are examined, the projected assessments will pass the reasonable
person’s test of plausibility. Second, the taxpayer has an interest in shortening the
duration of the auditor’s unpleasant visit. Among other risks, the auditor might turn
up some other problem. Third, legal challenges are costly.

If the test period approach to audit sampling has met with general acceptance, why
has it failed to pass judicial muster when challenged by the nonconsenting taxpayer?
The reason, we believe, is that it is impossible to defend the estimate’s reliability in
a formal statistical sense. Since test period samples fail to meet the requirements of
a random sample, the tax administrator can make no formal quantitative evaluation
of the precision of the projected assessment. Thus even a sympathetic court is placed
in an awkward position: The taxpayer argues that the estimate may over-state his
liability and that records are available for determining the true deficiency, and the tax
administrator has no effective rebuttal.

As our discussion in section 2.1 states, appropriately drawn and analyzed statistical
samples provide a basis for clearing the hurdles in the way of quantitative statements
about the reliability of an estimate. We believe that if a tax administrator is armed
with proper statistical procedures, the courtroom result might be different but for one
missing ingredient: guidance on the minimum standards of reliability. As our prior
discussion indicates, statistical theory cannot accomplish the impossible. It cannot
eliminate the uncertainties inherent in projections. However, it can provide a basis for
quantifying the imprecision and for developing strategies to reduce the imprecision to
an acceptable level. Even so, what is an “acceptable” level of reliability is a normative
issue about which statistical theory is mute. The issue requires the kind of judgment
a legislature is particularly well situated to exercise. Among the questions that should
be considered are:

Since sampling inherently results in an imprecise finding, should the assessment be adjusted
to reflect the risk of overassessment? That is, should the lowest “reasonable” number be
chosen for the assessment?

Where sampling is used, what minimum standard of reliability should be required? Perhaps
a 10% chance of an error in excess of 5%?

Should sampling be permitted in all circumstances? Or should it be limited to circum-
stances where a minimum sales volume or transaction threshold is exceeded?

We address these issues in the next section.

34Names in the News v. New York State Tax Comm., 429 N.Y.S.2d 755 (App. Div. 1980).
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2.5 Statutory Standards for the Use of Statistical Sampling

Statistical sampling cannot provide an exact determination of tax owed. Only an ex-
amination of every item in the sample frame will do that – but that is not sampling.
In recognition of the inherent imprecision of assessments based on the findings of a
statistical sample, three of the revenue agencies we have identified as using statistical
sampling – the IRS and the revenue departments in New York and Pennsylvania –
adjust the assessment to provide the taxpayer with a considerable degree of protection
from the risk of overassessment. The IRS and New York assess the taxpayer an amount
designed to reduce the probability of overassessment to .05, and Pennsylvania on at
least one occasion reduced the probability to .025. We believe that in concept the
practice of these revenue agencies is sound. We will argue below that an audit assess-
ment based on a less than exhaustive sample should reflect the risk of overassessment.
We will also develop a formal assessment rule to accommodate the risk and show that
the assessment rule of the three revenue agencies is a special case of the more general
rule.

Derivation of the rule requires a formal mathematical characterization of both the
uncertainty accompanying nonexhaustive sampling and the relative cost of overassess-
ment versus underassessment of the true tax liability. The former is called a probability
distribution and the latter a loss function.

In the following paragraphs, we elaborate on what a probability distribution is.
We then discuss the central limit theorem – a theorem that gives conditions under
which averages tend to have a normal distribution as the sample size increases. In
combination, these ideas justify the use of the normal distribution as a representation
of the uncertainty about the true tax deficiency, and thus provide the first ingredient
for the derivation of an assessment rule. We note, however, that although this brief
explanation of statistical ideas should be adequate to understand this article, it cannot
substitute for a statistical text, such as DeGroot’s, Probability and Statistics, to which
the reader is referred for a more thorough discussion.35

Nonexhaustive sampling provides only a probability distribution on the tax owed.
The distribution, which is based on the findings of the audited sample, permits us
to calculate the probability that the true tax deficiency falls within any specified
interval. For example, consider an audit based on a 15% random sample. A probability
distribution provides the basis for making such statements as: “There is only a 10%
chance that the total deficiency is less than $4,500 or more than $5,500.”

The curve in figure 2.1 is the probability density of the normal distribution; it
has the familiar bell shape. This distribution is characterized by two parameters: the
mean, µ, and the standard deviation, σ. The mean is at the top of the bell. It is the
average of the distribution; and, because of the symmetry of the normal distribution,
it is also the median – that is, half the probability is above µ and half is below. The
standard deviation a measures how peaked or spread out the bell is.

The interpretation of the two parameters can be illustrated with a nonauditing
example. Consider the distribution of heights in the population. The average height is
measured by µ and the variability in heights is captured by σ. The shaded area under
the curve measures the proportion of the population whose height is between A and
B feet tall. Alternatively, this proportion can be interpreted as the probability that
the height of a randomly chosen individual is between A and B feet.

More peaked normal curves correspond to those with smaller standard deviations-
that is, to curves depicting populations with less variability. For example, a probability

35M. DeGroot, Probability and Statistics (Reading, Mass.: Addison-Wesley, 1978).
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Figure 2.1: The normal probability density functions

distribution for the height of women only would be more peaked (i.e., have a smaller
standard deviation) than for the population of both sexes.

The central limit theorem is a remarkable result of probability theory. It states
that under a very general set of conditions, the distribution of averages of observa-
tions tends to become more and more like the normal distribution as the number of
observations gets larger. The requirements for a random sample discussed in section 2.2
are sufficient to ensure that the central limit theorem applies. If the observations are
transactions, and the datum is the amount of tax deficiency in the transaction, the
average of the observed tax deficiencies will tend to have a normal distribution, with
some mean and some standard deviation that can be estimated from the audit data.
What is remarkable is that this result holds true even if the probability distribution of
transaction deficiencies is not even remotely characterized by the normal distribution.

To illustrate the power of the central limit theorem, consider the following stylized
example. Assume that a retailer sells only two items, both of which are taxable. One
item costs $1, the other $2. Assume further that the tax rate is 5% and that for any
given transaction, the retailer either collects all the tax due or fails to collect any tax.
Thus an audit of any particular transaction will reveal one of three outcomes: (1) no
tax due; (2) 5 cents due; or (3) 10 cents due. Obviously, a plot of the amount due
per transaction will not correspond to the bell-shaped normal distribution depicted
in figure 2.1. Instead, all observations will cluster at three points. According to the
central limit theorem, however, the average deficiency across transactions will tend
to be distributed normally as the sample size becomes large. Specifically, if successive
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samples of equal size are drawn and the average deficiency computed, a plot of these
averages will approximate the bell-shaped normal distribution depicted in figure 2.1.

The reader may observe, however, that the distribution we have – the distribution
of the average of the data – is not the distribution we need – the distribution of
the tax deficiency. The central limit theorem provides the basis for calculating the
probability that another estimate of the average deficiency calculated from still another
independent sample of transactions will fall within a specified range. But this is not
what we want. Instead, we want to be able to make some probabilistic pronouncements,
based on the audit findings, about the true total tax deficiency. After all, that is why
the audit was conducted.

The Bayesian school of statistics provides a remedy using a result in probabil-
ity theory called Bayes’s theorem. Bayes’s theorem provides the basis for converting
probability statements about the size of the deficiency in the sample to probability
statements about the true deficiency in the population, given the value of the defi-
ciency actually observed in the sample. A key concept is the prior distribution. In the
case at hand, the distribution measures prior opinion about the amount of the tax
deficiency. Although the audit may have been prompted by a strong opinion that a
substantial deficiency exists, such a surmise will have no standing in substantiating a
deficiency to a court. The case for the deficiency must be built from the audit findings.
Thus for our purpose, the prior distribution must be characterized by substantial un-
certainty. One way to characterize such uncertainty is by a normal distribution with
a very large standard deviation.

Bayes’s theorem provides a formal mechanism for updating the prior distribution
to take account of data – in our case the audit findings from the sampled transactions.
The resulting “updated” prior distribution, called the posterior distribution, measures
precisely what we desire: the uncertainty about the true deficiency given the results of
the audited sample. Further, when both the prior distribution and the distribution of
the data are normal, then the posterior distribution is normal. In addition, when the
standard deviation of the prior distribution is very large, as has been supposed above,
the mean and standard deviation of the posterior normal distribution are, respectively,
the mean and standard deviation of the data distribution. Hence, with these assump-
tions, the posterior distribution is well approximated by a normal distribution whose
mean is the average of the sampled observations and whose standard deviation can
also be calculated from the sample data.

In conclusion, Bayesian statistics combined with the central limit theorem provides
the technical machinery for concluding that the uncertainty about the true deficiency
can be reasonably characterized by a normal distribution with a mean equal to the
average deficiency per transaction audited times the number of transactions in the
universe, and a standard deviation, which can also be estimated from the audited
sample.

The standard deviation will be affected by two factors. First, the standard deviation
decreases as n increases. This result is intuitively appealing; as more transactions are
audited, we expect our uncertainty about the true amount owed to decrease. Indeed, in
the extreme case, where all transactions are audited, the standard deviation equals zero
– that is, there is no uncertainty about the true tax deficiency. A second factor affecting
the magnitude of the standard deviation is the inherent variation of the tax owed
among individual transactions. For example, consider two different taxpayers. One is
a retailer who specializes in selling inexpensive toys, all of which are taxable. The
other is a general merchandise retailer who sells items of widely different values, only
some of which are taxable. Further assume that the chance that either merchant does
not collect the appropriate tax on any given transaction is equal. Statistics confirms
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the intuition that for any given non-exhaustive sample, the standard deviation on the
taxes owed will be less for the first retailer than for the second.

Our first question is how much the taxpayer should be assessed in light of the
uncertainty about the exact amount owed. One obvious candidate is the average of
the observations multiplied by the number of transactions in the frame. If this rule is
used, however, some taxpayers will pay more than they actually owe, and others will
pay less. Moreover, it is not possible to tell which is which without doing a complete
audit of every taxpayer. The probabilities of overassessment and underassessment are
equal, but that gives little solace to the taxpayer who believes he or she has been
overassessed.

For several reasons, we submit that the rule for balancing the two possible errors
should build from the premise that overassessing is worse than underassessing. First,
a cornerstone of tax jurisprudence is that statutes will be strictly interpreted against
the state. One of the roots of this principle is that taxpayers need protection from
overaggressive tax administrators attempting to collect taxes that the legislature did
not intend to be levied. Second, since the burden of proof is on the taxpayer to prove
that an assessment, once levied, is invalid, the taxpayer deserves some consideration
for taking the risk that an audit assessment based on a statistical sample may overstate
his liability. We say this because the taxpayer will have no basis for arguing that he in
particular has been overassessed, beyond the observation that there is some chance the
assessment is too high. Third, and perhaps most important, we believe that an assess-
ment rule that fails to place greater emphasis on the cost of overassessment compared
to underassessment may injure voluntary compliance and taxpayer perceptions of the
equity of tax administration. Audited taxpayers will correctly conclude that 50% of
their number are being overassessed by an amount equal to the underassessment of
the remaining 50%. Such an assessment rule might appear to be more like a lottery
than an appropriate system of tax administration.

Our argument that overassessments are worse than underassessments can be math-
ematically characterized in terms of the “loss function” depicted in figure 2.2. If the
taxpayer is assessed an amount precisely equal to u, then as shown in figure 2.2, no
underassessment or overassessment costs are incurred. This point is the minimum of
the loss function. The line to the left of u measures the loss caused by underassess-
ment and that to the right, the loss due to overassessment. Consider a deviation from
u of some specified amount x. Consistent with our argument that overassessment is
worse than underassessment, the value of the loss function for an assessment u + x
exceeds that for an assessment u − x. The result is guaranteed by requiring that the
line measuring the overassessment cost be steeper (i.e., its slope be greater) than that
measuring underassessment cost.

The ratio, k, of the slopes of these two lines measures the cost ratio of an overassess-
ment versus underassessment of a given amount. Thus we suppose that k must nec-
essarily be some number greater than one. Or, stated differently, the loss due to an
overassessment of any given amount will always be greater than the loss from an
underassessment of that same amount.

In light of the inherent uncertainty in the true amount owed, as illustrated by the
probability density function in figure 2.1 and the relative losses from overassessment
and underassessment as depicted by figure 2.2, the problem is to derive an assessment
rule that, on average, minimizes the overall cost of under- and overassessment across
all audits where statistical sampling is employed. The required assessment rule, which
is derived in appendix A, is that the taxpayer should be assessed an amount equal to
x̄−ρŝ, where x̄ is the average deficiency per sampled transaction times the number of
transactions in the universe, ρ is a mathematical function of k, and is the estimate of
a based on the sample audit findings. Table 1 gives ρ for various values of k. It shows



Pragmatics of Uncertainty 45

Figure 2.2: The costs of overassessment and underassessment: illustrative loss function

that the larger the value of k, the larger the resulting value of ρ. This is reasonable,
since as k gets larger the relative consequence of collecting too much is worse, and
hence the assessment should decline. To illustrate the application of the rule, consider
again a tax deficiency of $100,000 projected from a sample of 5,000 transactions.
Assume further that ŝ – the estimate of a based on the audited sample – is $10,000.
If the cost of overassessment is judged to be twice that of an underassessment of the
same amount-that is, k = 2-then p = .46, and in this example, the taxpayer would be
assessed $95,400 (= $100,000 - [.46 × 10,000]). Alternatively, if overassessment were
regarded as four times worse than underassessment, k = 4, and the corresponding
ρ = .84. In this case, the adjustment for uncertainty is larger than for k = 2 (because
there is an even higher cost attached to overestimating the tax liability), and the
taxpayer would be assessed $91,600 (= $100,000 - [.84 × $10,000]).

The last column of table 2.1 shows P , the probability that too much tax is col-
lected. Observe that the probability declines as k increases. For example, if k = 2, the
probability is 1 in 3, but if k = 4, it is 1 in 5. Again, the result is reasonable, since as k
increases, the adverse consequences of overassessment are greater and the assessment
rule should provide the taxpayer with greater protection.

Some further intuition into the mechanics of the rule are revealed by the fact that
k × P equals the probability of underassessment, 1 − P . Intuitively, this expresses a
balance between the probability and relative cost of overassessment (kP ) and the cost
of underassessment (1− P ).

The rule, we submit, is fair to both the state and the taxpayer. It allows the state
to collect an amount of tax equal to the mean of taxes owed, with a reduction equal to



46 Tax Audits

Table 2.1: The Choice of k and the Resulting Values of p and P

Choice of k p
Probability That Too
Much Tax Is Collected

1 0 0.5
1.5 0.25 0.4
2 0.46 0.333
2.5 0.55 0.29
3 0.68 0.25
4 0.84 0.20
5 0.96 0.17
6 1.08 0.14
9 1.28 0.10

19 1.67 0.05
39 1.96 0.025

ρŝ for the uncertainty that the state imposes on the taxpayer. The magnitude of the
reduction can be controlled by the state. Recall from the previous discussion that one
of the factors affecting the magnitude of ŝ is sample size. This parameter decreases
with sample size; in the extreme, where all transactions are sampled, it equals zero.
Thus, if the state concludes that the uncertainty adjustment is sacrificing too much
revenue, it has the option of drawing larger samples at its own cost.

Similarly, we believe the rule is fair to the taxpayer. Observe that the adjustment
for uncertainty, pŝ increases in proportion to ŝ. Thus, as the imprecision of x, as
measured by ŝ, increases, the adjustment for uncertainty increases. This, we submit,
is fair to the taxpayer because the magnitude of the uncertainty adjustment can be
controlled by the state in its selection of sample size. If for whatever reason the state
chooses to draw a sample that can provide only a highly imprecise estimate of the
true deficiency, the taxpayer should not be required to bear all the risk that the
assessment may substantially overstate the deficiency. Also observe that for any given
value of k there is a fixed probability that the taxpayer will be overassessed which
is independent of ŝ. This means that the uncertainty adjustment is always just large
enough to maintain a constant probability of overassessment. Thus, as measured by
the probability of overassessment, taxpayers are being treated uniformly.

Implementation of the assessment rule requires the choice of a specific value of k,
which we believe should be made by the legislature. We will briefly discuss some of
the considerations we believe the legislature should take into account and hazard a
preliminary suggestion on an appropriate value. One consideration involves balancing
the social cost to society, in marginally less funding for government-supported pro-
grams, versus the cost to the individual of having to pay marginally more tax than he
owes. Another consideration is the extent to which the benefit of the doubt should be
given to taxpayers in the exercise of the coercive power of the state. Here it should be
kept in mind that what is at stake is money, not the individual’s basic civil freedoms.
A final consideration is the magnitude of imprecision in the assessment. For reasons
that will be discussed below, we believe that minimum standards for precision should
be tight.

Some might object to our proposed assessment rule on two grounds: that the choice
of k is arbitrary and that on a practical level it would be difficult to implement. We
address these two issues in turn.
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As we previously noted, when statistical sampling is used, the IRS36and the New
York State Department of Tax and Finance37 assess the taxpayer an amount calculated
to reduce the risk of overassessment to .05. Inspection of table 1 reveals that such an
overassessment probability corresponds to a k of 19. What is the rationale for .05?
The use of .05 dates back to R. A. Fisher in his exposition of significance testing.38

As Raiffa and Schlaiffer put it, “decisions are actually made by treating the numbers
.05 and .95 with the same superstitious awe that is usually reserved for the number
13.”39 There is no analysis we know of that supports the use of .05 in the context of
tax collection.

Pennsylvania has used varying rules for calculating assessments based on statis-
tical samples. As previously indicated, on at least one occasion, the assessment was
calculated to reduce the risk of overassessment to .025.40 This corresponds to a k of 39.
On at least one other occasion Pennsylvania has assessed at the mean, which implies
a probability of over- assessment of 0.5, and a k of 1.41 We know of no analysis to
support either of these rules.

Thus all three agencies, IRS and the revenue departments in New York and Penn-
sylvania (with both its rules), have already implicitly adopted our assessment rule but
without apparent consideration of the relative costs of over- versus underassessment.
While we acknowledge that the choice of k involves a subjective weighing of competing
considerations, surely it is better to consider the tradeoffs explicitly. While the assess-
ment rules of the IRS, New York and Pennsylvania appear to be objective, beneath
the surface each of them constitutes a probably instinctive choice of k.

We believe that the choice of k = 19 is too high and k = 1 is too low. In our judg-
ment, the cost of overassessing a taxpayer by a given amount is not, in most cases, 19
times worse than underassessing him by the same amount. Nor, in our judgment, is the
cost of overassessing a taxpayer by a given amount equal to the cost of underassessing
him by the same amount. We think that the appropriate value for k is in the range of
2 to 4.

Would our proposed rule be difficult to implement? Given a policy establishing a
value for k, implementation would depend solely on correctly calculating a mean and
a standard deviation for the amount of tax owed. The auditors could mechanically
apply the rule in calculating the assessment, just as they now do for the IRS and in
New York and sometimes in Pennsylvania. The greater difficulty will be in conducting
a sampling audit competently, so that the items selected are a random sample chosen
from a proper sampling frame.

We now consider whether the legislature should establish any minimum standard of
reliability. An argument can be made that no such minimum standard is necessary. On
one hand, the taxpayer is protected by an adjustment for uncertainty that increases
with the imprecision of the estimate of u. On the other hand, the tax administrator
can control the magnitude of this adjustment and thus the resulting loss in assessment
revenue by the choice of sample size. Thus the problem reduces to a tradeoff between
the cost of sampling and foregone revenue collections.

We reject this argument and urge a legislated floor on precision. First, from a
purely technical perspective, our proposed assessment rule builds from the assump-

36See W. L. Felix & R. Roussey, Statistical Inference and the IRS, 159 J. Accountancy 38 (1985).
37 New York State Dep’t of Tax. & Finance, EDP Systems Audit Bureau, letter to Pennsylvania Dep’t

of Revenue, Bureau of Audit, at 4.
38R. A. Fisher, Statistical Methods for Research Workers (14th ed. New York: Hafner Publishing Co.,

1973).
39H. Raiffa & R. Schlaiffer, Applied Statistical Decision Theory viii (Cambridge, Mass.: MIT Press, 1961).
40Pa. Dep’t of Revenue, Board of Appeals Docket #504817 SUT.
41Pa. Dep’t of Revenue, Board of Appeals Docket #713816 SUT.
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tion that the probability density function depicted in figure 2.1 follows the normal
distribution. This assumption, which is based on the central limit theorem, may be
violated if sample sizes are too small. For any minimum reliability standard we can
imagine being enacted, the sample size requirement would be sufficient to provide
good insurance against failure of the normality assumption. Second, the loss function
depicted in figure 2.2 assumes that the relative costs of over- and underassessments
are characterized by linear functional forms. Aside from simplifying analysis, we can
provide no rationale for choosing the linear functional form over, say, a quadratic form.
By requiring a minimum level of precision, we may keep within tolerable limits any
perceived inequities in the magnitude of the uncertainty adjustment resulting from
competing arguments on the appropriate functional form of the loss function. Moving
beyond technical observations, there is a fundamental argument. Without a minimum
standard for reliability, the raison d’etre for sampling – namely, that sampling pro-
vides a scientifically proven method for making a valid and reliable estimate of the
true amount owed – may be jeopardized. If audit assessments were to build routinely
from unreliable estimates of the tax deficiency, the perceived legitimacy of the auditing
process would be at risk. Notwithstanding the adjustment for uncertainty, taxpayers
might come to perceive the auditing process as a game of chance rather than as a
legitimate, albeit unpleasant, exercise of the state’s authority to enforce the tax laws.
Stated differently, the adjustment for uncertainty can increase the perceived fairness
of an audit assessment based on sampling only if the sampling itself is perceived as
being thorough. We suggest that one dimension of “thoroughness” is a sample size
sufficient to guarantee a minimum level of precision.

The considerations above lead us to believe that the minimum standard of precision
should be tight, but not so tight as to be unaffordable. Some calculations should be
done with typical cases and costs to determine appropriate sample sizes, from which
may emerge an appropriate minimum standard. We intend to pursue this issue in a
separate work.

Even with a minimum standard of precision and an adjustment for uncertainty,
some taxpayers might still be reluctant about the use of sampling and desire either that
a larger sample be drawn or that all transactions be audited. In such circumstances
we suggest that the taxpayer have the option of requesting further auditing, with two
important provisos: (1) the taxpayer will bear the expense of the additional work,
and (2) the statute of limitations on the periods under review would toll. The tax
authorities would not be bound to honor the request if the level of effort required
for the additional work would be prohibitive or would unduly disrupt the completion
of other audit assignments, if the request is only a delaying tactic, or if there is a
reasonable basis for concluding that the expense for the additional work would not or
could not be paid.

Finally, we ask whether the legislature should limit sampling to taxpayers of some
minimum size (assuming records are complete). We believe that the answer is yes.
Smaller taxpayers are less likely to have experience with sampling in other business
contexts (and therefore to trust the method), to be able to evaluate the quality of the
sampling procedures, or to have the resources to challenge an audit assessment if the
adequacy of the sampling procedures is in question. Regardless of the soundness of
the sampling procedures, such taxpayers might perceive the assessment as arbitrary
or oppressive. Put simply, the burden that sampling imposes on the small business is
probably too high, since with a little more effort, a 100% audit is possible.
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2.6 Conclusions

Statistical sampling is a well-established technological tool of the modern world. Tax
administration can be made more efficient, fairer, and less intrusive if the tax admin-
istrator’s technologies for identifying and measuring tax deficiencies are expanded to
include controlled use of statistical sampling. We have attempted to identify the major
elements of a statutory prescription for “controlled” uses: (1) careful adherence to the
requirements of statistical sampling – namely, having well-defined sampling frames,
random sampling mechanisms, and sampling plans and using appropriate analyses; (2)
an assessment rule that explicitly accounts for the uncertainty inherent in statistical
sampling; (3) establishment of minimum standards for acceptable reliability, and (4)
a policy that statistical sampling will not be used in audits of small taxpayers.

APPENDIX A

This appendix uses calculus to derive the form of the optimal assessment. Let u be
the unknown correct assessment, which by the argument of section 2.4 is taken to
have a normal distribution with mean x̄ and standard deviation ŝ = s/n1/2. If a is the
assessment imposed, the loss function is

L(a, u) =

[{
u− a if u > a (underassessment)

k(a− u) if a > u (overassessment)

]
.

Then a is to be chosen to minimize the expected value of L, where the expectation is
taken over the unknown value of u, as follows.

The expected loss is

L∗ =

∫ a

−∞
k(a− u)f(u)du+

∫ ∞
a

(u− a)f(u)du,

where

f(u) =
exp

(
− 1

2 (x−xŝ )2
)

ŝ
√

2π

is the normal density function.

Now taking the derivative of L∗ with respect to a, we obtain

dL∗

da
= −k(a− u)f(u)|su=a +

∫ a

−∞
kf(u)du− (u− a)f(u)|u=a +

∫ ∞
a

−f(u)du (A.1)

This equation can be simplified using the fact that k(a − u)f(u)|u=a and
(u− a)f(u)|u=a are both zero. Let

Fu(x) =

∫ x

−∞
f(u)du.

Then
dL∗

da
= kFu(a)− (1− Fu(a)).

Setting the derivative equal to zero to find the minimum

Fu(a) =
1

k + 1
(A.2)
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is the only solution, and hence the value of a that minimizes the expected loss satisfies42

a = F−1
u

(
1

k + 1

)
. (A.3)

Note that P = Fu(a) is the probability of overassessment. Then (A.2) can be
rewritten as

P =
1

k + 1
, or kP = 1− P,

as discussed in section 2.4.
It is a property of the normal distribution that u can be written

u = x+ εŝ,

where ε has a standard normal distribution with mean 0 and standard deviation 1.
Then

Fu(x) = Fε

(
x− x
ŝ

)
for all x.

Consequently,
1

k + 1
= Fu(a) = Fε

(
a− x
ŝ

)
.

Thus,

a = x+ ŝF−1
ε

(
1

k + 1

)
, or, a = x− ρŝ, where ρ = −F−1

ε

(
1

k + 1

)
.

The function F−1
ε (·) is called the normal ogive, and is tabulated in many books,

among them Probability and Statistics.43

42See also M. DeGroot, Optimal Statistical Decisions 261 (New York McGraw-Hill Book Co., 1970).
43M.H. DeGroot, Probability and Statistics 577 (Reading, MA: Addison-Wesley Publishing Co., 1975).



Chapter 3

A Statistical Analysis of Adverse Impact of
Employer Decisions (1990)

Foreword

I was hired by the plaintiff’s attorney in an age discrimination case. The plaintiff
was dismissed in the fourth of four firing waves. The law provides protection against
adverse action against employees over 40. If data shows actions that disproportionately
disadvantage persons over 40, the employer is then called upon to explain some non-
discriminatory business reason or necessity for its actions.

The employer in this case was negatively affected by a cyclical downturn in demand.
As a result, it decided to reduce its management workforce. It had the legal right to
decide how many workers to fire. The question was whether in choosing which ones
to fire it disproportionately targeted workers over 40. So a simple way to think about
the results of a firing wave is a 2 × 2 table, in which one dimension is the age of the
employee (over or under 40), and the other is whether the employee was fired. The
ages of its employees going into a firing wave is not a legal issue in the case, nor is the
number of employees fired. Hence a natural model is a 2× 2 table with both margins
fixed.

Such a model has been examined classically. Fisher’s Exact Test (Fisher, 1958)
calculates the probability of data as or more extreme than that observed under the
null hypothesis of independence between the two margins, here age and being fired.
Famously, Fisher used the test to deal with the data arising from the lady tasting tea.
I wanted to see what a Bayesian treatment would look like.

It turns out that the likelihood function depends only on a single parameter, the
log odds ratio (see the paper for details). This parameter is positive if being over 40
is positively associated with being fired. As a result, symmetric priors centered at
zero are fair to both parties, as they put equal prior weight on action favorable or
unfavorable to those over 40, to the same extent. Thus I used normal priors with zero
mean, and studied the effect of different prior standard deviations. I report both the
posterior mode and the probability that the log odds ratio (L) is positive for each
firing wave, for each firing wave separately, and for all four waves together.

The results show that the combined analysis, and the first, second and fourth firing
waves all show disproportionate disadvantage to older workers, while the third shows
the opposite. (Is it an accident that the first age discrimination lawsuit against the
company was filed between the second and third firing wave?).

The heart of the comparison between classical and Bayesian methods is given in my
fantasy cross-examination of a classical statistician. I gave what I take to be the correct
classical answers (after all, my graduate training was all classical, all the time). But
the result is embarrassing. By the end, the classical statistician is about to admit that
his analyses are all based on the assumption that his employer is innocent, and that

51



his analyses are not relevant to the particular case in hand (but only to a hypothetical
infinite sequence of such cases).

You might be interested in what actually happened in the case. On Friday the
parties met in the judge’s chambers and found they were not able to settle the case.
However, a jury was chosen. That weekend, the plaintiff’s attorney and I met and
prepared for the coming trial. On Monday, the plaintiff noticed that the defendant’s
lawyers had come to court with no briefcases or documents. The attorneys were called
into the judge’s chambers, and the defendant’s lawyers said they wanted to accept
the plaintiff’s Friday settlement demand offer. The plaintiff’s attorney said that offer
was no longer available, as we had worked on the case all weekend. She made a new,
higher offer of settlement, which was immediately accepted.

How do I know all this? As it happened, after the case was over, she and I started
going together. We married a year and a half later. I can’t think of a happier conclusion
to a paper than to find one’s life-time companion.

This paper was originally published in the Journal of the American Statistical
Association, 85, pp. 925–933. Republished by permission from Taylor and Francis.
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J.B. Kadane

Abstract

Federal law prohibits discrimination in employment decisions against persons forty years old
and older. This paper uses data from an actual case to illustrate several methods of showing
adverse impact, a legal doctrine under which only the effects of the employer’s acts are at
issue, and not the motives with which they were done. The strengths and weaknesses of the
Fisher exact test of significance, a Bayesian analysis, and a method of paired observations
inspired by the Mann-Whitney-Wilcoxon statistic are assessed. One important conclusion
from this analysis is that it is useful to have several different kinds of analysis bearing on the
same issue. To the extent that the analyses agree, this adds credibility to each.

Key words: Age Discrimination, Bayesian Analysis, Cross-Classified Table, Fisher Exact
Test, Mann-Whitney-Wilcoxon Statistic, Reference Prior.

3.1 Introduction

Federal Law (U.S. Code, Title 29, Chapter 14 §626) forbids discrimination against
persons forty years of age and older with respect to employment decisions. Under the
doctrine of adverse impact, statistics can be used to establish a prima facie case of
discrimination. Under this doctrine it is not necessary to prove that the employer
had discriminatory intent, but only to show that his actions had the actual effect
of disadvantaging a disproportionate number of people of protected age or race. See
United States v. Hazelwood School District, 433 U.S. 299 (1977) (race discrimination),
Geller v. Markham, 635 F.2d 1027 (2d Cir. 1980). To overcome such a prima facie
showing, an employer can demonstrate a non-discriminatory business reason for the
decisions.

What must be shown statistically to demonstrate adverse impact? This question
is analyzed using the data from a recent case, for which I served as an expert witness
for the plaintiff, and which was settled just before testimony. In order to protect the
privacy of the parties involved, the plaintiff will be referred to as the Employee, and
the defendant as the Company.

The Company was adversely affected by the down-turn in the basic metals markets
in the early 1980’s. In that period, the Company reduced the size of its workforce in
a series of moves that were the occasion for this lawsuit. The Employee is a union
member who had received several promotions leading to a very responsible manage-
ment position. In the fourth of four firing waves, his job was “abolished” (divided
among his two former subordinates) and he used his union seniority rights to bump

Joseph B. Kadane is Leonard J. Savage Professor of Statistics and Social Sciences, Department of
Statistics, Carnegie Mellon University, Pittsburgh, PA 15213. The author thanks Caroline Mitchell and the
Employee for involving him in the case. He also thanks George Duncan, Stephen Fienberg, John Lehoczky,
Michael Meyer, Allan Sampson, and Teddy Seidenfeld for helpful conversations, and most particularly
Thomas Short, for computational assistance.
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someone from a lower-paying union position. Because there was another aspect of his
case, involving actions on the Employee’s part in the nature of whistle-blowing, his
suit was brought individually against the Company, and not as a class-action proceed-
ing on behalf of all fired management employees. In the adverse impact portion of his
lawsuit the Employee alleged that the Company had disproportionately fired people
40 and over (himself included). The case was a civil suit: such cases are decided on
“the preponderance of the evidence.”

In the remainder of this article, Section 3.2 describes issues concerning the
database, Section 3.3 treats the analysis, and Section 3.4 contains my conclusions.

3.2 Database Issues

In civil litigation, each side is entitled to discovery, that is, to whatever records and
analyses the other side intends to use in court and, additionally, all other “relevant”
records. In this case, the plaintiff’s preparation of the case was hampered by the
poor state of the defendant’s personnel records. The Employee’s position after he
was dismissed from his management job involved handling personnel records; he often
knew of errors or incompleteness in the service record cards made available by the
defendant. Ultimately it was possible for the plaintiff to assemble a list, alleged to
be complete, of all management employees during the period in question, their birth
dates, and the dates they left management, if they had. Where ambiguities or doubts
arose, the benefit of the doubt was given to the service record cards, because they
were the documentary evidence made available by the Company in discovery. In this
way, errors in the data base, if any, would be the responsibility of the Company.

A cursory examination of the list revealed that many management employees had
left management on four specific dates: 06/30/82, 11/30/82, 05/31/83 and 06/28/84.
I was informed by the Employee’s attorney that the Company had announced to these
employees that their jobs were to be abolished, that unless they had union rights they
would no longer be employed by the Company, and that they could choose to retire
and receive a pension from the company if they were eligible. In view of the involuntary
nature of these departures from management service, I refer to them as “firings” even
though some, with union rights, might still have been employed by the Company in
other positions.

As is natural in any human population, there were in addition, various other depar-
tures from service during the two-year period in question. One employee died, several
retired, and some resigned to take positions with other firms. There were very few, but
some, hirings during the period as well. I ignored these departures on other dates, be-
cause they were the results of decisions not by the Company, but rather, in the main,
by employees. Thus to include them would be either to credit or to blame the Com-
pany for decisions it did not make. For more on this point, see Michelson (1986), who
distinguishes between “situations” (which are not relevant for discrimination suits)
and “events” (which are relevant).

The first step in my analysis was simply to count those retained and fired in each
of the four firing waves, divided by whether the employee was older than 40 or not at
the time. These counts are given in Table 1.

Shortly before the trial the Company submitted its own version of the data, and
an analysis of that data by its own expert. The data were prepared by the Company’s
Director of Personnel and Public Relations, who alleged that the database used by
Plaintiff was “inaccurate and incomplete.” He presented his results in two data bases.
In the first data base, he reports his counts of both voluntary and involuntary termi-
nations, divided into four periods: 06/30/82, 07/01/82 through 11/30/82, 12/01/82
through 05/31/83, and 06/01/83 through 06/24/84. The second data base records his
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Table 3.1: Ages of those Fired and Retained in Four Firing Waves by the Company

Age Fired Retained
6/30/82 Firings

40+ 18 129
39- 0 102

11/30/82 Firings
40+ 26 105
39- 10 83

5/31/83 Firings
40+ 13 92
39- 14 66

6/28/84 Firings
40+ 13 81
39- 2 52

version of involuntary terminations for those four periods. Both of these data bases
were simply counts: he did not explain why, or on what basis, he disagreed with the
Employee’s categorization of the individual terminations. The latter data base did not
coincide with the Employee’s for several reasons:

1. There were several young employees who were permitted to hold management jobs for a
short time, and then furloughed. I did not include these as involuntary terminations in my
counts since the circumstances were that these furloughs occurred while the employees
were still on probation. The question of whether the Company had discriminated against
its older management employees seemed to me to be independent of whether it had also
temporarily promoted several younger workers and then furloughed them back to union
positions.

2. The Personnel Director alleged that the entire first wave consisted only of voluntary
departures from service.

3. The Personnel Director alleged various other errors and omissions in the data base I had
been furnished, without specifying what they were, or to which employee they attached.

The struggle over the data base would have been a major feature of the trial had
it occurred. The Company’s attorney would have tried to portray the Employee, who
would have been presenting the data base on his own behalf, as an error-prone and
biased witness. The Employee’s attorney would have tried to portray the Personnel
Director as disingenuous. That the Personnel Director’s information had not been
made available to the Employee in discovery would have been used in a legal effort to
have his testimony quashed. If the Personnel Director’s testimony had been allowed,
he would have been asked to identify those departures that he claimed were volun-
tary. This would have permitted the Employee, in surrebuttal, to call those former
employees as witnesses, to testify about the circumstances of their departure from the
Company. It is difficult to guess what the effect of all this would have been on the
jury.

3.3 Analyses

My expert’s report presented three kinds of analyses: a Fisher exact test, a Bayesian
analysis, and an analysis based on the Mann-Whitney-Wilcoxon statistic. I would have
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put least weight on the Fisher exact test; in contrast, the Company’s statistician would
have put virtually all his weight on Fisher’s exact tests at the .05 level.

3.3.1 Fisher’s Exact Tests

The significance levels for the one-tailed Fisher exact test for the four firing waves
reported in Table 3.1 are .0001, 0485, .8821 and .0407, respectively. Thus wave I is
highly significant, waves II and IV are marginally significant at the .05 level, and wave
III is not significant. The Company’s statistician told me after the settlement that with
respect to wave I he would have relied in court on the Company’s Personnel Director’s
explanation that those departures were voluntary, and that with respect to waves II
and IV the shift of a single fired person from the over-40 to the under-40 group would
have changed the Fisher exact test significance levels to .0906 and .1193, respectively,
thus allowing him to say that the case rested on a single birth date in each group. See
Gastwirth (1988, pp. 226–227) for discussion of this argument in another case.

In rebuttal I would have pointed out that the shift of a single fired employee in
the other direction, from the under-40 to the over-40 group, would have changed the
significance levels to .0234 and .0091, respectively. I also would have said that I think
statisticians should analyze the data sets they have, not make up new ones whose
conclusions they like better. Nonetheless, his robustness argument probably would
have had some appeal, or would have made the jury abandon all hope of understanding
the statistics.

In general, tests of significance, including the Fisher’s exact test, are vulnerable in
court to the following sort of fantasy cross-examination:

Q: In your analysis, you used 40 years of age as a threshold between young
people and old people. Why did you use 40 years, as opposed to 35 or 45, say?

A: It is my understanding that the law protects exactly persons 40 years of
age and older. Consequently to be relevant to the case I think that it is essential to
use 40 years of age as the threshold.

Q: So your use of 40 years of age and older is because you think the law
requires it?

A: Yes.
Q: You also use the number .05 as a threshold between data you call “sig-

nificant” and data you do not call “significant.” Why do you use the number .05?
Would .03 or .07 do as well?

A: I use .05 because it is a traditional number to use in statistics. The Fed-
eral Government Equal Employment Opportunities Commission uses it as a threshold
level of significance (29 C.F.R. §1607.4(D)).

Q: To the best of your knowledge, is the number .05 used in the written
law?

A: Not to the best of my knowledge. Court decisions that use it include the
Federal Supreme Court in Albemarle Paper Co. v. Moody (1975).

Q: What is the origin of the use of .05 as a significance level?
A: I believe it goes back to Sir Ronald Fisher, the same statistician who

invented the Fisher exact test.
Q: Why did Fisher use .05 rather than .03 or .07?
A: Fisher doesn’t really say. He points out that .05 is one in twenty, but

similar equivalences could be found for .03 and .07.
Q: Do you agree with Raiffa and Schlaifer (1961, p. vi) when they write

“the numbers .05 and .01 [are treated] in statistics with the same superstitious awe
that is usually reserved for the number 13”?

A: I use the number .05 because it is the traditional number.
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Q: But if you used .07 or .03 you would come to rather different results in
this case, is that true?

A: Yes, it is.
Q: Now I want to ask you about the meaning of a significance test, perhaps

using the Fisher exact test as an example. What does it mean to say that the data
are significant at the .05 level?

A: There are two different meanings given to such a statement. According
to Fisher (1959), the meaning is that, if the null hypothesis of independence between
age and being fired is true, the probability of seeing data as or more discriminatory
than the data observed is less than .05. According to Neyman and Pearson (1967), the
number .05 is a property of the decision procedure. It says that if I use this procedure
many times when the null hypothesis is true, in only .05 of the times will I make an
error in rejecting the null hypothesis.

Q: Let’s take each of these meanings in turn. Do I understand correctly
that, with respect to the Fisher interpretation, the calculation assumes that the null
hypothesis is true, that is, it assumes that the Company did not discriminate?

A: Yes, that is correct.
Q: Since your calculation assumes that the Company did not discriminate,

how can it be used to shed light on whether the Company discriminated?
A: Fisher would say that with a significance test, one faces a disjunction. If

significance is found, either something rather unusual has happened, or the Company
discriminated against older people.

Q: Does the Fisher theory allow you to say which of these has occurred,
given that one has?

A: No, it does not.
Q: Does it allow you to give a probability that the Company discriminated?
A: No, it does not.
Q: Does it allow you to say anything in the case that the data are not

significant?
A: No, it does not.
Q: What would happen if you made the opposite assumption, that the

Company does discriminate?
A: One could do that. It is called a “power analysis,” and would depend

on exactly what you assume about the extent to which the Company discriminates.
This is really part of the Neyman-Pearson, as opposed to Fisher, view of significance
tests. Neyman and Pearson refer to such tests as hypothesis tests to distinguish their
interpretation from Fisher’s.

Q: Then let’s now turn to the Neyman-Pearson interpretation. When you
say that the Neyman-Pearson view is that .05 is a property of a procedure, do I
understand you to mean that it is not a property of any particular use of the procedure?

A: Yes, that is correct.
Q: So, under the Neyman-Pearson interpretation, .05 has to do with a long-

run sequence of use and not with this particular use?
A: Yes.
Q: So, for example a procedure that accepted the null hypothesis .95 pro-

portion of the time and rejected it .05 proportion of the time, without looking at the
data, would be a valid .05 level test according to the Neyman-Pearson theory?

A: Yes, it would. Other criteria would be introduced to show that it is not
very sensible, in particular it has poor power compared with some other tests.

Q: So, under the Neyman-Pearson theory, the hypothesis test tells us noth-
ing about this particular use of it, but only about what would happen, hypothetically,
if we used it in many cases?
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A: Yes.
Q: Have you performed any analyses that do not assume the innocence of

your client and that are relevant to this particular case?

What this line of questioning shows is that while the language of significance testing
is wonderful (who in court wants his data sneered at because of alleged insignificance?),
its philosophical underpinnings are weak. There has to be some doubt about how long
statisticians can go to court to testify on significance tests using the justification of
tradition, which comes down to the idea that many others in statistics make the same
mistake.

3.3.2 A Bayesian Analysis

A Bayesian analysis is a formal procedure for modeling an opinion concerning the
issue being decided and then showing how that opinion is changed in light of the data.
Since Bayesian analyses measure the transformation of opinion brought about by the
data, the first critical question is whose opinion is to be modeled. There are several
possibilities: the Employee’s, the Company’s, the judge or jury’s, or my own. Since
the Employee and the Company are parties to the conflict, they are likely to have
convinced themselves of the justice of their cause. Neither judge nor jury is available
for probability elicitation. Furthermore, since in at least some sense they know what
they think, presenting them with my model of their beliefs seems convoluted and
probably insulting. While as an expert witness my opinions are admissible in court,
it is not clear why anyone would or should particularly care about my private views,
especially since, having had access only to the plaintiff’s side of the case, I am no
longer impartial. I would prefer to think that the opinions to be modeled are those of
a neutral statistical arbitrator working for the court (see Coulom and Fienberg (1986)
for a case study of one such referee). Thus I am modeling impartiality, which may not
represent my real opinion.

The data are presented in Table 3.1 in the form of four 2 × 2 tables. Certainly
going into each of the decision dates, it is reasonable to consider the age structure of
the workforce as fixed, and thus to condition on the number of management workers
over and under 40. Consideration of the other margin raises issues that once were
and sometimes still are, hotly debated in statistics. Fisher (1958, pp. 96, 97) took
the position that both marginal totals were ancillary, and consequently contained no
relevant information. Barnard (1946) shows that each of several sampling models might
be appropriate, depending on the experimental situation. See also Seidenfeld (1979)
. While in general I agree with Barnard’s argument, I think that in this instance the
most useful way to treat the data is by conditioning on both margins. The right of the
Company to fire management workers at a time of financial stringency is not being
challenged in this lawsuit, only whom they chose to fire. While conceivably the number
of employees fired and retained might depend on the extent of discrimination against
persons over 40, the dependence is likely to be weak and masked by the legitimate
right of the Company to reduce its management workforce. Consequently a neutral
statistician referee would want, I think, to condition on the other margin as well, the
number of management workers fired and retained.

An alternative model would be to think of the Company as wishing to reduce
its salary bill by a fixed amount. This would lead to a different linear constraint
on the persons fired. However, it is obvious that salary and age tend to be highly
correlated. The case law [Metz v. Transit Mix, Inc., C.A. 7 (Ind.) 1987, 828 F. 2d 1202
on remand 692 F. Supp. 987; Leftwich vs Harris-Stowe State College Bd. of Regents,
540 F. Supp. 37 (1982 E.D. Mo.); Geller v. Markham, 635 F. 2d 1027, 1034 (2d Cir.
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1980) cert. denied 451 U.S. 945, 101 S. Ct. 2028, 68 L.Ed.2d 332 (1981) (Rehnquist, J.
dissenting); Marshall v. Arlene Knitwear, Inc., 454 F. Supp. 715, 728 (E.D. N.Y. 1978);
Laugeson v. Anaconda Co., 510 F. 2d. 307, 316 (6th Cir. 1975)] holds that to fire the
highest paid employees is not a sound business reason for having discriminated against
workers over 40. A neutral statistician would wish to avoid a model that prejudices
the case against the Company before the data are even considered.

Conditioning on both margins leads to consideration of four doubly constrained
2× 2 tables. The likelihood for a single table is given (see Plackett (1981, p. 38)) by

( n
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Here ni,j is the number of people in age group i whose employment fate is j. Age
group 1 is over 40, and group 2 is under 40. Employment fate 1 is to be fired, and fate
2 is to be retained. Similarly pi,j is the probability that a person will fall in category

(i, j) in a given firing wave, where
∑2
i=1

∑2
i=1 pij = 1. Then λ = p11p22/p12p21. Finally

n+1 = n11 + n21 and n1+ = n11 + n12.
Thus the likelihood, although formally a function of p = (p11, p12, p21, p22), is

a function only of λ(p). Consequently the entire prior-to-posterior analysis can be
conducted on λ, as the conditional distribution of p given λ will be unaffected by the
data. See Kadane (1975) for discussion of a similar situation occurring in the Bayesian
theory of simultaneous equations in econometrics.

The odds ratio λ is, in addition, a natural and convenient measure of the extent of
discrimination against older workers. However, there is one inconvenience to the odds
ratio. An odds ratio of 2 would be transformed into an odds ratio of 1/2 by a relabeling
of the rows (or of the columns). Thus to think properly about odds ratios requires
attention to multiplicative symmetry around 1. It is far less awkward to transform
to the log odds ratio L, and attend to additive symmetry around 0. Relabeling now
merely changes the sign of the log odds ratio.

The point L = 0 corresponds to a policy of the Company that discriminates nei-
ther for nor against its older workers. Positive values for L correspond to discrimina-
tion against older workers, and negative values correspond to discrimination against
younger workers. Thus it certainly seems reasonable for the prior of an impartial statis-
tician to be centered at a log odds ratio L of 0. Furthermore, a log odds ratio of log
2, corresponding to the example discussed previously, is as discriminatory as a log
odds ratio of log 1

2 = − log 2, so symmetry around 0 seems to be a natural condition.
Additionally, it seems reasonable to me to require that the prior be unimodal, so that
points closer to 0 have at least as high density as that for points far away. I use the
normal family, not because I think normality has anything to do with impartiality in
this problem, but because I think calculations done with normal priors are typical of
what I would get with other shapes symmetric around 0.

Within the family of normal distributions centered at 0, the only parameter left is
the variance. When the prior variance is zero, all the mass is at L = 0. But this would
say that the impartial statistician is so sure that the company did not discriminate as
to be uninterested in and uninfluenced by the data, which is unreasonable. Because
the likelihood is positive and continuous at L = 0, as the prior variance approaches 0
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Table 3.2: Combined Likelihood Summary

Prior Standard Deviation
1 2 4 8 ∞(reference)

Mode L .68 .71 .71 .72 .72
Prob(L > 0) .999 .999 .999 .999 .999

the limiting probability that L is positive approaches 1
2 , regardless of the data. Again,

this is not reasonable. Consequently I choose a “large” variance, by which I do not
mean an infinite variance, but rather one large enough to allow the data to dominate
in the calculation of the posterior. In practice, I use a variety of variances, and show
that the choice among them does not materially affect the conclusions.

One could argue that newer workers, usually junior, are on a kind of probation
for some period after their formal six-month probation has expired. Consequently one
might expect a higher natural dismissal rate for junior than for senior employees, ab-
sent discrimination. If one ignores this phenomenon by using priors symmetric around
0, the Bayesian analyses given here may understate the extent of the Company’s dis-
crimination against people over 40.

There are alternative priors that I considered but did not use. One of them puts
a lump of probability, say 1

2 , at L = 0 and spreads the rest, perhaps as a normal
distribution, with a mean of 0. This would have the anomalous effect of placing 3

4
prior probability on the innocence of the Company, which does not seem consonant
with impartiality. Another possibility puts such a lump at 0, and perhaps a half-
normal on positive L. Now there would be a 1

2 prior probability on the innocence of
the Company, which seems appropriate, but the expected amount of discrimination
(L) in the prior is positive, which does not.

One could imagine using Bayesian analysis in another way. Suppose instead of
thinking of a prior to posterior transformation by describing the posterior, one asks
what characteristics of the prior would be implied by Pr(L < 0) = 1

2 . If the normal
family is accepted, there would be a curve of prior means and variances such that
the posterior would indicate a probability of discrimination of exactly .5. A similar
contour could be found for .6, .7, etc. I chose not to do this here, because I wish to
stress the idea of impartiality of the prior, but this is a legitimate alternative use of
Bayesian ideas to express the import of the data.

The statistical arbitrator might first want to know whether there is a pattern of
age discrimination in the firings, taken as a whole. This suggests using the sequence
of priors specified above, and a likelihood consisting of the product of the likelihoods
for each of the four periods. In addition to the posterior distribution in general, the
amount of probability falling below 0 (corresponding to discrimination against people
under 40), and above 0 (corresponding to discrimination against people over 40) are
of special interest. The results are given in Table 3.2. They show overall a definite
pattern of discrimination by the Company against people over 40. It is notable that
this conclusion is not sensitive to the standard deviation chosen for the prior. The
modal log odds ratio of .72 corresponds to an odds ratio of 2.05. Thus the odds of
an over-40 employee being fired are roughly twice those of an employee under 40,
indicating substantial discrimination.

It is also of interest to examine each firing wave individually. I consider them
chronologically, taking the firing wave of 06/30/82 first. As shown in Table 3.3, the
probability that the log odds ratio is positive is virtually 1, indicating a virtual cer-
tainty of discrimination against people 40 years old and older. Because all people fired
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in this wave were over 40, the data are consistent with arbitrarily large extents of
discrimination L against people over 40. It is only the prior distribution that con-
strains L. As the prior variance on L increases, the posterior mode of L increases. If
the prior variance increased without limit, so would the posterior mode of L. It is for
this reason that Table 3.2 does not report results for a reference prior for the firing
wave of 6/30/82. The data from this wave indicate a truly extraordinary degree of
discrimination against employees over 40.

The rhetoric of various authors would suggest something canonical about a prior
proportional to Lebesgue measure. Jeffreys (1961, p. 49) wants a “simplicity postu-
late...sufficiently precise to give exact prior probabilities to all laws.” Box and Tiao
(1973) support many of the same priors as Jeffreys on the ground that they are “data
translated.” Bernardo (1979) justifies priors on grounds of a connection with infor-
mation theory. While I do not find appealing the arguments supporting these priors
as canonically correct, often, but not always, such priors yield about the same con-
clusions as would many other, proper priors better grounded in reasonable opinion
that is informed about the problem at hand. In the case of the firing wave of 6/30/82,
however, because none of the employees fired was under 40, the likelihood function is
ill suited to such a prior. Nonetheless, the inference important here, the probability
of discrimination against people 40 and older, is not sensitive to the choice of prior
variance, as Table 3.3 shows.

The second firing wave is that of 11/30/82. In Table 3.4 the probability of discrim-
ination against persons older than 40 is again very high (96% to 97%). Again the log
odds ratio is about .72, indicating an odds of 2.05. Thus, as in the combined case, this
indicates that the odds of an over-40 employee being fired on 11/30/82 were twice
those of a person under 40.

The third wave of firings, that of 5/31/83, shows a very different pattern. As shown
in Table 3.5, the probability of discrimination against people older than 40 drops to
about 16%, and the estimated log odds drops to –.40, which corresponds to an odds
of .67. Thus for this wave of firings, the odds of an over-40 person’s being fired are
roughly 2

3 of those of a person under 40. This wave therefore does not show evidence
of discrimination against people over 40 in the allocation of firings.

Finally, I examine the fourth wave, that of 6/28/84 in Table 3.6. This firing wave
may have special significance since this was the wave in which the Employee was
fired, having survived the firing waves of 6/30/82, 11/30/82, and 5/31/83. Here the
probability that there was discrimination against those over 40 was .987 (for the

Table 3.3: Firing Wave of 6/30/82

Prior Standard Deviation
1 2 4 8

Mode L 1.88 2.91 4.01 5.16
Prob(L > 0) 1.000 1.000 1.000 1.000

Table 3.4: Firing Wave of 11/30/82

Prior Standard Deviation
1 2 4 8 ∞(reference)

Mode L .62 .69 .71 .72 .72
Prob(L > 0) .960 .967 .969 .970 .970
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Table 3.5: Firing Wave of 5/31/83

Prior Standard Deviation
1 2 4 8 ∞(reference)

Mode L .34 -.39 -.40 -.40 -.40
Prob(L > 0) .183 .169 .165 .164 .164

reference prior). The modal estimate for the log odds ratio is 1.42, corresponding to
an odds ratio of 4.14. Thus in the firing wave that affected the Employee, the odds of
his being dismissed were over four times as great as those of his co-workers under 40
years of age.

My conclusions from this Bayesian study are as follows;

1. As to overall pattern, the data show that the Company did engage in a pattern of
discrimination in firing management employees aged 40 years and older.

2. The first firing wave of 6/30/82 shows extreme discrimination. The fourth wave, of
6/28/84, in which the Employee was fired, also shows very substantial discrimination.
The second wave, of 11/30/82, shows substantial discrimination. Finally, the wave of
5/31/83 does not show much of a pattern in either direction, but there is perhaps a
slight hint of discrimination the other way, against people under 40 years of age.

One might argue that if there were a consistent pattern of discrimination on the
basis of age, especially if there were some continuing mechanism at work, all four
firing waves should demonstrate the same pattern. The exception of firing wave III,
then, casts doubt on this interpretation of events. To establish adverse impact, one
should not be required to show that every act of the Company, or even its decisions
about whom to fire in each wave, were discriminatory. If a general pattern of age
discrimination is found, it should be considered sufficient to shift the burden of proof
to the Company of explaining the pattern in a nondiscriminatory way. However, if the
case were brought as a class-action suit on behalf of all over-40 employees fired in the
four waves, the data might be sufficient to support exclusion from the class of those
fired in the third wave. Excluding the one wave in which the Company appears not
to have discriminated would only make the combination of the remaining waves look
more discriminatory, of course.

How might the Bayesian analysis be criticized? A likely line of attack is through
the data base. What would be the consequence of excluding firing wave I entirely,
taking the view that all these departures from management ranks were voluntary
retirements rather than involuntary retirements? The answers are given in Table 3.7.
The probability that the Company discriminated against its older workers drops from
.999 in Table 3.2, to .937 here, not nearly enough of a drop to disturb my conclusions
under a standard of the preponderance of the evidence. What does change is the modal

Table 3.6: Firing Wave of 6/28/84

Prior Standard Deviation
1 2 4 8 ∞(reference)

Mode L 0.94 1.24 1.37 1.41 1.42
Prob(L > 0) 0.965 0.981 0.985 0.986 0.987
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Table 3.7: Combination of Waves II – IV

Prior Standard Deviation
1 2 4 8 ∞(reference)

Mode L .360 .380 .390 .390 .390
Prob(L > 0) .930 .935 .936 .937 .937

Table 3.8: Combination of Waves II – IV (Altered Data)

Prior Standard Deviation
1 2 4 8 ∞(reference)

Mode L .260 .270 .270 .270 .270
Prob(L > 0) .853 .859 .860 .861 .861

log odds ratio, which drops from .72 in Table 3.2 to .39 here, corresponding to a drop
in the odds ratio from 2.05 to 1.48.

Finally one could ask what the effect would be of changing one fired worker in each
of waves II and IV from over 40 to under 40. The results are given in Table 3.8, and
indicate a modest further shift in the results. Remembering that no evidence supports
this alteration of the data, these calculations suggest reasonable robustness of the
Bayesian analysis.

Faced with two methods of analyzing the same data set, one may naturally want
to compare them, both in principle and numerically. Altham (1969) showed an equiv-
alence between the Fisher exact test and a Bayesian analysis. However, the Bayesian
analysis in Altham’s equivalence has only one margin fixed, (hence two independent
binomial populations), and independent beta priors with parameters (0,1) on each.
This is quite an astonishing result, since the Fisher calculation is a summation over
the sample space, while the Bayesian calculation is an integration over the parameter
space. Because the Bayesian model used by Altham differs from the one used here
both in likelihood and in prior, it is useful to compare the results numerically, as is
done in Table 3.9.

The first four rows are the data from the four firing waves. The fifth and sixth
rows result from shifting one fired person from the over-40 to the under-40 group in
firing waves II and IV. Conversely, the seventh and eighth result from shifting one

Table 3.9: Fisher Exact Test Significance Levels and Bayesian Probabilities of Discrimination

Bayes (ref. prior)
Data Fisher Exact Test Pr(L < 0)

(18,0,129,102) .0001 .000
(26,10,105,83) .0485 .030
(13,14,92,66) .8821 .846
(13,2,81,52) .0407 .013
(25,11,105,83) .0906 .061
(12,3,81,52) .1193 .056
(27,9,105,83) .0234 .013
(14,1,81,52) .0091 .002
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Table 3.10: Paired Analysis

Firing Probability older person fired
wave Probability Log odds Odds

I 0.983 4.053 57.57
II 0.625 0.512 1.689
III 0.479 −0.085 0.919
IV 0.711 0.902 2.465

Combined 0.685 0.778 2.178

fired person from the under-40 to the over-40 group in those firing waves. Generally
the Bayesian and Fisher results are parallel, but not the same.

The strength of a Bayesian analysis in this context, it seems to me, is that it answers
the relevant legal question, namely what the probability is that the Company’s policy
(L) discriminated against people over 40. Unlike the classical analysis, it does not
assume that either side is correct, and it is relevant to the particular case.

3.3.3 Paired Observations

The preceding analysis convinces me that my hypothetical neutral statistical arbitrator
would find that the Employee has met the requirement of showing disparate impact of
the Company’s decisions against people 40 and older, thus placing the burden of proof
on the Company to show sound, nondiscriminatory business reasons for its actions.
However, it leaves open the question of whether the effects observed truly reflect age
discrimination or are an artifact of defining the protected group to be people aged 40
and older. One way of looking at that question would be to perform analyses similar
to those of Sections 3.3.1 and 3.3.2, varying the age cutoff. However, this does not
deal with the question in a continuous way.

I think a more natural analysis of this question would proceed as follows: Suppose
we form, conceptually, all pairs of employees, one of whom is fired and one of whom is
not, in a given firing wave. If we picked one such pair at random, what is the probability
that the older would be the one fired? This proportion is the Mann-Whitney-Wilcoxon
statistic, thought of as an estimate of the probability that a member of the fired
population is older than a member of the retained population (see Hoeffding (1948)). In
this application, however, the entire population of management employees is available
for analysis, so it seems wrong to conceive of the data as a random sample from some
larger population.

The results are given in Table 3.10, for probabilities, log odds and odds. Exact
non-discrimination corresponds to probability of 1

2 , log odds of 0, and odds of 1.

There are several ways of conceiving the combined analysis. The method used in
Table 3.10 (and also Table 3.11) is to constrain the pairs of employees, whose ages are
being compared, so that one was fired and one was retained in the same firing wave.
This seems most consonant with an urn conception of the probability process (pour the
four urns together and draw again). Also, it maintains the legal interpretation that age
comparisons between fired and retained workers are limited to the same firing waves.

Again, the results of Table 3.10 confirm the earlier analysis: Wave I was very
discriminating against older people, waves II and IV were substantially discriminatory,
and wave III was not discriminatory. Overall, a pattern of discrimination against older
people in these firings is confirmed.
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These probabilities, log odds, and odds do not have uncertainty measures attached
because every pair of employees, one of whom was fired and the other not, is considered.
Consequently these are exactly the probabilities, log odds, and the odds, up to limits
of numerical rounding.

Perhaps because of the absence of uncertainty, an analysis of this sort has an
appeal. Might it be reformulated so as to respect, once again, the age 40 and over
restriction of the protected class? One way to do this is to limit the pairs to those in
which one employee is over 40 and one under 40. So now the question is, of all pairs of
employees, one under 40 and one over, one fired and one not, what is the proportion
of pairs in which the person fired is over 40? The results are given in Table 3.11.

Thus the results are quite similar to those in Table 3.10. Again there are no un-
certainty measures here, for the same reason as in Table 3.10.

Let C be the proportion of pairs of employees, one under 40 and one over, one
fired and one not, in which the person fired is over 40. Then

C =
n11n22

n11n22 + n12n21
.

The odds of C are

0(C) =
C

1− C
=
n11n22

n12n21
=

n11n22

n
n12n21

n

,

which is the Mantel and Haenszel (1959) statistic. However, for several tables com-
bined,

C =
Σkn11kn22k

Σkn11kn22k + Σkn12kn21k
,

where k indexes tables. Here the odds of C are

0(C) =
C

1− C
=

Σkn11kn22k

Σkn12kn21k
,

which is not in general equal to the Mantel-Haenzel statistic

Σk(n11kn22k/nk)

Σk(n12kn21k/nk)

The Mantel-Haenzel statistic is used in articles discussing discrimination in hiring
under a model of two or more independent populations (Gastwirth and Greenhouse,
1987; Louv and Little, 1986).

Table 3.11: Restricted Paired Analysis

Firing Probability older person fired
wave Probability Log odds Odds

I 1.00 ∞ ∞
II 0.672 0.72 2.055
III 0.400 −0.41 0.667
IV 0.806 1.43 4.173

Combined 0.689 0.794 2.211
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3.4 Conclusions

What are the appropriate responsibilities of a statistician in a legal setting with respect
to the data base used? It is interesting to note that I and the statistician working for
the Company took different approaches to this question. The Company produced
the 2 × 2 tables for analysis by the statistician. Thus the conclusions he could have
reached would have been limited to the accuracy of those tables. In contrast, I based
my choice of analysis on a list of employees, their birth dates, hiring dates, and firing
or departure dates. This might have exposed me to cross examination about conditions
in the Company, about which I would not be very knowledgeable. I do not know what
is the best policy for a statistician in such an environment.

If I had been acting as a neutral statistical arbitrator, the Court would have been
asked whether the evidence suffices to establish a prima facie case. If so, the Company
would have been asked to give an accounting of its policy on firing. The Court would
then have been asked whether the explanation offered would, or might, suffice as a
sound business reason if sustained by the data. If the answer to this question were
positive, then, and only then, would it make sense to consider covariates with a view
toward examining the extent to which the Company’s explanation is supported by the
data.

I find it interesting that the legal context impinges on the data analysis in several
places. While it is to be expected that the application would have a strong influence
in every applied problem, it is somewhat surprising that an analysis done in a legal
context might be substantially different from an analysis done with a solely scientific
aim.

It is certainly a fortunate feature of this data set that several different analyses
lead to very similar substantive conclusions. To the extent that different substantive
conclusions are reached by different analyses, this only serves to sharpen the debate
over the meaning of the analyses. It should not be a surprise that a legal case would
confront statisticians with deep problems about the meaning of the various techniques
proposed, because the adversary structure leads to sharper questioning than statisti-
cians generally confront.
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Chapter 4

Subjective Bayesian Analysis for Surveys with
Missing Data (1993)

Foreword

Social surveys typically have missing data, because the intended recipients can’t be
reached or refuse to respond. How should such data be analyzed?

One response, all too common, I fear, is simply to ignore the issue, and assume that
those who answered are typical of those who did not. There’s usually no warrant for
this belief, and indeed it is rarely even broached, let along discussed. Another extreme
might be to refuse to extend the claims from the population that responded to the
population to whom the survey was made available. Neither of these extremes seems
adequate to the needs of social science.

This paper explores this issue in the context of a study of jurors’ attitudes toward
the death penalty. Jurors who served 57 non-capital trials in Wake County, North
Carolina, were asked to disclose what the charges were, how they voted in the first
jury vote, and the distribution of votes in the first jury vote. They were also asked for
their telephone numbers so they could be further interviewed. The telephone interview
ascertained their views on the death penalty, specifically whether they could fairly and
impartially decide on guilt or innocence in a death penalty case and whether to impose
the death penalty. These are includable jurors (I). A second group could decide guilt
or innocence impartially, but not whether to impose the death penalty (these are
excludable jurors (E)). A third group could not fairly and impartially decide guilt or
innocence, the unfair jurors (U). The scientific question is whether includable jurors
(I) are more likely to vote for guilt than are excludable jurors (E). The problem is
that only 298 of the 12×57 = 684 jurors in the study were willing to do the telephone
interview to ascertain their attitude toward the death penalty.

The paper conducts a sensitivity analysis to examine how much the results vary
according to what one assumes about the relationship between attitudes toward the
death penalty and refusal to participate in the telephone survey.

There’s a very interesting issue that arises in the second half of the paper. About
40% of the cases the jurors heard were drunk driving cases. While the priors used in
the previous analysis did not anticipate distinguishing drunk driving from other cases,
I looked at it anyway. It turns out that the excludables (E) were much more prone
to vote guilty in such cases than were the includables. There’s a question of how one
should regard such an unexpected finding using an unanticipated covariate.

My friend Jim Dickey posed the question to me of what I would think if I plotted
the residuals of a regression and saw a smiling face. I would think that the data had
been falsified by someone as a joke. His point is that the likelihood and prior we assume
are vast simplifications of a much more complicated belief structure we carry with us
when we look at data.
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In the instance of this data set, Wake County is split between an urban, largely
Democratic-leaning population and a more rural, largely Republican-leaning popula-
tion. The former is more likely to have qualms about the death penalty and to take
an unforgiving attitude toward drunk driving than do the latter. So these findings are
understandable in terms of what’s reasonable to think of the Wake County population.

In this case, while we did not have data to illuminate further whether the ur-
ban/rural hypothesis is correct, it is certainly plausible, and could be examined in
further study.

But to excuse this kind of additional analysis too enthusiastically is to come close
to endorsing data dredging by pharmaceutical companies who may desperately try to
find some subset of patients that can be argued to have benefit from a drug being
tested.

Perhaps the fundamental difference between these examples is that the hypotheti-
cal pharmaceutical company would like to use the results not so much as the basis for
further investigation, but rather as a basis to show that there are patients helped by
the drug, and hence that the FDA should allow the drug to be marketed.

There’s a balance to be found here. I feel comfortable with the drunk driving
analysis of the Wake County data, but not with pharmaceutical data dredging. How
far to go with data mining is an issue of some subtlety.

This paper was originally published in The Statistician (Journal of the Royal Statis-
tical Society, Series D), 42, pp. 415–426. Correction: 45, 539. Permission to republish
not required.
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J.B. Kadane

Abstract

Almost every survey has missing data, sometimes because of inadequacy of the sampling
frame, sometimes because of the unwillingness of persons in the frame to participate, some-
times because of the inability of the surveyors to find everyone in the frame, and usually
because of an unknown mixture of all these reasons and others. The analyses of surveys often
ignore the missing data, treating it as a complete sample of those who responded. However,
to do this is often to assume away the principal source of uncertainty, rendering statements
of uncertainty conditioned on that assumption problematic. One solution is the assumption
of ‘ignorability’, as discussed by Don Rubin. This approach essentially states in conditional
probability terms what one must assume to get away with an analysis that does not take
into account the missing data. The purpose of this paper is to explore a second approach, in
which differing beliefs about what the missing data would have been had they been collected
are explored to see how robust the results of the survey are. What is reasonable to assume
depends on subjective judgments of the analyst. These ideas are considered in the context of
a survey on juror death penalty attitudes and behavior.

4.1 Introduction

The comparison of subjectivist Bayesian and objectivist frequentistic methods applied
to practical problems is very important to the advancement of both methodological
positions. This paper is devoted to the consideration of a type of data in which one
would have thought that the frequentists would be at their best.

The frequency argument is based on viewing a given instance or sample as a mem-
ber of an infinite stream of independent and identically distributed such instances, and
associating the probability of the instance with the relative frequency in the infinite
stream. Of course there are data situations that are very awkward from this stance.
Consider, for example, the probability that it will rain in Nottingham sometime to-
morrow. Suppose that many years of past data are available. With what subset of
this data should I associate tomorrow’s rain? Should I choose only those in which the
wind, rain and temperature conditions in Dublin match those of today? In making
such choices the subjectivity of the associated ‘infinite’ stream is apparent, and is an
embarrassment to a frequentist seeking objectivity.

Thus to explore the possible usefulness of frequentistic ideas one must choose an
example more carefully, in the hope of finding one more congenial to their approach.
Surely sampling from a fixed population comes to mind as a candidate. There are
two possible senses of sampling that then come to mind: that the individuals in the
sample are a random sample from a frame of such individuals, and that the sample
itself is random from a frame of subsets, perhaps subsets of the same size. Since the
latter results in a sample of size one, it seems very weak in a frequentistic sense.
Consequently the first interpretation is concentrated on here.

In a practical implementation of sampling from a human population, not everyone
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responds. People move, are busy, don’t bother, and find the questions objectionable.
In a reasonably good survey, perhaps 70% of the chosen sample responds.

This practical fact imposes a heavy burden on the analysis of the survey data. One
response that might be made is to take the sample as representative only of those
who would have responded had they been asked. While this has the attraction of
objectivistic frequentist ideological purity, it has costs. One is that the sampling frame
is of unknown size. The second, and more important, is that usually the scientific or
practical question being asked pertains not to the hypothetical population of persons
who would have responded had they been asked, but rather to the whole original
sample frame, whether responders or not. Thus to take this route risks making the
conclusions of the analysis irrelevant to the main effort. This is a very high price to
pay.

A second position on the question of non-response is to ignore it. This is com-
monly done in reports of surveys in social psychology. Typically the non-response is
reported, and then inferences are made from the proportion of those answering the
questions who answer it in particular ways. Standard errors are computed as if the
population answering were the population asked. One way to justify this neglect is to
cite conditions on the likelihood given by Rubin (1976) and Little and Rubin (1987)
such that non-response may be ignored.

The judgments called for are precise, and hard to justify in an applied setting. The
other line of argument that might justify neglect of non-response is that there doesn’t
seem to be much else that can be done. This may be true in the context of objectivistic
frequentist statistics, but is not the case for Bayesians. The material presented below
is an example of how a Bayesian analysis of survey data with non-response might be
conducted.

4.2 Background and Analysis

The death penalty is and has been a controversial aspect of American law for some
time. Continual appeals of death penalty convictions have resulted in both reforms of
the procedure and in a very long average time between conviction and execution.

As matters now stand, a trial for a capital offense must be conducted in two parts.
In the first, the question of guilt or innocence must be decided. In the second, the jury
or judge must consider aggravating and mitigating circumstances in deciding on the
penalty. The defendant has the right to a jury trial, although that right is not always
exercised. If a jury hears the case, the same jurors hear both parts of the case.

Naturally it matters a great deal what jurors hear the case. Any juror who says
he/she cannot hear the case fairly and impartially is excluded. But, additionally, ju-
rors who say they can decide guilt or innocence fairly and impartially, but who could
never impose the death penalty for conscientious reasons (or who would always im-
pose it) are excluded from the jury. The question is whether this biases the jury in
the guilt or innocence phase by excluding potential jurors likely to be more sympa-
thetic to the defense than those eligible to serve. A line of research (Bronson (1970);
Cowan et al. (1984); Fitzgerald and Ellsworth (1984); Goldberg (Girsch) (1970); Gross
(1984); Jurow (1970); Kadane (1983); Luginbuhl and Middendorf (1988); Luginbuhl
and Powers (1991); Moran and Comfort (1986); Oberer (1961); Powers and Luginbuhl
(1983); Zeisel (1968) supports this hypothesis. The courts have not been very open
to this argument, however. In Hovey (1980), the California Supreme Court declined
to require different juries for the two phases of a capital trial because the analysis
presented to it compared death-eligible jurors only to those who would never impose
the death penalty, not to those who would never or always impose it. Later the US
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Table 4.1: First ballot votes categorized by death penalty attitudes (numbers of jurors)

Includable Excludable Unfair Unknown Total
Guilty 167.5 19.0 19.89 268.99 475.38
Not guilty 75.5 11.0 5.11 117.01 208.62
Total 243.0 30.0 25.00 386.00 684.00

Supreme Court in Lockhart (1986) ruled that the evidence was too fragmentary and,
besides, that it found social science on this issue irrelevant legally.

The principal way of understanding the results has been a continuum suggested by
Packer (1968) and emphasized by Fitzgerald and Ellsworth (1984), that some citizens
stress crime control as an objective of the legal system, while others stress due process.
Thus, citizens who would favor the death penalty might be thought of on the ‘crime
control’ end of the continuum while those who would never impose it might be more
toward the ‘due process’ end. The purpose of the current study is to examine these
ideas empirically using real jurors.

Jurors in 57 trials of common (non-capital) matters in Wake County, North Car-
olina were asked to fill out a brief verdict questionnaire in the jury lounge, and were
asked for their telephone numbers for a further interview. For the purposes of this
paper, the important matters asked about in the questionnaire were what the charges
were, how they have voted in the first ballot, and the distribution of votes on the first
ballot. (The first ballot is used, and has been used in jury studies since Kalven and
Zeisel (1966), to indicate a juror’s tendency on a case with the least contamination by
discussion with other jurors.) Of the 684 jurors in these 57 trials, 478 answered the
verdict questionnaire.

Of these, 298 telephone interviews were conducted to determine the jurors’ atti-
tudes toward the death penalty. These answers were categorized into three groups:
those includable (I) in a death-penalty jury, those excludable because of the need
to have the same jury decide both guilt/innocence and penalty (E), and those who
say they could not judge the issue of guilt and innocence fairly (U). Although poten-
tial respondents failed to reveal their death-penalty attitudes because they failed to
clear one of several steps (no verdict questionnaire, no telephone number on verdict
questionnaire, unreachable by telephone, refused to answer questions on telephone),
their first ballot vote was discernible from the totals given on verdict questionnaires
of others on their jury. Consequently the data may be regarded as revealing the first
ballot vote of all 684 jurors, and the death-penalty attitude of 298, less than half.

The basic data used in the analyses below are given in Table 4.1. In some cases it
was not clear what the vote of a given juror had been, usually because of discrepancies
in the total first ballot reports for the jury given by various jurors. Primary weight
was given to jurors’ self-reports of their votes; and otherwise I credited each juror’s
report of the overall vote equally. This resulted in some non-integer best estimates and
accounts for the non-integer sums reported in Table 4.1. With a very high probability,
however, how each juror voted on the first ballot is known.

In order to examine the issue of whether those excluded by the death-qualification
process are more likely to convict than those included, a good measure of the relation-
ship between death-penalty attitude and first ballot vote must be found. To establish
some notation, recall that I, E and U stand respectively for includable, excludable
and unfair jurors (those who could not fairly decide on guilt or innocence), and let G
and N stand respectively for a first ballot vote of guilty or not guilty. Then PG,I is the
probability that a prospective juror would be includable and would vote guilty. The
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odds that the includable juror would vote guilty are PG,I/PN,I . Similarly the odds
that an excludable juror would vote guilty are PG,E/PN,E . The odds ratio is then
(PG,I/PN,I)/(PG,E/PN,E) = (PG,IPN,E)/(PN,IPG,E). A final convenient and stan-
dard transformation (see, for example, Bishop et al. (1975)) takes the logarithm of the
odds ratio,

φ = log[(PG,IPN,E)/(PN,IPG,E)]. (4.1)

If φ is positive, then PG,I/PN,I ≥ PG,E/PN,E . That is, the odds of voting guilty
are greater among those included than among those excluded, which is the hypothesis.
Conversely, if φ is negative, then the odds of voting guilty are greater among those
excluded than among those included. It is important to notice that the magnitude of
φ is of interest, since it indicates the extent to which includable jurors are harsher
or more lenient than excludable jurors. The greater the absolute magnitude of φ, the
greater the difference in tendency to vote guilty between includable and excludable
jurors.

Having decided that the goal of the analysis is to determine the magnitude of φ,
the next task is to create a statistical model relating the data in Table 4.1 to the P ’s.
Let mG,I be the number of jurors who are includable and vote guilty, etc. A natural
model for the first three columns of Table 4.1 is

∏
kεK,jεJ

P
mk,j
k,j (4.2)

where K = {G,N} and J = {I, E, U}, Pkj ≥ 0, and
∑
kεK,jeJ Pk,j = 1. Thus every

juror falls into only one KJ category (e.g., an excludable juror who votes not guilty,
etc.), which is reasonable and necessary. What is not reasonable is that the vote from
juror to juror is assumed to be independent. This pretends as if each juror were hearing
a different case, which is not true. Groups of twelve heard the same evidence, and this
should lead those jurors to have somewhat similar views. This complexity will not be
considered here.

The next question is how to model the missing data, that is, jurors for whom
the death-penalty attitude is not available. As can be seen from Table 4.1, this is a
substantial number of jurors, and consequently demands careful thought. If it were
the case that among the jurors who vote guilty, the probability of non-response (i.e.
no information from that juror regarding his/her attitude toward the death penalty)
is the same whether they were truly includable, excludable, or unfair, then each such
juror would contribute a factor PG,I + PG,E + PG,U to the likelihood. Now suppose
that the probability of the juror of type k, j responding is αk,j . Then the full likelihood
is proportional to

∏
(αkjPkj)

mkj (ᾱG,IPG,I + ᾱG,EPG,E + ᾱG,UPG,U )mG (4.3)

(ᾱN,IPN,I + ᾱN,EPN,E + ᾱN,UPN,U )mN

where mG and mN are the number of jurors for whom the death penalty attitude is
missing that vote guilty and not guilty respectively and ᾱij = 1− αij .

Some simplification of (4.3) is fortunately possible. First consider the probability
of non response relative to those of the largest group, those who would be included
in a death penalty case. Hence define γG,E = ᾱG,E/ᾱG,I , γG,U = ᾱG,U/ᾱG,I γN,E =
ᾱN,E/ᾱN,I and γN,U = ᾱN,U/ᾱN,I . In terms of the γ’s (4.3) can be rewritten as
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(
{
∏

α
mkj
kj }ᾱ

mG
G,I ᾱ

mN
N,I

)∏
P
mkj
kj {PG,I + γG,EPG,E + γG,UPG,U}mG (4.4)

{PN,I + γN,EPN,E + γN,UPN,U}mN

The terms in round brackets in this product do not depend on the P ’s, and can hence
be eliminated from the likelihood. The remainder, however, depends on the P ’s and
on the α’s through the γ’s. Hence, (4.4) is considered to be the likelihood of the P ’s
for various assumed values of γ’s.

What attitude should one take toward the γ’s? Recall that γG,E , for example, is
defined to be ᾱG,E/ᾱG,I = (1−αG,E)/(1−αG,I). Thus, γG,E is the ratio of the proba-
bility that a juror voting guilty who is excludable has not provided data as to his/her
death-penalty beliefs, to the probability that a juror voting guilty who is includable
has not provided such data. If one believes that death-penalty attitudes (among jurors
voting guilty) are not related to the probability of responding, then γG,E = 1.0. The
supposition γG,E = γG,U = γN,E = γN,U = 1.0 will be the base case in the analysis
to follow, but variations in γ’s from .5 to 2 will also be studied to see how sensitive
the distribution of φ, the quantity of interest, is to such variations in the γ’s. That
is, an exploration will be conducted of some fairly extreme hypothesized variations in
the relationship between death penalty beliefs and tendency to convict with regard
to failing to provide information regarding death penalty beliefs, to note the extent
to which such variations would call the conclusions into question. It might be noted
at this point that a non-Bayesian maximum-likelihood analysis can be conducted on
equation (4.4), with various values of the γ’s assumed. This amounts to a subjectivis-
tic frequentistic position; subjectivistic in that one is prepared to use judgments and
frequentistic in that the maximum-likelihood estimate would presumably be evaluated
with a standard error calculated from a sampling distribution. This possibility will not
be pursued further here.

The next issue to consider is the choice of a prior distribution over the six-
dimensional simplex spanned by the P ’s. A convenient family of prior distributions to
consider is the Dirichlet family, with density proportional to∏

P
bkj−1
kj (4.5)

for various choices of the numbers bkj . One possibility is the Jeffreys (1961) prior bkj =
1
2 , which is intended to reflect ‘ignorance’ in a certain sense. A second prior reflects
Savage (1962) personalistic position that the prior should represent a subjectivity
reasonable view of the previous data. In this case, there are previous data (Kadane,
1983) on the proportion of jurors found in the national surveys to be includable (80%),
excludable (12%), and unfair (8%). Additionally, there are data indicating that roughly
80% of the defendants in criminal trials are found guilty (Kalven and Zeisel, 1966).
If there were independence between juror vote and death-penalty attitude these data
would suggest the combination found in Table 4.2a.

Now the assumption of independence between death-penalty attitude and the first
ballot vote is not reasonable. The Cowan et al. (1984) data, as reanalyzed by Kadane
(1983), found an estimated odds ratio of 1.652, which corresponds to a log odds of
about 0.5. Adjusting the numbers in Table 4.2a so that the log odds is of this order,
while maintaining the marginals, yields Table 4.2b.

Finally, there is the question of how much weight to give the prior. Weights can
range from almost zero (which gives virtually no weight to the prior information) to
infinity (which gives no credence to the data from the study). Thus, the judgment of
how much weight to give the prior is essentially a question of how much one believes
the prior as against how much one believes the data.
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Table 4.2

Includable Excludable Unfair Total
(a) Prior proportions supposing independence between juror vote
and death-penalty attitudes, using previously known data
Guilty 0.64 0.10 0.06 0.8
Not guilty 0.16 0.02 0.02 0.2
Total 0.80 0.12 0.08 1.0
(b) Prior proportions, not supposing independence
Guilty 0.65 0.09 0.06 0.8
Not guilty 0.15 0.03 0.02 0.2
Total 0.80 0.12 0.08 1.0
(c) Informative prior hyper-parameters
Guilty 9.75 1.35 0.90 12.0
Not guilty 2.25 0.45 0.30 3.0
Total 12.00 1.80 1.20 15.0

In this instance, the data that justify the marginals of Table 4.2 are essentially
national, except for the Cowan et al. paper which is limited to Santa Clara County,
California. While it is reasonable to have such national numbers as an expectation for
jurors in Wake County, North Carolina, it is also reasonable to have greater uncertainty
about them than about the national averages. As a rough guide, a weight of 15 is
assigned here to the prior proportions, as if we had a flat prior informed by a survey
of 15 Wake County jurors with proportions from Table 4.2b. The result is Table 4.2c,
which records the prior hyperparameters used for the informative prior in this study.

Using integration methods described in Tierney et al. (1987), Figure 4.1 gives the
posterior distribution of φ, taking the informative prior and all γ’s equal to one. Recall
that setting γk,j = 1 assumes that the probability of providing information about
death-penalty attitudes is the same for the missing jurors, regardless of their actual
death-penalty attitudes and regardless of what their vote would have been. There
are several important things to notice in Figure 4.1. First is its general unimodal and
normal shape. This allows the great simplification of reporting just means and standard
deviations of φ under various assumptions, obviating the need for a plot each time.
Second, the mean, at .23, is not very far from zero, when measured in units of standard
deviation, here .41. Though the mean of .23 suggests some slight confirmation of the
hypothesis, the extent of confirmation is meager. Using the normal approximation,
Pr{φ > 0} = Φ(.23/.41) = Φ(.56) = .71 where Φ is the normal cumulative distribution
function (cdf). Thus, this calculation does not strongly support the main hypothesis
that fair excludable jurors are more lenient than fair non-excludable jurors (i.e. φ > 0).
A second calculation, with the Jeffreys prior, indicates a mean of .25 and a standard
deviation of .42. Thus in this instance which prior is used is not of substantive concern.
The plot is visually nearly identical to that of Figure 4.1.

Before leaving the subject, I wish to explore the sensitivity of φ to the missing
data parameters. Consider first the parameter γG,U = ᾱG,U/ᾱG,I = (1 − αG,U )/(1 −
αG,I), the ratio of the probability that the juror who would not decide a capital
case fairly and impartially, and who votes guilty in the case actually heard, would
fail to furnish death-penalty attitude information, to the probability that a juror
who is includable in a capital jury case and who votes guilty in the case actually
heard, would fail to do so. Similarly, consider γN,U = ᾱN,U/ᾱN,I = (1 − αN,U )/(1 −
αN,I). Since there are few unfair jurors, it is reasonable to expect that φ will be
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Figure 4.1: Posterior distribution of θ, with all γ’s = 1, informative prior, full data set. The
mean is 0.23, and the standard deviation is 0.41

Table 4.3

(a) Sensitivity of φ to changes in δG,U and δN,U , holding δG,E = δN,E = 1
δG,U δG,U

0.5 1 2 0.5 1 2
0.5 0.23 0.23 0.23 0.5 0.43 0.39 0.40

δN,U 1 0.23 0.23 0.23 δN,U 1 0.42 0.41 0.40
2 0.23 0.23 0.23 2 0.40 .037 0.40

mean of φ standard deviation of φ

(b) Sensitivity of φ to changes in δG,E and δN,E , holding δθ,U = δN,U = 1
γG,E γG,E

0.5 1 2 0.5 1 2
0.5 0.22 -0.28 -1.67 0.5 0.40 0.42 0.35

δN,E 1 0.74 0.23 -1.15 δN,E 1 0.42 0.41 0.36
2 2.01 1.50 0.11 2 0.34 0.33 0.27

mean of φ standard deviation of φ

insensitive to variations in γG,U and γN,U . To check this supposition, I calculate the
mean and standard deviation of φ when these γ’s are halved and doubled, as reported
in Table 4.3a. Indeed, Table 4.3a indicates that φ is quite insensitive to these variations
in γG,U and γN,U . These calculations were done holding γG,E = γN,E = 1.0.

Next, consider the parameters γG,E and γN,E . Both because there are more ex-
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Table 4.4: Number of first ballot votes categorized by death penalty attitude and type of
trial

Includable Excludable Unfair Unknown Total
(a) Non-DWI trials
G 86.5 8 7.89 150.27 252.66
NG 48.5 11 5.11 90.73 155.34
Total 135.0 19 13.0 241.00 408.00

(b) DWI Trials
G 81 11 12 118.72 222.72
NG 27 0 0 26.28 53.28
Total 108 11 12 145.0 276.0

cludable jurors than unfair jurors, and because excludable jurors enter directly into
φ, it is reasonable to expect greater sensitivity to these parameters than to γG,U and
γN,U . Holding the latter fixed at one, I compute the mean and standard deviation
of φ, halving and doubling γG,E and γN,E . Table 4.3b indicates very considerable
sensitivity of posterior distribution of φ, principally the mean of the distribution, to
changes in γN,E and γG,E . Not surprisingly, down the diagonal from upper left to lower
right of the matrix, where γN,E = γG,E , the effects are not so strong. But when γG,E
is halved and γN,E is doubled, the estimated mean log odds is -1.67, suggesting that
those included by the process of death qualification are substantially more lenient than
those excluded. Conversely, when γG,E is doubled and γN,E is halved, the estimate
mean-odds is 2.01, suggesting that they are substantially more harsh. Consequently,
the following is concluded for the data set:

1. The choice between the Jeffreys prior and the informative prior does not matter much.

2. The choice of values of γG,U and γN,U does not matter much.

3. The choice of values of γG,E and γN,E matters quite a bit

Because the main case (γ’s = 1) gives a small mean estimate (.23) with standard
deviation of .41, and because it is so sensitive to γG,E and γN,E , I conclude that, for
the overall data set there is probably not a great distinction between those includable
and those excludable in their degree of severity in judging cases. In other words, the
hypothesis that jurors who would be excluded from a capital trial because of their
death-penalty beliefs will be less likely to convict than death qualified jurors is not
strongly supported.

Recall, however, that jurors listed the charges against the defendant on the ver-
dict questionnaire. An examination of various charges revealed that 23 (approximately
40%) of the defendants had been charged with drunk driving. (The next most common
crime, with which seven defendants were charged was assault with a deadly weapon.)
Since drunk-driving trials accounted for such a substantial percentage of the trials
studied, and also as a way of more fully exploring the relationship between attitudes
toward the death-penalty and conviction proneness, the data were reanalyzed sepa-
rately for drunk-driving (DWI) vs non-drunk-driving (non-DWI) trials.

Splitting the data into these two groups, DWI and non-DWI, gives the raw counts
in Table 4.4. The totals are the numbers reported in Table 4.1 as they should be.

Within each group, the same likelihood [equation (4.4)], and the same log-odds
target quantity, φ, is used in equation (4.1). Missing data can be handled as above,
but the prior requires some attention. The Jeffreys prior would be unchanged. Con-
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Figure 4.2: Posterior distribution of θ, with all γ’s = 1, informative prior, DWI trials only.
The mean is -5.77, and the standard deviation is 4.74

sidering that 40% of the trials were DWI, it is reasonable to take as the informative
prior Table 4.4 with weight of 6 for the DWI trials, and with a weight of 9 for the
non-DWI trials. Additionally, I take the informative priors over DWI and non-DWI
trials as independent. Since the distinction between DWI and non-DWI trials was not
anticipated when the data were collected and analyzed, the posteriors calculated are
best understood in the sense of ‘Had our prior been this one, our posterior, after see-
ing the data, would be the following’. This is consistent with much modern Bayesian
thinking (see Dickey (1973); Poirier (1988); Hill (1990); Leamer (1978)).

Figures 4.2 and 4.3 give posterior distributions under the informative prior, for
DWI and non-DWI trials respectively. All calculations were done with all γ’s equal
to 1. The results show that excluded jurors are substantially harsher than included
jurors on DWI trials, and the reverse for non-DWI trials. In non-DWI trials, there are
enough data to be relatively sure that the Jeffreys prior gives the same results. This
is the case; the mean shifts from .88 to .90, while the standard deviation remains at
.49. However, for the DWI trials, the data are sparse, so the effect of changing prior
might be greater. Figure 4.4 displays the results. While the posterior distribution of
φ is shifted to the right (and is less spread out), it is still skewed and still has little
probability above zero. Hence, the same conclusion can be stated with this prior; in
DWI trials, excludable jurors seem harsher than includable jurors.

Finally, I explore the sensitivity of these conclusions to the parameters γ. With
respect to γG,U and γN,U . Table 4.5 shows that again, the log odds, φ, is insensitive.



80 Missing Data

Figure 4.3: Posterior distribution of θ, with all γ’s = 1, informative prior, non-DWI trials
only. The mean is 0.88, and the standard deviation is 0.49

However, once again, with respect to γG,E and γN,E , φ is more sensitive, as shown in
Table 4.6.

Even though the mean of φ is sensitive to changes in γG,E and γN,E , the difference
between the mean of φ for DWI and non-DWI cases is huge. This indicates that
whatever may be the most comfortable assumption about the γ’s, there is a substantial
difference between φ’s, depending on the type of case heard. It should also be noted
that the effects of differing γ’s become strong only when quite unlikely assumptions
are made, e.g. that an excludable juror who votes guilty is much more likely to have
provided information about his/her death-penalty attitudes than is an includable juror
who votes guilty.

Of interest is whether this difference in conviction proneness for drunk-driving vs.
non-drunk-driving trials is accounted for by altered voting patterns of the excludables,
the death-qualified jurors, or both. Returning to Table 4.4, note that the percentage
of includables who vote guilty is similar for DWI (75%) and for non-DWI (64%)
trials. However, the percentage of excludables who vote guilty in DWI trials (100%) is
much greater than for non-DWI trials (42%). Thus, the pattern of results is primarily
accounted for by the excludables, who convicted at a much lower rate in non-DWI
trials but at a much higher rate in DWI trials than did the includable jurors.

4.3 Conclusions

That excludable and includable jurors behave so differently in DWI trials compared
to non-DWI trials is unanticipated by the crime-control vs due-process continuum
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Figure 4.4: Posterior distribution of θ, with all γ’s = 1, Jeffreys prior, DWI trials. The mean
is -2.99, and the standard deviation is 2.04

Table 4.5: Sensitivity of φ to changes in γG,U and γN,U , DWI Data and Non-DWI data. All
Calculations with γG,ε = γN,ε = 1

DWI data
γG,U γG,U

0.5 1.00 2.00 0.5 1.00 2.00
0.5 -5.77 -5.77 -5.77 0.5 4.32 4.69 4.35

γN,U 1.00 -5.77 -5.78 -5.78 γN,U 1.00 4.47 4.78 4.50
2.00 -5.77 -5.78 -5.77 2.00 5.01 4.63 4.53

Mean of φ Standard deviation of φ
Non-DWI data

γG,U γG,U
0.5 1.00 2.00 7 0.5 1.00 2.00

0.5 0.88 0.88 0.88 0.5 0.49 0.50 0.49
γN,U 1.00 0.88 0.88 0.88 γN,U 1.00 0.49 0.50 0.49

2.00 0.88 0.88 0.88 2.0 0.50 0.50 0.50
Mean of φ Standard deviation of φ
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Table 4.6: Sensitivity of φ to changes in γG,E and γN,E , DWI Data and Non-DWI data. All
calculations with γG,U = γN,U = 1

DWI data
γG,E γG,E

0.5 1.00 2.00 0.5 1.00 2.00
0.5 -5.70 -5.31 -3.53 0.5 4.51 4.25 4.95

γN,E 1.00 6.16 -5.78 -4.00 γN,U 1.00 3.89 4.78 4.12
2.0 -7.34 -6.96 -5.18 2.0 4.18 4.658 4.53

Mean of φ Standard deviation of φ
Non-DWI data

γG,E γG,E
0.5 1.00 2.00 0.5 1.00 2.00

0.5 0.85 1.43 2.64 0.5 0.48 0.50 0.44
γN,E 1.00 0.30 0.88 2.09 γN,E 1.00 0.50 0.50 0.44

2.00 -1.32 -0.74 0.47 2.0 0.42 0.41 0.36
Mean of φ Standard deviation of φ

proposed by Packer and used by Fitzgerald and Ellsworth. While one may speculate
about possible explanations, clearly further investigation is needed.

From a methodological standpoint, the subjective Bayesian approach succeeded in
allowing exploration of alternative beliefs about the missing data. While opinions may
legitimately differ about what values of the γ’s to choose, this potential for disagree-
ment is inherent to the situation of missing data. The necessary subjectivity is present
not because agreement or objectivity is undesirable, but because it is unobtainable. In
haste to obtain an ‘objective’ analysis, an objectivistic analysis typically sweeps the
problem of missing data away and pretends that it was never there. But in doing so,
it can vastly overstate the certainty with which the conclusions should be regarded.
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Chapter 5

Missing Data in the Forensic Context (1997)

Foreword

I had worked with the Public Defender’s office in Gloucester County, New Jersey,
previously on a challenge about whether the juries there are chosen from a pool that
adequately represented the community. So I had a good working relationship with the
lawyers when they called me to work on this case. I managed to interest Norma Terrin,
then a member of our department at Carnegie Mellon, to work with me on it.

The case was about whether blacks were being stopped at disproportionately high
rates on the southern end of the New Jersey Turnpike, between exits 1 and 3. To see
whether this was so, we had to ascertain the proportion of cars driven by Blacks, and
the proportion of stops of cars that were driven by blacks. The former was found from
two studies. In the first, 21 randomly selected 2.5 hour sessions at four stationary sites
found 13.5% had a black occupant. In the second, an observer set his cruise control
for 60 (the speed limit was 55), and found that over 98% of the observed cars passed
him (i.e. nearly everyone speeds), and of those, 15% had a black occupant. So we took
15% as a reasonable estimate of the proportion of blacks driving.

Ascertaining the proportion of stops of cars driven by blacks was more difficult.
On 35 randomly selected days, there were 892 stops, of which 127 were of blacks, 148
of whites (actually everyone not black), and 617 of people whose race was unknown.
There were two reasons for the missing data; some was because the police had a policy
of destroying records after a fixed period of time, and some because the officer stopping
a car failed to radio the race of the driver, contrary to police standard procedure.

Ignoring the missing data, the paper shows that

θ =
P (stop|black)

P (stop|white)
= 4.86

indicating that blacks are more likely to be stopped than whites. However, because
of the large amount of missing data, we parameterized the odds of having a stopped
driver’s race reported if black to that if white. Then we showed that even if this were
as large as three, the posterior on θ still put over 99% probability on blacks being
more likely to be stopped than whites.

The hearing on this case extended for more than six months. In the end, much to
the dismay of the Attorney General’s Office and the New Jersey State Police, the court
found that the police were illegally stopping blacks disproportionately. The Attorney
General announced that this was a terrible insult to the State Police, and that he
would appeal. A year and a half later, a week before the appeal was to be heard, the
Governor and Attorney General held a press conference in which they announced that
the state had done its own study, which corroborated our findings, and that they were
withdrawing their appeal. Later New Jersey entered a consent decree with the Civil
Rights Division of the Department of Justice, and promised to clean up their act.
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Later research (Kadane and Lamberth, 2009) shows some improvement, but con-
tinuing evidence of racial disparity in stops on the New Jersey Turnpike.

This paper was originally published in the Journal of the Royal Statistical Society,
Series A, 160, pp. 351–357. Permission to republish not required.

Where is she now? Norma Terrin is Director of Biostatistics, Epidemiology and
Research Design Center in the Institute for Clinical Research and Health Policy Stud-
ies at Tufts Medical Center, and Professor at Tufts University School of Medicine and
the Sackler School of Graduate Biomedical Sciences.
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J.B. Kadane and Norma Terrin

Abstract

Missing survey data is difficult to present in court. This paper reflects testimony prepared and
given by the authors in a case alleging that the New Jersey State Police were differentially
stopping and arresting blacks at the southern end of the New Jersey Turnpike. A Bayesian
technique with informative priors is used to examine the sensitivity of the inference to the
missing data.

Keywords: Bayesian analysis, identification problem, racially biased traffic stopping

5.1 Introduction

Data collection efforts, whether by survey, administrative records, or other methods,
often suffer from missing data (Rubin, 1987; Little and Rubin, 1987). Two classical
methods to deal with such missing data are extreme: either

(a) ignore the fact that some data are missing, or
(b) declare the data set uninterpretable because of the missing data problem.

Neither of these reactions is likely to be faithful to the uncertainty introduced by
missing data: it adds some uncertainty, but there is usually some inferential content
to the survey even with some data missing.

These extreme reactions are likely to lead to unenlightening courtroom battles
among statisticians. Whichever side wishes to use the data will choose (a) above,
while the other side will find an equal and opposite statistician to argue for (b). This
in turn may lead to a search for ‘statistical rules’, saying what proportion of the data
must be missing to shift the appropriate treatment from (a) to (b).

Rather than presuming complete knowledge of the missing data, as in (a), or no
knowledge at all, as in (b), one may consider various alternatives for the distribution
of the missing observations, eliminating only the implausible ones.

This paper discusses the presentation in court of a Bayesian analysis of this type.
The next section describes the case, the analysis offered in court, and the response of
the court. Some general conclusions are given in the third section.

5.2 The New Jersey Turnpike Case

In the case, (Re: State versus Pedro Soto, et al.) the New Jersey Public Defender’s
Office moved to suppress evidence against seventeen black defendants (principally on
charges of transporting illegal drugs) on the grounds of selective enforcement, i.e. that
blacks were more likely to be stopped by the police than were others, on the southern
end of the New Jersey Turnpike.

US law on discrimination is most active in the areas of jury participation and
employment issues. In both these areas, the law distinguishes between discriminatory
intent and discriminatory impact.
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Discriminatory intent is concerned with an expressed intention to discriminate. If
a state had a law forbidding blacks to serve on juries, or if an employer had a policy
(expressed orally or in writing) stating that it did not hire blacks, nothing further
would be required before the law would respond. The analog here would be if there
were written or oral instructions to the state police to target law enforcement against
blacks. The main evidence in this case is not of this nature.

The other main way of showing discrimination is by showing discriminatory im-
pact. In such a case, what is to be shown is that persons similarly situated have
a different probability of gaining something good (jury service or employment), or
avoiding something bad (traffic stop and/or arrest), and that those probabilities differ
systematically by race. However, ‘similarly situated’ requires explication.

In employment discrimination cases, a substantial paper trail is generated in the
usual processes of hiring and promotion. Generally people apply in writing for jobs,
and their applications state various facts about them, including their qualifications.
In promotion cases, the employer generally has records relating to the employee’s
performance on the job. These written materials mean that substantial evidence can
be brought to bear on issues of “similar situation” in employment cases. In traffic cases,
the analog to an application is the appearance of an automobile and its behavior, how
it is driven. The “applicants” for stopping and/or arrest do not leave a paper trail; in
particular, it is very difficult to compare the ‘qualifications’ of ‘successful applicants’
(those stopped and/or arrested) with those of ‘unsuccessful’ applicants (those not
stopped and not arrested).

Two studies were undertaken by the defense: one designed to estimate the propor-
tion of cars on the southern end of the New Jersey turnpike carrying black occupants,
and the other to estimate the fraction of traffic law violators who were black or carry-
ing black passengers. The traffic study involved 21 randomly selected 2 1

2 -hour sessions
at four sites on the turnpike in daylight hours of June, 1993. Some 42000 vehicles were
observed, of which 13.5% had a black occupant.

In the violator study, an observer drove at 60 miles per hour (the speed limit
is 55 miles per hour) and observed how many cars passed him and how many he
passed. Of all these 2096 cars, 2062 passed him (98.1%), and of these 15% had a black
occupant. Because all these 2062 represent cars that can be stopped, we took 15% as
a reasonable number for the proportion of cars containing blacks to be expected in
randomly chosen stopped cars. Since virtually everyone on the turnpike was driving
faster than the speed limit, the New Jersey State Police could legally stop virtually
anyone they chose. The broad racial consistency between the two data sets (13.5%,
15%) lent credibility to both, in our opinion.

Finally, data collected on stops by the state police were analyzed for 35 randomly
selected days between April 1988 and May 1991. Limited to the area between exits 1
and 3 on the turnpike (which is where the traffic study and violator study were done),
this showed 892 stops being made, of which 127 were of blacks, 148 of whites and
others, and 617 of persons of unknown race.

Concentrating first on just the racially identified stops, 46.2% were of blacks. To
appreciate this number, a simple application of Bayes theorem yields

Θ =
P(stop | black)
P(stop | white)

=
P (black | stop)P (stop)/P (black)

P (white | stop)P (stop)/P (white)

=
.462/(.15)

.538/(.85)
= 4.86.

(5.1)

For brevity, the term ‘white’ refers to anyone who would not be identified as ‘black’
by the state police.
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Thus, by this calculation, a black driver was 4.86 times as likely to be stopped
on the New Jersey turnpike, strongly suggesting a racially non-neutral policy. The
difficulty with this result is that 0.462 in equation (5.1) is actually P (black|stop and
race identified), not P (black|stop).

We need to be concerned about whether the large amount of missing data (69.1%)
might disturb the analysis. That such a large portion of the data is missing is due to
the routine destruction of the radio logs for 10 of the 35 days, and to the failure of the
state police on the other days to follow its own rules to radio the race of occupants of
any car stopped. None-the-less, such a large amount of missing data, in the absence
of further analysis, might create a legitimate doubt about the conclusion.

To advise the court about the likely impact of the missing data, we created the
following model. The key question is the possible bias in race reporting. Let

r1 = P(race reported | black and stopped)
r2 = P(race reported | white and stopped)
t = P(black | stopped)

1− t = P(white | stopped)
n1 = number of blacks reported as stopped
n2 = number of whites reported as stopped
n3 = number of persons stopped whose race is not reported

Three events may occur with a stop: the person stopped is black and the race is
reported, the person stopped is white and the race is reported, or the person who is
stopped does not have their race reported. These events have respective probabilities
r1t, r2(1− t) and (1− r1)t+ (1− r2)(1− t). Since, given these parameters, the stops
are regarded as independent and identically distributed, the likelihood function is
trinomial:

(r1t)
n1{r2(1− t)}n2{(1− r1)t+ (1− r2)(1− t)}n3 . (5.2)

Treating the parameters as t, r1 and r2, the goal is a distribution for Θ, as in
equation (5.1), which in this notation is

Θ =
t/0.15

(1− t)/.85
=

0.85t

0.15(1− t)
. (5.3)

It turns out that log Θ is more convenient, as the posterior distributions for it are
closer to symmetric.

Observe that the trinomial distribution has two dimensions of information, whereas
the parameter space has three: r1, r2 and t. This consequence of incomplete information
can be viewed as a problem of lack of identifiability. However, lack of identifiability is
not a great difficulty for subjective Bayesians (Kadane, 1975).

Finally, it is necessary to choose the prior distribution for the parameters r1, r2

and t. What is reasonable to assume about them?
Using the violator study as an anchor, we center our prior for t at 0.15. This is an

estimate of the proportion of cars violating the speed limit on the New Jersey turnpike
that contain blacks, which is larger than the proportion of violating cars driven by
blacks. Hence, using 0.15 as an estimate of the proportion of violating cars driven by
blacks tends to exonerate the police. The beta family of distributions with mean 0.15
is a logical choice, as the distributions are concentrated on (0,1). The parameter in
this beta family is a scale parameter, which can be discussed in terms of the standard
deviation.

We present two rather different choices for the standard deviation of t. In court,
we presented an analysis based on a standard deviation of 0.064, which corresponds
to a beta (4.5, 25.5) distribution. We later explored a much larger standard deviation,
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0.30, which corresponds to a beta (0.06,0.35). This latter choice can be criticized on
the grounds that it forces most of the probability for t to be close to 0 or 1. These
specifications are referred to below as ‘small’ and ‘large’ standard errors respectively.
The analysis to come shows that the results of these two priors are indistinguishable.

Among the possible relationships between r1 and r2, which are plausible? Perhaps
those whose race was reported are representative of all those stopped. In that case,
r1 = r2, or equivalently,

odds (r1) =
r1

1− r1
=

r2

1− r2
= odds (r2).

Equivalently, this assumption means that being black and having one’s race recorded
are independent, given that one is stopped. It is possible, however, that the race of
the occupants of a stopped car affects the probability that the officer will report race.
We do not presume to know in which direction the probability would be altered, if at
all. Giving the benefit of the doubt to the prosecution, we explored the consequence
of blacks having twice, and even three times, the odds of whites for having their race
reported. Let r be the ratio of the odds of having a stopped driver’s race reported if
black to that if white, i.e.

r =
r1/ (1− r1)

r2/ (1− r2)
.

To complete the model, a uniform distribution is taken on r2 (other beta distributions
for r2 could be used; again the results are robust to this choice as long as var(r2) is
appreciable).

Once the likelihood and prior are specified, the joint posterior distribution of the
parameters r1, r2 and t is proportional to their product.

The calculations were conducted for the three cases mentioned above: odds of race
reporting of a stop given black as one, two, or three times that of whites, i.e. r = 1, 2,
and 3. The upshot is that, even with odds of race reporting for blacks at 3 times
that for whites, the probability of blacks being stopped more often than whites (i.e.
P (log Θ > 0)) is over 0.99. The posterior distribution of log Θ for each case is shown
in Figs 5.1 and 5.2. A comparison of these figures shows that the results are virtually
identical for the two standard error cases.

We used the Laplace approximation (Kass et al., 1988) as implemented in X-LISP-
STAT (Tierney, 1990) to calculate the posterior marginal distribution of log Θ; Fig 5.1
was produced from S-PLUS (Spector, 1994).

There are several things to notice from Figs 5.1 and 5.2. When r = 1, so that
the odds of having one’s race reported if stopped does not depend on race, there
is a distribution for log Θ. This is a result of the fact that data are missing, which
introduces uncertainty. As r increases, the curve of log Θ shifts to the left. This is
because, as r increases, it becomes increasingly more likely that each person stopped
whose race is not reported was white; hence increasingly more of the races of missing
persons are imputed to be white. Only if all the stopped drivers with missing race data
are assumed to be white does the proportion of blacks stopped, 14.2%, approximate
the 15% found in the violator study. But this corresponds to r = ∞, which is not
plausible.

A referee suggested the following alternative formulation: since L = log Θ is a
function of t, attention can be focused on the posterior distribution of t:

p(t | n1, n2, n3) =
∑
m

p(t | n1, n2, n3,m)p(m | n1, n2, n3),

where m is the number of blacks stopped but not recorded. The first factor is binomial
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Figure 5.1: Posterior distribution of L = log Θ as a function of r, the ratio of odds of race
reporting if stopped and black to that of whites, when the prior standard deviation of t is
small.

with parameters t and n1 +n2 +n3, with n1 +m ‘successes’ and n2 +n3−m ‘failures’.
Then attention focuses on the second factor. Although we did not use this method of
decomposing the problem, we agree that it may well prove to be a useful alternative.

Judge Robert E. Francis of the Superior Court of New Jersey, in an unpublished
opinion, accepted our argument and found for the defense. The case is on appeal.

5.3 Presentation to Court of Surveys with Missing Data

What has Bayesian analysis contributed in this context?

It has brought to light more of the real uncertainty engendered by the missing data.
For example, taking classical solution (a) (i.e ignoring the fact that some data are
missing) yields an estimate for Θ of 4.86 (or log Θ = 1.58) as shown in equation (5.1).
By contrast, if Θ is viewed as a random variable, the posterior distribution for log Θ
shown in Fig 5.1 for the case of equal odds of non-reporting for the two racial groups,
has substantial variance.

Presenting the evidence this way, rather than as an estimator with a standard
error, makes it more accessible to the court. Even those without statistical training
can understand the conclusion of our analysis, that it is almost certain that blacks are
more likely to be stopped than whites, and that we arrive at this conclusion even when
our initial assumptions favor the prosecution. By contrast, a detailed explanation of a
confidence interval would be much more difficult, i.e. an interval with stochastic end
points having the property that before the data are observed 95% of the times that
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Figure 5.2: Posterior distribution of L = log Θ as a function of r, the ratio of odds of race
reporting if stopped and black to that of whites, when the prior standard deviation of t is
large.

such an interval is used it will contain the true parameter value, the interval being
evaluated after the data have been observed.

The Bayesian method by itself will not cure the problem of equal and opposing
statisticians. Each side could propose its own models (likelihoods and priors), which
might lead to opposite conclusions. Then the matter could come down to rhetoric,
of persuading the trier of fact that one’s assumptions and conclusions are the most
reasonable.
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Chapter 6

Bayesian Demography: Projecting the Iraqi
Kurdish Population, 1977–1990 (1997)

Foreword

This paper (known informally to its authors as “Kurds and Way”) is good example of
a project that produced something that none of us could have done alone.

Beth Osborne Daponte is a demographer who had been working at the Census
Bureau before she came to Carnegie Mellon. At the Census Bureau, she had the job of
producing population estimates for Iraq. Since this was just after the First Gulf War,
this entailed estimating the civilian and military casualties of that war. Her estimates
were higher than those of the Defense Department and enraged Dick Chaney, then
President George H.W. Bush’s Secretary of Defense. After an acrimonious fight involv-
ing human rights organizations, lawyers and various levels of the federal bureaucracy,
she came to CMU.

She was concerned that the traditional approach in demography assumed values for
such key variables as the starting population (disaggregated by age and sex), fertility
rates, age-specific mortality rates, and immigration and emigration. Then projecting
the population is a simple matter of arithmetic. But this isn’t very useful to others,
who need to know what’s reasonable to assume about each of those quantities, and
how much uncertainty there might be about them.

What was reasonable to assume was often discussed privately between professors
and their graduate students, but not made public or published. Naturally, I thought
that Bayesian methods could be used to model the uncertainty in the inputs, and
therefore could show the consequent uncertainty in the outputs. (Hence the “way” in
our informal title.) To get beyond this general idea, we need a specific example to
address.

Beth was aware of the Anfal, a particularly brutal campaign of the government of
Saddam Hussein against the Kurdish people of Iraq in 1988. If we could project what
the Kurdish population would have been in 1990 had the Anfal not taken place, we
would have a gauge of the number of Kurds killed in the Anfal. (Hence the “Kurds”
part of our informal title.) It is possible that this information would have been used
in a genocide trial of Hussein, although of course history took a different turn.

To help us turn our vision of a study into reality, we recruited Lara Wolfson, then
a Ph.D. student in statistics, to join us. It turned out that there were many sources
of uncertainty, as the paper elaborates. What’s important about it is that each of
the modeling choices is made explicit and is justified. Of course, another demographer
knowledgeable about Iraq might make different choices. Then at least it would be clear
what the disagreement would be about. Furthermore, the consequences of both sets
of assumptions could be compared. (I haven’t seen any reanalysis of this problem yet,
however.) More generally, it is an example of going into detail about what assumptions
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are reasonable, and how much uncertainty there is about the inputs of a demographic
study.

This paper was originally published in the Journal of the American Statistical
Association, 92, pp. 1256–1267. Permission to republish granted by the American
Statistical Association.

Where are they now? Beth Osborne Daponte is owner of a consulting firm, Social
Science Consultants. Lara Wolfson works for Merck in its Outcomes Research group,
focusing on pediatric vaccines, and is raising twins.
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Abstract

Projecting populations that have sparse or unreliable data, such as those of many developing
countries, presents a challenge to demographers. The assumptions that they make to project
data-poor populations frequently fall into the realm of “educated guesses,” and the resulting
projections, often regarded as forecasts, are valid only to the extent that the assumptions
on which they are based reasonably represent the past or future, as the case may be. These
traditional projection techniques do not incorporate a demographer’s assessment of uncer-
tainty in the assumptions. Addressing the challenges of forecasting a data-poor population,
we project the Iraqi Kurdish population using a Bayesian approach. This approach incorpo-
rates a demographer’s uncertainty about past and future characteristics of the population in
the form of elicited prior distributions.

Keywords: Census Data, Cohort-component projections, Elicitation, Forecasting, Popu-
lation, Population projections, Subjective opinion, Vital rates.

6.1 Introduction

The problem of forecasting populations haunts demographers. To assure readers that
they cannot forecast, demographers instead “project” populations, meaning that given
a set of assumptions, demographers perform the arithmetic for the users of their fig-
ures. However, “a demographer makes a projection, and his reader uses it as a forecast;
does the demographer’s intention or the reader’s use determine whether projection or
forecasting has occurred?” (Keyfitz, 1972, p. 353) We, like others before us (Keyfitz,
1972; Hoem, 1973; Stoto, 1983) regard the class of population projections that use
the most likely scenario as forecasts. Other classes of projections performed to demon-
strate the result of hypothetical or unlikely circumstances should not be considered
forecasts, but merely arithmetic exercises.

Population forecasts are used for two purposes: to suggest what a population will
look like in the future, and to suggest what the population has looked like in the
past when data of reasonable quality for the period are not available. Given that in
fact demographers often forecast populations, this paper presents a method to create
forecasts that model a demographer’s uncertainty about the forecast.

In this article we expand on the work of Pflaumer (1988) and take Land (1986) up

Beth Osborne Daponte is with the University of Pittsburgh, Joseph B. Kadane is Professor at the
Department of Statistics, Carnegie Mellon University and Lara J. Wolfson is Assistant Professor at the
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and materials on the Iraqi Kurdish population. We thank Heidi Rhodes Sestrich for her patient secretarial
support. We thank Sam Preston, Noreen Goldman, and the referees for their helpful comments on previous
versions of this paper. This research was supported in part by NSF Grants DMS-9303557 and SES-9123370
and by Office of Naval Research Contract N00014-89-J-1851.
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on his suggestion to integrate statistical and demographic methodologies in performing
population projections. Land wrote that “statisticians and demographers need to take
a much more statistical perspective on population forecasting. A full statistical forecast
of an uncertain future population quantity even if based entirely on informed expert
judgments would be a probability density for it....This suggests, for instance, that it
would be instructive to examine the implicit Bayesian decision theoretic basis that lies
beneath the production of projection intervals...” (p. 899). We also show how current
methods used by demographers can be adapted to integrate a Bayesian approach.

The Bayesian approach expresses uncertainty in terms of probability distributions.
These distributions generally reflect the views of the analyst, although in some cases
they can model the views that others do or might hold. Because they represent per-
sonal opinion, they are referred to as “personalistic” or “subjective” in the Bayesian
literature (Savage (1954, p. 27)).

Conducting Bayesian demographic analysis promises three important advantages.
First, utilizing this approach would enhance communication among demographers.
Making one’s beliefs explicit using probability distributions allows other demogra-
phers to observe exactly how one views the sources of uncertainty in the phenomenon.
Others can then know on what they agree or disagree. The reasons given for particular
probability distributions can be an important source of insight. The second important
advantage of Bayesian demographic analysis pertains to the user. The consequence of
the explicitly probabilistic inputs is explicitly probabilistic output. Population “pro-
jections” become forecasts with explicit probability distributions. These can be used in
whatever inference or decision the users face, if the input probabilities are acceptable.

A third advantage of a Bayesian analysis is its greater flexibility in reflecting de-
mographic beliefs. Classical models either include or exclude a parameter about which
no prior is expressed, which is often equivalent to expressing certainty about its value.
Using probability distributions permits one to express states of knowledge in between
these two alternatives.

Hyppölä, Tunkelo and Törnqvist (1949) (see also Tornquist’s appendix in Hoem
(1973)) preceded us in developing a subjective approach to population forecasting. To
forecast the population of Finland to the year 2000, they used the 20th, 50th, and
80th percentiles of their (subjective) fertility distributions, together with what they
took to be pessimistic, most likely, and optimistic assumptions about mortality, to
produce what they took to be the 10th, 50th, and 90th percentiles in the resulting
population, but they had no firm basis for this claim. We think that Hyppölä et al.
were years ahead of their time in what they wanted to do and had they had access to
adequate computing power, they might have performed a forecast similar to the one
we present herein.

This article offers a case study in projecting the Iraqi Kurdish population under
a certain hypothetical scenario explained later. We first discuss current practices in
performing population forecasts. Then, we consider ways that others have proposed to
integrate uncertainty into the forecasts. We conduct a forecast of the Kurdish popu-
lation of Iraq from 1977–1990 that integrates Bayesian and demographic analysis. To
conclude, we present summary results for the projection. We project the Iraqi Kurdish
population only to 1990 so one can consider what the Iraqi Kurdish population would
have looked like prior to the 1991 Persian Gulf War had the repression of the Kurds
since 1977– and particularly the Anfal (a state-sponsored campaign of violence against
the Iraqi Kurds described later) not occurred. This projection is part of a larger project
that has the goal of estimating the detrimental demographic effects attributable to the
Anfal and other oppression of the Kurds. The specific effects estimated (e.g., excess
mortality and diminished fertility) depend on the form of data on the post-Anfal Kur-
dish population. For example, the population projection reveals the number of Iraqi
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Kurds that would have died had “normal” mortality levels prevailed. If and when data
on actual mortality among Iraqi Kurds during this time period become available, the
magnitude of excess mortality can be calculated. Thus the population that we project
is hypothetical.

The Iraqi Kurdish population lacks high quality data, making it similar to the
populations of many developing countries. Demographers studying the populations of
developing countries are often confronted with fragmentary or incomplete information
on the population. This is the case in the Lesotho highlands water project, which
successfully applied this methodology (Daponte and Wolfson, 1995).

6.2 Current Practices

In any population projection, a demographer makes a number of decisions with respect
to the population processes involved. These decisions are subjective guesses of what
is most likely to occur based on what already has occurred in the population and on
professional opinion.

The first decision a demographer makes when projecting a population is which
type of projection to perform. Although mathematical functions are sometimes used
(Smith and Sincich, 1990), in general the cohort-component method is the preferred
procedure (Arriaga, 1993, p. 309). The U.S. Census Bureau, United Nations, and
World Bank all perform cohort-component projections. We focus our discussion on
this class of projections.

Projecting a population using the cohort-component method involves a number of
steps, each of which utilizes the demographer’s expert opinion. First, “a component
projection requires a population properly distributed by sex and age to serve as the
base population for the starting date of the projection” (Arriaga, 1993, p. 314). This
population is usually based on the most recent census, “moved” from the census date
to midyear (July 1) and adjusted for underenumeration and overenumeration and for
age misreporting. The raw census data are evaluated in light of recent fertility and
mortality surveys. The demographer relies on scientific knowledge and experience to
judge the quality of the raw data and makes proper adjustments subjectively. Where
one demographer may adjust the data in a certain way to meet his or her interpretation
of “proper,” another may adjust the data differently.

Second, the demographer makes assumptions regarding the levels and patterns of
fertility that will (or have) prevail(ed) since the census date. Often, the level of fertility
(total fertility rate) is projected and then a pattern of fertility (age-specific fertility
rates) is assumed. A similar process is used to project mortality, where the demogra-
pher projects the general level of mortality (expectation of life at birth) by sex and
then assumes age-specific mortality rates (Arriaga, 1993). Finally, levels and patterns
of net migration are assumed. The projected levels and patterns of the components of
population change are applied to the base population to yield the projected population
for a given year.

Uncertainty is introduced into the forecast in a number of ways. At all stages in
the process, a demographer uses judgment based on professional experience to arrive
at the most “reasonable” set of future demographic indices. Projecting a population
becomes an art influenced by scientific techniques. Opinions, judgments, experience,
and outlook are all used at various stages of the projection process. Further, the
quality of the data on which the projection is based may be dubious, or data that do
exist may not be available (e.g., the Iraq 1989 Subcensus of Population), leading to
additional uncertainty in the projection. Also, the model may be misspecified. Hoem
(1973) provided a detailed discussion of sources of uncertainty.

How is uncertainty about various elements of the projections integrated into the
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results? Current methods used to forecast populations generally do not allow the de-
mographer to state explicitly his or her probability of demographic events occurring.
Instead, demographers generally forecast a population using different sets of assump-
tions and allow the user to choose the projection that will best fit the user’s needs.
The range of results of projections based on various sets of assumptions is assumed to
reflect “uncertainty.”

No one admits to making an arbitrary choice of assumptions for popula-
tion projections; each author selects a set corresponding to the relations
that he sees as persisting into the future. Since what will persist is un-
certain at the time the projection is being made, he is well advised to try
more than one set of assumptions and work out future numbers from each.
In due course censuses will be taken in what was the future at the time
the projection was made. The hope is that the several future numbers
will turn out to straddle each subsequent census, but official agencies,
unwilling to present their projections as predictions, do not assign any
probability that they will straddle. (Keyfitz, 1972, p. 353).

Current practices vary. The United Nations allows a user to choose among four
scenarios: high-, medium-, low-, and constant-fertility variants, which differ primarily
in the assumed future trends in fertility (United Nations, 1993). The World Bank
presents only one series of projections per country but rather explicitly presents the
assumed changes in vital rates (World Bank 1992).

The U.S. Census Bureau projects populations two ways. The Center for Interna-
tional Research performs projections for every country in the world. For all countries
except the very smallest, the center uses the cohort-component method. Rather than
perform a number of projections under various assumptions, the center makes only
one projection for each country. Users and producers of the data generally accept
the projection as the most likely scenario. The center evaluates and, when it seems
necessary, adjusts raw census data, even of developed countries.

The Population Division, which projects the population of the United States, pro-
duces 10 series of projections (U.S. Bureau of the Census, 1992, p. xxiv). “Although
the middle series is presented in great detail, there are nine other alternative projec-
tion series” (U.S. Bureau of the Census, 1992, p. xxiv). These projections begin with
an unadjusted population. “This method does not correct for the net undercount in
the 1990 census....The inflation-deflation variant yields a population distribution in
each projected year which is similar to that which would result if a census with the
1990 pattern of undercount (as estimated by Demographic Analysis) were conducted
in that year” (U.S. Bureau of the Census, 1992, p. x). Therefore, rather than forecast
the future expected population, the Population Division instead forecasts the enumer-
ated population and assumes that the Census Bureau’s techniques of enumerating the
population will not improve or deteriorate. Among the 10 projections are three named
“high,” “medium,” and “low.”

“The logic of this approach is that the demographer presents a few main
possibilities in respect of the components of population growth, shows
what population will result in twenty or more years later, and leaves the
selection to the user. It is up to the user to study the assumptions on
which the components were projected forward, choose the set of assump-
tions that seems right to him, and then accept only the demographers’
arithmetic to read out the resulting future population....” (Keyfitz, 1987,
p. 17-3).

This practice is analogous to a physician giving many alternatives for treating a disease
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without guiding the patient toward what the physician considers advisable. Demog-
raphers could be more useful to their readers if they more fully report their opinions,
which reporting probabilities encourages and requires.

Presenting many projections does not substitute for stating the amount of uncer-
tainty in the “medium” projection for three reasons. First, the demographer instead
performs many projections, only one of which he or she thinks is most likely to occur.
The other projections are generally seen as implausible or unlikely. Second, although
the high and low projections take into account different future scenarios, they gen-
erally do not take into account the uncertainty in the baseline data. The projections
generally start with the same data and apply different assumptions. Alho and Spencer
(1985) have made some strides in this area by taking into account some, but not
all, sources of error for the “jump-off” population. They assume that although there
is uncertainty in the nonwhite population, the white population is perfectly known.
Third, the demographer generally does not give his or her opinion of the likelihood
of the other projections occurring. Are the “high” and “low” scenarios analogous to
95% confidence intervals? Stoto (1983, p. 19) found and Alho (1992) assumed that
the high and low scenarios represent roughly 66% confidence intervals. Lee and Tul-
japurkar (1994, p. 1176) assumed that US high and low projection scenarios provide
“perhaps a 98% confidence interval” (p. 1176). Alho and Spencer (1985) write that the
Census Bureau’s “high-low forecast variants are too narrow to be interpreted as .67-
level prediction intervals” (p. 313). It is unclear how the high-medium-low approach
reflects uncertainty. Hoem (1973, p. 10) wrote that “several authors have insisted that
forecasters should bring the [custom of presenting several alternative forecasting series
to reflect uncertainty] to an end and that they should change over to specifying prob-
ability distributions for future population numbers. Much more precise statements
about forecasting uncertainty would then be possible. In principle, this type of ap-
proach evidently is a goal towards which forecasters should strive and to which one
may possibly find a reasonably accurate and operational solution some time in the
future.”

Some demographers Lee (1992); Lee and Carter (1992) have put confidence inter-
vals around future estimates of components of population change by using time series
methods. For example, Lee and Carter forecast mortality with confidence intervals
around future mortality extrapolations. “Their projections capture the implications
of a continuation of past exponential trends in age-specific mortality rates, uncompli-
cated by expert opinion or assumptions about medical advances, delay of deaths by
cause, or ultimate levels of life expectancy” (McKnown, 1992, p. 671).

Another methodology–stochastic projection, (Alho, 1990, 1992; Lee, 1992, 1994;
Lee and Tuljapurkar, 1994)–shares some of our orientation but differs from it in other
respects. Lee and Tuljapurkar (1994) join us in believing that a fully stochastic analysis
is preferable to the traditional high, medium and low forecasts. However, the so-called
confidence intervals they calculated take some estimated quantities as known, ignoring
standard errors of the estimates–although Lee (1994) noted that this matters only
sometimes. Lee (1992) and Lee and Tuljapurkar (1994) begin their projections with
a point-estimated base population, whereas our technique accounts for uncertainty in
the base population. Lee and Tuljapurkar’s data situation differs from ours–whereas
they dealt with the relatively data-rich projection of the U.S. population, we deal with
a data-poor population.

Pflaumer (1988) also shares with us the goal of stochastically projecting a popu-
lation. Whereas he stated “we prefer subjective specifications of demographic distri-
butions” (p. 137), he actually uses a piece-wise uniform distribution “with no a priori
information about the distribution being available” (p. 137). In his empirical example
of projecting the U.S. population for nearly 100 years, he remarks “the assumptions
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of the Census Bureau shall here only serve as examples to demonstrate the simulation
procedure rather than to provide reliable estimates” (p. 139). Thus Pflaumer does not
take scientific responsibility for the distributions that he uses.

This article represents another step toward the Tornquist-Hoem goal of stochas-
tic projection. We advance beyond Pflaumer in that the model we propose and the
inputs that we use are subjectively determined to represent seriously considered opin-
ion. Before applying our approach to the Iraqi Kurdish population, we provide some
background.

6.3 The Iraqi Kurdish Population

The Iraqi Kurds1 are an Indo-European people living in the northern reaches of Iraq.
Urban Kurds live in the fertile plains, an area rich in oil and mineral resources, while
rural Kurds live further north in the mountainous zones bordering Turkey and Iran.
The Kurds, desiring a greater measure of self-government, have at times negotiated
with and at other times fought with the Iraqi central government over the nature of
their relationship.

In 1975 the Iraqi government embarked on a campaign to “arabize” Kurdish areas.
The “arabization” involved relocating Arabs from southern to northern Iraq to live
near and work in oil fields. The relocated Arabs, overwhelmingly males of working age,
were given land and jobs. In the late 1970s, the Ba’thist regime in Baghdad, facing little
opposition from the Kurdish parties, was able to create a “cordon sanitaire” in the
area of its northern borders, destroying all Kurdish villages in a band approximately
15-20 km wide. After receiving symbolic compensation for their lost property, the
population was moved to housing complexes in valleys closer to urban centers.

During the 1980s, the Kurds became increasingly exposed to official state violence
in the wake of the Iraqi invasion of Iran and the start of the Iran-Iraq war. During
this war, fought between 1980 and 1988, the Iraqi regime witnessed rural Kurdish
areas slipping from its control. The peshmergas, guerrillas belonging to the outlawed
Kurdish political parties, took advantage of this power vacuum and reasserted claims
to Kurdish self-government.

In April 1987 the Iraqi regime responded by bombarding the areas over which it had
lost control and systematically destroying many Kurdish villages that remained under
its control. The government relocated rural Kurds to newly built housing complexes,
again offering them symbolic compensation.

In the spring of 1988, as the war with Iran came to an end, the Iraqi regime
launched a major military campaign against the Kurdish insurgency. The campaign,
called the Anfal Operation, covered most of the Kurdish countryside. It was conducted
in eight separate stages divided over a period of 6 1

2 months, starting in February 1988
and ending with a general amnesty decree on September 6, 1988. Stages of the Anfal
Operation generally shared the following features:

• Chemical attacks on selected targets (some military and others strictly civilian).

• A massive military assault by land and by air.

• Detention of all those found in the area, including civilians, and their transfer to holding
centers and from there to unknown destinations. Evidence suggests that most of those
detained either were killed or died from hunger and disease while in captivity. Many
women, children, and elderly who survived detention were released under the September
amnesty.

1The information in this section is primarily based on Middle East Watch (1993) and S. Resool (personal
communication).
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• Complete destruction of villages in the area.

Following the Anfal, the rural areas remained off-limits to people, at penalty of
summary execution. Those who survived the Anfal and benefited from the September
amnesty typically spent the first several months without shelter until they obtained the
resources to build a house, often in large housing complexes. Not until after the popular
uprising of March 1991 (following the 1991 Persian Gulf War) and the subsequent
Iraqi military withdrawal from most of the Kurdish areas 8 months later did some
rural Kurds return to the sites of their villages of origin and begin rebuilding their
homes.

The 1987 census played a unique role in the Anfal. Before conducting the census
in October, in August 1987 the Iraqi government ordered that “steps should be taken
to hold public seminars and administrative meetings to discuss the importance of the
general population census scheduled to be held on October 17, 1987, and to stress
clearly that anyone who fails to take part in the process without a valid excuse shall
lose his Iraqi nationality. He shall also be regarded as an army deserter....” (Middle
East Watch, 1993, pp. 86). In January 1988 a decree was issued stating that“capital
punishment shall be imposed.. on any deserter...” (Middle East Watch, 1993, pp. 86–
87). Describing the instructions for the 1987 census, Middle East Watch noted:

The instructions were quite different from those of the five previous cen-
suses. Those who were not included in the census would no longer be
considered Iraqi nationals...; they would cease to be eligible for govern-
ment services and food rations. And people could be counted only if they
made themselves accessible to census-takers. For anyone living in a pro-
hibited area, this meant abandoning one’s home (Middle East Watch,
1993, p. 87).

As a form of civil protest, many Kurds did not register for the 1987 census, making any
estimates of the Kurdish population based on the 1987 census inaccurate. Therefore,
for our projection we rely on the previous census conducted in 1977.

The Kurdish population has certain peculiarities that make estimation especially
challenging. There has never been an Iraqi census that has collected data on whether a
person is a Kurd. However, the Iraqi Kurdish population is geographically concentrated
and lives primarily in four Iraqi governorates: Arbil, Dahuk, Tamim, and Sulamaniya.
To arrive at a base population of Iraqi Kurds, we first start with the unadjusted 1977
census population of these four governorates. The adjusted base population that we
estimate approximates the actual 1977 Iraqi Kurdish population.

Four possible problems with the census counts of 1977 arose:

• Arabization. The “arabization” of these areas which began in the mid-1970s implies
that some people living in these areas were not Kurds but instead Arabs. Rural Arabs
migrated from Southern Iraq to Kurdistan because of economic incentives and generally
lived near oil fields located in urban areas (Resool, 1994). So, there existed the problem
of removing enumerated Arabs from the population of the four governorates.

• The draft. At the time of the 1977 census, the Iraqi government drafted all males aged
18 years. To avoid military service, many Kurdish males 18 years of age would not report
themselves as such. This implies that there would be disproportionately high numbers
of males both younger and older than 18, but a dearth of males aged 18.

• Underreporting of females. In many developing areas where females’ status is low (com-
pared to males’), females are underenumerated. We suspect this to be the case in the
four Kurdish governorates in question.

• General age misreporting. This is a problem common to the censuses of developing
countries, and there is no reason to think that the Iraqi census data would be exceptional.
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All four of these potential problems add to the uncertainty in our projection of the
Iraqi Kurdish population. Further, there is a dearth of fertility and mortality data on
Iraqi Kurds, forcing one to base estimates for the population on data for the entire
Iraqi population. In the absence of data distinguishing these demographic phenomena
of the Kurds from those of the Iraqi population as a whole, this approach is reasonable.
The projection is performed to see what the population of Iraqi Kurds would have
been in 1990 in the absence of state-sponsored violence in the 1980s.

6.4 Overview of Projection Procedure

A Bayesian demographic projection combines expert opinion (see, e.g., Kadane et al.
(1980) and Wolfson (1995)) with traditional demographic projection techniques (i.e.,
those used by the U.S. Census Bureau’s Center for International Research). The pro-
jection period lasts from a base year to an end year. The cohort-component approach
requires a midyear population for the base year by age and sex and for the projec-
tion period levels and patterns of migration and vital rates (fertility and mortality).
Rather than have point estimates for the base population, migration, and vital rates,
the Bayesian approach instead explicitly models the uncertainty inherent in these
estimates by specifying distributions for them.

Rather than forecast into the future, the forecast goes from one past date to an-
other. We have available some information on the vital rates during the forecast period.
The availability of information during the projection period might make one more cer-
tain of one’s estimates than one would have been without such information at hand.

We project the rural and urban populations separately to allow for differences in
their demographic events. Because we do not know the form that data on the post-
Anfal Iraqi Kurdish population might take, for the purpose of later evaluating the
demographic effects of the Anfal (which might have had differential effects on the
urban and rural populations), we choose to project the rural and urban populations
separately. However, the projection program that we modified allows us to aggregate
these populations, if we so choose.

The projection procedure presented computational challenges. Our procedure
adapted publicly available demographic software. Specifically, source code from the
U.S. Census Bureau’s Rural-Urban Projection Package (RUP) and the United Na-
tions’ MORTPAK were obtained to create a Fortran program that could project a
population multiple times.

6.5 Projecting the Iraqi Kurdish Population

We project the vital rates of the population, consider migration, and then arrive at a
base population. The projection of fertility is addressed first.

6.5.1 Fertility

There is one comforting thought to offer before starting our analysis of fertility. Our
analysis of the Kurdish population of Iraq is from 1977–1990, a span of 13 years.
Because this represents less than one generation, fertility has only a linear relationship
to our projections, not the polynomial or exponential relationship that results from
projections over several to many generations. For this reason, the projections that we
offer are less sensitive to assumptions about fertility than would be the case for a
longer projection. Therefore, we can model fertility in a somewhat crude way and still
have reasonable projections.

The fundamental quantity for understanding fertility is the age-specific fertility
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rate for age x at year t (ASFRt
x), the proportion of women of age x at year t who

have a child in that year. The total fertility rate in year t (TFRt) is the sum of the
age-specific fertility rates in that year; that is

TFRt ≡
∑
x

ASFRt
x.

It is a traditional and useful summary of over-all fertility at a particular point in time.

Because no data are available on the fertility of the Kurdish population, we consider
data available on Iraqi fertility. For Iraq as a whole, we use two sources of information
about total fertility. (For a discussion of various fertility estimates of Iraq, see Daponte
(1993).) A 1974 survey (United Nations Economic Commission for Western Asia, 1980)
shows a 1974 total fertility rate (TFR) of 7.1 and the United Nations Socio-Economic
Data Sheets (United Nations Economic and Social Commission for Western Asia,
1989) give a 1988 rate of 6.1.

Because we examine the Iraqi Kurdish population from 1977–1990, the first task
is to estimate fertility rates for the starting and endpoints of the projection. It is
likely that fertility in Iraq was decreasing, hence the 1977 rate is somewhat less than
the 1974 rate of 7.1 and the 1990 rate is somewhat less than the 1988 rate of 6.1.
In areas where fertility is declining and the time period is short, a logistic function
should provide reasonable estimates of fertility (Arriaga, 1993, p. VIII 20). Here the
extrapolation of 1977 and 1990 rates was done with a logistic curve with total fertility
rates asymptotes of 8 (long ago) and 2 (long into the future). Doing so yields TFR’s of
7.0 for 1977 and 6.0 for 1990. We take these as the means of our fertility distributions
for the start and end year of the projections. In considering sources of uncertainty of
fertility in the start and end years of the projection, one should include uncertainty
in how well Iraqi fertility reflects Kurdish fertility and mismeasurement error.

Next we consider urban-rural differences in fertility. The 1974 fertility survey found
rural fertility to be 20% higher than urban fertility. During the projection period, we
take this differential to be stochastic, with a mean of 20% (constant over time) and
with a standard deviation expressing uncertainty about it. These weights are applied
to the TFR for the entire country to get rural and urban TFRs.

There exists uncertainty in the TFRs obtained for the rural and urban areas –
mean TFRs in 1977 of 7.6 in rural and 6.4 in urban and in 1990 of 6.5 in rural and 5.5.
in urban. We model this uncertainty as a standard deviation; sources of uncertainty
include doubts as to whether the 20% rural-urban differential remained constant over
time, concerns over the initial measurement of fertility, and concerns over whether the
logistic interpolation yields correct TFRs. In considering the mismeasurement issue,
(Daponte, 1992) evaluated Iraqi fertility using several demographic techniques applied
to the relevant data sources. Based on her evaluation of Iraqi fertility and the sources
of uncertainty mentioned earlier, we set our 95% credible intervals of the TFR 6.0 -
6.8 in 1977 and 5.15 - 5.85 in 1990 for urban areas, and 7.1 - 8.1 in 1977 and 6.1 -
6.9 in for rural areas, with normal distributions assumed for convenience and because
they reasonably represent our beliefs.

Hence, our evaluation of the marginal densities of urban and rural fertility in 1977
and 1990 fertility is presented in Figure 6.1.

To specify a joint normal distribution with marginal densities shown in Figure 6.1,
it is necessary to specify correlations. We assume that the TFR’s, both urban and
rural, are uncorrelated in the base and end years. Further, we take the correlation
between rural and urban TFR’s in both the base and end years to be 1, because the



106 Iraqi Kurds
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Figure 6.1: Probability Density Function of Elicited Total Fertility Rates, 1977 and 1990,
for Urban and Rural Areas. From left to right, pdf’s are for urban areas, 1990 (large dash)
(N(5.5, (0.175)2)), urban areas, 1977 (small dash) (N(6.4, (0.2)2)), rural areas, 1990 (dotted)
(N(5.6, (0.2)2)), and rural areas, 1977 (solid) (N (7.6, (0.25)2))

major source of our uncertainty about the TFR’s is measurement error, which would
apply equally to both urban and rural areas in both 1974 and 1988.

Thus the vector (TFRU
77, TFRR

77, TFRU
90, TFRR

90) (with superscripts indicating
urban and rural), is taken to be jointly normal, with margins specified in Figure 6.1
and correlation matrix


1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1


This completely specifies their joint distribution.
Having drawn values of the base and end year urban and rural TFR’s from this

distribution, we extrapolated them for the intervening years using the logistic function
in RUP, which uses an upper asymptote of 1 + max (6, TFR77, TFR90), and a lower
asymptote of 2. Thus we obtain a (stochastic) series of urban and rural TFR’s from
1977 to 1990.

The next step in the analysis is to distribute the TFR by age. The 1974 fertility
survey (UN ECWA 1980) is unique, in our view, among data sources in giving reason-
able fertility patterns by age for Iraq. Dividing the 1974 ASFR’s by the TFR74 yields
the proportion of the TFR contributed by women of each age. Those proportions are
reported in Table 6.1 separately for urban and rural Iraq.

Alternatively, one could model the age pattern of fertility as uncertain. We do not
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Table 6.1: Proportional Fertility rates per year

Age Urban Rural
15 - 19 .0172 .0199
20 - 24 .0447 .0440
25 - 29 .0479 .0459
30 - 34 .0407 .0392
35 - 39 .0306 .0301
40 - 44 .0140 .0157
45 - 49 .0048 .0052
NOTE: Rates by age and location for Iraq (From United
Nations Economic Commission for Western Asia 1980).
Source: Calculated from age-specific fertility.

do so here because the level of fertility did not change drastically since 1974, and
introducing uncertainty about the age pattern of fertility would have little effect on
the results.

Assuming that the fertility pattern reflected in Table 6.1 is constant for the 13
years in question, multiplying the weights for age x in Table 6.1 by TFRt yields an
estimate for ASFRt

x. Finally, multiplying ASFRt
x by Nx, the number of women of age

x, yields an estimate of the number of births in year t to women of age x. Summed
over mothers’ ages x, this gives an estimate of the number of births in year t.

6.5.2 Mortality

The existing mortality data for the Kurdish population is also limited. Thus indirect
estimation techniques must be used to obtain estimates of mortality between 1977
and 1990. Because far more is known about the Iraqi population’s infant and child
mortality levels than about adult mortality, indirect estimates of age-specific mortality
rates over the life cycle are based on infant and child mortality.

The best estimates of Iraqi infant mortality for the latter half of the twentieth
century have been provided by Jones (1992), who reviewed mortality estimates for
Iraq. Jones provided a series of infant mortality rates for both sexes combined based
on reconciling mortality estimates from various survey and census data. He gives an
infant mortality rate (IMR) of 39 per 1,000 live births in 1990, which we use as the
mean of our distribution for IMR in 1990. He also gave IMRs of 75 for 1975 and 63
for 1980. We slightly prefer the estimate of 70.4 for 1977 given by a logistic fit (using
FITL-GSTC, Version 100 of the U.S. Bureau of the Census) to the estimate of 70.2
for the same year that comes from a linear extrapolation. Sources of uncertainty in
the IMR include measurement error, questions about the appropriateness of using
Iraqi IMRs for the Kurdish population, and basic uncertainty in Jones’ evaluation of
mortality. Figure 6.2 illustrates the densities, means and standard deviations of the
IMRs for both sexes combined for the base and end years of the projection. Again
normality is assumed, both for simplicity and as a reasonable representation of belief.
Also, 1977 and 1990 IMR’s are taken to be independent.

Next, the sex differential in infant mortality is considered. In 1989, the United
Nations (United Nations Economic and Social Commission for Western Asia, 1989, p.
55) reported that the IMR in Iraq in 1988 was 62.5–63.4 for males and 61.6 for females.
The level of the IMR was based on the UN’s analysis of children ever born/children
surviving information from the 1974 fertility survey, a 1980 survey, and the 1987 cen-
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Figure 6.2: Probability Density Function of Elicited Joint Infant Mortality Rates (IMR).
(Dotted), the pdf of the 1990 IMR (µ = 39;σ = 4); (solid), the 1977 IMR (µ = 70 : 4;σ = 6).

Table 6.2: Elicited Quantiles of ∆MF Conditional on IMR

Quantiles of ∆MF

IMR 50th 75th 97.5
90 0 4 12
70 -2 1 7
50 -4 -2 2
30 -6 -5 -3

sus. This level is substantially higher than that reported by Jones (1992) because the
UN had not yet incorporated data from more recent surveys on child health conducted
in 1989 and 1990 (Republic of Iraq, Ministry of Health, 1990; UNICEF, 1990). The UN
bases its sex differential in infant mortality on 1987 census data on infant mortality.
We rely on the survey data for the level of infant and child mortality and the UN’s
estimates for the sex differential in mortality.

Based on these fragmentary data, one can model the sex differential ∆MF =
IMRF − IMRM , the difference between male and female infant mortality rates. As
mortality decreases, the tendency for excess female mortality also decreases (Hill and
Brown, 1994; Langford and Storey, 1993). Considering ∆MF at four distinct points of
the IMR–90, 70, 50, and 30–we modeled ∆MF ’s uncertainty as follows.

Here we express the belief that the uncertainty decreases as the IMR decreases.
These values indicate that both the mean and standard deviation of the resulting
normal distribution are linear in IMR, so the conditional distribution of ∆MF , given
IMR, is a normal distribution with mean and standard deviation:

µ̂(∆MF ) = .1× IMR− 0.9;

and
σ̂(∆MF ) = 0.059× IMR. (6.1)

That ((6.1)) fits the elicitations reported in Table 6.2 exactly is convenient but not
necessary.

After sampling the IMR from the normal distribution defined in Figure 6.2, a
conditional value of ∆MF is sampled from ((6.1)). From this, the IMRs for each sex
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are obtained using a sex ratio at birth of 1.05 as:

IMRF = IMR−
(

1.05

1 + 1.05

)
∆MF (6.2)

and

IMRM = IMR+

(
1

1 + 1.05

)
∆MF . (6.3)

Because we project the rural and urban populations separately, we next consider
the differential in mortality between the urban and rural populations. A 1974 survey
(United Nations Economic Commission for Western Asia, 1980) showed no difference
between mortality rates in rural and urban areas. However, our analysis of recent
data collected by the International Study Team (1992) indicates that between July
1985 and July 1990, children in urban areas had a substantial survival advantage
over their rural counterparts – IMRs of ≈33 and 44. This difference seemed too large
to be believed, so we examined the urban-rural mortality differential in Jordan, a
country socio-economically similar to Iraqi Kurdistan. The 1990 Jordan Population
and Family Health Survey (Zou’bi, 1992) showed that infants in urban areas had
an approximate 10% survival advantage over rural infants, a level that seemed more
credible. Because this seems more reasonable, we assume that when compared to
Kurdish rural infants, the IMR among urban Kurds will be approximately 10% lower,
although we are uncertain about this assumption.

The difference between rural and urban infant mortality rates is

∆RU =
IMRRURAL − IMRURBAN

IMRURBAN
(6.4)

This difference we model as normally distributed with a mean and standard devi-
ation as follows:

µ̂(∆RU ) = .1; σ̂(∆RU ) = 0.05 (6.5)

To establish some additional notation, let R be the rural population, U the urban
population, r = R/(R + U) be the rural proportion, and u = U/(R + U) be the
urban proportion. Because the IMR for an entire area is a weighted average of the
IMRRURAL and the IMRURBAN, for a given sex the rural and urban infant mortality
rates are computed as

IMRJ,RURAL =
1 + ∆RU

r(1 + ∆RU ) + u
IMRJ (6.6)

IMRJ,URBAN =
1

r(1 + ∆RU ) + u
IMRJ , (6.7)

where J=F, M.
The proportion of the population living in rural areas in 1977 is .51 and this pro-

portion is kept constant throughout this projection. A more precise approach would
have this proportion vary based on the midyear geographic distribution of the popu-
lation for each of the projection years. Considering that our point estimate projection
showed 51% of the population in rural areas in 1990, in our view correcting this ex-
tremely minor source of error would not have produced results much different from
the ones we present.

Once rural and urban infant mortality rates by sex have been determined, one
needs to estimate mortality at other ages in the life cycle. Although Kohli (1976)
provided life tables for Iraq, an evaluation of these life tables showed them to be
implausible, especially with respect to the mortality estimates of rural females. His
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life tables were essentially based on a newly developed incomplete vital registration
system, and Kohli himself wrote that the table should be interpreted with caution (p.
16). We do not use these life tables or any information contained in his article for our
analysis. The existence of contradictory mortality estimates demonstrates the extent
of uncertainty in the estimates.

The South model of life tables assumes “high mortality under age 5, low mortality
from about ages 40–60, and high mortality over age 65” (Coale and Demeny, 1966, p.
14), which describes the situation in Iraq in the 1970s quite well. Thus we used these
tables for 1977.

The West model is the model most commonly used and assumes a level of child
mortality relatively lower than the South’s. During the 1980s, Iraq made a concerted
and successful effort to reduce its infant and child mortality. The reduction of mortality
among the young makes the West model life tables appropriate in 1990; thus we use the
West tables for 1990. For the 1978–1989 period, age-specific mortality rates are linearly
interpolated between the two levels and patterns. We used the UN’s MORTPAK
computer software package to generate model life tables for each sex.

6.5.3 Migration

Two types of migration–interregional (international) and rural-urban–should be ad-
dressed. Considering the former type, we assume that except for the arabization of
the region, Iraqi Kurdistan was neither a net sending nor receiving area. Other coun-
tries were not willing to accept Iraqi Kurds on a permanent basis, and Kurdistan,
being a remote area, was not receiving immigrants. Since 1977, the Iraqi government
used forced migration against rural Kurds three times, in the late 1970’s, in 1987,
and in 1988. Because our purpose is to find a distribution for the population had the
Anfal and other forced migration not occurred and because natural migration was
trivial, it is appropriate for this purpose not to include interregional migration in our
projections.

For the period of interest, normal rural-urban migration is probably negligible.
Our analysis of 1977 and 1987 Iraqi census data shows very low rates of rural-urban
migration (less than 1% of the rural population per year). One cannot necessarily
assume, however, that rural-urban migration rates observed for all of Iraq apply to
Iraqi Kurdistan.

Even though we do not model rural-urban migration, because they have different
growth rates, it is still useful to project the rural and urban populations separately,
Treating the population as a whole would ignore the differences in the vital rates to
which both populations were exposed, and hence result in a less accurate projection.

6.5.4 Obtaining a Base Population

When conducting a cohort-component projection, one starts with a base population
as of July 1 categorized by 5-year age groups and sex, typically based on census data.
To obtain a base population, we first take the raw data from the 1977 census and
distribute persons of unknown ages according to the age distribution of persons of
known ages. Next, examining the observed sex ratios

SR =
No. of males

No. of females
, (6.8)

we observe (Figure 6.3) that the sex ratios between contiguous age groups vary con-
siderably, and that for most age groups the ratio of males to females in the population
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is too high, considering that neither female emigration nor excess female mortality
occurred.

Enumerated vs. Expected Sex Ratios 1977
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Figure 6.3: 1977 Sex Ratios by Age. The circles plot the enumerated sex ratios from the
unadjusted 1977 Iraqi census. The solid area gives the 95% credible interval of the expected
sex ratios.

To resolve the variation in sex ratios between age groups, a moving average tech-
nique smoothed the ratios of the rural and urban areas separately. The sex ratios are
smoothed for all ages except for the age groups 80+, 0-4, and 5-9. Although this helps
the situation somewhat, the overall sex ratio was 1.19, reflecting a population that
in the absence of male in-migration, would appear disproportionately male. Whereas
in rural areas the sex ratio is 1.10, in urban areas it is 1.28. In the absence of urban
migration by males, one would expect rural sex ratios to exceed urban sex ratios be-
cause of rural-urban migration of females (Davis, 1995, p. 159). The urban population
particularly showed inflated sex ratios in young adult (age 15-49), typical migration
ages, and we assume that these excess males are probably Arabs. The problem that
presents itself, then, is how to remove Arabs living in Kurdish areas from the 1977
population.

Expected sex ratios reveal what the sex ratios of a population would be given
a set of age-specific mortality rates. We calculate expected sex ratios separately for
rural and urban areas for each age group by taking the ratio of the male to the
female stationary populations obtained from model life tables using the IMR estimates
described earlier and multiplying this ratio by the sex ratio at birth (Shryock et al.,
1971, p. 221). Although we calculated expected sex ratios based on both the West
model and the South model, the West model showed sex ratios that seemed too high
and that reached unity too late in life. The South-expected sex ratios appeared more
reasonable. Therefore, the expected sex ratios for each age group used to estimate the
base population were based on the South model life tables.

When comparing the 95% credible intervals of the expected sex ratios with the
enumerated sex ratios, one sees (Figure 6.3) discrepancies which may be accounted for
by the following: in the rural population, an undercounting of females; in the urban
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areas, the inclusion of Arab men who migrated to Kurdish areas to work in the oil
fields; and in both areas at draft ages, an underenumeration and age misreporting of
males. All three of these factors would mask the actual Kurdish population.

To obtain an estimate of the Kurdish population in 1977 and account for these
three factors, it is necessary to stochastically adjust the rural and urban populations
separately using expected sex ratios. For the rural population, we generally start
with the male enumerated population and adjust the figures for females based on the
expected sex ratios to correct for possible underenumeration. This is done for all age
groups except for those surrounding the 15-19 age group because of the draft issue and
implies a 9.5%–12.5% undercount among females. For the age groups 10-14, 15-19, and
20-24, we start with the female population, adjust it upwards based on the implied
undercount, and then adjust the male population based on expected sex ratios.

In urban areas, for the population younger than 20, we accept the male population
and adjust the female population. For the population group 20-49, we accept the female
population and adjust the male population. This results in removing many men from
the population, assumed to be Arab migrants. For the ages 50+, we accept the male
population, and adjust the female population. Because of a lack of data, no adjustment
is made that might remove the presumably very small number of Arab women who
might have accompanied Arab men. However, no undercount adjustment was made
to women 20-49 and, hopefully, these two factors balance. These adjustments yield a
stochastically adjusted October 1977 population.

6.6 Results

For the population projection to reflect the uncertainty in the baseline data and fore-
casted demographic phenomena, the projection is a Monte Carlo simulation run 10,000
times using the demographic distributions specified earlier. Considering the mortality
component of the projection, the process of generating the four infant mortality rates
(rural by sex and urban by sex) is repeated 10,000 times, each time taking an inde-
pendent random sample from the densities specified in Figure 6.2 and equations (6.1)
and (6.4). The respective IMRs are then used as input to MORTPAK to obtain model
life tables that contain mortality rates for the rest of the life cycle. The male and
female life tables for the rural and urban areas in 1977 are used to calculate expected
sex ratios for each of the areas, and then the census population (with the unknowns
proportionally distributed) is adjusted based on these expected sex ratios.

Similarly, a TFR is randomly selected from the density specified in Figure 6.1.
Although urban and rural fertility are assumed to be correlated, no correlation between
fertility and mortality is assumed. If fertility rates were assumed to drop from a very
high to a very low level (e.g., 7 to 2), then perhaps the assumption of independence
should be reconsidered. Alho (1990, 1992) noted that zero correlation is appropriate
in most cases. Age patterns of fertility, based on urban and rural age-specific fertility
rates reported in the 1974 survey, are proportionally adjusted to the selected TFR.

Finally, the population is “moved” from the census date of October 17, 1977 to
midyear by adding in the deaths that occurred during this 3.5 month period by age
and sex and subtracting births from the population under age 1. Because both the
mortality and fertility rates are uncertain quantities, the adjusted October 1977 and
the midyear base or populations are stochastically adjusted quantities.

Figures 6.6a and 6.6b display the population pyramids for the 1977 enumerated
population and the coefficient of variation of the 1977 stochastically adjusted midyear
base population. Figure 6.6a clearly shows the anomalies in the Kurdish population
for which we adjusted. Figure 6.6b shows that uncertainty in the base data affects
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some age and sex categories more than others. Given the base data, the manifestation
of uncertainty for most of the age-sex categories seems quite small.

The population pyramid for the projected 1990 population (Figure 6.6c) shows
that all age-sex categories are affected by the uncertainty inherent in the projected
vital rates. Among age groups older than the projection period (in this case those older
than 13) the uncertainty in the projected population is minimal, except for the small
group of elderly, where baseline 1977 uncertainty and mortality uncertainty affects the
coefficients of variation. Compared with those older than the projection period and
middle-aged, the younger age groups have considerably greater associated uncertainty.
Our simulations give a probability distribution for the population in each age and sex
category, of which the figures are a summary.
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Figure 6.4: Population pyramids. Solid bars on left of each pyramid represent the male
population, shaded bars on right display the female population. (a). Estimated Kurdish
population based on Iraqi census data, October 1977. (b) Stochastically adjusted 1977 mid-
year population. (c) Stochastic 1990 mid-year population. In graphs (b) and (c), the median
population of the age group is given by the bar’s length; the coefficient of variation is shown
numerically.
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Figure 6.5: Probability Density Function of the Annual Exponential Rate of Growth, 1977–
1990.

Figure 6.5 displays the probability density function (pdf) of the annual exponential
rate of growth over time. Due to our assumptions that as fertility and mortality
decrease, the range of possible vital rates also decreases, the exponential rate of growth
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over time becomes more certain, as is manifested in this graph as a narrowing of the
pdf.

1978
1980

1982
1984

1986
1988

1990

Mid-Year

0.85

0.9

0.95

1

1.05

1.1

Dependency Ratio

Probability Distribution Function of the
Dependency Ratio, 1977-1990

Figure 6.6: Probability Density Function of the 1977–1990 Dependency Ratio, the Popula-
tion not Age 15–64 divided by the Population Age 15–64.

A Bayesian approach has ramifications for the dependency ratio (defined here as
the population not age 15-64 divided by the population 15–64). Figure 6.6 shows that
the pdf of the dependency ratio flattens over time. The age distribution of the uncer-
tainty affects this particular indicator. The pdf expands because more uncertainty is
attached to the youngest age groups and, over time, these age groups in the projection
period compose more of the group of people not age 15–64. Because the pdf changes
considerably from year to year, the pdf over time appears wavy. The assumptions in
the projection and the changing age structure yield a slight rise in the pdf between
1989 and 1990.

To investigate the effect of the Anfal in particular on the mortality of Iraqi Kurds,
one might first consider the expected number of deaths in 1988 in the absence of
state-sponsored violence. Table 6.3 shows the range of the 95% credible interval of
expected deaths by age and sex. If a tally of deaths during this period ever becomes
available, then the expected range could be compared with the actual tally to estimate
the number of excess deaths (see Daponte (1993)).

Finally, Figure 6.7 exhibits the 95% credible intervals for the total rural and urban
populations. The assumptions of the projection yield a somewhat narrower range of the
total urban population than the total rural population. The credible interval widens
over time because here the uncertainty in the estimate at one date is a function of
the uncertainty in the estimate at a previous date and uncertainty in the vital rates
between two dates. Information relevant to assessing the demographic impact of the
Anfal on Iraqi Kurds may come in a form somewhat different than the summary
measures presented here. The computer program design allows one to retrieve nearly
any demographic measure and to aggregate the urban and rural populations to the
total population.

The approach that we take to project a population yields a number of summary
indicators. The amount of uncertainty across indicators varies, depending upon which
age-sex categories the indicator addresses and the length of time projected.
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Table 6.3: Expected Deaths, 1988; 95% Credible Interval

Males Females

Lower Upper Lower Upper
Age Limit Limit Mean Limit Limit Mean

0-4 2,096 4,355 3,169 2,007 4,049 2,991
5-9 110 300 197 113 264 186

10-14 64 169 111 65 145 104
15-19 114 291 198 136 276 207
20-24 118 291 203 140 288 214
25-29 96 226 160 95 202 149
30-34 125 275 199 113 238 175
35-39 131 264 197 117 238 178
40-44 120 211 166 111 207 161
45-49 158 244 203 158 259 213
50-54 208 301 258 225 335 286
55-59 324 440 387 382 516 458
60-64 384 503 449 63 592 538
65-69 377 462 424 451 542 504
70-74 522 603 568 613 703 664
75-79 568 628 601 656 733 698

80+ 1,052 1,179 1,112 1,255 1,467 1,364

6.7 Discussion

This article integrates a Bayesian approach with traditional demographic methods.
Although we have demonstrated this approach using the population of a developing
country, in the future we intend to apply this technique on a population of an in-
dustrialized country that has an abundance of reliable demographic data (including
migration). We expect the projection of such a population to yield relatively narrow
credible intervals.

Overall, the approach advocates that demographers consider for each component
of the projection sources and magnitudes of uncertainty. We describe the decisions
we made for this population, at the same time acknowledging that others may have
put different weights on factors and may have made different decisions. Demographers
should consider and try to model uncertainty in fertility, mortality, base population,
and perhaps migration. At times, the mean and standard deviation might be based
on nothing more than the demographer’s educated guess, whereas at other times, the
demographer might have data available that enables modeling of uncertainty.

Rather than dismiss what is known about populations and the evaluation of data
sources, Bayesian demography instead forces the demographer to confront uncertainty
in the demographic phenomena and baseline data. The projection is guided by the tra-
ditional approach that demographers use to create a point estimate of the population
at a future date. We believe that by encouraging demographers to state their uncer-
tainties explicitly, the Bayesian approach offers a more precise way for demographers
to communicate among themselves, and a more useful product for decision makers
who use demographic projections.
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Chapter 7

An Allegation of Examination Copying (1999)

Foreword

We think of the legal system in terms of a court, lawyers, and perhaps a jury. But there
are many other settings in which institutionally neutral parties are called upon to settle
or adjudicate disputes, including administrative hearings, mediation and arbitration.
Every university and college has developed its own legal system as well, to deal with
issues involving students and/or faculty. One matter that university legal systems deal
with routinely is allegations of breaches of academic integrity by students. The stakes
in such matters are very high. For the student, a conviction can result in punishments
up to expulsion from the university, and being excluded from many professions that
require integrity, such as law, accounting and medicine. For the university, too lax a
view of academic integrity can lead to an atmosphere in which the honest students feel
disadvantaged, and the educational mission of the university is regarded with disdain.

In this case, a student at another university was accused of copying examination
answers from adjacent students in a series of multiple choice examinations. I was
hired by the family of the student to look into the data. The university provided me
with the answers each student gave to each of 11 examinations, with the answers of
the accused student and the alleged copyees identified. Additionally, I was given the
answer keys (some questions had more than one correct answer!). Finally, I had data
on the accused student’s erasures, including some questions in which more than one
answer was erased. However, they did not have seating charts for the examinations.

How should I address the data? First, it is obvious that I could not address whether
the accused student had copied a single answer from one other person on a single exam.
All I could hope to detect is whether there was a broad pattern of copying, which was
the allegation. Second, there was no hope for a formal Bayesian analysis that would
specify a probability for the data set had there been no pattern of copying, and had
there been a pattern of copying. Instead I decided to use five indicia which I judged
would be different if there were a pattern of copying. These were:

(i) There were two highly proctored examinations given after the accusations surfaced.
Did the accused student do as well in those examinations as he or she did in the
previous examinations?

(ii) Did the accused student do as well in the examinations in which no copying was alleged
as in the examinations in which copying was alleged?

(iii) Did the accused student score better, generally, than the students from whom he or
she was alleged to have copied from?

(iv) Compared to the similarity of all pairs of student answers in the examinations in which
copying was alleged, were the similarity of the alleged copier’s and alleged copyee’s
answers typical?
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(v) Were the erasures that correct wrong answers to right answers as common in the tests
in which copying was not alleged as in the tests in which it was alleged?

The answers to each of these questions were ”yes,” from which I concluded that there
was not a general pattern of copying.

The alleged copier was found guilty at an initial hearing, but was exonerated on
appeal. My report was available to both courts, but I was not invited to testify. I do
not know whether or how much my report was influential in those decisions.

This paper was originally published in Chance, 12, pp. 32–36. Republication by
permission of the American Statistical Association.
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The maintenance of a fair environment for students who are competing in the
classroom is an essential function of a modern university. When a breach of academic
integrity is alleged, the consequences are very important, to both the academic com-
munity and to the persons involved. For the accused, expulsion from the university
and inability to enter a profession that requires character checks – law, medicine, the
military – can result. For the academic community, a perceived inability to provide
an atmosphere free of cheating is debilitating.

In the case reported here, I was asked to assess whether the data support an accu-
sation by classmates of copying multiple-choice examination answers from neighbors
on several occasions in a professional program.

7.1 Data and Formal Analysis

Let us call the accused student S. I was retained by S’s family and was given the
answers by each student on each of 11 examinations taken that semester. S’s answers
were identified, as were the answers of each student S was alleged to have copied
from on each exam on which copying was claimed. I also had the answer sheets giving
the correct answers, sometimes more than one for a single question. In addition, I
was given erasure data indicating which of S’s answers had been erased (sometimes
more than one on a single question) and what the final answer had been. Finally, two
of the examinations occurred after the accusations had been made, and were taken
under special and extra-secure proctoring arrangements, at S’s request. I did not have
seating charts from the exams, nor did I have, other than for S, cross-examination
identification of students.

Methodologically, my first impulse given such a question is to think about a like-
lihood for the problem. There were about 5 answers per problem, and perhaps 60
questions per exam. Hence, there are about 560 (more than 8 × 1041) possible exam
answers by a particular student to a particular exam. Something over 90 students
took each exam, so for each exam the number of possible answers by all students is
90 raised to the 560 power...an enormous number. Finally, there are 11 examinations,
so the number of possible datasets is bigger still. Moreover, this calculation does not
include any information about erasures or alleged sources of copying. The difficulty of
modeling in this space in a way that would be convincing seemed daunting, especially
since it would be necessary to develop a model in this big space conditional on copying
having taken place and conditional on copying not having taken place.

Even though a formal model seems hopeless, I find it useful to think in Bayesian
terms (see sidebar) about what I would expect to find in the data if copying took place
as alleged, and if it did not. Only by finding aspects of the data that are differently
probable under these two hypotheses can the data be informative. This less formal
analysis is set out in the next section.
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7.2 Priors: What to Look For

The use of Bayesian ideas in an informal manner requires that I state the kinds of
indications of copying I looked for and the alternative explanations I could imagine.
In each case, I intend to make use of the fact that copying is alleged in only some of
the examinations.

I first comment on what one might expect to see on S’s examinations compared to
those of others. If S were copying, one would expect that S’s scores on the examinations
would be low and in particular would be lower than those of classmates S is alleged
to have copied from. Furthermore, one would expect S’s performance to be better on
those examinations in which copying is alleged as compared to the others. Finally, one
would expect that, if S had copied as alleged, S would have had lower performance
on the last two examinations. On the other hand, because those two examinations
were taken after S had been informed of the allegations, it is also possible that S’s
performance would suffer in the last two examinations if the allegations were false
simply because of the psychological pressure of the situation.

All of these statements have to do with how S performs compared to other students
in the class. Thus my concern is not with S’s score but rather S’s rank in class on an
examination. I define this to be 1 plus the number of students who did better than
S plus one-half of those who did as well on a given examination. This is the measure
of performance I used to compare S to other students. A rank of 1 would indicate
that S outperformed every other student on the examination. If 95 students took the
examination, a rank of 95 would indicate that every other student did better.

If there were copying, I would expect to see a greater proportion of wrong answers
changed to right answers in the examinations in which copying is alleged than in
the other examinations. Conversely, if copying did not take place, I would expect the
proportion of correction of wrong answers to be about the same in the two sets of
examinations.

Finally, I can compute an index of how similar two papers are. For the moment,
suppose I have a satisfactory such index. Without any copying, there are many reasons
why papers would be similar. First, students may independently know the correct an-
swers. (As teachers we hope for this). The students were exposed to the same texts and
lecturers. Students study together, or otherwise discuss the course materials. Hence,
they would be expected to think similarly about the material. Moreover, some wrong
answers are “closer” to the correct ones–are better distractors–than others. Thus,
there are several innocent reasons why student papers would be expected to show
similarities without copying. One would expect that, if there were copying as alleged,
the pairs of examinations of S and the student(s) S is alleged to have copied from
would be more similar than those of other pairs of students.

7.3 An Index

It remains to specify a measure of similarity between two examinations. To do this, it
is important to think about the possible explanations for various patterns of answers
that might occur. In conducting this analysis, one feature of the data – the existence
of more than one correct answer to certain problems – is important to keep in mind.
I distinguish four different configurations:

1. Different answers. I believe this to be evidence against copying, whether both answers
are correct, one is correct and another incorrect, or both are incorrect. Moreover, if they
are different because one is blank and the other not, this is equally evidence against
copying. Score each such case as 0.



Pragmatics of Uncertainty 123

2. A shared blank. This I would take to be ambiguous. It is hard for me to imagine why a
student would want to copy a blank from another. These are omitted from scoring.

3. A shared correct answer. Shared correct answers might be evidence of cheating but could
equally well be evidence that two students independently know the answer. (As teachers,
we hope for this sort of thing). I treat this as an ambiguous circumstance. These are
also omitted from scoring.

4. A shared incorrect answer. This I take to be evidence for copying, stronger if the shared
incorrect answer is unusual, and weaker conversely. Suppose that the relative frequency
of the shared incorrect answer is pi among other students. I would score each such
question by 1− pi.

The index I propose is then the average score among scored questions. The lower
the score, the weaker the evidence of copying, and conversely.

There are several reasons why two students’ indices might be high. One, of course,
is that one may have copied from the other. There are other reasons, however. The
students are in the same class, studied from the same materials, and heard the same
lectures. Some of them may have studied together. All of these reasons can cause them
to have high similarities without having copied. The same considerations, however,
apply to every pair of students in the class. I would suspect a pair of students of
having been involved in copying not on the basis of a high index per se but a high
index compared to other students in their class. In the case in question, copying was
alleged from one to five other students, depending on the examination. If those one
to five pairs do not exhibit very high indices compared to the other pairs of students
in the class, I would take this as evidence against copying. Conversely, if one or more
of these pairs is extraordinarily high given the distribution of indexes in the class, I
would take this as evidence in favor of copying.

To complete the definition, I must say what index to give a pair of students with
no scored questions–that is, all their questions are of type 2 and 3. In this case, I would
give them the average score for pairs from the class.

Finally, I use the rank of the similarity index for pairs of students to indicate how
high the index is compared to the index of other members of the class. Thus, if a
particular pair is ranked 1, that means that their examinations’ similarity is higher
than the similarity of the examinations of every other pair of students in the class.
If 95 students take an examination, there are 95 × 94 ÷ 2 = 4, 465 pairs of students.
Thus, a pair of students whose similarity is ranked 4,465 would have examinations less
similar than any other pair of students in the class.

7.4 Results

The results concerning scores and similarities are given in Table 7.1 and Figure 7.1.
To take the columns in Table 7.1 from left to right, examinations 8 and 11 are those
that took place after allegations of copying were made. S’s rank was 7 and 11 in those
examinations, out of 90+ students. So there is no evidence that S did poorly in a
more highly supervised situation. This is contrary to what one would have expected
had copying occurred.

In each of the other examinations, as Figure 7.1 shows, S scores well into the
top quarter of the class and sometimes extremely well. S does not do particularly
better on examinations in which examination copying is alleged, again contrary to the
hypothesis of examination copying.

Comparing the ranks of alleged copiees to those of S, in each case but one S does
better on the examination in question than does the alleged copiee. This again is
contrary to what one would expect were there examination copying. Generally one
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Figure 7.1: Histograms of examination results for each of the eleven examinations. “S”
represents S’s score, “C” represents the score of alleged copiees.
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Table 7.1: Summary of examination results: scores and similarities

Rank of
Rank by score on Rank by score on similarity between Number of Number

the exam of the exam of alleged copiee students of
accused copier, S alleged copiee and S’s answers taking exam questions

1∗ 6 96 56
2∗ 13.5 95 39
3 21 48.5 1090 95 51

92 925.5
4 18 38.5 90.5 95 88

31.5 191
71.5 1741.5
38.5 767.5
94 2664.5

5 20 7 3596.5 96 63
6∗ 3 94 79
7 9.5 40.5 3256 94 65

29 3256
8∗ 7 93 69
9 5 32 337 95 92

10 2 27 1605 95 94
11∗ 11 95 86
*There were no allegations of copying on these exams.

thinks of a weaker student copying from a stronger one. Indeed it requires far-fetched
reasoning to imagine why a stronger student would copy from a weaker one.

To appreciate the similarity column, recall that higher similarities reflect greater
agreement between the examinations. The similarities are ranked in the same way as
were the examinations, so lower ranks indicate higher agreement. As an illustration,
the number 1,090 indicates that the pair of S and the first alleged copiee in examination
3 had a similarity with 1,043 pairs higher and 92 pairs the same, for a rank of 1, 043 +
1+92/2 = 1, 092. These numbers are very high, indicating that the similarity between
S’s examination answers and those of the alleged copiees are not extraordinarily high.
Again this is contrary to what one would have expected had examination copying
occurred.

The results on erasures are given in Table 7.2. In the examinations in which there
is not an allegation of examination copying, out of 16 questions with changed answers,
13/16 = 81.25% were changing wrong answers to correct ones. In the examinations
in which copying is alleged, there were two questions on each of which S erased two
answers. In both cases, the final answer given was correct. It is ambiguous how to count
the change in examination 4 from a right answer to another right answer. Depending
on how one chooses to treat these two circumstances, the proportion of wrong answers
changed to correct ones is 30/39 = 76.92%, 30/38 = 78.95%, 32/40 = 80.0%, or
32/41 = 78.05%. A case might be made for any one of them. For the purposes of this
analysis, however, they are numerically similar. In all four cases, the proportion of
wrong answers corrected is slightly less among the examinations in which copying is
alleged than among examinations in which copying is not alleged. Thus, the erasure
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Table 7.2: Erasures of answers by S

Examinations in which copying is not alleged
Numbers of questions with answers changed

wrong wrong right right total
Exam → right → wrong → wrong → right erasures

1 0 0 0 0 0
2 2 1 0 0 3
6 7 0 2 0 9
8 2 0 0 0 2
11 2 0 0 0 2

Total 13 1 2 0 16

Examinations in which copying is alleged
Numbers of questions with answers changed

wrong wrong right right total
Exams → right → wrong → wrong → right erasures

3 2 0 0 0 2
4 6 3 0 1 10
5 4 0 0 0 4
7 1 1 0 0 2
9 9 0 2 0 11

(10 answers) (12 answers)
10 8 1 1 0 10

(9 answers) (11 answers)

Total 30 5 3 1 39
(32 answers) (41 answers)

evidence fails to support the hypothesis of examination copying and, in fact, supports
the contrary hypothesis that no examination copying took place.

7.5 Conclusion

There are five ways in which the data are examined to see if they are consistent with
the hypothesis of examination copying. These are as follows:

• S did well in the two highly proctored examinations, contrary to the hypothesis.

• S is a very strong student and did as well in tests in which copying is not alleged as in
those in which it is, again contrary to the hypothesis.

• S did better than each of the alleged copiees except one, again contrary to the hypothesis
of copying.

• The similarity between S’s examination and the alleged copiees indicates lack of extraor-
dinary similarity compared to other pairs of students in the class. Again this is contrary
to the hypothesis of examination copying.

• The proportion of erasures that correct wrong answers is slightly less among the exam-
inations in which copying is alleged than among the examinations in which copying is
not alleged. This, too, is contrary to the hypothesis of examination copying.

On the basis of these tests I conclude that the examination data do not support the
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hypothesis of examination copying. Rather the reverse, they support the conclusion
that S was wrongly accused.

What would I have done if some of my indicators had suggested that copying had
taken place and others had indicated that it had not? I would have had to think much
harder about the degree to which each part of the evidence pointed in each direction,
and my conclusions would have had to be much more equivocal.

Finally, a reader might be interested in knowing what actually happened. There was
an initial hearing before an honor court, in which most of the evidence of cheating was
about body language during the examinations in question. My report was presented
to this court, and I was available by telephone for questions, had there been any. S
was found guilty, and the matter was appealed within the university’s structure. At
the appeals level, the attorney presenting the case for the prosecution was asked by a
member of the appeals court what her view was of the statistical evidence, and said
she thought it was inconsequential. “Oh, I disagree” said the appeals court member.
S was exonerated. Other than that remark, I have no idea what role my report may
have played in that decision.

7.6 Other Purposes, Other Indices

There are kinds of cheating on multiple choice examinations other than examination
copying–for example, impersonation and theft of the answer key. Each kind of possible
cheating and each circumstance requires its own investigation and analysis.

The statistical perspective that underlies many of the articles in this literature is
that of significance testing. For example, Angoff (1974) reported that the Education
and Testing Service uses one of several indexes and investigates further only if at least
one of them departs from the mean by 3.72 standard deviations or more. (Apparently
no account is taken of the fact that several tests are being used simultaneously). If an
examinee’s test fails this screen, a retest is invited and no further consequence ensues.

Frary et al. (1977) proposed an index of examination copying that depends on both
the number of common wrong answers and the number of common correct answers.
Like Angoff, they looked for a significance test computed on the basis of no copying
and used high departures from the expected as evidence of copying. For reasons given
previously, I am not comfortable with the idea of using common correct answers as
evidence of cheating. (Thus, two students who write perfect examinations might be
prime suspects to Frary et al. but not to me).

A general review of the performance of the indexes was conducted in a technical
report from the national testing organization ACT, and it found that the theoretical
significance levels of the indexes of various authors did not coincide well with the false-
positive rates of their benchmark data. The reasons for this appears to be that innocent
behavior can lead to high indexes under certain circumstances. The adherents of the
significance-level approach are thus left in the position of knowing that their analysis
exaggerates the weight of evidence on the guilt of the suspected copier without being
able to say by how much it does so. By contrast, this article does not use significance
testing but instead, (implicitly), Bayes’s theorem as its fundamental analytic tool. This
permits, and in fact requires, consideration of innocent explanations of the phenomena
studied. I have not, however, refined the approach quantitatively to the point that I
can give a plausible likelihood ratio for examination copying. Much remains to be
done, both in the analysis of specific cases and in generalizing from them.

[I thank Dan Cork, Jonathan Forster and Robert Frary for helpful discussions in
the preparation of this article.]
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Sidebar
Bayesian Statistics

Bayesian statisticians use Bayes’s theorem, a result in standard probability theory, to
measure the extent to which data change a current, or prior, opinion to a new, or
posterior opinion. The distinguishing feature of Bayesian inference is the use of probability
distributions on the parameter space to describe and convey uncertainty.

Elementary expositions of Bayesian ideas can be found in the following references:

D. Berry (1996) Statistics, A Bayesian Perspective, Duxbury Press: Belmont.
D.V. Lindley (1985) Making Decisions, J. Wiley and Sons: London.
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Chapter 8

Vote Tampering in a District Justice Election
in Beaver County, Pa (2001)

Foreword

This is the story of an engagement as an expert witness that started out in a misun-
derstanding of the legal situation, but none the less led to a scientifically successful
project.

At the time, Beaver County used paper ballots, which were counted by running
them through the same sort of machine used to grade multiple choice tests in very
large classes. In the election of November, 1993, as originally counted, Zupsic defeated
Laughlin by 36 votes. In January, 1994, in a recount requested by Laughlin, she ap-
peared to have won by 46 votes. Zupsic challenged this result, alleging vote tampering.

How might vote tampering been physically possible? The ballot boxes were locked,
but every ballot box could be opened by the same key, which was widely available.
The boxes were stored in a locked room, but many keys to that room were available.
Finally, each box was sealed with a special seal, but a county detective, claiming he
wanted them for an art project, got a supply from the company that makes them.
Thus, it was plausible that vote tampering might have taken place.

A three judge panel of the Beaver County Court of Common Pleas heard this
suit, found that there had been vote tampering, and ordered a new election. The
evidence included five voters who are able to identify their ballots and who testified
that their ballots had been altered. [How could they identify their ballots, you might
ask. The reason is that they had written in, for a race that didn’t matter, a peculiar
name, such as Bugs Bunny, or Mickey Mouse. And why would they do that? This
is how a political boss could see that they had voted as they had been instructed.
Apparently the political culture of Beaver County at the time tolerated a certain
amount of corruption.]

Both candidates appealed. The Pennsylvania Supreme Court overruled the Court
of Common Pleas. It sent the case back with instructions to specify which specific
ballots it found had been altered, and to award those votes to the candidate the court
found had been the voter’s intention to vote for.

It was at this point that I was hired by attorneys for Beaver County to do a sta-
tistical analysis of the ballots. I learned about overcounts (votes for both candidates),
undercounts (votes for neither candidate), and overrides (a vote for all candidates of a
given party, overridden by a specific vote for a candidate of another party). To analyze
the data, I created an index of vulnerability of a precinct, equal to the increase in over-
vote minus the decrease in the undervote. The results, shown in Table 8.1, indicate 5
precincts in which it was plausible that vote tampering had taken place. This was the
heart of the testimony I was prepared to give.

However, the court declined to hear my testimony, for the good reason that my
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testimony would not help them with the task they had been given by the Supreme
Court: to identify specific ballots they believed had been altered, explain why they
believed those ballots had been altered, and award the votes as they believed the
voters intended.

So I was left with a very interesting data set. I was able to persuade Ilaria DiMatteo,
then a graduate student, to work with me on it. We had the November and January
tabulations of the votes in all races, by precinct, but did not have data on individual
ballots. Our basic model is a Markov Chain in which most ballots are counted the same
way in the two tabulations, with parameters for whether tampering had occurred in
that precinct’s ballot box, and, if it had, the extent of overcount and undercount
alteration.

The Court of Common Pleas found 45 ballots it believed had been altered, and
found that Zupsic had won the race by 8 votes. This decision was upheld on appeal,
and Zupsic took office. The precincts in which ballots found by the court to have
been altered were broadly similar to those found in my initial analysis to have been
most vulnerable. And they coincided well with what DiMatteo and I found from our
Bayesian model.

This paper was originally published in the Journal of the American Statistical
Association, 96, pp. 510–518. Republication by permission of the American Statistical
Association

Where are they now? Ilaria DiMatto is a statistician working at the United Nations.
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Ilaria DiMatteo and Joseph B. Kadane1

Abstract

This article examines the evidence of vote tampering in a District Justice election in Beaver
County, Pennsylvania. An informal exploratory data analysis and a legal history are followed
by a formal Bayesian model of the data from the vote count on election night and the recount
completed 2 months later. The evidence suggests that persons unknown could have gained
access to the boxes containing the paper ballots, and surprising patterns of changes in the
counts support the inference that certain boxes were tampered with. Three methods are
compared not only with respect to the overall matter of whether tampering occurred, but
also with respect to which precincts were likely to have been tampered with, and to what
extent. The results are generally consistent across methods. The Bayesian model is validated
by using it on the data for a race (for Superior Court) in the same election in which vote
tampering is not suspected. The results show that the model gives a predictive distribution
of a few votes uncertainty for the Superior Court race but of around 60 votes in the District
Justice race, enough to swing the election. Technically, the computations involve a Markov
chain Monte Carlo. Because it is not possible to observe how each individual ballot was
counted each time, data augmentation is required to fill in a Markov matrix given both
margins. The fact that both margins are given restricts the kinds of proposals that the chain
considers.

Keywords: Ballots, Data augmentation, Markov chain Monte Carlo

8.1 Introduction

On November 2, 1993 in a general election, Joseph Zupsic apparently defeated Delores
Laughlin for the office of District Justice in Beaver County, Pennsylvania by a vote of
3,783 to 3,747, a 36-vote margin. Laughlin requested a recount, which on January 5,
1994, showed her the victor by 3,793 to 3,747. This article addresses whether the data
support the conclusion that sometime in the intervening period, the ballots (which
were paper) were tampered with, to Laughlin’s benefit.

A District Justice is the only judge most citizens ever appear before. This court
handles civil cases with a value less than $7000, and screens out inappropriate arrests.
Elections for this office are often hotly contested, especially when a vacancy occurs.

The ballot boxes were locked and sealed with special, numbered seals. The boxes
were stored in a locked room. However, every ballot box in the county could be un-
locked with the same key, copies of which were widely distributed, and there were
several keys to the locked storage room. The Board of Elections failed to record the

1Ilaria DiMatteo is Associate Statistician at the United Nations, New York, New York (email:
ilaria@un.com). She completed this work while a Ph.D. student at Carnegie Mellon. Joseph B. Kadane is
Leonard J. Savage University Professor, Department of Statistics, Carnegie Mellon University, Pittsburgh,
PA 15213 (email: kadane@stat.cmu.edu). Kadane was a consultant to the Beaver County government in the
matter of this election. The subsequent research was supported by the National Science Foundation, under
Grant DMS-9801401.
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numbers on the seals until after the recount. Finally, a county detective testified that
he had obtained seals from the manufacturer by claiming that he needed them for an
art project. Thus it is plausible that access to the ballot boxes might have been gained
between the election night and January 5th, 1994, when the recount was complete.
The evidence about whether this occurred then rests on a physical examination of the
ballots, on which the courts relied, and on a comparison of the two vote counts, that
of November 2 and of January 5, which were conducted by vote-tabulating machines.

A vote is recorded for a candidate if either a box is marked for all candidates of the
candidate’s party, or if a box is marked specifically for that candidate. For example,
if a ballot were marked for the candidates of the Democratic Party, then Zupsic,
the Democratic Party nominee, would receive a vote, unless the ballot were marked
specifically for Laughlin, in which case she would get the vote. If neither party’s box
were marked, and neither candidate’s box were marked, an “undervote” would occur,
and neither candidate would get a vote. If neither party’s box were marked and both
candidates’ boxes were marked, then an “overvote” would occur, and again neither
candidate would get a vote. The tabulation of votes records the number of votes for
each candidate, and the numbers of undervotes and overvotes, but not the number of
votes gained by each candidate by party designation.

How would an additional ballot mark made by an intruder for a candidate, say
candidate A, affect the vote totals? This would depend on how the ballot had been
marked by the voter. If the ballot had been marked for candidate A’s party, no change
would result. If it had been marked for candidate B’s party, candidate B would lose
a vote and candidate A would gain one, a shift of two. If the ballot had been marked
for candidate B, then candidate B would lose a vote, and the overvote would increase
by one. Finally, if the ballot had been unmarked, then candidate A would gain a vote
and the undervote would decrease by one.

For these reasons, it is reasonable to use as an index of precinct vulnerability the
increase in overvote plus the decrease in undervote between the two ballot countings.
High values of this index indicate precincts where ballot boxes may have been tampered
with. Under the hypothesis that no tampering occurred, we would expect the shift in
votes to be centered at zero, not favoring either candidate particularly. A shift favoring
one of the candidates only, particularly in highly vulnerable precincts, would, under
this argument, favor the hypothesis of vote tampering. Table 8.1 gives the results for
all precincts.

Table 8.1 suggests that the precincts 56, 114, 115, 138 and 149 are most vulnerable.
Examining the last column in Table 8.1, which indicates the vote shift by precinct
between the two counts, shows a very large shift favorable to Laughlin occurring in
exactly the suspect precincts. This supports the hypothesis of vote tampering.

The total vote counts were not exactly the same in each precinct in the original
count and in the recount. As noted earlier, the total count, as recorded in the court
decisions, increased from 3,783 + 3,747 = 7,530 to 3,793 + 3,747 = 7,540. This explains
why there are precincts with no change in overvote or undervote, yet the shift in vote
is not divisible by two. We thank an attentive referee for pointing this out.

Moreover, it is necessary to address the question of whether index numbers and
vote shifts of the size reported in Table 8.1 are unusual. The correlation between the
index and the vote shift is .844. We drew 10,000 random permutations of the index; in
no case was the absolute correlation with the vote shift greater than .844. Fortunately,
other data at hand allows us to examine this issue more precisely. Other races were
then to be decided in this election in the five suspect precincts, and all of these were
counted on November 2 and then recounted on January 5. Concentrating only on the
single-office races, 202 other vote counts involving the same precincts were decided at
the same time. Among these, the largest index was 3, which occurred once. Thus we
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Table 8.1: Changes in Vote Count by Precinct, November 2, 1993–January 5, 1994.

Precincts
voting for Increase in Decrease in Votes Shift

District Justice Overvote Undervote Index Z to L

49 -1 1 2
50 2 2 -3
51 1 1 -2
52 -1
53 -3 -3 2
54 1
55 -1
56 5 8 13 25
82
84 1
93

114 3 5 8 20
115 3 5 8 24
116 1 1 4
117 -3
118 2
119 -2
138 5 4 9 10
140 3 3 -1
141
149 7 7 4

NOTE: Blanks indicate 0’s

conclude that indices of the sizes reported in Table 8.1 for the suspect precincts are
highly unusual. We also calculated the vote shifts between November 2 and January
5 for these 202 precinct races. The largest shifts were two of size 6, followed by two
of size 4. Hence, of the vote shifts among the suspect precincts reported in Table 8.1,
only the shift for precinct 149 is within range of the 202 others.

Thus the evidence suggests vote tampering, but the foregoing informal analysis
does not indicate the strength of the evidence. To measure this is our task. The article
is organized as follows. Section 8.2 gives the history of the litigation surrounding this
matter, Section 8.3 describes our model, and Section 8.4 gives the results.

8.2 Legal History

During the recount process between November 2 and January 5, a total of 87 ballots
were challenged, 69 by Zupsic and 18 by Laughlin. On January 10, 1994, Zupsic filed a
lawsuit seeking to overturn the Recount Board’s awarding of the election to Laughlin.

After three hearings, a three-judge panel of the Court of Common Pleas’s in Beaver
County issued an opinion on April 8, 1994, finding that vote tampering had occurred,
that “in all probability, a sufficient number of ballots were altered...so as to change
the outcome of the election,” and that striking the altered ballots would unfairly
disenfranchise voters. On this basis it set aside the election and ordered a new one.

In a further elaboration of its ruling issued on May 5, 1994, the Court of Common
Pleas panel noted that there were five voters who, because of idiosyncratic write-in
votes, were able to identify their ballots specifically and testified that their ballots had
been altered to include a mark for Laughlin. A total of 45 of the 87 contested ballots
had marks for Laughlin inconsistent with the other marks on those ballots.

This decision was appealed by both candidates. The appeal was heard by the
Supreme Court of Pennsylvania on September 19, 1994; the opinion was announced
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Table 8.2: Common Pleas Court Findings of Vote Tampering, By District, from the July
12, 1996 Decision.

District Voter Agreed by Court
Number Testimony Parties Finding Total

49 1 1
56 1 4 5 10

114 6 6
115 1 4 9 14
116 2 2
138 3 2 1 6
149 6 6

Total 5 10 30 45

on January 22, 1996. The Supreme Court (543 Pa. 216; 670 A.2d 629 (Pa. 1996))
found the Court of Common Pleas’s decision was insufficiently precise in that it did
not specify which ballots that it found to have been altered and why it thought so. It
also ruled that if the Court of Common Pleas found that ballots had been altered, it
should award the votes in question to the candidate for whom the voter had intended
to vote. With these instructions, the Supreme Court reversed the decision of the Court
of Common Pleas to set aside the election, and remanded the case back to the Court
of Common Pleas.

On July 12, 1996 the same three-judge panel of the Court of Common Pleas is-
sued an opinion in which it specified 45 of the 87 challenged ballots as having been
tampered with: 5 from direct testimony referred to earlier, 10 by agreement between
the attorneys for Zupsic and Laughlin, and 30 more by similarity to the previous 15.
The distribution of these challenged ballots by district is given in Table 8.2.

As a result of these changes, Zupsic got 45 more votes and Laughlin 21 fewer votes.
From other challenged votes, Laughlin got 5 more votes and Zupsic 1 more vote. The
final result was 3,786 for Zupsic, and 3,778 for Laughlin. On this basis, the Court
declared Zupsic the winner.

Laughlin appealed this decision to the Commonwealth Court of Pennsylvania, an
intermediate appellate court. A three-judge panel heard this case and upheld the new
decision of the Court of Common Pleas on June 4, 1997 (695 A.2d 476). Finally, the
Supreme Court declined to rehear the case on October 14, 1998. On November 17,
Zupsic was sworn in as District Justice. He was re-elected, unopposed, in November,
1999.

8.3 Model

To assess whether the ballots were altered between the two counts in the race for Dis-
trict Justice, we can examine the conditional classification probabilities of each vote
in the second count given its first count classification. If there was no “human inter-
vention” between the two counts, with few exceptions each vote should be classified
the same on the second count as on the first. Because the exceptions would occur from
machine errors in counting, it is reasonable to believe that when there is a change in
that classification, that vote is equally likely to fall in any one of the other categories.
On the other hand, if vote tampering occurred, then a clear structure in the transition
probabilities, as specified in Section 8.3.3, would be expected.
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To estimate the normal counting error, represented by the transition probabilities,
we use the data from the other races. We assume that no vote tampering has occurred
in those races and thus they provide information on the likelihood of each vote being
classified after the second count in the same category as in the first count, absent vote
tampering.

The next three sections present the Bayesian hierarchical model used to analyze
the data. Section 8.3.2 specifies the structure of the data; as stated earlier, the interest
is in estimating the transition probabilities for a single ballot, but the observed data
represent the aggregate behavior of the ballots (i.e., we observe only the total num-
ber of ballots in a voting precinct classified in each category in the two counts). We
therefore augment the data (Tanner and Wong, 1987) by introducing a variable rep-
resenting single ballot behavior. Section 8.3.3 presents the details of the hierarchical
model.

8.3.1 Data Structuring

Consider a generic race r withm candidates and a precinct g. The data are tabulated as
follows: for each category i (namely candidate 1 . . ., candidate m, undervote, overvote,
and scattered vote) the total number of votes is recorded after the first count, yrgi· , and
after the second count, yrg·i . Table 8.3 shows the data format for race r and precinct g,
where as before we classify as undervote the ballots with no mark for either candidate
or candidate’s party, as overvote the ballots with more than one mark, and as scattered
the ballots with a preference different from the candidates listed on the ballot.

Table 8.3: Data for a Race r with m Candidates and Precinct g

States 1st count 2nd count
Candidate 1 yrg1· yrg·1

...
...

...
Candidate m yrgm· yrg·m

Undervote yrgm+1· yrg·m+1

Overvote yrgm+2· yrg·m+2

Scattered Vote yrgm+3· yrg·m+3

We can imagine the data in Table 8.3 in the following way: The totals resulting
from first count and the second count are the row and column marginals of a k × k
(k = m + 3) contingency table whose elements zrgij represent the number of ballots
that were classified in category i in the first count and in category j in the second
count. Table 8.4 shows the matrix representation of the data for a race r and precinct
g.

The data are therefore augmented by introducing the interior elements Zrg of the
contingency table for each race r and precinct g in order to estimate the transition
probabilities of a single ballot.

8.3.2 Model Specification

In this section we present the four stages in the model. First, we introduce some
notation used throughout this section. We let yrg1 = (yrg1· , . . . , y

rg
k· )

T and yrg2 =
(yrg·1 , . . . , y

rg
·k )T denote the vector of counts in the first and second count in race r

with m candidates and precinct g. (Note that k = m + 3 and that in general the
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Table 8.4: Data for a Race r With m Candidates and Precinct g

1st count

yrg1·

(not observed)
...

Zrg = {zrgij } . . . yrgi·
...

...
yrgk·

2nd count yrg·1 . . . yrg·j . . . yrg·k

number of candidates depends on the race, but for simplicity of notation we write k
instead of kr).

Also let Y1 = {yrg1 ,∀g, r}, Y2 = {yrg2 ,∀g, r} and Z = {Zrg,∀r, g} be the collection
of the results of the first count, the second count, and the collection of the augmented
data Zrg.

Likelihood. We specify in this stage the conditional distribution of the results of
the second count given the results of the first count and the augmented data. It is
obvious that

Pr(yrg2 |y
rg
1 , Zrg) = I{JZrg=yrg1 ,JZrgT =yrg2 }

(yrg2 ) ∀g, r

where J ∈ IRk is a vector containing all 1’s, and I{A}(x) = 1 if x ∈ A and 0 otherwise.
The foregoing model simply states that the conditional probability of the column
marginal given the row marginal and the interior elements of the table is 1 if the
column marginals satisfy the constraints, and 0 otherwise.

Furthermore we assume that given the latent variable and the results of the first
count, the results of the second count are independent across races and precincts:

L(Z|Y2, Y1) =
∏
rg

I{JZrg=yrg1 ,JZrgT =yrg2 }
(yrg2 )

In particular, let r′ denote the race District Justice, then the likelihood can be written
as

L(Z|Y2, Y1) =
∏
g

I{JZr′g=yr
′g

1 ,JZr′gT =yr
′g

2 }
(yr

′g
2 )

∏
r 6=r′,g

I{JZrg=yrg1 ,JZrgT =yrg2 }
(yrg2 ) (8.1)

Latent variables. In this stage we specify a probability model for the latent vari-
ables. We assume that for each race r and precinct g, there is a transition probability
matrix Qrg that characterizes the shift of each ballot from one category to another be-
tween the two counts. Each element qrgij of this transition probability matrix represents
the conditional probability of a ballot classified in category i in the first count shifting
to category j in the second count. Obviously it must be that for every i,

∑
j q

rg
ij = 1

for all r and g.
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For a race r and a precinct g, given the transition matrix Qrg and the row margins,
we assume that the interior elements follow a product of multinomial sampling scheme,

Pr(Zrg|yrg1 , Qrg) =

k∏
i=1

yrgi· !∏k
i=j z

rg
ij !

k∏
j=1

q
zrgij
ij I{JZrg=yrg1 }(Z

rg) (8.2)

where qij is the ijth element of Qrg. Models of this type were discussed in Lee et al.
(1970).

We now describe the structure of the transition probability matrix in the cases of
no-cheating, cheating in favor of candidate 1, and cheating in favor of candidate 2.
Consider first the case of no vote tampering in race r and precinct g. We assume that
Qrg = P , where

P =


p 1−p

k−1 · · · 1−p
k−1

1−p
k−1 p 1−p

k−1

...
... 1−p

k−1

. . . 1−p
k−1

1−p
k−1 · · · 1−p

k−1 p

 (8.3)

Note that P depends on the race through the number of categories k (its dimensions
change with k), but the parameter p characterizing P does not depend on the race or
the precinct.

This form of the transition matrix P relies on the assumption that if there is no
vote tampering, then the transition probabilities are concentrated on the main diag-
onal and are uniformly spread on the off-diagonal elements, representing the normal
misclassification error. As mentioned before, we assume that no vote tampering has
occurred in any of the other races (i.e., all but the District Justice race). This assump-
tion corresponds to setting Qrg = P for all races r 6= r′ and all precincts g. In addition
we assume that p is close to 1.

In the District Justice race, (i.e. r = r′), we assume that the transition probability
matrix Qr

′g takes the form

Qr
′g = P +XgCη(γ1, γ2, δ) (8.4)

where Xg is an indicator variable which is 1 if vote tampering occurred in precinct g
and 0 otherwise (in which case the transition probability matrix is just P ). If Xg = 1,
then the transition probability matrix changes according to the parameter η, which
denotes the candidate for whom the vote tampering is in favor. If the shift in votes is
in favor of candidate Zupsic, then η = 1, in which case

C1(γ1, γ2, δ) =

Zupsic Laughlin Undervote Overvote Scattered Vote
Zupsic

Laughlin

Undervote

Overvote

Scattered Vote


0 0 0 0 0

+γ1 −(γ1 + γ2) 0 +γ2 0
+δ 0 −δ 0 0
0 0 0 0 0
0 0 0 0 0


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If the shift in votes is in favor of candidate Laughlin, then η = 2, in which case

C1(γ2, γ2, δ) =

Zupsic Laughlin Undervote Overvote Scattered Vote
Zupsic

Laughlin

Undervote

Overvote

Scattered Vote


−(γ1 + γ2) +γ1 0 +γ2 0

0 0 0 0 0
0 +δ −δ 0 0
0 0 0 0 0
0 0 0 0 0


These two matrices represent the expected increments in the transition probabil-

ities when vote tampering has occurred in a particular precinct. They correspond to
the ways in which ballots could be altered to increase the number of votes for one
candidate and decrease the number of votes for the other candidate. Suppose, for ex-
ample, that cheating is in favor of Laughlin (i.e., η = 2); then a ballot can be altered
in the three ways:

• an undervote ballot becomes a vote for Laughlin by simply marking that blank ballot
in favor of Laughlin. This leads to an increase of the number of votes for this candidate
and therefore an increase of the probability of going from undervote to Laughlin. This
increment in the transition probability is represented by the parameter δ.

• a ballot in favor of Zupsic becomes an overvote by adding marks on that ballot. This
leads to an increase of the transition probability of a ballot to shift from Zupsic to
overvote, which is represented by the parameter γ2. This also leads to a decrease in the
number of votes for Zupsic.

• a party vote for Zupsic becomes a vote for Laughlin by marking that ballot in favor of
Laughlin. This shift increases the corresponding transition probability by an amount γ1.
The consequence of this shift is that the number of votes for Laughlin increases and the
number of votes for Zupsic decreases.

Thus the parameters γ1, γ2 and δ represent therefore the possible increases in the
transition probabilities from the case of vote tampering. These parameters are con-
strained as follows to guarantee that the elements qij are nonnegative and less than
1:

γ1, γ2 ∈ Γ = {(γ1, γ2) ∈ IR2 : γ1 ≥ 0, γ2 ≥ 0, γ1 + γ2 ≤ p}
and

δ ∈ [0, p].

Modeling the “cheating” Parameters. In this stage we model the parameters that
indicate whether cheating has occurred and, if so, its strength. We start modeling the
variables Xg, which indicate for each precinct g whether cheating has occurred in that
precinct. Recall that the ballots from a precinct were stored together in a box, and
the boxes for the 21 precincts were gathered together in the same room. To alter the
result of the election, someone would have had to enter the room, pick a box of ballots,
open it and examine the ballots to alter them. We assume that each box, and thus
each precinct, has the same probability θ of being opened and altered,

θ = Pr(Xg = 1) ∀g

and that the indicator variables (X1, · · · , X21)T are exchangeable,

P

(∑
g

Xg = x|θ

)
=

(
21

x

)
θx(1− θ)21−x x = 0, . . . , 21.
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If vote tampering has occurred, then its direction of it is given by the parameter
η. If η = 1, then cheating is in favor of Zupsic; if η = 2, then cheating is in favor of
Laughlin. By assuming that η does not depend on the precinct g, we force the precincts
to have the same direction of cheating. We assume a priori that η is a Bernoulli random
variable with probability τ ,

πη(η) =

{
τ if η = 1
1− τ if η = 2

where τ is known (we have used τ = 0.5 in estimation).
The parameters γ1, γ2 and δ in (8.4) give a measure of the strength of cheating;

they measure how much the transition probabilities in case of vote tampering differ
from the “normal” transition probabilities. They are assumed to be the same for all of
the precincts in which cheating has occurred. A priori we assume uniform distributions
over the space Γ for γ1 and γ2 and a uniform distribution in [0, p] for δ. We also assume
a beta(θ1, θ2) prior for θ.

Modeling the “normal” Transition Probability. In the last stage of the hierarchical
model we specify a distribution on the transition probability p in (8.3). We note that
p represents the probability that each ballot is classified in the same category in the
two counts; if there were no errors in the counting mechanism, we would expect p to
be exactly 1. In the real world there are errors, but we still expect this probability to
be close to 1 with a very small variance. These considerations help us to elicit a prior
for p, which in general is a beta distribution,

πp(p) = Beta(α, β)

with α and β known.

8.3.3 Estimation with Markov Chain Monte Carlo

The stages of the hierarchical model are summarized as follow:

Pr(Y2|Z, Y1) =
∏
rg I{JZrg=yrg1 ,JZrgT =yrg2 }

(yrg2 )

Pr(Z|Y1, X1, · · · , X21, η, γ1, γ2, δ, p) =
∏
r 6=r′

∏
g Pr(Z

rg|yrg1 , p)∏
g Pr(Z

r′g|yr
′g

1 , X1, . . . , X21, η, γ1, γ2, δ, p)

Pr
(∑

gXg = x|θ
)

=
(

21
x

)
θx(1− θ)21−x

π(γ1, γ2, δ, η|p) = πγ1,γ2(γ1, γ2|p)πδ(δ|p)πη(η)
πp(p) ∼ Beta(α, β)
π(θ) ∼ Beta (θ1, θ2)

(8.5)

Simulations from the posterior distributions of the parameters in model (8.5) are ob-
tained using the Metropolis-Hastings algorithm within Gibbs sampling. Although sam-
pling from the conditional posteriors of the parameters p, γ1, γ2, δ and η is straightfor-
ward, updating the latent variables Zrg and the indicator variables of precinct subject
to tampering, Xg, requires some explanation, as we describe in the Appendix.

After simulating the joint posterior distribution of the parameters, we can esti-
mate the posterior probability of vote tampering. The event “no vote tampering” in

the election is formally represented in our model by
(
x =

∑21
g=1Xg = 0

)
. In comput-

ing the posterior probability of “no vote tampering,” we use the marginal posterior
distribution of x.
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8.4 Results

In this section we report the MCMC estimate of the parameters in (8.5), which are
based on 50,000 iterations and a burn-in of 10,000 iterations. In each run, plots of
the results suggest good mixing. To check convergence we used standard conver-
gence diagnostics from the Bayesian output analysis (BOA) program. These tests in-
clude the Geweke convergence test, the Raftery–Lewis test, and the Heidelberg–Welch
stationarity and interval halfwidth tests. (More information on BOA is available at
http://www.public-health.uiowa.edu/boa/.

We assumed a beta(50, 3) distribution for the transition probability p, which cor-
responds to assuming a priori that p has mean .94 and variance .001. Thus we are
assuming that around 94% of the votes are counted the second time in the same way
that they were the first time, which seems to us a minimal assumption in this context.
It turns out (see Figure 8.1 below) that the data indicate a higher rate than 94%. Sen-
sitivity analyses to the different prior distributions for p suggest that the estimates
of the parameters remains unchanged. Figure 8.1 depicts the posterior distribution of
the parameters in the model.

0.9966 0.9970 0.9974 0.9978
Transition probability p

0.02 0.04 0.06 0.08
gamma1

0.01 0.02 0.03 0.04 0.05 0.06 0.07
gamma2

0.4 0.5 0.6 0.7 0.8 0.9
delta

Figure 8.1: Posterior Distribution of (a) p, (b) γ1, (c) γ2, and (d) δ.

Table 8.5 gives the posterior means of the parameters together with the 95% cred-
ible intervals. The estimates of the parameters in Table 8.5 are insensitive also to the
choices of the prior distribution of θ; we obtain the same estimates of the parameters
when we assume very different priors for θ and therefore for the number of cheating
precincts,

∑
gXg. Figure 8.2 displays the prior and posterior distributions on

∑
gXg

corresponding to a beta(2,6) for θ in the (a) row, and corresponding to a beta(2,20)
in the (b) row. Note that the posterior distributions, shown in (a2) and (b), are very
similar, although the prior distributions, in (a1) and (b1), are not.

We can summarize the findings as follows: Vote tampering has occurred in the
District Justice race with probability 1. Furthermore, because Pr(η = 2|data) = 1, we
can also assess with probability 1 that vote tampering occurred in favor of candidate
2, namely Laughlin, as shown in Table 8.5.

http://www.public-health.uiowa.edu/boa/
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Table 8.5: MCMC Results for the District Justice Race Assuming Priors p ∼ beta(50,3)
and θ ∼ beta(2, 6)

Posterior 95% Credible
Median Interval

p 0.997 (.997, .998)
γ1 0.041 (.025, .062)
γ2 0.028 (.015, .045)
δ 0.697 (.547, .824)
η 2.000
θ 0.243 (.111, .423)
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Figure 8.2: Prior (1) and Posterior (2) Distributions on the Number of Precincts in Which
Cheating Occurred for (a) a θ ∼ β(2, 6) Prior and (b) a θ ∼ β(2, 20) Prior.

There is a significant increment of the probability of reclassifying as an overvote a
ballot initially classified in favor of Zupsic; the estimate of the parameter γ2 represent-
ing this increment in probability is .029 and has a 95% credible interval (0.015, 0.045).
The transition probability γ1 of a ballot to shift from Zupsic to Laughlin also increases
significantly, by .041 (.025, .062). Finally there is a significant increment of the tran-
sition probability of a ballot to shift from undervote to Laughlin; the estimate of δ is
.697 with 95% credible interval (.547, .824).

These results should be considered jointly. If tampering were associated with very
small values of γ1, γ2 and δ, then one might find a high probability of tampering, but
to such a low degree that it would be in name only. That in the districts found to have
been tampered with, roughly 3% of Zupsic’s votes were transformed into overvotes,
and 4% of Zupsic’s votes were transformed into Laughlin’s votes is suspicious, but
that 70% of the undervotes become Laughlin’s votes is an extremely large shift. We
consider this strong evidence of real vote-tampering.

To determine the precincts in which vote tampering occurred, we look at the
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posterior probability Pr(Xg = 1) for each precinct g = 1, · · · , 21. Table 8.6 presents
comparisons between the precincts in which the Court found physical evidence of
altered ballots and the precincts in which our model detected alterations in transition
probabilities. The Court’s findings were based almost entirely on the physical evidence
presented by challenged ballots, whereas our model uses the comparison between the
counts of November 2 and January 5.

Table 8.6: Comparison of the Court Findings of Vote Tampering and Our Estimates of the
Probability of Vote Tampering by District.

District Number of altered ballots Posterior Probability Expected Number of
Number found by the Court of cheating altered ballots

49 1 0.00 0
56 10 1.00 22
114 6 1.00 11
115 14 1.00 16
116 2 0.07 1
138 6 1.00 9
149 6 1.00 7

Total 45 66

Note that our estimates of tampered precincts agree with the Court’s decision: Our
model found with probability 1 all of the precincts in which the Court found at least
six altered ballots. Precinct 116 has a very low posterior probability of vote tampering,
and this agrees with the fact that the Court found only two altered ballots–insufficient
evidence considering that the total number of ballots in that precinct is 305. Similarly
in District 49 the posterior probability of vote tampering is zero, but the Court found
one altered ballot out of 331 total ballots.

The posterior probability of vote tampering for all the other precincts are zero
except for districts 82 and 93 which have probability .08 and .09. A possible explana-
tion for this might rely on the small number of ballots in these districts: 69 and 52,
compared to more than 300 in most of the other districts.

8.4.1 Model Validation

In this section we investigate how our model performs on election data in which no vote
tampering is suspected. As the race that might be contested, we choose the Beaver
County vote in the (statewide) Pennsylvania Superior Court, taking the role of the
District Justice election between Mr. Zupsic and Laughlin. For this calculation, we
assume that only the Supreme Court and School District Director races were without
tampering, and do not use the data from the other races.

Although the estimates of the model are robust to the prior distributions of p, γ1,
γ2 and δ, they are not to the prior on θ. Note that the number of races used here
as comparison data is much smaller than that in the analysis of the District Justice
race. We used three prior distributions on θ, representing very different beliefs on the
number of cheating precincts.

Table 8.7 shows the effects of the different prior distributions on the estimates of
the parameters. Assuming a beta(2,6) distribution for θ, which corresponds to a prior
knowledge on

∑
gXg represented in Figure 2, the posterior probability of no vote
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tampering in the Superior Court race is .01. However, the estimates of the cheating
parameters are negligible. Thus this prior leads to high probability of a trivial amount
of tampering. On the other hand, assuming for a beta(2,50) for θ distribution leads
to a posterior probability of no vote tampering in the race for Superior Court of .81
and higher cheating parameters. So in this case, the results suggest a low probability
of substantial tampering.

Table 8.7: Posterior Medians of the Parameters in the Superior Court Race Together With
Their 95% Credible Intervals Obtained Under Different Prior Distributions on θ

θ ∼ beta(2,6) θ ∼ beta(2,20) θ ∼ beta(2,50)

γ1 .0065 (0.0017, .0164) .0074 (.0010 .0242) 0.0083 (0.0008, 0.0723)
γ2 .0007 (1.6e-05, .0040) .0010 (2.7e-05 .0157) .0032 (7.4e-05, .0575)
δ .0037 (.0001, .0268) .0062 (.0002, .1946) .0487 (.0007, .4192)
p .9967 (.9961, .9972) .9967 (.9961, .9972) .9967 (.9962, .9972)

Pr(no cheating) .01 .32 .81

Figure 8.3 gives the posterior distributions for the number of altered ballots in favor
of candidate 2 for both Superior Court and District Justice race under different priors
for θ. The histograms relative to the Superior Court clearly show that in all three cases
the number of altered ballots is small in magnitude and its posterior distribution is
not affected by the prior choice. In the District Justice race the number of altered
ballots in favor of candidate 2 is much higher.

-20 -10 0 10 20 30 40 50 60 70 80 90 -20 -10 0 10 20 30 40 50 60 70 80 90

Superior CourtDistrict Justice

-20 -10 0 10 20 30 40 50 60 70 80 90

Figure 8.3: Posteriors on the Number of Altered Ballots for the Superior Court and the
District Justice Races Under Different Priors for θ.
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8.5 Discussion

We find that three different analyses of the District Justice race lead to the same
conclusions. The informal data analysis of Section 1, the Court’s findings based on an
examination of particular ballots, and the model of this article all find that vote tam-
pering occurred in favor of Laughlin and against Zupsic. Furthermore, these analyses
generally agree on the districts involved: 56, 114, 115, 138 and 149. These results are
reasonably insensitive to the priors used.

The corroborating model check used the Superior Court race. Depending on the
prior used, this analysis found a low probability of a substantial amount of vote tam-
pering or a high probability of a trivial amount of tampering. Thus we find that the
model strongly distinguishes these data sets.

The model and mode of analysis that we have chosen is strongly influenced by
the particulars of the dataset and the problem we address. There are, however, im-
portant statistical analyses related to other problems of determining a winner in a
close election. Finkelstein (1978) and Gilliland and Meier (1986) have considered the
probability that an election outcome would be reversed with the elimination of votes
from ineligible voters, under the assumption that the ineligible voters are drawn from
the same population as the eligible ones.

In a more recent case (Marks v. Stinson, U.S. District Court for the Eastern District
of Pennsylvania, 1994 U.S. Dist. Lexis 5273), the Court, after finding evidence of fraud
in the administration of absentee ballots, used various methods, including regression
(Ashenfelter, 1994) to estimate what the result of the election would have been absent
the fraud. This led to a reversal of the election outcome, with Marks, not Stinson,
seated in the State Senate.

Appendix: Markov Chain Monte Carlo Estimation

Updating Zrg

Updating the augmented data Zrg for each race r and district g corresponds to
updating a matrix of counts with fixed row and column marginals according to a
conditional posterior given by

Pr(Zrg|yrg2 ,yrg1 , . . .) ∝ Pr(Zrg|yrg1 , . . .)I{JZrg=yrg1 ,JZrgT =yrg2 }
(yrg2 )

where Pr(Zrg|yrg1 , . . .) is a product of multinomials as specified in (8.2). Given the

current state Zrg, a candidate configuration, Zrg
(c)

, is generated according to the
following scheme: choose randomly two rows (i1, i2) and two columns (j1, j2); given
the elements in those rows and columns, choose randomly a sign for the element zrgi1j1
Then the candidate configuration Zrg

(c)

has the elements in rows (i1, i2) and columns
(j1, j2) altered by 1 depending on the sign. For example, if the sign is positive, then
the candidate configuration is given by

Zrg
(c)

=



...
...

· · · zrgi1j1 + 1 · · · zrgi1j2 − 1 · · ·
...

...
· · · zrgi2j1 − 1 · · · zrgi2j2 + 1 · · ·

...
...


Clearly the margin constraints are satisfied. The proposal distribution q(Zrg

(c) |Zrg)
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is therefore defined as

q(Zrg
(c)

|Zrg) = Pr(i1, i2, j1, j2)× Pr(sign|i1, i2, j1, j2)

where Pr(i1, i2, j1, j2) = Pr(i1, i2)Pr(j1, j2) =
(
k
2

)−2
, because it corresponds to inde-

pendent samplings without replacement two elements out of k (with k the dimension

of the matrix). To guarantee that the elements of the Zrg
(c)

are nonnegative, we define

Pr(+|i1, i2, j1, j2) =



1/2 if zi1j1 > 0, zi2j2 > 0
zi2j1 > 0, zi1j2 > 0

0 if zi1j1 > 0, zi2j2 > 0
zi2j1 = 0 or zi1j2 = 0

1 if zi1j1 = 0 or zi2j2 = 0
zi2j1 > 0, zi1j2 > 0

In all of the other cases–namely, when there are two 0’s in the same row or column–we

do not update Zrg. Once we generate a candidate configuration Zrg
(c)

, the acceptance
probability becomes:

α = min

{
1,
P r(Zrg

(c) |yrg2 ,yrg1 , . . .)

Pr(Zrg|yrg2 ,yrg1 , . . .)

q(Zrg|Zrg(c))
q(Zrg(c) |Zrg)

}
.

This formula can be further simplified. Suppose, for example, that all elements in rows
(i1i2) and columns (j1j2) are strictly positive and the sign is +; it can be easily shown

that the acceptance probability of Zrg
(c)

is given by

α = min

{
1,

zrgi1j2z
rg
i2j1

(zrgi1j1 + 1)(zrgi2j2 + 1)

qi1j1qi2j2
qi1j2qi2j1

}

where qij ’s are the transition probabilities corresponding to each cell above, as de-
scribed in (8.4).

Updating X1, . . . X21

In updating the exchangeable indicator variables Xg, we first integrate out an-
alytically the hyperparameter θ. Specifying the prior of

∑
gXg in two stages helps

us to better understand the prior assumptions. After integrating out θ, we have the
following prior for

∑
gXg:

π

(∑
g

Xg = x

)
=

(
21

x

)
B(θ1 + x, 21 + θ2 − x)

B(θ1, θ2)

where B(α, β) denotes the beta function. Since updating
∑
gXg obviously corresponds

to a change in the single variables Xg, we update
∑
gXg and the Xg’s jointly. Let∑

gXg = x be the current number of cheating precincts, then with equal probability

the candidate value, x(c), can take values x− 1, x, and x+ 1. If x(c) = x+ 1, then one
precinct, j, is chosen at random from the set C0 = {g : Xg = 0} and set Xj = 1. If
x(c) = x−1, then one precinct, j, is chosen at random from the set C1 = {g : Xg = 1}
and set Xj = 0. Finally, if x(c) = x, then two precincts, (i, j), are chosen at random
from the set C1 = {g : Xg = 1} and C0 = {g : Xg = 0}, and set Xi = 0 Xj = 1.

In each of these cases the candidate vector (X
(c)
1 , · · · , X(c)

21 ) differs from the current
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vector (X1, · · · , X21) only in the element i and/or j, depending on the value of x(c).

We report the acceptance probability of a candidate vector (X
(c)
1 , · · · , X(c)

21 ) when
x(c) = x+ 1, in which case

α = min

{
1,
P r(yr

′j
2 |X

(c)
1 , · · · , X(c)

21 , . . .)

Pr(yr
′j

2 |X1, · · · , X21, . . .)

π(x(c))

π(x)

21− x
x+ 1

}

The acceptance probabilities in the other cases are obtained similarly.
To obtain convergence for the Superior Court race data Monte Carlo runs, we had

to add an importance sampling component. As is evident from the third column of
Table 8.7, with an informative prior on θ, there is little evidence of cheating in this
race. Because the parameters γ1, γ2 and δ are all defined as conditional on cheating,
if the chain were run using the prior of interest, then it would take a long time to
assemble data on these parameters. A solution is to run the chain with a different
prior that puts more probability on cheating than the prior of interest, and reweight
the observations by the ratio of the prior of interest to the prior used for the runs.
This permits the chain to converge, and allows the parameters to be well estimated.
We used a beta(2,6) prior for θ for these runs, with 10,000 iterations burn-in, and
50,000 total iterations.

[Received February 2000. Revised January 2001.]
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Chapter 9

The Effect of Intensity of Effort to Reach
Survey Respondents: A Toronto Smoking

Survey (2001)

Foreword

The ideas behind this paper started to germinate some 15 years before. I recently
started at Carnegie Mellon when I was asked to do some work for Mr. Rogers’ Neigh-
borhood, a very popular children’s TV program. (I didn’t know much about Mr.
Rogers; the TV program of my youth was the Howdy Doody Show.)

Mr. Rogers’ Neighborhood sold magazine subscriptions to a publication they pro-
duced. They did a survey of their subscribers asking them to rate the various features
in the magazine. I was hired to address the question of which features would appeal
most to viewers of the show who had not yet subscribed. Thus I had no direct infor-
mation about the population of interest. I did have one additional piece of information
from the subscribers who answered the questionnaire: when they answered. I reasoned
that the subscribers who answered quickly are likely to be the most enthusiastic Mr.
Rogers supporters. Hence those who delayed their responses would be those most like
the target population, the viewers less enthusiastic but still possible subscribers. So
I looked at how supportive viewers were of various magazine features as a function
of how long it took them to answer the questionnaire, and made my recommenda-
tions accordingly. I never did hear from Mr. Rogers’ Neighborhood about how well it
worked.

It took roughly two decades before a suitable dataset and an interested student, Lou
Mariano, coincided to allow further exploration of this idea. Toronto had passed a new
law regulating smoking in the workplace. A series of telephone surveys were conducted
to ascertain people’s attitudes toward smoking in the workplace as a function of their
knowledge of the health effects of second-hand smoke, whether they were or had been
a smoker, whether second-hand smoke bothered them, and their age and sex. This
survey was conducted by telephone, with the telephone numbers chosen by random
digit dialing. Of course, many telephone numbers corresponded to entities not in the
sampling frame. Each number was called up to 12 times, until a person was interviewed
or refused. Fortunately, the number of calls was recorded. Of course there were many
numbers that had not answered, even after 12 calls.

Theoretical results of Rubin (1976) gave necessary and sufficient conditions for
the missing data to be missing at random [MAR] (given the covariates), and hence
ignorable. The danger is that statisticians may assume MAR without thinking deeply
about whether the assumption is reasonable in the applied context. In this paper we
model response with a geometric distribution (each additional call reaches a fraction of
those who have not yet responded). However, borrowing from the biometrics literature,
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we also allow for “immunes,” people who for a variety of reasons are never going to
respond.

Our results show that people who did not respond (but ultimately would if calls
kept being made) were twice as likely to favor unrestricted smoking in the workplace as
those who did respond. This is not too surprising, since it is more socially acceptable
to favor restricting workplace smoking. Thus non-response is, given our estimates, not
ignorable in this survey.

This paper was originally published in Survey Methodology, 27, (#2), pp. 131–142.
It is in the public domain.

Where are they now? Lou Mariano is a statistician at the RAND Corporation in
Washington, DC.
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Louis T. Mariano1 and Joseph B. Kadane2

Abstract

The number of calls in a telephone survey is used as an indicator of how difficult an intended
respondent is to reach. This permits a probabilistic division of the non-respondents into non-
susceptibles (those who will always refuse to respond), and the susceptible non-respondents
(those who were not available to respond) in a model of the non-response. Further, it per-
mits stochastic estimation of the views of the latter group and an evaluation of whether the
non-response is ignorable for inference about the dependent variable. These ideas are imple-
mented on the data from a survey in Metropolitan Toronto of attitudes toward smoking in
the workplace. Using a Bayesian model, the posterior distribution of the model parameters is
sampled by Markov Chain Monte Carlo methods. The results reveal that the non-response is
not ignorable and those who do not respond are twice as likely to favor unrestricted smoking
in the workplace as are those who do.

Key Words: Call-backs, numbers of; Bayesian analysis; Markov Chain Monte Carlo
method; Informative non-response; Ignorable non-response.

9.1 Introduction

Given the reality of non-response in every survey, it is of interest to determine how
to account for this non-response in the interpretation of the collected data. Rubin
(1976) gives necessary and sufficient conditions for such an analysis to be identical
from, respectively, a frequentist, likelihood, and Bayesian perspectives, to an analysis
based on a model incorporating a missingness mechanism. Building on this, Little and
Rubin (1987) led to an extensive literature modeling non-response in an informative,
non-ignorable way.

Information about the interaction between the survey and the surveyed can sharpen
the analysis of the import of missing data in a survey. The example in this paper
concerns the attitudes of Toronto citizens about smoking in the workplace. Random
telephone numbers were chosen; at least twelve calls were made to try to reach the
intended respondents. Our data for the respondents includes only the number of calls
until the survey was completed, not the timing of the unsuccessful calls. With even
this attenuated data on how difficult the respondent was to reach, we find our view
of the results of the survey to be importantly informed by the number of unsuccessful
calls.

The use of information on the number of calls to a subject chosen to participate in
a survey is not unique. Potthoff et al. (1993) present a method for correcting for survey

1Louis T. Mariano is a Ph.D. candidate, Department of Statistics, Carnegie Mellon University, Pitts-
burgh, PA 15213

2Leonard J. Savage University Professor of Statistics and Social Sciences, Department of Statistics,
Carnegie Mellon University, Pittsburgh, PA 15213
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bias due to non-availability by weighting based on the number of call-backs. While our
analysis also focuses on the bias due to non-availability, there are major differences.
Instead of assuming that refusals do not exist, we allow for and utilize their potential
existence in modeling the mechanism which causes non- response. In the analysis that
follows, the relationship of non-response to the response variable of interest in the
survey is evaluated along with other explanatory variables, after weighting for both
household size and the appropriate population demographics. In doing so we address
not only whether error exists due to non-availability, but also whether stratification
of the respondents by household size and the then current age/sex distribution may
eliminate the necessity for accounting for the error by the introduction of a mechanism
which describes the non-response. Note that here we match the groupings of Pederson
et al. (1996) used in the original published analyses of the dataset; more complex cell
adjustment procedures are possible (e.g., Little (1996), Eltinge and Yansaneh (1997),
and references cited therein).

The remainder of this article is organized as follows: Section 9.2 gives more detail
on the survey; Section 9.3 introduces the methodology employed; Sections 9.4 and
9.5 respectively explore missing-at-random and non- ignorably-missing models; Sec-
tion 9.6 discusses the priors distributions chosen for the main analysis, whose results
are explained in Section 9.7. Finally, Section 9.8 gives our conclusions.

9.2 The Survey

A bylaw regulating smoking in the workplace in the City of Toronto took effect
on March 1, 1988. From January 1988 to the present, a series of six surveys have
been conducted to assess attitudes of the public toward smoking, awareness of health
risks related to smoking, and the impact of the law on the residents of Metropolitan
Toronto. The data being utilized in this analysis comprises the third phase of this se-
ries. Northrup (1993) provides the technical documentation for this survey. For clarity,
when necessary, the data being analyzed here is referred to as the Phase III data, and
information from the first two surveys is referred to as the Phase I & II data.

Northrup (1993) indicates that the data of interest, which were made available
by the Institute for Social Research (ISR) at York University, were collected from
1,429 residents of the Metropolitan Toronto area in December 1992 and March 1993.
A two-stage probability selection process was utilized to select survey respondents.
The first stage employed random digit dialing. The second stage used the most recent
birthday method to select one adult individual once an eligible residence was reached.
The responses were then weighted by the number of adults in the household. In the
analysis that follows, post-stratification weighting was also applied to the census age-
sex distribution to adjust for the underrepresentation of some population subgroups.
The number of distinct phone lines in the household was not taken into consideration
during the data collection.

The number of calls it took to reach each respondent is included as a variable in
the dataset, and there are no missing values for this variable. Northrup (1993) explains
that the 1,429 responses came from a sample of 5,702 telephone numbers generated by
the random digit dialing method. Of these numbers, 2,286 were verified to be eligible
households, and 3,150 of the numbers in the sample were not eligible. The status of the
remaining 266 numbers was not able to be determined. It has been assumed by ISR
that the household eligibility rate of these 266 numbers was equal to the rate for the
rest of the sample. This eligibility rate implies an estimated total of 2,398 households
in the sample and a response rate of 60%. Thus, an estimated 969 subjects chosen to
participate in the survey did not respond. Each subject received a minimum of 12 calls,
including day, night, and weekend calls, before being classified as non-respondent.
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The dependent variable, for the purpose of this analysis, is an individual’s opinion
on the regulation of smoking in the workplace, in one of three categories. Category “0”
indicates smoking should be permitted in restricted areas only, category “1” indicates
smoking should not be permitted at all, and category “2” indicates smoking should
not be restricted at all. For each subject chosen to participate in the survey, let Yi ∈
{0, 1, 2} represent the opinion of subject i.

The data comprises of the answers to 50 survey questions as well as 18 other
variables identifying characteristics of the subject. Included in these are:

– “K -risk” is an integer score from 0 to 12 which indicates knowledge of the risks and
effects of second-hand smoke.

– “Smoker” indicates the smoking status of the subject: “Current smoker” (S), “Former
smoker” (SQ) or, “Never smoked” (NS).

– “Bother” indicates if second-hand smoke bothers the subject: “Always bothers” (b.A),
“Usually bothers” (b.USUL), or “Does not bother” (b.NO).

– “Age”: (Age in years - 50)/10.

Pederson et al. (1989) created a “knowledge of health effects score” on passive
smoking out of the answers to six survey questions, which measured a subjects knowl-
edge of the effects of second-hand smoke. Pederson et al.’s questions were used in
Phase III to create their score, here renamed “K - risk”. A higher K - risk score indi-
cates a greater knowledge of the risks of second-hand smoke. The variable “Age” was
shifted and rescaled to match how age was treated by Bull (1994) in the Phase I & II
analysis.

9.3 Overview of Methodology

The fundamental question of interest is: “May we ignore the unit non-response and
treat the observed data as a random subsample of the population?” Mapping to the
terminology of Little and Rubin (1987) and Rubin (1976): If we may treat the observed
data for the dependent variable of interest as a random subsample, we call the missing
data “missing completely at random” (MCAR). If we may treat the observed data
for the dependent variable of interest as a random subsample, after conditioning on
the explanatory variables, we call the missing data “missing at random” (MAR). Let
θ represent the parameters of the data and let π represent the parameters describing
the missing data process. Rubin (1976) calls the parameters π and θ distinct “if there
are no a priori ties, via parameter space restrictions or prior distributions, between
π and θ.” If either the MCAR or MAR cases apply and if π and θ are distinct,
the mechanism which causes the missing data is said to be “ignorable” for inference
about the distribution of the variable of interest. If the missing data for the dependent
variable of interest is dependent on the values of that data, then the mechanism which
causes the missing data is said to be “non-ignorable” (NI). Groves and Couper (1998)
note that when the likelihood of participation is a function of the desired response
variable, the non-response bias can be relatively high, even with a good response rate.

Let Ri be an indicator of response. Ri = Irespondent (subject i) and R =
(R1, . . . , Rn)T . Little and Rubin (1987) suggest that one possible method for account-
ing for the non-response mechanism is to include this response indicator variable in
the model. We may call the mechanism which causes the missing data ignorable if π
and θ are distinct and:

f(R|Yobs, Ymis, π) = f(R|Yobs, π) (9.1)

where Yobs and Ymis represent the observed and missing portions of the dependent
variable of interest.
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The terms “MAR assumption” and “NI assumption” will be used throughout this
analysis. For clarity, the term “MAR assumption” is defined as the assumption that
the missing data mechanism is ignorable for inference with respect to the dependent
variable identified in section 9.2. That is, the observed values of that variable are
a random subsample of the population, possibly within post-strata, and it is not
necessary to account for the missing data mechanism. The term “NI assumption” is
defined as the assumption that the missing data mechanism is non-ignorable and the
data collected for the dependent variable of interest cannot be treated as a random
subsample. Specifically, inference for the population must involve the missing data
mechanism.

The approach to assessing the MAR assumption is comprised of three steps. The
first step is the examination of what one might do under the MAR assumption. Since
the dependent variable of interest has three categories and some of the explanatory
variables are quantitative, polytomous logistic regression is employed. Both frequentist
and Bayesian forms of the logistic regression model are examined.

In the second step, an NI model is constructed. The non-response mechanism is
modeled utilizing the information available about the number of calls made to each
subject. Here, the idea of a surviving fraction in the sample is examined to model
whether it is actually possible to reach all the intended respondents. Then, the non-
response mechanism is related to the dependent variable by including the number of
calls in the logistic regression model.

In the development of the NI model, we employ a Bayesian approach to allow for
an examination of the values the missing data are likely to take, given the observed
data and the model parameters. This is accomplished by utilizing a data augmen-
tation approach, where the missing data are imputed in each iteration of a Markov
Chain Monte Carlo (MCMC) simulation. A possible alternative would be to utilize
the expectation-maximization (EM) algorithm (Dempster et al., 1977) to compute the
maximum likelihood estimates (MLE’s) of the missing values.

In the third step, an evaluation of the MAR assumption is made. Non-zero coef-
ficients for the number of calls in the logistic regression portion of the NI model will
imply that the number of calls does make a difference: i.e., the opinions of those who
did not respond in the first 12 calls are likely to differ from those who responded in just
a small number of calls. In this case, the missing data mechanism is not independent
of the values of the missing data and an MAR assumption would be inappropriate.
Next, the log odds of response among the three models are examined. Differences here
identify the magnitude of the error that a faulty MAR assumption causes. So, in the
evaluation of the MAR assumption, the questions “is there a difference?” and “how
large is the difference?” are both addressed.

9.4 MAR Models

9.4.1 Logistic Regression

Using the data collected from the (m = 1, 429) subjects that did respond to the survey,
weighted logistic regression was employed to model the public’s opinion on smoking
in the workplace. The collection of candidate predictors found in the survey questions
and the background information was narrowed utilizing a series of Wald tests. Then
likelihood ratio tests, AIC, and BIC were used to compare the possible models. The
model with the best fit was found to be the one which included additive terms for the
variables “K - risk”, “Smoker”, “Bother”, and “Age”, as defined in section 9.2.

As each of the models examined in this analysis employs a logistic regression com-
ponent, it is useful here to illustrate the notation being used. Category “0”, “smok-
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ing allowed in restricted areas only” was chosen to be the reference category. Recall
Yi ∈ {0, 1, 2}. For the MAR model, we use only the observed values of the subjects
opinion on workplace smoking, Yobs = (Y1, . . . , Ym). Let Yij = Ij(Yi) be an indicator
of subject i responding in category j, and let Wi represent the weight each subject re-
ceived. As in the original published analyses of this dataset (Pederson et al., 1996) both
household (see Northrup (1993)) and post-stratification (see Appendix A) weighting
were used in the consideration of all models here.

The two categorical explanatory variables, “Smoker” and “Bother”, were included
in the model by utilizing indicator variables for two of the three categories, with the
effect of the third category being absorbed in the intercept term. For “Smoker”, “Si”
and “SQi” were included as indicators that subject i was either a current smoker
or a smoker who had quit. For “Bother”, “b.USULi” and “b.NOi” were included as
indicators that second hand smoke usually bothered or did not bother subject i.

Let Xi = represent the vector for explanatory variables for subject i. Then,

X = (K − risk,Si,SQi,b.USULi,b.NOi,Agei).

Here we use an unordered multinomial logit model to consider pj(xi) = P (Yij =
1|Xi = xi), the probability that subject i responds in category j ∈ {0, 1, 2}, given
the observed explanatory variables for subject i. This model, of course, utilizes linear
equations ηij describing the log odds of subject i responding in category j versus the
reference category j = 0. So, for j = 1, 2 we wish to examine:

ln
pj(xi)

p0(xi)
= ηij = β0j +Xiβj , (9.2)

with ηi0 = 0. The two resultant linear equations, ηi1 and ηi2, each have seven coeffi-
cients, including an intercept term β0j and those displayed below:

βj = (βK−riskj
, βSj

, βSQj
, βb.USULj

, βb.NOj
, βAgej).

The MAR logistic regression model has 14 parameters. The vector of these 14
parameters, represented by β = (β01, β1, β02, β2) has the likelihood (or, more appro-
priately, pseudo-likelihood, since the weights are incorporated through the variable
Wi):

L(β) ∝
m∏
i=1

2∏
j=0

(
eηij

1 + eηi1+eηi2

)yijwi
. (9.3)

9.4.2 Bayesian Logistic Regression

The likelihood in equation (9.3) and the data collected from the survey respondents
are utilized in the Bayesian analysis. The same four explanatory variables selected in
the frequentist analysis above are used as the explanatory variables here. Prior distri-
butions, discussed in section 9.6, were assigned to the logistic regression parameters.
An MCMC simulation is utilized in order to draw from the posterior distribution of
the parameters.

9.5 NI Model

9.5.1 Modeling the Non-Response Mechanism

Since the missing values are not necessarily missing at random, the mechanism which
caused them to be missing must be addressed. Northrup (1993) indicates that non-
respondent subjects chosen to participate in the survey were called a minimum of
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Figure 9.1: Comparison of the actual survey data for successful calls in the first 12 attempts
to expected results based on a Geometric (0.225) distribution for the number of calls needed
to complete the survey.

12 times, including a minimum of three day, four evening and four weekend calls.
Unfortunately, other useful information regarding the number of calls was not retained.
We do not know which of the non-respondents were called more than twelve times or
whether an individual call was placed during the day, evening, or weekend. We also are
unaware of the details of the non-response, such as whether the subject was contacted
but refused to participate, whether the calls were ever answered by a machine, or
whether they were answered at all. Thus, stratification of the non-respondents was
not possible, and they were all treated as exchangeable in this analysis.

Each subject was called a number of times until the survey was successfully com-
pleted or they were classified as non-respondent. For the respondents, the number of
calls variable (Ci) describes the number of trials until the first success for subject i.
Thus, one might expect the number of calls to follow a Geometric distribution with
truncated observations for the non-respondents. Specifically, let π = P (a call is suc-
cessful) then, consider Ci ∼ Geometric (π) and P (Ci = ci) = π(1 − π)ci−1. Note
that if auxiliary information about the number of calls to the non-respondents were
available (e.g., Groves and Couper (1998)), we could have also considered conditional
response probabilities here.

The histograms in Figure 9.1 compare the data (through the first twelve calls) to a
Geometric distribution with parameter π = 0.225, which appears to match fairly well.
The sample order statistics suggest π ∈ (0.2, 0.25). The histogram of the actual survey
data reveals that the number of subjects reached on the first call are fewer than the
number reached on the second call. It is possible that more of the second calls were
placed at a time which had a higher success rate.

Suppose π = 0.225; by the memoryless property of the Geometric distribution, we
would expect 218 of the 969 non-respondents to reply on the 13th call. This would
make the data through the first 13 calls appear as in Figure 9.2. Clearly, Figure 9.2
does not display the behavior of a Geometric random variable. Consider the following
question: “If all subjects were called an unlimited amount of times, would they all
have been reached?” Answering “yes” to that question for this dataset results in the
problem illustrated in Figure 9.2.

Given the information outlined above, the assertion that “not all subjects chosen
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Figure 9.2: Display of the actual number of successful calls on each attempts through the
first 12 and the expected number of successful calls on the 13th attempt. The expectation
for the 13th call is based on a Geometric (0.225) distribution to model the number of calls
until the survey is completed.

for the survey are reachable” is a viable one. Maller and Zhou (1996) discuss immune
subjects – individuals who are not subject to the event of interest. Following their
terminology, if it is not possible to procure a response from a subject chosen for
the survey given an unlimited amount of calls, that subject is categorized as immune.
Subjects who are not immune are categorized as “susceptible”. The set of immune (i.e.,
non-susceptible) subjects comprise the “surviving fraction” of the sample. Mapping to
more familiar terminology, the immune subjects include those who were reached and
refused, those who would have refused if they had been reached, and those cases of a
physical or mental inability to ever participate. Northrup (1993) indicates that those
who initially refused to participate were subsequently contacted by the most senior
interviewers, so, we make the assumption here that all remaining refusals would not
ever participate. The susceptible group includes the respondents, those who would
have responded if successfully contacted, and those who were physically or mentally
unable to participate during the data collection period but were willing and able at
some other time.

Let the variable Zi = I{susceptible} (subject i ) be an indicator of the susceptibil-
ity of subject i, and ρ = P (subject i is susceptible), i.e., Zi ∼ Bernoulli (ρ). Now
suppose that the number of calls to the susceptible subjects follows a Geometric dis-
tribution, i.e., Ci|Zi = 1 ∼ Geometric (π). Does this eliminate the problem illustrated
in Figure 9.2?

Let Ri be an indicator of response of subject i. The non-response mechanism can
be accounted for by including these response indicators in the model. However, the
introduction of the susceptibility variable implies two distinct classes of non-response.
So, it is possible to be more detailed and use both the susceptibility Z = (Z1, . . . , Zn)T

and the response R indicators in a mixture model describing the non-response. Up-
dating Equation (9.1), the missing data mechanism is ignorable if and only if (π, ρ) is
distinct from θ and

f(R,Z|Yobs, Ymis, π, ρ) = f(R,Z|Yobs, π, ρ). (9.4)

Let Cobs = (C1, . . . , Cm) and Zobs = (Z1, . . . , Zm) be the vectors of the number of calls
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and the observed susceptibility for each respondent. Also, let R = (R1, . . . , Rn) = be
the vector of response for each intended respondent. Every subject, i, may be classified
by response into three mutually exclusive groups, Aobs –observed, Amis –missing,and
Aimm –immune, where:

Aobs = {i : i was Susceptible and Responded}
Amis = {i : i was Susceptible but did not Respond in 12 calls}
Aimm = {i : i was not Susceptible}.

The probability that a subject is in each of these categories maybe calculated as
follows:

P (i ∈ Aobs) P (Zi = 1, Ri = 1, Ci = ci) = ρπ(1− π)ci−1

P (i ∈ Amis) P (Zi = 1, Ri = 0, Ci > 12) = ρ(1− π)12

P (i ∈ Aimm) P (Zi = 0) = 1− ρ.

The data indicates m = 1, 429 subjects in Aobs and n −m = 969 non-responsive
subjects in Amis ∪ Aimm;n = 2, 398 is the estimated total number of subjects chosen
to participate in the survey. Thus, the joint density of Zobs, R and Cobs given ρ and π
is:

f(Zobs, R, Cobs|ρ, π) ∝
[
ρmπm(1− π)(

∑m
i=1 ci)−m

]
(9.5)

×
[
(1− ρ) + ρ(1− π)12

]n−m
The mixture model described by Equation (9.5) may be viewed as a special case

of the nonresponse models discussed in Drew and Fuller (1981).
It would be useful to confirm that the above joint distribution accurately represents

the response pattern of the susceptibles in the dataset. The MLE estimate for ρ is
simply the proportion of respondents in the sample, which clearly underestimates ρ.
Setting U(0, 1) prior distributions for both ρ and π and examining their joint posterior
distribution by MCMC simulation, the posterior medians are found to be ρ = 0.636
and π = 0.205, with equal-tailed posterior credible intervals of (0.613, 0.659) and
(0.191, 0.219) for ρ and π respectively. Figure 9.3 illustrates how the dataset might
look after imputing the missing number of calls for our susceptible non-respondents
based on these posterior medians. The problem previously displayed in Figure 9.2 has
now been mostly eliminated.

While the Geometric distribution appears sufficient (after accounting for suscepti-
bility), a referee questions the use of the Geometric distribution as it does not make
use of possibly useful covariates. As explained above, the covariates we think would
be most useful for this purpose were not collected. One alternative for modeling the
response mechanism of the susceptibles is to use a discretized Gamma distribution. In
cases where more complexity is necessary, the ν-Poisson [now known as the Conway-
Maxwell-Poisson Distribution] (a two parameter Poisson which generalizes some well
known discrete distributions, including the Geometric) of Shmueli et al. (2004) may
also be considered.

9.5.2 Relating Non-Response to the Dependent Variable The NI Model

Since the non-response of the susceptibles is described by the conditional Geometric
distribution of the number of calls, the effect of the non-response of the susceptibles
on the dependent variable may be considered by including the number of calls as an
additional explanatory variable in the logistic regression likelihood. This will create
two additional parameters in the logistic regression portion of the model, which are
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Figure 2.  Display of the actual number of successful calls on each attempts through the first 12 and the expected 
number of successful calls on the 13 th attempt. The expectation for the 13 th callis based on a Geometric 
(0.225) distribution to model the number of calls until the survey is completed. 
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participate during the data collection period but were willing 
and able at some other time. 
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Figure 9.3: Display of the actual umber of successful calls on each attempt through the first
12 and the expected number of successful calls for call attempts 13 and higher. Imputed
values are based on a probability of successful call of 0.205 and a probability of susceptibility
of 0.6363.

the coefficients of the number of calls, βcall in each of the linear equations ηij described
in equation (2).

Non-zero coefficients for the number of calls, then, would indicate that the depen-
dent variable is not independent of the non-response mechanism, and, hence the non-
response mechanism is non-ignorable. If these coefficients are zero, the non-response of
the susceptibles is ignorable. Conclusions made here rely upon the underlying modeling
assumption that the relationship among the number of calls, the dependent variable
and the other explanatory variables considered is the same for the respondents and
susceptible non-respondents. Including the number of calls in the logistic regression
portion of the model does not address the immune subjects, since there will never be
the realization of a successful call to them.

The full pseudo-likelihood for the NI model (or, more precisely, the susceptible NI
model) is the product of the non-response and logistic regression pieces:

L(ρ, π, β) ∝
[
ρmπm(1− π)(

∑m
i=1 ci)−m

]
×

[
(1− ρ) + ρ(1− π)12

]n−m
(9.6)

×

 m∏
i=1

2∏
j=0

(
eηg

1 + eηi1+eηi2

)yijwi .
Note that the household and post-stratification weighting variable Wi is included

here in an effort to account for whether proper stratification of the respondents may
eliminate the necessity for the introduction of a mechanism to describe non-response.

9.5.3 Data Augmentation

Tanner and Wong (1987) suggest an iterative method for computation of posterior dis-
tributions when faced with missing data. This method applies whenever augmenting
the dataset makes it easier to analyse and the augmented items are easily generated.
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Consider the following additional notation: Let S represent the total number of sus-
ceptible subjects in the sample. S =

∑n
i=1 Zi, S ∼ Binomial(ρ). Let X be the matrix

of explanatory variables (including the number of calls) for all the subjects selected to
participate in the survey. Let Y = (Y1, . . . , Yn) be the vector of their responses. Parti-
tions X into {Xobs, Xmis, Ximm} and Y into Yobs, Ymis, Yimm}. Also, by the memoryless
property of the Geometric distribution, the distribution of the additional number of
calls required to reach the subjects in Amis is known, and may be expressed: ∀i ∈ Amis,
let Vi = Ci − 12, which is also distributed as a Geometric random variable with pa-
rameter π.

Now suppose that the true values of S,Xmis, and Ymis were known. The likelihood
could then be considered in the form:

L(ρ, π, β| Xobs, Yobs, Ymis, S,R)

∝
[
(ρπ)s(1− π)(

∑
csus)−s

]
×
[
(1− ρ)n−2

]
(9.7)

×

 s∑
i=1

2∑
j=0

(
eνij

1 + eνi1 + eνi2

)yijwi ,
where

∑
Csus =

∑
Cobs +

∑
(Vi + 12) is the number of calls that would have been

necessary to reach all susceptibles and the summands are taken over the appropriate
range of subjects.

Although the true values of S,Xmis, and Ymis are unknown, one may utilize what
is known about the behavior of these variables to impute stochastically possible values
for them within the MCMC algorithm. Given ρ, a value for S may be drawn from a
truncated Binomial (2,398, ρ), where 1, 429 ≤ S ≤ 2, 398. Given S, the number of
subjects in Amis is known. For each of these subjects in Amis a value Vi ∼Geometric
(π) may be drawn, which results in an imputation for the number of calls needed to
reach each susceptible but unreached subject. The relationships among the number of
calls and the other explanatory variables may then be exploited to impute values for
the rest of Xmis. Specifically, the missing values of Age and K - risk are imputed by re-
gressing Calls on Age and K - risk respectively and predicting from the resultant linear
equations. Similarly, the missing values of Smoker and Bother are imputed via logistic
regression on each, using Calls as the explanatory variable. Here the model assump-
tions are checked using the respondents data, and an assumption is being made that
these same relationships hold for the susceptible non-respondents. Note that these re-
gression and logistic regression equations are fit in the Bayesian context (e.g., Gelman
et al. (1998)) and necessitate the inclusion of additional parameters, βI , in the MCMC
process which describe these relationships (see Appendix B for more detail). We chose
this imputation plan in the interest of the efficiency of the full MCMC algorithm. An
alternative would be to impute the missing values for a particular explanatory variable
conditional on all the remaining variables (e.g., Rubin (1996)). Finally, Ymis may be
predicted by utilizing the imputed values of Xmis and the relationship described in
the logistic regression model. In the interest of the exchangeability of the susceptible
non-respondents in the absence of subsequent stratification information, we apply a
weight of 1.0 to all the imputed Ymis values; an alternative here would be to impute
the sex and household size of the susceptible non-respondents, in addition to their age,
and apply the weighting procedure described in Appendix A to the imputed Ymis.

9.5.4 Sampling from the Posterior Distribution

The full MCMC simulation consists of a Metropolis algorithm supplemented in every
iteration with the data augmentation described above. An outline of the MCMC al-
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gorithm used may be found in Appendix B. Convergence was assessed utilizing the
method of Hiedelberger and Welch (1983) as described in Cowles and Carlin (1996).
MacEachern and Beliner (1994) assert that, under loose conditions, subsampling the
MCMC simulated values to account for autocorrelation will result in poorer estima-
tors. Following their suggestion, all simulated values, after an appropriate burn-in
period, were used in the analysis that follows.

9.6 Choice of Prior Distributions

In the evaluation of possible prior distributions for the parameters of both the NI
and MAR models, the goal of the comparison of the various models was taken into
consideration. The choice of prior distributions for the parameters was made from the
perspective of the MAR belief. Two possibilities were examined.

The first option is built around the utilization of the Phase I & II surveys. Since
these surveys were similar to and were completed prior to the Phase III survey which
comprises our data, information contained in these first two surveys may be utilized in
the construction of priors. The same dependent variable was contained in the Phase I
& II dataset, along with the variables Smoke, Age, and K - risk. A logistic regression
model was compiled from the Phase I & II data to describe the relationship between
the opinion on workplace smoking and these three explanatory variables. Normal priors
were constructed for the coefficients of these three variables centered at their MLE’s,
but with increased standard error. The error terms were increased due to three factors:

i) There was a three year span between the Phase II and Phase III surveys; opinions may
have changed over that time, possibly as a result of the impact of the bylaw.

ii) The MLE’s were calculated under the same MAR assumption being evaluated.

iii) Prior to the collection of the Phase III data, there existed the possibility that other
explanatory variables would be included in the model; in the presence of other variables,
the effect of these three could be altered.

Although the variances were increased, the means were not changed, since it was
unknown, a priori, in what direction any change might occur. Since the available
Phase I & II data contained no information about the Calls or Bother variables, the
coefficients of these were assigned a diffuse Normal (0,9) prior. For clarity, this option
will be referred to as the “Phase I & II prior” in this analysis.

In the second option Normal (0,9) priors are assigned to each of the logistic re-
gression coefficients. One motivation for this choice is that, for the same three reasons
the error terms were increased above, the variables common to the Phase I & II and
Phase III surveys are not exchangeable. Thus, construction based on the Phase I & II
results would be inappropriate. This option will be referred to as the “Central Prior”.

The choice to use Normal (0,9) distributions here is for convenience. Centering
the prior at zero gives equal weight to either direction of the relationship. We believe
the choice of a variance of nine to be adequate without being overly diffuse. The use
of improper priors could lead to a Markov Chain Monte Carlo simulation that never
converges, and, as Natarajan and Kass (2000) show, an overly diffuse proper prior
may behave like an improper one. In section 9.7.2, we offer a sensitivity analysis to
evaluate how the results are effected by the choice of prior.

The non-response parameters of the NI model, ρ and π, were treated the same
under both prior options. There was no additional information available about the
probability of a successful call or the probability of susceptibility. Thus, ρ and π were
each assigned a U(0, 1) prior.

The data augmentation parameters found in each of the logistic regression equa-
tions, βl, were independently given diffuse Normal (0,9) priors. For each linear re-
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gression equation found in the data augmentation process, the coefficients, βr, and
variance, σ2, were set to p(βr, σ

2
r) ∝ 1/σ2

r , the standard non-informative prior dis-
tribution (e.g., Gelman et al. (1998)). Note that the closed forms of the posterior
distributions of the linear regression parameters are known and may be drawn from
directly.

9.7 Results

First, the validity of the MAR assumption is examined through the coefficients of the
number of calls variable. Then, the NI model is evaluated with respect to sensitivity to
the choice of prior. Finally, the magnitude of the impact of a faulty MAR assumption
for this dataset is investigated by illustrating the change in the odds of response.

9.7.1 Coefficients for the Number of Calls

For both the Phase I & II and Central priors, Figure 9.4 displays the posterior density
(solid line) and 95% credible interval estimates (dotted lines) of the coefficient of the
calls variable in ηi1 in the NI model, and compares them to the point βcall1 = 0 (dashed
lines). The results clearly indicate this coefficient differs from zero. We also find a non-
zero result in ηi2 , where, using the Phase I & II prior, the 95% HPD credible interval
for βcall2 is (0.03613, 0.11595).

The non-zero coefficient of Ci demonstrates a dependence between the number of
calls and the subjects’ opinions on smoking in the workplace. Thus, the dependent
variable and the non-response mechanism are not independent under the conditions
discussed in section 9.5.2. This result implies that an assumption that the missing ob-
servations are missing at random prior to accounting for the non-response mechanism
is incorrect for this dataset.

There is a hint in Figure 9.3 that the probability of a successful call decreases
as the call number increases. To verify the assumption that the relationship between
the number of calls and the log odds of response is linear, a second Bayesian NI
model was constructed. This model split the calls variable into two, CiI{Ci<7} and
CiI{Ci≥7}, based on whether the number of calls were fewer than seven. The posterior
distributions of the coefficients of these two variables were then compared and evidence
that they are essentially different was not found. In particular, for ηi1 the 95% credible
interval for CiI{Ci≥7} contained the same interval for CiI{Ci<7}, and for ηi2 the 95%
credible intervals strongly overlapped.

9.7.2 Sensitivity to Priors

Would different prior distributions, either on the calls coefficient or on the others,
make a difference in the effect illustrated above? Table 9.1 displays 95% HPD credible
intervals for the coefficient of the calls variable in the first logit equation of the NI
model for six different priors. The priors include the Phase I & II and Central priors as
well as four others – labeled options 3, 4, 5, and 6. Option 3 and 4 resemble the Central
prior except that they change the prior distribution on the coefficient of the number
of calls to Normal (1,9) and Normal (-1,9) respectively. Option 5 places Normal (0,
9) priors on βcall1 , βage1 , and βb.USUL1 , a Normal (1,9) prior on β01, a Number (0.5,
9) prior on βK−risk1

, a Normal (-1, 9) prior on βS1
and Normal (-5, 9) priors on βSQ1

and βb.NO1
. Option 6 takes the Central Prior and reduces all the variances from nine

to two.
Under all six priors, Table 9.1 demonstrates that the coefficient of the calls variable

in the first logit equation clearly differs from zero. The finding that the missing data
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credible interval (dotted line), compared to 

1 call  0 β =  (dashed line). 
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Figure 9.4: Display of βcall, the coefficient of the calls variable in ηi1: posterior density (solid
line) and 95% equal tailed credible interval (dotted line), compared to βcall1 = 0 (dashed
line).

Table 9.1: 95% HPD Credible Intervals for βcall Under Six Different Prior Distributions

Prior Coefficient of the number of
Calls “Ci” in ηi1

95% Intervals
Lower Bound Upper Bound

Phase I & II 0.00129 0.07746
Central 0.00446 0.07980
Option 3 0.00447 0.07983
Option 4 0.00441 0.07975
Option 5 0.00440 0.07970
Option 6 0.00436 0.07944

mechanism is non-ignorable for this dataset does not appear to be effected by the
choice of prior among these options.

9.7.3 Effect on Odds of Response

Given the failure of the MAR assumption shown above, it is of interest to question the
relevance of the error that using the MAR assumption would create. The magnitude
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Table 9.2: Comparison of the Odds of Response for 4 Typical Subjects. Posterior Medians
Were Used As the Point Estimates for the Coefficients in the Bayesian Models; the Mle Was
Used for the Frequentist Model

Subject 1 Subject 2 Subject 3 Subject 4
Smoker No No Former Yes

Age 30 50 27 40
Bother Usually Always No No

K - risk 11 12
Model Odds Y = 1/Y = 0

MAR MLE 0.674 2.105 0.457 0.396
MAR Phase I & II prior 0.703 4.487 0.209 0.116

NI Phase I & II prior: 2 calls 0.640 4.024 0.202 0.108
NI Central prior: 2 calls 0.593 4.442 0.162 0.102

Option 3: 2 calls 0.594 4.449 0.162 0.102
Option 4: 2 calls 0.592 4.435 0.162 0.101
Option 5: 2 calls 0.590 4.423 0.161 0.101
Option 6: 2 calls 0.590 4.426 0.161 0.101

NI Phase I & II prior: 13 calls 0.974 6.128 0.308 0.165
NI Central prior: 13 calls 0.936 7.013 0.256 0.160

Option 3: 13 calls 0.937 7.026 0.256 0.161
Option 4: 13 calls 0.934 7.000 0.255 0.160
Option 5: 13 calls 0.930 6.975 0.254 0.159
Option 6: 13 calls 0.931 6.980 0.254 0.160

of the error induced by a faulty MAR assumption may be illustrated by examination
of its effect on the odds ratio p1(xi)/p0(xi). First, we consider the effect on a typical
respondent profile. The modal respondent was a non-smoker between the ages of 25 -
35 years old who was usually bothered by secondhand smoke, had a K - risk of 11 and
could be reached in 2 calls. We label this modal respondent as Subject 1. Table 9.2
demonstrates the change in posterior odds for Subject 1 when called 13 times.

The subject 1 column Table 9.2 indicates a dramatic difference in the posterior
odds when the nonresponse mechanism is taken into consideration. For this typical
respondent profile, when the number of calls is increased from two to thirteen the
posterior odds of choosing “Smoking should not be permitted at all” over “Smoking
should be permitted in restricted areas only” increases by 52.18% under the Phase I
& II prior and 57.84% when using the Central prior. This is dramatic evidence of the
relationship between the dependent variable and the non-response mechanism.

Are the results for the modal subject above typical? Table 9.2 also displays the
effects on the odds of response under the NI model for three additional test subject
profiles for each of the six different priors considered above. Subject 2 is a fifty year
old non-smoker who is always bothered by smoke and has a perfect “K - risk” score.
Subject 3 is a 27 year old former smoker who is not bothered by smoke and has a
“K - risk” score of seven. Subject 4 is a 40 year old smoker who is not bothered by
smoke and has a “K - risk” score of three. On multiple subjects with multiple priors,
Table 9.2 consistently shows the same result. Increasing the number of calls to greater
than 12 will increase the posterior odds of choosing category “1” over category “0”.
For each of the test subjects and priors found in Table 9.2, the increase was between
52.18% and 58.41%.

Similar results were found when examining the odds of choosing the “Smoking
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should not be restricted at all” category over the “Smoking should be permitted in
restricted areas only” category. Using test subjects which were a current and a former
smoker (Subjects 3 and 4 above), the posterior odds increased 46.7% when the number
of calls was increased from 2 to 13 under the Phase I & II prior.

9.7.4 Effect on Probability of Response

With the shift in posterior odds illustrated above comes a corresponding shift in the
estimated probabilities that a subject will respond in a particular category. Among the
respondents, 57.45% chose category “0”, 40.64% chose category “1”, and 1.91% chose
category “2”. The number of non-respondent susceptibles have a posterior median
of 469, with a 95% credible interval of (25,944). On average, 55.88% of the simulated
non-respondent susceptibles chose category “0”, 40.03% chose category “1”, and 4.08%
chose category “2”. While, for categories “0” and “1”, the average values for the non-
respondent susceptibles fall within the 95% confidence intervals for the proportions of
the respondents in these categories, the point estimates for each category shift when
the non-response mechanism is included in the model. In comparing the category “2”
results, we estimate that non-respondents are twice as likely to favor no restrictions
on smoking (category “2”) than are respondents. While the low number of subjects
found in category “2” are unlikely to provoke a change in workplace smoking law, the
increase noted in the non-respondents in this category serves as an example of how the
lack of proper consideration of the non-respondents could lead to flawed conclusions
about the data.

9.8 Conclusion

Section 9.7 demonstrates that, for the dependent variable of interest in this dataset,
an assertion that the missing observations are missing at random, prior to accounting
for the missing data mechanism, is incorrect, assuming the relationship among the
relevant variables is the same for all susceptible subjects. Furthermore, the use of
a faulty MAR assumption in the evaluation of this dependent variable risks serious
error in the calculation of the posterior odds and in any conclusion drawn from them.
In order to perform a proper evaluation of the opinion on smoking in the workplace
in Toronto in early 1993 via the dependent variable of interest in this survey, it is
necessary to account for the non-response mechanism in the model structure.

In this analysis, only one simple piece of information, the number of calls, was
utilized. A more complete treatment could have been made, had more information been
available. Knowledge of the exact number of calls to the non-respondents, instead of a
minimum, and the time of day of the calls could have enabled this analysis to be more
precise. In addition, knowledge of the type of non-response, refusal or non-availability,
and the number of times the non-respondents were actually contacted could have
allowed for better classification of the non-respondents. Groves and Couper (1998)
point out that statistical errors arising from non-availability and those arising from
refusals are likely to differ. As they further comment, the evaluation of how efforts to
seek cooperation effect measurement error is an important area of research.

The results illustrated above apply only to this one dependent variable assessing
smoking in the workplace in this one dataset. Given the perception that smoking has
become less socially acceptable over recent years, it would be reasonable to think
that non-response error due to questions about smoking may be more severe than
other topics. A comparison of non-response bias including various smoking related
questions and others which do not concern smoking may be found in Biemer (2001);
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this comparison lends no credence to the idea that non-response error is unique to
questions relating to smoking.

Although the above results make no implications about the missing data mech-
anisms in other surveys, there is a clear demonstration here that blindly assuming
that the respondents of a survey constitute a random subsample of the population for
the variables of interest can be an unwise choice. Information, available at the time
of data collection, can enable the evaluation of whether or not the mechanism which
causes the non-response is ignorable. In light of this observation, then, it should be
[of, added for clarity, JBK] interest to those who work with such data to make use
of the available information pertaining to the non-response in the evaluation of that
data and to make such information available to others who utilize the dataset. As a
general matter, we believe that the collection and analysis of data on where and how
respondents were found, as well as how difficult they were to find, is an important
future direction for survey methodology and practice.
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Appendices

A. Post-Stratification Weighting

HHWi is the household weight of subject i as described in Northrup (1993).

- Let m = the number of respondents.

- Let r = the cumulative number of adults in the responding households.

- Let hi = the number of adults in subject is household.

- HHWihi ·m/r.

Proportions in the sample falling into the following age groups were calculated for
both male and female respondents: 18–24 years, 25–44 years, 45–64 years, and over
65 years old. These proportions were then compared to the age/sex distribution in
Metropolitan Toronto.

- Let p1i = the proportion of adult Metropolitan Toronto residents falling into the same
age/sex category as subject i, as per the 1991 Census.

- Let p2i = the proportion of survey respondents with the same age and sex categories as
subject i.

- Wi = HHWi·p1i/p2i, where Wi is the final post-stratification weight used in the analysis.
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B. MCMC Implementation

The full MCMC simulation for the NI model consists of a Metropolis algorithm sup-
plemented with the data augmentation described in section 9.5.3. The following is an
overview of the MCMC algorithm. Variables used below are defined in section 9.5. At
each iteration t,

1. Draw ρi for Beta(st−1 + 1.2398− st−1 + 1).

2. Impute st from Binomial(ρt) ≥ 1.429.

3. Impute Cmist : draw (st − 1.429)νi’s from Geometric(πt−1) and ∀ci ∈ cmis, ci = νi + 12.

4. Draw πt from Beta(st + 1,
∏
csus,−st + 1.

5. Impute values for the rest of Xmis by utilizing the relationships with the number of calls,
as described in section 9.5.3.

6. Update the additional parameters used in the data augmentation of Xmis.

- Update linear regression parameters, βr and σr by drawing directly from the closed
form of their posteriors.

– Update logistic regression parameters, βl using a Metropolis step on each.

7. Impute Ymist : ∀yi ∈ ymis draw yi from a Multinomial(p0(xi), p1(xi), p2(xi)).

8. Update each βkj using a Metropolis step on the conditional likelihood and a Normal
Jump function.
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Chapter 10

Comparing Harm Done by Mobility and Class
Absence: Missing Students and Missing Data

(2003)

Foreword

I first met Michelle Dunn when she was an incoming statistics masters student and was
assigned to be my Teaching Assistant. She agreed to do the work under one condition:
that I would promise to take issues of academic integrity seriously. (She was appalled
at how lax her undergraduate college had been.) I agreed, and she did an excellent
job.

After finishing her master’s degree, she left to fulfill an obligation to work for the
federal government. We kept in touch, and four years later she returned to CMU to
pursue a Ph.D. In planning her ADA project, Michelle wanted to work in secondary
education, feeling that this was, and is, a critical issue for our country.

With the help of Professor Lauren Resnick, at the University of Pittsburgh’s Learn-
ing Research and Development Center, we got access to administrators at the Pitts-
burgh Board of Education. They were initially interested in whether grading was uni-
form across schools, as reflected by performance in later grades and on standardized
tests. As we thought about that issue, it seemed to us that we first had to under-
stand what grades and standardized test scores meant, which led to the question of
absences and mobility. Thus this study, which was intended to be a prelude to the
School Board’s question, turned out to be complicated enough on its own. So the is-
sue we focused on had to do with whether schooling matters. In particular, what are
the impacts of absences and changing schools on student performance in standardized
tests.

We found that both absences and changing schools matter, and both degrade
student performance. Roughly, we found that changing schools at least once in the
three years preceding eleventh grade had the same (negative) effect on student scores
as would missing 14 days of school in the year of the examinations, or 32 days of school
in the previous year.

The models used in the study are principally normal linear models. The priors
involve some elicitation from our client, Jack Garrow, who was a data analyst for the
Pittsburgh Public Schools. One issue that required special care was what it meant
when a student chose not to take a mathematics course, or what it meant when a
student chose to be absent from school when the standardized exam was administered.

This paper was originally published in the Journal of Educational and Behavioral
Statistics, 28, (#3), pp. 268–288. Republished with the permission of SAGE Publica-
tions.
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Where are they now? Michelle Dunn works as an administrator at the National
Cancer Institute, and is raising twins. I have lost track of Jack Garrow.



Published Paper

Joseph B. Kadane, Michelle Dunn and John R. Garrow

Abstract

This article addresses the relationship between academic achievement and the student charac-
teristics of absence and mobility. Mobility is a measure of how often a student changes schools.
Absence is how often a student misses class. Standardized test scores are used as proxies for
academic achievement. A model for the full joint distribution of the parameters and the data,
both missing and observed, is postulated. After priors are elicited, a Metropolis-Hastings al-
gorithm within a Gibbs sampler is used to evaluate the posterior distributions of the model
parameters for the Pittsburgh Public Schools. Results are given in two stages. First, mobility
and absence are shown to have, with high probability, negative relationships with academic
achievement. Second, the posterior for mobility is viewed in terms of the equivalent harm
done by absence: changing schools at least once in the three year period, 1998-2000, has an
impact on standardized tests administered in the spring of 2000 equivalent to being absent
about 14 days in 1999-2000 or 32 days in 1998-1999.

Keywords: data augmentation, Markov Chain Monte Carlo, missing data

10.1 Introduction

Absence and mobility are critical problems for the Pittsburgh Public Schools (PPS).
They are among a student’s lifestyle factors that could affect his or her learning envi-
ronment. The focus of this study is on factors that students and parents have relative
influence on rather than the factors that they cannot control. This article compares
the detriments of absence and mobility both in absolute terms and relative to one
another.

Mobility is a measure of how often a student changes schools. Absence is how often
a student misses class. By modeling standardized test scores (proxies for students’ aca-
demic achievements) in terms of mobility, absence and other covariates, a comparison
is made by considering the ratios of the mobility and absence model coefficients.

This study is premised on two ideas. The first is that students learn more about
academic subjects while in school than out of school. The second is that students
learn better when exposed to a cohesive course of study that reinforces and builds
upon previously learned concepts.

The purpose of this study is two-fold. The first goal is to affirm that in-school
instruction and an uninterrupted curriculum have a positive (or non-negative) rela-
tionship with a student’s academic achievement. Equivalently, the goal is to affirm
that mobility and absence have negative relationships with academic achievement.
The second goal is to compare the harm of an interruption of curriculum to that of

The authors thank Dr. Shula Nedley and Professor Lauren Resnick, for their support and expert ad-
vice. They also thank Howard Wainer and the anonymous referees for their many helpful comments and
suggestions.
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missing school: in other words, to view mobility in terms of the equivalent harm done
by absence.

The variables under study, absence (number of days of class missed) and mobility
(the number of times a student changed schools), do not reveal whether a student paid
attention to the teacher while in school or whether the curricula at the two schools
between which a student transferred are synchronized. However, absence and mobility
can act as substitutes for the effects of in-school instruction and an uninterrupted
curriculum.

How the quantity of instruction or learning time relates to achievement has long
been of concern (Carver, 1970). Also of concern is how patterns of absence, both of an
individual student and of the classroom,1 relate to achievement (Monk and Ibrahim,
1984). The data in this study allow consideration only of the quantity of absence.

The use of standardized test scores as a proxy for academic achievement is not
unusual (Hanson and Schutz, 1986). However, educational evaluation experts disagree
whether they should be used. Opponents of standardized tests argue that they are
not general enough to adequately measure how schools are meeting their overall goals,
especially their noncognitive goals such as improving self-confidence and motivation.
In addition, they argue that standardized tests are not specific and sensitive enough to
evaluate educational programs (Madaus et al., 1980). Since the purpose of this study
is to relate mobility and absence to general academic achievement, rather than to
evaluate a particular basic skills program or measure noncognitive achievement, the
use of achievement tests is acceptable.

If complete data were available, standardized test scores could be predicted from
mobility, absences, and other covariates using linear regression. What make this prob-
lem hard are missing data. After specifying a model and eliciting prior distribution
parameters, Bayesian methods are used to explore the posterior distribution of the
model parameters.

This article is organized as follows. Data from the PPS, both observed and missing,
are discussed in Section 10.2. A model for the full joint distribution of the parameters,
the missing data, and the observed data is proposed in Section 10.3. Prior distributions
of the parameters are also presented in Section 10.3. Section 10.4 describes how the
model is fit using Bayesian methods. Section 10.5 presents the relationships of mobility
and absence to the 2000 standardized test as well as to each other in the form of a
ratio of coefficients. Conclusions are drawn in Section 10.6.

10.2 Data

The data consist of assessment, course, and demographic information for the years
1998-20002 for the PPS cohort of students in the 11th grade in 2000. The data fields
are described in Section 10.2.1. The missing data are described in Section 10.2.2.

10.2.1 Data Description

A student record consists of an ordered list of 17 data fields. Demographic information
and mobility comprise the first five fields. The next 12 fields consist of absences,
grades (math and English), and standardized test scores for 1998, 1999, and 2000.
Demographic information and mobility for each student are summarized in Table 10.1.

1For individual students, the authors of the cited work hypothesize that absence has varying effects,
depending on the time of year that it occurs. The authors also hypothesize that absence when a large
proportion of the class is absent is not as harmful as other absence since a teacher may decide to postpone
a major lesson.

2A school year is referred to by the year in which it ends.
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Table 10.1: Demographic Information and Mobility

Variable Zero corresponds to One corresponds to
Gender Female Male
Race Non-black Black
Guardian Two parental figures Other
Subsidized lunch status Regular Free
Mobility Did not transfer Transferred

Small categorizations of race, guardian, and lunch status are collapsed to form two
categories for each variable. Guardian is defined to be the authority figure(s) with
whom the student resides. Subsidized lunch status is used as a proxy for socio-economic
status.

Mobility is a count of the number of times that a student changed schools3 in 1998-
2000. For students who transfer into the PPS, the number of moves prior to arriving
in the PPS is not known. Thus, for many students who transferred at least once, the
count of transfers in this data is a minimum number of transfers. For this reason and
because only 57 out of 1888 students are known to have transferred more than once
in the three years, mobility is collapsed into two categories. It is 0 if the student has
not transferred in the three-year period and 1 if the student transferred at least once.
A total of 362 of the 1888 students in the cohort under study transferred at least once
in the three-year period.

Absence is measured by the sum over semesters of the median number of days
per semester that a student is absent from class, where the median is taken over
all classes. This is done because formal attendance is not taken in some classes, but
instead students are arbitrarily marked all present or all absent for that class. The
average numbers of days absent for the students in this cohort are 15.6, 20.4, and 26.6
days respectively for 1998, 1999, and 2000.

Alphabetical English and math grades for each semester are translated to a numer-
ical scale (0 = F, . . . , 4 = A) and the two semesters of each academic year are summed.
If a student takes more than one math class in a semester,4 the median math grade
for that semester is taken; taking multiple English classes in one semester is handled
similarly.5 Only English and math grades are considered because most students have
these and no other classes in common.

Various “brands” of standardized tests are given every year to students in the PPS,
each with unique styles and objectives.6 The cohort of students in this study took the
Iowa Test of Basic Skills (ITBS) in 1998, the New Standards Reference Exam (NSRE)
in 1999, and the Pennsylvania System of School Assessments (PSSA) in 2000.7 In
1999, only Geometry students took the math section of the New Standards exam. For
this reason, only the English sections of the three tests are used in the model. Scores
for the PSSA and the ITBS tests are given in percentiles, while scores for the NSRE
are integers from 1 to 5 for each of four reading tests; the four tests are summed and
rescaled to range from 0 to 100.

3Taking vocational classes at a school other than the student’s primary school does not count as trans-
ferring, and moving from one school to another and back counts as two moves.

4Ten percent of the students take two math classes and 1% take three.
5Thirteen percent take two English classes and 1% take three.
6Only one cohort of students is used in this study because the different brands of tests are not directly

comparable.
7The Iowa test is a national multiple choice exam. The New Standards exam asks open-ended questions

to which students give a written answer. The Pennsylvania test contains both types of questions.
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Table 10.2: Percentage of Data Missing

Variable 2000 1999 1998
Standardized test 12% 22% 9%
Absences 3% 18% 9%
English grades 11% 23% 10%
Math grades 16% 26% 11%
Gender 0%
Race 0%
Guardian 2%
Subsidized lunch status 2%
Mobility 0%

Students in special schools or in certain types of special education (learning dis-
abled, mentally retarded, severely emotionally disturbed, brain injured, developmen-
tally delayed, and having multiple handicaps) are excluded from this study. Excluding
these students, there are a total of 1,888 students in the cohort of students in the 11th
grade in 2000.

10.2.2 Missing Data

Test scores, grades, absences, and some demographic information are missing. The
amount of missing data varies with the category of the information and the year.
Table 10.2 summarizes how much data are missing for each of the variables.8

There are a variety of reasons why the data are missing. Any of the fields may be
missing due to incorrectly entered student identification numbers or a lack of reporting
by a school to the central administration. In addition, grades and test scores may also
be missing if the student did not take the particular class or test.

Three reasons for a student not to take a test are

1. The student is sick on the test day and all makeup days.

2. The student moves into the PPS after the test was administered.

3. The student chooses not to come to school on test and makeup days.

This study ignores the unlikely event of the first reason. The second reason is
addressed by the mobility coefficient. The third reason to miss a test is by the student’s
choice, which is addressed in Section 3 via the construction of a choice indicator. Three
reasons (other than due to lack of reporting) that math grades might be missing are

1. The student has exhausted all available math classes.

2. The student moves into the PPS.

3. The student chooses not to take math.

Because the students are (at oldest) in the 11th grade, the first reason is unlikely
to happen and so is ignored. As in the treatment of the missing tests, the second
reason is addressed by the mobility coefficient, and the third is addressed via a choice
indicator. All students in the cohort are required to take an English class. The mobility
coefficient addresses the only reason for English grades to be missing other than due
to lack of reporting.

A choice indicator is an indicator variable that differentiates students who choose

8The most missing data occur in 1999, possibly due to a conversion between two data management
systems.
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not to take a test or class from those who choose to take it. A missing math grade in
the presence of English grades indicates the choice by the student not to take math.
Similarly, the absence of test scores in the presence of absence information indicates
a choice not to take the standardized test. There are six choice indicators, one math
and one test indicator for each year.

10.3 Model Specification

Inference is based on the posterior distribution of the parameters and the missing
values given the observed data. Since the posterior is proportional to the full joint
distribution of the data and the parameters, it is sufficient to specify the full joint
distribution. The full joint distribution is specified by the prior distribution of the
parameters, which is discussed in Subsection 10.3.4, and the likelihood of the data,
described in Subsections 10.3.2 and 10.3.3. Subsection 10.3.2 describes the model as
if no data were missing. Subsection 10.3.3 incorporates the choice indicators into the
model in order to account for the missing data. Subsection 10.3.1 describes the nota-
tion.

10.3.1 Notation

Let (T00, T99, T98) be the English standardized test scores from 2000, 1999 and 1998
respectively. Likewise, let math grades, English grades, and absences be defined re-
spectively

M = (M00,M99,M98)
E = (E00, E99, E98)
A = (A00, A99, A98)

The five discrete variables (sex, race, guardian, lunch, mobility) are collectively referred
to as D and individually by name.

The six choice indicators are defined to be 1 if the corresponding variable is
missing due to choice and 0 otherwise. The choice indicators share the same sym-
bol as the variable they correspond to, but are superscripted with an open ball:
T o00, T

o
99, T

o
98,M

o
00,M

o
99,M

o
98.

10.3.2 Likelihood without Choice Indicators

Ignoring the choice indicators, the likelihood of the data is determined by sequentially
specifying the conditional distribution of a group of variables, conditional on the ones
previously specified. The distribution of the discrete variables (D) is specified first,
followed by the conditional distributions of English grades (E) and absences (A), and
then followed by the math grades (M) and standardized test variables.

10.3.2.1 Discrete Variables

The five discrete variables, with two levels each, define a 2× 2× 2× 2× 2 contingency
table with 32 “cells”. These cells are interchangeably indexed by one index taking
values from 0 to 31 or by five indices {srglm} where s varies over the two values of
sex, r varies over race, g varies over guardian, l varies over subsidized lunch status,
and m varies over mobility. Let g(D) be a mapping from a set of discrete variable
realizations to {0, . . . , 31}.

A count of the number of students in each cell is considered to be a draw from
a multinomial distribution of N = 1888 students with cell probabilities πsrglm. Let



174 Absence

G(D) be a representation of the contingency table as a 32-long vector of counts

G(D)|{λ} ∼ Multinomial(N, {πsrglm}), (10.1)

where λ is a vector of parameters defined in the next equation. In order to reduce the
number of parameters, a loglinear model is used for the expected number of students
in each cell

log(Nπsrglm) = λmean + λsexs + λracer + λguardiang + λlunchl + λmobilitym + λrace,guardianrg

+λrace,lunchrl + λrace,mobilityrm + λguardian,lunchgl + λguardian,mobilitygm

+λlunch,mobilitylm

The loglinear model makes the usual assumption that all the expected cell means
are greater than zero. By using a restricted set of two-way interactions, the model
incorporates the assumption that sex is independent of the other discrete variables.

10.3.2.2 English Grades and Absences

English grades and absences are modeled jointly as a multivariate normal, conditional
on the discrete variables. Let µ = (µ0, . . . , µ31) be a 6 × 32 matrix of means where
each column corresponds to a cell and each row within a column corresponds to one
of the English or absence variables. Let C = (E00, E99, E98, A00, A99, A98), so µi is
the mean vector of the variables in C for a particular cell. Let Σ be the 6× 6 matrix
of covariances of the English and absence variables; the same Σ is used for each cell.
Then

C|(D,µ,Σ) ∼ MultiN6{µg(D),Σ}, (10.2)

where the µg(D)s are hierarchically modeled by

µg(D) = ρ0 + ρ1sex + ρ2race + ρ3guardian + ρ4lunch + ρ5mobility.

in order that cells with small numbers of observations may draw strength from cells
with larger numbers of observations. Each ρi for i = 0, . . . , 5 is a 6-long vector.

English grades and absences are modeled jointly for two reasons. First, for each
student, absences and grades from one year to the next are related because students’
study habits and abilities change gradually. Second, within a year, absences and grades
are related directly because students who are absent miss the benefit of in-class expla-
nation. In addition, the teacher’s perception of the student’s abilities may be affected
by the students lack of attendance.

10.3.2.3 Standardized Tests and Math Grades

The distributions of the standardized tests and math grades are specified conditional
on English grades, absences, and the discrete variables. Because analysts at the Pitts-
burgh Board of Education are familiar with interpreting linear regressions, a linear
model with normal errors is used. Tests and math grades are modeled sequentially
rather than jointly in order to allow freedom in the placement of the choice indicator,
as described in Subsection 10.3.3. The linear model describing the 2000 standardized
test is

T00 = βT00
0 + βT00

1 T99 + βT00
2 T98 + βT00

3 M00 + βT00
4 M99 + βT00

5 M98 + βT00
6 E00

+ βT00
7 E99 + βT00

8 E98 + βT00
9 A00 + βT00

10 A99 + βT00
11 A98 + βT00

12 sex (10.3)

+ βT00
13 race + βT00

14 guardian + βT00
15 lunch + βT00

16 mobility + εT00
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where the errors εT00 ∼ N(0, σ2T00) are independent between students. Equation 10.3
is summarized by

T00|(T99, T98,M,E,A,D, θ) ∼ N [(1, T99, T98,M,E,A,D) · βT00 , σ2T00 ], (10.4)

where θ represents all of the parameters used in the entire model, a · b denotes the dot
product of a and b, and βT00 = (βT00

0 , βT00
1 , . . . , βT00

16 ).
Similarly, the distributions for remaining standardized tests and math grades are

expressed compactly as

T99|(T98,M,E,A,D, θ) ∼ N [(1, T98,M,E,A,D) · βT99 , σ2T99 ], (10.5)

T98|(M,E,A,D, θ) ∼ N [(1,M,E,A,D) · βT98 , σ2T98 ], (10.6)

M00|(M99,M98, E,A,D, θ) ∼ N [(1,M99,M98, E,A,D) · βM00 , σ2M00 ], (10.7)

M99|(M98, E,A,D, θ) ∼ N [(1,M98, E,A,D) · βM99 , σ2M99 ], (10.8)

M98|(E,A,D, θ) ∼ N [(I, E,A,D) · βM98 , σ2M98 ], (10.9)

where the regression coefficient vectors βT99 , βT98 , βM00 , βM99 , and βM98 are of decreas-
ing sizes, from 16 to 12-dimensional.

Distributions 1-2, and 4-9 relate the 2000 standardized test to previous standard-
ized tests, grades, absences, mobility and demographic information. There are many
other factors for which we do not have data that could be related to performance
on the 2000 standardized test, such as teacher absences, teacher qualifications and
recent student attentiveness and effort. Since there are factors relating to the 2000
standardized test that are not included in the model or controlled in an experiment,
the coefficients in Equation (10.3) cannot be interpreted as the effect of a variable. In
other words, the relationship is not necessarily causal, but rather associational.

10.3.3 Likelihood with Choice Indicators

The likelihood in the previous section must be modified due to the selection bias
caused by students choosing not to take an exam or math class. The distributions of
the discrete variables, English grades and absences do not change from the previous
section; only the distributions of the test and math variables change.

To take selection bias into account, choice indicators are included in the model.
Six choice indicators, one for each test and math class, are incorporated into Equa-
tion (10.3) and the similar equations corresponding to Distributions 4 through 9 as
another term in the linear model. With the choice indicator, Equation (10.3) becomes

T00 = βT00
0 + βT00

1 T99 + βT00
2 T98 + βT00

3 M00 + βT00
4 M99 + βT00

5 M98 + βT00
6 E00

+ βT00
7 E99 + βT00

8 E98 + βT00
9 A00 + βT00

10 A99 + βT00
11 A98 + βT00

12 sex + βT00
13 race

+ βT00
14 guardian + βT00

15 lunch + βT00
16 mobility + βT00

17 T o00 + εT00 , (10.10)

where βT00 is now 18-dimensional. The errors εT00 are independent and normal as
before. Only one of the six choice indicators is included in each linear model. The
distributions of all of the test and math variables can be compactly described by

T00|(T o
00, T99, T98,M,E,A,D, θ) ∼ N [(1, T99, T98,M,E.A,D, T o

00) · βT00 , σ2T00 ], (10.11)

T99|(T o
99, T98,M,E,A,D, θ) ∼ N [(1, T98,M,E,A,D, T o

99) · βT99 , σ2T99 ], (10.12)

T98|(T o
98,M,E,A,D, θ) ∼ N [(1,M,E,A,D, T o

98) · βT98 , σ2T98 ], (10.13)

M00|(Mo
00|Mo

00,M99,M98, E,A,D, θ) ∼ N [(1,M99,M98, E,A,D,M
o
00) · βM00 , σ2M00 ] (10.14)

M99|(Mo
99,M98, E,A,D, θ) ∼ N [(1,M98, E,A,D,M

o
99) · βM99 , σ2M99 ] (10.15)

M98|(Mo
98, E,A,D, θ) ∼ N [(1, E,A,D,Mo

98) · βM98 , σ2M98 ], (10.16)
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where the regression coefficient vectors βT00 , βT99 , βT98 , βM00 , βM99 , and βM98 are of
decreasing sizes, now from 18 to 13-dimensional.

A negative choice indicator coefficient means that a student who chooses not to
take an exam or class tends to have a lower 2000 standardized test score than a similar
student who does take the exam or class.

The choice indicators are modeled to depend on the test and math variables
through the fitted value of the linear models, excluding the choice indicator terms.
For example, let T̃00 denote the fitted value of the linear model describing T00, exclud-
ing the choice indicator term

T̃00 = βT00
0 + βT00

1 T99 + βT00
2 T98 + βT00

3 M00 + βT00
4 M99 + βT00

5 M98 + βT00
6 E00

+ βT00
7 E99 + βT00

8 E98 + βT00
9 A00 + βT00

10 A99 + βT00
11 A98 + βT00

12 sex

+ βT00
13 race + βT00

14 guardian + βT00
15 lunch + βT00

16 mobility

and similarly define T̃99, T̃98, M̃00, M̃99, and M̃98. Then for each Xε{T00, T99, T98,M00,
M99,M98}

Xo | (X̃, δX) ∼ Bernoulli(pX), (10.17)

where
logit(px) = δ0

X + δ1
XX̃,

and where pX = Pr(Xo = 1) and δX = (δ0
X , δ

1
X) is a 2-dimensional parameter. The

choice indicator is modeled by a Bernoulli distribution with the probability of success
described by a generalized linear model with a logit link function.

Test and math grade variables are modeled separately (as opposed to fitting a
covariance matrix to the six variables) in order to allow the test and math variables
to depend on the choice indicators and to allow the choice indicators to depend on
the previous years test and math variables. Because the choice indicators and the test
and math grade variables are intertwined, a single multivariate normal distribution
cannot be used to describe the test and math grade variables.

10.3.4 Prior Distributions

Multiplying the densities associated with Distributions 10.1, 10.2, and 10.11 through
10.17 gives a function proportional to the likelihood of the data. Multiplying this by
the prior distributions of the parameters yields a function proportional to the full joint
distribution of the parameters and the data.

The parametric families of the prior distributions are chosen for convenience and
the parameters of the prior distributions are elicited when feasible. In particular, the
means of the linear model coefficients are elicited directly. Elicitation of the spreads
of the linear model coefficients is described below. The linear model coefficients are all
modeled as having normal distributions. The other variables have a less intuitive inter-
pretation and thus diffuse but proper priors are used. The opinions elicited are those
of one of the authors (John Garrow), who is an expert in the educational assessment
of Pittsburgh students.

Spreads of the linear model coefficients are elicited at one of three levels: the expert
is “very sure,” “sure,” or “not sure” of the mean estimate. “Sure” and “very sure”
are interpreted as being confident of the sign of the estimate. Being “very sure” of a
mean estimate corresponds to placing 95% of the mass of the prior distribution within
±25% of the mean estimate. Being “sure” of the mean estimate corresponds to 95% of
the mass being within 100% of the mean estimate - in other words, being fairly certain



Pragmatics of Uncertainty 177

of the sign of the estimate. “Not sure” is interpreted as having 95% of the mass of the
prior distribution within ±300% of the mean estimate.9

Table 10.3 summarizes the parametric family, parameter sizes and values of the
diffuse prior distributions. Tables 10.4 and 10.5 present the elicited priors for both the
standardized tests and math grades.

10.4 Methodology for Sampling from the Posterior Distribution

Samples are obtained by running a Metropolis-Hastings algorithm within a Gibbs
sampler (see Gelfand and Smith (1990); Gilks et al. (1996); Gelman et al. (1995))
twice, for 50,000 iterations each; the first half of each run is considered a burn-in
period and is discarded.

A Gibbs sampler is applied to the current problem by treating the missing data
and the model parameters as two random vectors. This technique is known as data
augmentation, developed by Tanner and Wong (1987). An iteration consists of first
drawing values for the parameters assuming a full data set and then drawing values for
the missing data assuming the parameter values are known. Because the distribution of
the parameters given all of the data is not easy to sample from directly, a Metropolis-
Hastings step is used for groups of parameters. For all parameters but Σ and σ2

i ,
the candidate value is drawn from a normal proposal distribution centered at the
current value. The proposal distributions for Σ and σ2

i are Wishart and truncated
normal, respectively. Samples drawn in this way are proven to converge to the target
distribution of the chain in Tierney (1994). The Gelman-Rubin convergence diagnostic,
discussed in the Appendix, is used to assess convergence.

10.5 Results

The first question of interest, how mobility and absences relate to student performance,
can be answered by the marginal posterior distribution of the mobility and absence
variables. The second question of interest, how mobility and absences relate to one
another, can be answered by examining the distribution of the ratio of the mobility
to absence coefficients. Both questions can be addressed with samples from the joint
distribution of the parameters and the missing data, conditional on the observed data.
Although there are mobility and absence variables throughout the model, those in βT00

are of particular interest because they relate mobility and absence to the standardized
test in the year in which the students were selected.

Figure 10.1 shows the marginal prior and posterior distribution of the mobility
component of βT00 based on 50,000 post-burn-in samples. Figure 10.1 also contains
the same information for the three absence coefficients. The solid line on the figures
is the prior distribution, and the histogram is made from samples from the posterior,
scaled to integrate to 1.

The posterior median of the mobility coefficient is -2.5, with a 90% credible interval
of (-4.5, -.63). A coefficient of -2.5 means that a student who moved at least once in
the three year period has a score of 2.5 percentile points lower than a similar student
who did not move, according to this model. Because the posterior distribution of the
mobility coefficient has 99.9% of its mass below 0, mobility almost certainly hurts
a student’s academic performance, as measured by the 2000 English given to 11th
graders in the PPS.

9The expert states that “sure” corresponds to ±100%, but feels that “not sure” and “very sure” could
just as reasonably correspond to 75% and 125% as the values given. These prior spread values produced no
noticeable difference in the posteriors from those specified in the text and figures.
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Table 10.3: Summary of Unelicited Prior Distributions

Model parameter Dimension Prior family Mean vector Covariance matrix
δT00

2 Normal (0,0) 100I2
...

...
...

...
...

δM98
2 Normal (0,0) 100I2

λmean 1 Normal -1.5 100
λgender 1 Normal 0 100
...

...
...

...
...

λlunch,mobility 1 Normal 0 100
ρ0 6 Normal (4,4,4,15,15,15) 100I6
ρ1 6 Normal (0,0,0,0,0,0) 100I6
...

...
...

...
...

ρ5 6 Normal (0,0,0,0,0,0) 100I6

Model parameter Dimension Prior family Parameters
σ2
T00

1 Scaled Inv - χ2 100, 14.7
...

...
...

...
σ2
M98

1 Scaled Inv - χ2 100, 14.7
Σ 6 by 6 Inv-Wishart 10
Note 1: I2 is a k × k identity matrix.
Note 2: The two parameters of the scaled inverse χ2 distribution are called the
degrees of freedom and scale parameters, respectively.

Table 10.4: Means and Spreads of Elicited Standardized Test Linear Model Coefficient
Distributions

Variable βT00 βT99 βT98

Math grade 2.75 (2) 3 (2) 2.5 (2)
English grade 4.5 (2) 5 (2) 4 (2)
Absence -0.113 (2) -0.125 (3) -0.1 (1)
Gender -3.5 (2) -3 (1) -4 (3)
Race -3.5 (2) -3 (1) -4 (3)
Guardian -17 (2) -15 (2) -19 (3)
Lunch -22.5 (3) -20 (3) -25 (3)
Mobility -3.5 (2) -3 (2) -4 (3)
1999 test 0.4 (1) N/A N/A
1998 test 0.4 (1) 0.6 (1) N/A
Missing value -10 (2) -10 (2) -10 (2)
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Table 10.5: Means and Spreads of Elicited Math Linear Model Coefficient Distributions

Variable βT00 βT99 βT98

English grade 0.5 (2) 0.5 (2) 0.5 (2)
Absence -0.05 (3) -0.05 (3) -0.05 (3)
Gender -0.01 (1) -0.01 (1) -0.01 (1)
Race -1 (1) -1 (1) -1 (1)
Guardian -0.25 (2) -0.25 (2) -0.25 (2)
Lunch -1 (3) -1 (3) -1 (3)
Mobility -0.3 (2) -0.3 (2) -0.3 (2)
1999 math grade 0.4 (2) N/A N/A
1998 math grade 0.4 (2) 0.6 (2) N/A
Missing value -1 (2) -1 (2) -1 (2)
Note. Numbers in parentheses are the spread estimates: 3 = “very sure,”
2 = “sure,” 1 = “not sure.”

The three absence coefficients in Figure 10.1 relate absence in 1998, 1999 and 2000
to the 2000 English PSSA. The relationship of absence and student achievement is
generally negative. The posterior medians of the 2000, 1999 and 1998 absence coef-
ficients are -0.18, -0.07 and -0.02 respectively. 90% credible intervals for the 2000,
1999, and 1998 absence coefficients are (-0.23, -0.13), (-0.14, -0.02) and (-0.08, 0.06)
respectively. Absences in 2000 have a stronger relationship to performance on the 2000
standardized test than absences in 1999, as 97% of the sampled 2000 absence coeffi-
cients are smaller than the 1999 absence coefficients. Since 78% of the sampled 1999
absence coefficients are smaller than the 1998 absence coefficients, absences in 1999
have a stronger relationship to the 2000 standardized test than absences in 1998. The
direction of the relationship between absences in 1998 and the 2000 standardized test
is not clear when absences in more recent years are taken into account. In general, an
absence coefficient of -0.2 means that being absent an extra day in the particular year
is associated with a decrease in a student’s 2000 achievement test by two-tenths of a
percentile point.

To summarize the coefficients in Equation 10.10, Table 10.6 gives 90% credible
intervals for the linear model coefficients. Thirteen of the seventeen credible intervals
do not contain zero. In general, better grades and previous test scores are associated
with better 2000 standardized test scores. Mobility and more absence are associated
with lower 2000 standardized test scores.

Because absence in 2000, absence in 1999, and mobility are related to student
performance in a clearly negative way, mobility can be expressed in terms of the
equivalent number of absences using the ratio of mobility to absence in a particular
year. The second question of interest is answered with the posterior distributions of
the ratio of the mobility coefficient to the 2000 and 1999 absence coefficients, shown
in Figure 10.2. The solid lines in Figure 10.2 represent the prior distributions. Both
of the distributions in Figure 10.2 have heavy right tails, with very little mass below
zero. The histograms show that on average (as measured by the median), being absent
about 14 days in 2000 or 32 days in 1999 is equivalent to having moved at least once, in
terms of the relationship of each to a student’s 2000 standardized test score. Because
the mass of the distribution of the mobility to 1999 absence is much greater than
mobility to 2000, absences in 2000 are more closely related to a student’s performance
on the 2000 standardized test than absences in 1999. This is plausible since prior to
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performance on the 2000 standardized test than absences in 1999, as 97% of the
sampled 2000 absence coefficients are smaller than the 1999 absence coefficients.
Since 78% of the sampled 1999 absence coefficients are smaller than the 1998
absence coefficients, absences in 1999 have a stronger relationship to the 2000
standardized test than absences in 1998. The direction of the relationship
between absences in 1998 and the 2000 standardized test is not clear when
absences in more recent years are taken into account. In general, an absence co-
efficient of −0.2 means that being absent an extra day in the particular year is asso-
ciated with a decrease in a student’s 2000 achievement test by two-tenths of a
percentile point.

To summarize the coefficients in Equation 10, Table 6 gives 90% credible inter-
vals for the linear model coefficients. Thirteen of the seventeen credible intervals
do not contain zero. In general, better grades and previous test scores are associated
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FIGURE 1. Marginal prior and posterior for mobility and absence coefficients.
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Figure 10.1: Marginal prior and posterior for mobility and absence coefficients.

taking the 2000 standardized test, a student has more opportunities to learn material
missed on a particular day in 1999 than material missed in 2000.

10.6 Conclusions

The results of this study indicate that absence and mobility are negatively correlated
to a student’s standardized test scores and hence to academic achievement. An obser-
vational study such as this one does not provide evidence that these relationships are
causal, as opposed to merely associative. However, if even part of the association is
causal, then the results of this study could guide policymakers when presented with a
choice between paying for programs to decrease mobility10 or programs to encourage
students to attend school more regularly. Even if none of the association is causal, the
results of this study provide a warning to policymakers that students who move or are
chronically absent need special attention.

While the results of this study may be relevant to a choice between decreasing
mobility or decreasing absence, there are other factors to consider. On one hand, even
if the relationship between moving and standardized test scores is purely causal (an

10For example, buses could be used to keep students in the same school despite within PPS moves.
Alternatively, curriculum content and order could be unified across the district to lessen the academic
disruption of a move.



Pragmatics of Uncertainty 181

Table 10.6: 2000 Standardized Test Linear Model Coefficient Posteriors

2000 Standardized Test Linear Model Coefficient Posteriors
Variable 90% Credible Interval
Test 1999 (0.4, 0.5) (*)
Test 1998 (0.3, 0.6) (*)
Math 2000 (0.3, 1.0) (*)
Math 1999 (0.1, 1.0) (*)
Math 1998 (0.4, 1.1) (*)
English 2000 (0.9, 1.7) (*)
English 1999 (-0.4, 0.6)
English 1998 (-0.9, -0.04) (*)
Gender (-1.0, 1.7)
Absence 2000 (-0.2, -0.1) (*)
Absence 1999 (-0.1, -0.02) (*)
Absence 1998 (-0.08, 0.06)
Race (-4.2, -0.8) (*)
Guardian (-0.5, 2.5)
Lunch (-4.3, -1.5) (*)
Mobility (-4.5, -0.6) (*)
Choice indicator (-18.5, -1.7) (*)
Note. (*) indicates that the credible interval does not contain zero.

observational study such as this one does not provide evidence that these rela-
tionships are causal, as opposed to merely associative. However, if even part of
the association is causal, then the results of this study could guide policymakers
when presented with a choice between paying for programs to decrease mobil-
ity10 or programs to encourage students to attend school more regularly. Even if
none of the association is causal, the results of this study provide a warning to
policymakers that students who move or are chronically absent need special
attention.

While the results of this study may be relevant to a choice between decreasing
mobility or decreasing absence, there are other factors to consider. On one hand, even
if the relationship between moving and standardized test scores is purely causal (an
unlikely scenario), the effect of moving cannot be eliminated for two reasons. First,
only students who move within the district would benefit from a busing program or
a curriculum unification program. Second, in addition to a disruption in curriculum,
moving creates a disruption in a student’s social support network, which may affect
academic performance. On the other hand, all students with less than perfect atten-
dance would benefit from a program that increases attendance. Good overall class-
room attendance would allow a teacher to assume more common background and
allow him or her to spend time taking a subject further in depth rather than repeating
basics for students who were absent.

In conclusion, the data used in this study support the view that mobility and absence
have a negative relationship with student academic achievement, as measured by
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FIGURE 2. Prior and posterior for the number of days of absence equivalent to changing
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Figure 10.2: Prior and posterior for the number of days of absence equivalent to changing
schools.
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unlikely scenario), the effect of moving cannot be eliminated for two reasons. First,
only students who move within the district would benefit from a busing program or
a curriculum unification program. Second, in addition to a disruption in curriculum,
moving creates a disruption in a student’s social support network, which may affect
academic performance. On the other hand, all students with less than perfect atten-
dance would benefit from a program that increases attendance. Good overall classroom
attendance would allow a teacher to assume more common background and allow him
or her to spend time taking a subject further in depth rather than repeating basics
for students who were absent. In conclusion, the data used in this study support the
view that mobility and absence have a negative relationship with student academic
achievement, as measured by the PSSA in 2000. The harm associated with mobility
is, on average, equivalent to being absent 14 days in 2000 or 32 days in 1999.

10.7 Discussion

The data used in this study are not ideal due to the limited geographic area and
diversity of one district and limited types of data collected about that district. Because
the data are drawn from databases meant to track student performance, desirable but
not available are data about schools, such as a measure of the academic strength of
each school, and data about teachers, such as the number of days that a teacher is
absent. Absence of the teacher may lead to a lack of in-class instruction if the teacher
has not prepared a suitable lecture or activity for the substitute teacher. Although a
lack of in-class instruction for the entire class due to teacher absence may not be as
harmful as student absences, teacher absences would be useful to include in the model
if the data were available.

Ideally, in order to draw conclusions about the nation’s school population, a na-
tional data set, such as the National Assessment of Education Progress (NAEP), would
be used. The authors leave this as future work.

Appendix

The Metropolis-Hastings Algorithm within a Gibbs sampler converges to the full joint
distribution of the data and the parameters, but whether convergence has been reached
at any given time is always a concern. By running two overly dispersed chains for the
initial runs described above and the sensitivity runs described below, convergence is
tested by comparing the two chains. The Gelman-Rubin Convergence diagnostic is
used as implemented in BOA (Bayesian Output Analysis), an Splus software plug-in.

Details of the Gelman-Rubin convergence diagnostic are found in (Gilks et al.,
1996). The diagnostic is based on a comparison of within chain variance and between
chain variance. If these two are different enough, convergence has not been reached
and the chains should be run longer. Neither this convergence diagnostic nor any other
guarantee that convergence has been reached.

In this application, the Gelman-Rubin diagnostics are run on the second half of the
50,000-long chains. Following the rule of thumb suggested by Gelman in Gilks et al.
(1996) (i.e., declare convergence if the statistic is less than 1.2), the chains do not need
to be run any longer for convergence reasons.

Because the prior and posterior distributions of the mobility coefficient in Fig-
ure 10.1 are so similar, the sensitivity of the model to this prior distribution is ad-
dressed by considering two alternative priors. Markov Chains are run using prior means
of -5 and -2 (the original prior is centered at -3.5) and prior standard deviations of
2.5. The results are shown in Figure 10.3. Compared to the original elicited prior, the
posterior mean of the prior centered at -5 is slightly more negative and has increased
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In addition to evaluating the sensitivity of the results to the prior, the sensitivity
of the results to the model for missing data should be considered. The definition of
pX following Equation 17 has the form of a generalized linear model with a logit link
function. Figure 4 shows the same information as Figure 1 but corresponding to a
probit rather than a logit link function. While the mobility and 1999 absence coef-
ficients are virtually identical to the corresponding ones for the logit link func-
tion, there are noticeable differences in the posterior distributions of 2000 and
1998 absence. The probit model leads to increased uncertainty and more negative
values in both absence coefficients.
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Figure 10.3: Marginal prior and posterior for mobility coefficientselicited prior and two
alternate priors.

uncertainty. The posterior distribution based on the prior centered at -2 did not change
much compared to the original prior distribution. Therefore, mobility appears to be
slightly sensitive to negative changes in the prior but not positive ones.

In addition to evaluating the sensitivity of the results to the prior, the sensitivity
of the results to the model for missing data should be considered. The definition of pX
following Equation (10.17) has the form of a generalized linear model with a logit link
function. Figure 10.4 shows the same information as Figure 10.1 but corresponding
to a probit rather than a logit link function. While the mobility and 1999 absence
coefficients are virtually identical to the corresponding ones for the logit link function,
there are noticeable differences in the posterior distributions of 2000 and 1998 absence.
The probit model leads to increased uncertainty and more negative values in both
absence coefficients.
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Notes
1 For individual students, the authors of the cited work hypothesize that absence

has varying effects, depending on the time of year that it occurs. The authors also
hypothesize that absence when a large proportion of the class is absent is not as harm-
ful as other absence since a teacher may decide to postpone a major lesson.

2 A school year is referred to by the year in which it ends.
3 Taking vocational classes at a school other than the student’s primary school

does not count as transferring, and moving from one school to another and back
counts as two moves.

4 Ten percent of the students take two math classes and 1% take three.
5 Thirteen percent take two English classes and 1% take three.
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FIGURE 4. Marginal prior and posterior for mobility and absence coefficients (probit
missing data model).
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Figure 10.4: Marginal prior and posterior for mobility and absence coefficients (probit miss-
ing data model).
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Chapter 11

Hierarchical Models for Employment Decisions
(2004)

Foreword

I met George Woodworth in 1966, as he was coming to the Statistics Department
at Stanford as an incoming Assistant Professor, and I was leaving to take my first
job as Assistant Professor at Yale. Because he, like me, had a taste and respect for
doing statistics, I passed to him my consulting contacts at Stanford’s Political Science
Department.

Years later, George was a regular visitor at CMU because his daughter was a
CMU undergraduate. When George spent a sabbatical at CMU, we had time to get
reacquainted. It turned out that we both had experience testifying as expert witnesses,
and in fact we had worked on similar cases involving employers disadvantaging older
workers. Additionally, we agreed on the strength of Bayesian analyses in general, and
in particular in legal settings. The work I had done in Kadane (1990) [paper #3 in this
volume] was satisfying as far as it went. It was premised on firing events at four discrete
time points. In the cases that George and I had to confront more recently, firings did
not happen in discrete lumps, but rather gradually over a period of years. At first
George proposed dividing time into quarters of a year, but agreed that such a division
was arbitrary and unsatisfying. We wanted to think of time as a continuous variable,
although of course the events of interest occurred at particular discrete moments.

Thinking of time continuously leads to the following issue. Suppose the log odds
ratio is the fundamental quantity of interest. Imagine that one day there is only one
person fired, and this person is over forty. On the next day, again only one person is
fired, and this person is under forty. Then the empirical log odds ratio will have swung
from +∞ on the first day to −∞ on the second. We wouldn’t want to over-smooth
either, (for example, by assuming a constant log odds ratio over the entire period).
Clearly informative priors are needed to smooth the data.

Using a Cox proportional hazards model and a Gaussian process prior on the time-
varying, log-relative hazard β(t), the question comes down to what to assume about
the smoothness parameter τ . To find a reasonable prior, we reverted to thinking about
how much change in β(t) would we expect in a quarter of a year. We decided that low
probability of more than 15% change in a quarter was reasonable, and this led to a
gamma prior on τ with mean .005 and shape 1.

The computation of the posterior distribution was an issue because the Markov
Chain Monte Carlo did not mix well. This was overcome by using only the largest
principal components of the underlying integrated Weiner process.

The results showed that in case K, the plaintiff was very likely disproportionately
disadvantaged because of age, and this result is robust to changes in the mean of the
smoothness parameter τ . However, for case W , involving two plaintiffs and a change
in the top management of the company, the results were less clearcut.

This paper was originally published in the Journal of Business and Economic
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Where are they now? George Woodworth is enjoying a well-deserved retirement.
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Abstract

Federal law prohibits discrimination in employment decisions against persons in certain pro-
tected categories. The common method for measuring discrimination involves a comparison of
some aggregate statistic for protected and non-protected individuals. This approach is open
to question when employment decisions are made over an extended time period. We show how
to use hierarchical proportional hazards models (Cox regression models) to analyze such data.

Key words: Age discrimination; Bayesian analysis; Hierarchical model; Proportional haz-
ards model; Smoothness prior.

11.1 Introduction

Federal law forbids discrimination against employees or applicants because of an em-
ployee’s race, sex, religion, national origin, age (40 or older), or handicap. General
discrimination law–say discrimination by race or sex–offers two somewhat distinct
legal theories. A disparate treatment case involves policies that on their face treat
individuals differently depending on their (protected) group membership, such as a
rule prohibiting women from being firefighters.

A disparate impact case, however, permits evidence that a facially neutral policy
–say a height requirement for firefighters –has the effect of making it relatively more
difficult for women than men to obtain such employment. If the data show a pattern
of unfavorable actions (firing, failure to hire, failure to promote, low raises, etc.) dis-
proportionately against the protected group, this can establish or help to establish a
prima facie case against the defendant. A prima facie case does not establish the defen-
dant’s liability. Instead it shifts the burden of producing evidence to the defendant to
explain the business necessity of the disproportionately adverse actions taken against
the protected group. In such a case the employer would have to justify the require-
ment in terms of the needs of the job, and the fact finder (judge or jury) would have to
determine whether the justification is a pretext for discrimination or not (Gastwirth,
1992; Kadane and Mitchell, 1998).

Race and sex discrimination cases fall under Title VII of the Civil Rights Act of
1964, whose provisions permit a prima facie case to be made by statistical evidence
that members of the protected class are more likely to experience the adverse outcome
of an employment decision. However, age discrimination cases are heard under the
Age Discrimination in Employment Act of 1967, whose provisions allow differential
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tics, Carnegie Mellon University, Pittsburgh, PA 15213. George G. Woodworth is Professor, Department of
Statistics and Actuarial Science and Department of Preventive Medicine, University of Iowa, Iowa City, IA
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189



190 Continuous Time Employment Decisions

treatment of employees based on “reasonable factors other than age,” which could
be interpreted as barring a disparate impact age discrimination case. The Supreme
Court in Hazen Paper v. Biggins, 123 L.Ed. 2d 338, 113 S.Ct. 1701 (1993), explicitly
declined to decide this matter. Various courts and judges have discussed it [Judge
Greenberg in DiBiase v. Smith Kline Beecham Corp. 48 F. 3rd 719 (1995), Judge
Posner in Finnegan et al. v. Transworld Airlines, 967 F. 2nd 1161 (7th Cir., 1992),
and the references cited there].

However this legal debate is resolved, we expect that statistical evidence of how an
employer’s policies affect older workers will continue to be relevant, in the legal sense,
for the following reason. Federal Rule of Evidence 401 defines relevant evidence as evi-
dence that has “any tendency to make the existence of any fact that is of consequence
to the determination of the action more probable or less probable that it would be
without the evidence.” The issue in disparate treatment cases is establishing the intent
of the employer. If an analysis shows that the facially neutral policy of the employer
did differentially harm older workers, that reasonably makes it more probable that the
employer intended the harm. Thus, we expect our analyses to continue to be relevant,
regardless of the fate of the doctrine of disparate impact in age discrimination cases.

In this article we advocate the use of Bayesian analysis of employment decisions,
which raises a second legal issue concerning the admissibility of such analysis to age
discrimination cases. The rules on what constitutes admissible expert testimony in
U.S. courts have changed. Under the Frye rule [Frye v. United States, 54 App.D.C.
46, 47, 293 F. 1013, 1014 (1923)], expert opinion based on a scientific technique is
inadmissible unless the technique is “generally accepted” as reliable in the scientific
community. Congress adopted new Federal Rules of Evidence in 1975. Rule 702 pro-
vides “[i]f scientific, technical or other specialized knowledge will assist the trier of
fact to understand the evidence or to determine a fact in issue, a witness qualified as
an expert by knowledge, skill, experience, training or education, may testify thereto
in the form of an opinion or otherwise.” In the case of Daubert, et ux. etc. et al. v.
Merrell Dow Pharmaceuticals, Inc. 509 U.S. 579; 113 S.Ct. 2786 (1993), the Supreme
Court unanimously held that Federal Rule 702 superseded the Frye test.

The Daubert decision, continuing with dicta (of lesser standing than holdings), of
seven Supreme Court justices, goes on to define “scientific knowledge.” “The adjective
‘scientific’ implies a grounding in the methods and procedures of science. Similarly, the
word ‘knowledge’ connotes more than subjective belief or unsupported speculation.”
Thus the Daubert decision might be read as casting doubt on the admissibility of
Bayesian analyses in Federal court, because the priors (and likelihoods) are intended
to express subjective belief. We think that this reading of Daubert is occasioned by a
misinterpretation of what Bayesian statisticians mean by subjectivity. The alternative,
that is, claims of objectivity in the sense that anyone who disagrees is either a fool or a
knave, is without basis, and appears to be an attempt at proof by verbal intimidation.
To hold as we do, that every model (including frequentist models) reflects and expresses
subjective opinions, is not to hold that every such opinion has an equal claim on the
attention of a reader or a court. For an analysis to be most useful, it should be
persuasive to a fact finder that an analysis done with his or her own model–likelihood
and prior–would result in similar conclusions. This can be done with a combination of
arguments based on reasons for the chosen likelihood and prior (other data, scientific
theory, etc.) and robustness (the conclusions would be similar with other models “not
too far” from the one analyzed). Thus, our view is that an analysis ought neither to be
admissible nor inadmissible because it uses a subjective Bayesian approach. Instead its
admissibility ought to depend on its persuasiveness in explaining, with a combination
of specific arguments and robustness, why the conclusions of a trier of facts might be
similar to, and hence influenced by, the analysis offered.
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An alternative interpretation of the same activity is that the statistician is provid-
ing the fact finder with “scientific methodology” for combining information, including
subjective information. The unavailability of the fact finder for elicitation means that
the statistician has to present results in the form of “If you believe this, then the
results of the data analysis would be these.” We believe that under either interpreta-
tion a properly grounded and explained Bayesian model, of the kind proposed here,
is both admissible and relevant in age discrimination cases. We confine our discus-
sion to binary employment decisions such as hiring, job assignment, promotion, layoff,
or termination. The outcome of such a decision is either favorable or unfavorable to
the employee, who may or may not be in a legally protected class. We use age dis-
crimination in termination decisions to illustrate our ideas because age discrimination
cases dominate our experience. Age discrimination over a short period of time, for
example, when an employer makes a large reduction in the workforce over a matter
of a few days or weeks as the result of a single policy decision, is comparatively easy
to analyze (Kadane, 1990) mainly because it is reasonable to assume that the odds
ratio is constant; however, age discrimination over an extended time period is more
difficult to model, both because the same individual can over time move from the
unprotected to the protected class and because, unlike gender or race, age is a contin-
uous characteristic and consequently the hazard rate may vary within the protected
class. Following Finkelstein and Levin (1994), we find that proportional hazards (Cox
regression) models provide the flexibility to deal with these issues.

11.2 Proportional Hazards Models

Suppose that we wish to analyze the employment decisions (e.g., involuntary termi-
nations) of a firm over a given period of observation. The kind of analysis we propose
requires data sufficient to determine for each day during the period of observation,
the status (protected or unprotected) of each employee and the number of involuntary
terminations (if that is the decision to be analyzed) of protected and unprotected
employees. Perhaps it is most convenient to obtain this information in the form of
flow data for each individual who was employed at any time during the period of
observation.

Flow data consists of beginning and ending dates of each employee’s period of
employment, that employee’s birth date, and the reason for separation from employ-
ment (if it occurred). We have seen no examples in which employees were rehired for
nonoverlapping terms, but such cases could easily be handled by entering one data
record for each distinct period of employment. Table 11.1 is a fragment of a dataset
gathered in a hypothetical age discrimination case. Data were obtained on all per-
sons employed by the firm any time between 01/01/94 and 01/31/96. Entry Date is
the later of 01/03/1994, or the date of hire. The first record is right censored; that
is, that employee was still in the work force as of 1/31/96, and we are consequently
unable to determine the time or cause of his or her eventual separation from the firm
(involuntary termination, death, retirement, etc.).

The plaintiff obtains such data from the employer in the pre-trial discovery phase. It
is generally necessary for the plaintiff’s attorney to justify the need for obtaining data
over a particular time period–for example, it might be the period from the imposition
of a particular policy to the end of the plaintiff’s employment. Frequently the defendant
can convince the court to narrow the scope of the data provided, arguing, for example,
that retrieving records more than 5 years old or linking records involving employee
transfers between divisions would be burdensome.

In many litigated cases the observation period is short and corresponds to one
large-scale reduction in force (RIF) in which a substantial number of employees were
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Table 11.1: Flow data for the period January 1, 1994 to December 31, 1996

Employee ID Birth date Entry date Separation date Reason
01 05/23/48 07/27/94
02 12/17/31 01/03/94 11/20/94 Involuntary termination
03 03/14/48 06/29/94 07/27/94 Involuntary termination
04 02/26/40 10/05/94 06/07/95 Resigned
. . . . . . . . . . . . . . .

terminated in a comparatively short period. Kadane (1990) discussed such a case
involving four massive firing waves. Data of this sort can be treated as an analysis
of the odds ratios (odds on termination of protected versus unprotected employees)
in a small number of two-by-two contingency tables. Kadane considered two models
for the prior distribution of the odds ratios. In the homogeneous, common odds ratio
model, he gave the log odds ratio, β, a normal distribution with zero mean and fixed
precision. He computed the posterior probability of adverse impact (β > 0) of the
employer’s policy on the protected class for various values of the prior precision. For
the inhomogeneous odds ratio model, he assumed independent distributions for the
log odds ratios for the four waves of terminations and computed the probability of
adverse impact separately for each wave.

This article is an attempt to tackle the analysis of terminations occurring at a
comparatively low rate, perhaps one or two employees at a time, over a long time
period. The problem with this sort of situation is that the disaggregated data consist
of numerous two-by-two tables, each involving a small number of terminations but
any aggregation of the data (quarterly, semiannually, etc.) into more substantial two
by two tables is arbitrary and somewhat distorts the numbers at risk because some
employees will not have been in the workforce for the entire period represented by a
given aggregated table. A second, and more important issue is how to deal with the
possibility of inhomogeneous odds ratios.

Finkelstein and Levin (1994) suggested that proportional hazards (Cox regression)
models could be used to deal with disaggregated employment decisions; however, they
assumed a constant log odds ratio over the observation period. We like their idea and
in this article show how to allow for the possibility that the relative risk of termination
varies over the observation period.

Cox (1972) considered a group of individuals at risk for a particular type of failure
(involuntary termination) for all or part of an observation period. The jth person
enters the risk set at time hj (either the date of hire or the beginning of the observation
period) and leaves the risk set at time Tj either by failure (involuntary termination) or
for other reasons (death, voluntary resignation, reassignment, retirement, or the end
of the observation period). The survival function Sj(t) = P (Tj > t) is the probability
that the jth employee is involuntarily terminated sometime after time t. The hazard
function, λj(t), is the conditional probability that person j is terminated at time t
given survival to time t, that is,

λj(t) =
−sj(t)
Sj(t)

= − d

dt
log(Sj(t)). (11.1)

where sj is the derivative of Sj . Integrating (11.1) produces

Sj(t) = exp

(
−
∫ t

hj

λj(t)dt

)
. (11.2)
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The Cox proportional hazards model is

λj(t) = λ(t) exp(β(t)zj(t)).

where λ(t) is the (unobserved) base hazard rate; z(t) is an observable, time-varying
characteristic of the jth person; and β(t) is the unobserved, continuous, time-varying
log relative hazard. In our application,zj(t) = 1(0) if person j is (is not) protected,
that is, is (is not) aged 40 or older at time t, and β(t) is the logarithm of the odds
ratio at time t. The parameter β(t) is the instantaneous log odds ratio:

β(t) = lim
dt→0

ln

([
P (t ≤ Tj < t+ dt|zj(t) = 1)

P (t+ dt ≤ Tj |zj(t) = 1)

]
×
[
P (t ≤ Tj < t+ dt|zj(t) = 0)

P (t+ dt ≤ Tj |zj(t) = 0)

]−1
)
. (11.3)

The observed data are (hj , Tj , cj , zj), 1 ≤ j ≤ M , where M is the number of
individuals who were in the workforce at any time during the observation period, and
cj = 0 if the jth employee was terminated at time Tj and cj = 1 if the employee left
the workforce for some other reason. The likelihood likelihood function is

`(λ, β|Data) =

M∏
j=1

(λj(Tj))
(1−cj)Sj(Tj)

=
∏
cj=0

λ(Tj)e
β(Tj)zj(Tj) (11.4)

× exp

− M∑
j=1

∫ Tj

hj

eβ(t)zj(t)λ(t)dt

 .

In practice, times are not recorded continuously, so let us rescale the observation
period to the interval [0,1] and assume that time is measured on a finite grid, 0 = t0 <
t1 < . . . < tp = 1. A sufficiently fine grid is defined by the times at which something
happened (someone was hired, or left the workforce, or reached age 40). The data
are reduced to Ni and ni, the numbers of employees and protected employees at time
ti−1, and ki and xi, the numbers of employees and protected employees involuntarily
terminated in the interval (ti−1, ti]. For data recorded at this resolution, the likelihood
is

`(λ, β) =

p∑
i=1

eβi·xiΛkii exp(Λi(nie
βi + (Ni − ni))), (11.5)

where βi = β(ti) and Λi = Λ(ti)−Λ(ti−1) =
∫ ti
ti−1

λ(t)dt. The function Λ(t) =
∫ t

0
λ(t)dt

is called the cumulative base rate. The likelihood depends on the log odds ratio function
and the cumulative base rate function only through a finite number of values, βββ =
(β1, . . . , βp)

′ and ΛΛΛ = (Λ1, . . . ,Λp)
′.

11.2.1 Hierarchical Priors for Time Varying Coefficients

Sargent (1997) provided an excellent review of penalized likelihood approaches to
modeling time-varying coefficients in proportional hazards models. He argued that
these are equivalent to Bayes methods with improper prior distributions on β(·) and
proposed a “flexible” model with independent first differences β(ti+1) = β(ti) + ui+1,
where the innovations ui+1 are mutually independent, normal random variables with
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mean 0 and precision τ/dti+1 and dti+1 = ti+1− ti. Under this model β(t) is nowhere
smooth–policy, in effect, changes abruptly at every instant. However, in the employ-
ment context, we expect changes to be gradual and smooth in the absence of iden-
tifiable causes such as a change in top management. For that reason we propose a
smoothness prior for the log odds ratio, β(t). The smooth model that we describe
later is an integrated Wiener process with linear drift. Lin and Zhang (1998) used
this prior for their generalized additive mixed models; however, their quasi-likelihood
approach based on the Laplace approximation appears to fail for employment decision
analyses when, for one or more time bins, all or none of the involuntary terminations
are in the protected class.

11.2.2 Smoothness Priors

Let β(t) be a Gaussian process, let βi = β(ti), 0 ≤ ti ≤ 1, ≤ i ≤ M , and define
βββ = (β1, . . . , βM ). Specifying a “smoothness” prior requires that we have an opinion
about the second derivative of β(t) (see Gersch (1982) and the references cited there).
To this end we use the integrated Wiener process representation (Wahba, 1978):

β(t) = β0 + β′0t+
√

1/τ

∫ t

0

W (t)dt, (11.6)

where W (·) is a standard Wiener process on the unit interval, τ (the precision or
“smoothness” parameter) has a proper prior distribution, and the initial state (β0, β

′
0)

has a proper prior distribution independent of W (·) and τ . Integrating by parts, we
obtain the equivalent representation:

β(t) = β0 + β′0(t− t0) +
1√
τ

∫ t

0

(t− s)dW (s). (11.7)

Because dW (s) is Gaussian white noise, the conditional covariance function of β(·) is

cov(β(t), β(t + d)|β0, β
′
0, τ)

=
1

τ
E

(∫ t

0

∫ t+d

0

(t+ d− u)(t− v)dW (u)dW (v)

)

=
1

τ

∫ t

0

(t+ d− u)(t− u)du

=
t3

3τ
+
dt2

2τ
.

(11.8)

11.2.3 Forming an Opinion about Smoothness

The remaining task in specifying the prior distribution of the log odds ratio is to specify
prior distributions for the initial state (β0, β

′
0) and for the smoothness parameter, τ .

We have found that the posterior distribution of β(·) is not sensitive to the prior
distribution of the initial state, so we give the initial state a diffuse but proper bivariate
normal distribution. However, the smoothness parameter τ requires more care.

As τ → ∞, the Wiener process part of (1.7) disappears, so this would express
certainty that β(·) is exactly linear in time. As τ → 0, the variance of the β(·) around
the linear-in-time mean goes to ∞, so a good point estimate of β(·) would go through
each of the sample points exactly, which offers no smoothness at all. It should come
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as no surprise, then, that what is essential about a prior on τ is not to allow too much
probability close to 0. In the employment discrimination context, in the examples we
have studied the data do not carry much information about smoothness and it is
necessary to have an informative opinion about this parameter. In eliciting opinions
about how fast an odds ratio might change, we find it easiest to think about what might
happen during a business quarter. We will use as a reference the prior distribution of
a person who thinks that, absent any change in business conditions or management
turnover, there is a small probability that the odds of terminating a protected employee
relative to an unprotected employee would change more than 15% in a single quarter.
For example, if at the beginning of a quarter a protected employee is 5% more likely
to be terminated than an unprotected employee, it would be surprising to see a 20%
disparity at the beginning of the next quarter. Our purpose here is to demonstrate a
way to develop a reference prior distribution consistent with easily stated assumptions.
When such analyses are used in litigation, it will be important for the expert to be
able to state that his or her conclusions are robust over a wide range of prior opinions,
which is true in the first case (Case K) that we present but is not in the second case
(Case W).

To see what the “no more than 15% change per quarter” assumption implies about
the prior distribution of the smoothness parameter, consider the central second differ-
ence ∆′′ = β(t+ d)− 2β(t) + β(t− d), where d represents a half-quarter expressed in
rescaled time (i.e., as a fraction of the total observation interval). From the covariance
function 11.8 (1.8), it is easy to compute, variance (∆′′) = 2d3/3τ . It is easy to see that
if β changes by at most .15 over the interval (t−d, t+d), then |∆′′| ≤ .30. Because we
regard values larger than this to be improbable a priori, we can treat .30 as roughly
two standard deviations of ∆′′. Thus, the prior distribution of τ should place high
probability on the event, 2d3/3τ < .152, that is, 30d3 < τ . Thus, for example, if the
observation period is about 16 quarters, then a rescaled half quarter is d = 1/32. So
the prior distribution should place high probability on the event, τ > 30/323 ≈ .0005.
A gamma distribution with mean .005 and shape 1 places about 90% of its mass above
.0005.

The important thing about a prior on τ is where it puts most of its weight. We
believe that other choices of the underlying density would not change the conclusions
much. However, shifts in the mean are important, because such shifts control how
much smoothing is done. Hence, we study sensitivity mainly by varying the mean,
holding the rest of the distributional specification unchanged.

11.2.4 Posterior Distribution.

Employers have an absolute right to terminate employees; what they do not have is the
right to discriminate on the basis of age without a legitimate business reason unrelated
to age. Thus, the base rate is irrelevant to litigation, and we believe that a neutral
analyst should give it a flexible, diffuse but proper prior distribution. For convenience,
we have chosen to use a gamma process prior with shape parameter α and scale
parameter αγ. In other words, disjoint increments Λi = Λ(ti)−Λ(ti−1) =

∫ ti
ti−1

λ(t)dt,

are independent and have gamma distributions with shape parameter α(ti − ti−1) =
αdti, and scale parameter αγ. The hyperparameters α and γ have diffuse but proper
log-normal distributions. Consequently, the posterior distribution is proportional to

`(βββ,Λ)p(βββ|β0, β
′
0, τ)p(β0, β

′
0)p(τ)p(Λ|α, γ). (11.9)

The goal is compute the posterior marginal distributions of the log odds ratios βi,
1 ≤ i ≤ p, in particular, to compute the probability that the employer’s policy dis-
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criminated against members of the protected class at time ti; that is, P (βi > 0|Data),

P (βi > 0|Data) =

∫
βi>0

dP(βββ,Λ, τ, β0, β
′
0, α, γ|Data)∫

dP(βββ,Λ, τ, β0, β′0, α, γ|Data)
. (11.10)

Closed form integration in (11.10) is not feasible. Owing to the high dimensionality
of the parameter space, numerical quadrature is out of the question and the Laplace
approximation (Kass et al., 1988) would require the maximization of a function over
hundreds of arguments. For these reasons we chose to approximate moments and tail
areas of the posterior distribution by Markov chain Monte Carlo (MCMC) methods
(Tierney, 1994; Gelman et al., 1995).

MCMC works by generating a vector-valued Markov chain that has the posterior
distribution of the parameter vector as its stationary distribution. An algorithm that
generates such a Markov chain is colloquially called a sampler. Let θθθ denote the pa-
rameter vector, let f(θθθ|data) denote the posterior distribution, and let θ1, . . . , θM be
successive realizations of θθθ generated by the sampler. The ergodic theorem (a weak
law of large numbers for Markov chains) implies that

1

M

M∑
i=1

h(θi)
P−→
∫
h(θθθ)f(θθθ|data)

for any integrable function h(·). In particular, if we select h(·) to be the indicator
function of an event such as β15 > 0, then the ergodic theorem states that the relative
frequency of that event in the sequence θ1, . . . , θM is a consistent estimate of the
posterior probability of that event. However, if the successive realizations generated
by the sampler are highly correlated, then the relative frequency may approach the
limit very slowly; in this situation the Markov chain is said to “mix” slowly.

In our initial attempts to apply MCMC, we found that the Markov chain did mix
very slowly, probably because of the highly collinear covariance matrix of the βββ vector.
We were able to reduce the collinearity, with a resulting improvement in the rate of
convergence of the Markov chain, by re-expressing βββ as a linear combination of the
initial state vector and the dominant principal components of the integrated Wiener
process.

11.2.5 Reexpressing β

The conditional prior distribution of βββ is

p(βββ|β0, β
′
0, τ) = Np

(
LLL

[
β0

β′0

]
,

1

τ
VVV

)
= Np

(
µµµβ ,

1

τ
VVV

)
, (11.11)

where matrix VVV depends only on the observation times,

vi,j =
τ3
i

3
+

(tj − ti)t2i
2

, i ≤ j

[see (11.8)1]. The spectral decomposition is VVV = UUUdiag(www)UUU ′, where UUU is the orthonor-
mal eigenvector matrix and www is the vector of eigenvalues. Suppose that the first r
eigenvalues account for, say, 1− ε2 of the total variance and let TTT = UUUrdiag(

√
wwwr) and

zzz = diag(www−.5r )UUU ′r(βββ −µµµβββ)
√
τ , where UUUr is the first r columns of UUU and wwwr is the first

r components of www. Clearly, the components of z are iid standard normal and

E
[
||τ(βββ −µµµβββ)− TzTzTz||2

]
= ε2E

[
||τ(βββ −µµµβββ)||2

]
.

1This corrects a typographical error in the published paper
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Consequently,

βββ ≈ µµµβββ +
1√
τ
TzTzTz ≈ LLL

[
β0

β′0

]
+

1√
τ
TzTzTz. (11.12)

11.3 Examples

The data in two of these examples come from cases we were involved in–we’ll call them
Case K and Case W. In each case one or more plaintiffs were suing a former employer
for age discrimination in his or her dismissal. Data for these cases are available in
StatLib (Kadane and Woodworth, 2001). The third example is a reanalysis of a class
action against the U.S. Postal Service (USPS) reported in Freidlin and Gastwirth
(2000). All three cases were analyzed via WinBUGS 1.3 (Spiegelhalter et al., 2000).
For Cases K and W we used the principal component representation (11.12).

11.3.1 Case K

In this case flow data for all individuals employed by the defendant at any time during
a 1,557-day period (about 17 quarters) were available to the statistical expert. During
that period 96 employees were involuntarily terminated, 79 of whom were age 40 or
above at the time of termination. The data were aggregated into 288 time intervals,
or bins, bounded by times at which one or more employees entered the workforce,
left the workforce, or reached a 40th birthday. The median bin width was 4 days,
the mean was about 5 days, and the maximum was 24 days. Based on the discussion
in Section 11.2.3, we prefer that the prior distribution for the smoothness parameter
place most of its mass above .0007, so we selected a gamma prior with shape parameter
1 and mean .007; the other parameters were given diffuse but proper priors. Table 11.2
shows the data, mean, standard deviation, and positive tail area of the log odds ratios
for bins with one or more involuntary terminations.

In Figure 11.1 we show how the smooth model fits the unsmoothed underlying
data. To do this, we grouped cases by quarters and computed 95% equal-tail posterior-
density credible intervals for the log odds assuming a normal prior with mean 0 and
standard deviation 8. We like a standard deviation of 8 for this sort of descriptive
display because it is fairly diffuse (there is, for example, 16% prior probability that
the odds ratio exceeds 3,000) yet prevents infinite credible intervals when one category
or the other has no terminations. Because this prior pulls the posterior distribution
toward 0, it would be difficult for the respondent (the firm) to argue that it is biased
in favor of the plaintiff.

Sensitivity to the prior mean of the smoothness parameter is explored in Figure 11.2
and sensitivity to the shape of the prior distribution of the smoothness parameter is
explored in Figure 11.3. Between days 528 and 1,322 the probability of discrimination
P (β(t) > 0|data) exceeds .99 and is insensitive to the prior distribution of the smooth-
ness parameter. The plaintiff in Case K had been dismissed within that interval at
day 766. It is not surprising that greater sensitivity to the smoothness parameter is
shown at the start and the end of the period. Thus, if the date of termination of the
plaintiff is near the start or the end of the observation period, the conclusions will be
more sensitive to how much smoothing is assumed. This suggests the desirability of
designing data collection so that it includes a period of time surrounding the event or
events in question.

In addition, we analyzed Case K with Sargent’s (1997) first-difference prior. The
first-difference prior models the log odds ratio as a linear function plus a Wiener
process with precision τ . Thus, the log odds ratio is continuous but not smooth.
To scale the prior distribution of the precision of the log odds ratio, we again argue
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Table 11.2: Data and Posterior Marginal Distributions of the Log Odds Ratio for Case K

Posterior distribution
Day N n k x Mean SD P (β > 0)

3 190 102 1 1 -1.5 1.3 0.111
175 208 110 1 0 -0.95 0.82 0.110
406 273 150 1 1 0.25 0.51 0.702
444 273 151 1 1 0.50 0.47 0.858
507 283 159 1 0 0.91 0.41 0.985
528 283 159 2 1 1.05 0.39 0.994
535 284 161 1 1 1.10 0.39 0.997
555 286 164 1 0 1.23 0.38 0.999
567 289 167 1 0 1.30 0.37 1.000
582 287 167 1 1 1.40 0.36 1.000
605 293 170 10 9 1.53 0.36 1.000
661 290 165 1 1 1.82 0.35 1.000
668 290 165 1 1 1.85 0.35 1.000
696 287 163 9 8 1.96 0.35 1.000
703 278 155 4 3 1.98 0.35 1.000
710 276 152 1 1 2.00 0.35 1.000
731 272 150 1 1 2.07 0.35 1.000
752 270 147 2 2 2.12 0.35 1.000
766 269 143 1 1 2.15 0.35 1.000
784 269 141 1 1 2.18 0.35 1.000
797 266 138 2 2 2.20 0.35 1.000
846 264 136 1 1 2.25 0.35 1.000
847 263 135 2 2 2.25 0.35 1.000
850 261 133 3 3 2.25 0.35 1.000
857 258 130 4 4 2.25 0.35 1.000
863 245 120 1 1 2.25 0.35 1.000
864 244 119 1 0 2.26 0.35 1.000
927 247 121 1 0 2.25 0.35 1.000
955 245 120 1 1 2.24 0.35 1.000
980 242 118 4 4 2.23 0.35 1.000

1,008 236 113 3 3 2.20 0.35 1.000
1,017 234 111 1 0 2.19 0.35 1.000
1,018 233 111 5 5 2.19 0.35 1.000
1,025 227 105 1 1 2.18 0.35 1.000
1,037 227 105 1 1 2.16 0.35 1.000
1,095 230 105 1 1 2.05 0.36 1.000
1,102 226 101 2 1 2.04 0.36 1.000
1,106 224 101 1 1 2.03 0.36 1.000
1,113 223 100 3 2 2.01 0.36 1.000
1,116 220 98 1 0 2.00 0.36 1.000
1,141 220 97 1 1 1.94 0.36 1.000
1,200 217 93 1 1 1.77 0.38 1.000
1,214 216 91 1 1 1.72 0.38 1.000
1,224 215 90 2 2 1.69 0.39 1.000
1,225 213 88 1 1 1.69 0.39 1.000
1,253 215 89 1 1 1.58 0.40 1.000
1,256 214 88 1 1 1.56 0.40 1.000
1,284 213 89 1 1 1.44 0.41 1.000
1,319 210 89 1 1 1.27 0.44 0.998
1,322 207 88 1 0 1.27 0.44 0.997
1,361 207 89 1 0 1.06 0.48 0.982
1,375 204 89 1 1 0.99 0.50 0.972
1,557 205 90 2 1 0.09 0.93 0.568
NOTE: Data and posterior distributions for bins with one
or more involuntary terminations. N workforce; n, pro-
tected; k, involuntary terminations; x, involuntary termina-
tions of protected employees. The smoothness parameter,
τ , had a Gamma(1) prior distribution with mean .007, as
described in the text. Two chains were run with 50,000
replications each, discarding the first 4,000. The Gelman-
Rubin statistic indicated that the chains had converged.
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In addition, we analyzed case K with Sargent's first-difference prior (4).   The first-difference 

prior models the log odds ratio, as a linear function plus a Wiener process with precision τ .  

Thus the log-odds ratio is continuous but not smooth.  To scale the prior distribution of the 

precision of the log-odds ratio, we again argue from our prior opinion that the log odds ratio is 

unlikely to change more than 15% within a quarter.  We interpret this as two standard deviations 

of the first difference, ( ) ( )t d tβ β+ − . The variance of a one-quarter first difference is d/τ , 

where 1/19d ≈ is one quarter expressed as a fraction of the total observation period.  Thus 

2 .15d τ ≤ , which implies that the prior should place most of its mass on 9.4τ ≥ .  A gamma 

prior with mean 100 and shape 1 places about 90% of its mass above 9.5.  Figure 3 compares the 

posterior mean log odds ratio for the Sargent’s smooth model and our continuous model.  We 

found that the posterior distribution for Sargent’s model was not sensitive to the prior means of 

τ between 1 and 100. 
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Figure 11.1: Case K: Posterior Mean and Probability of Discrimination for Our Preferred
Prior Distribution of the Smoothness Parameter. Vertical bars are 95% posterior highest
density regions for quarterly aggregates with iid N(0, 64) priors. Vertical dotted line indi-
cates date of plaintiff’s dismissal.

from our prior opinion that the log odds ratio is unlikely to change more than 15%
within a quarter. We interpret this as two standard deviations of the first difference,
β(t+d)−β(t). The variance of a one-quarter first difference is d/τ , where d ≈ 1/19 is
one quarter expressed as a fraction of the total observation period. Thus, 2

√
d/τ ≤ .15,

which implies that the prior should place most of its mass on τ ≥ 9.4. A gamma prior
with mean 100 and shape 1 places about 90% of its mass above 9.5. Figure 11.4
compares the posterior mean log odds ratio for the Sargent’s smooth model and our
continuous model. We found that the posterior distribution for Sargent’s model was
not sensitive to the prior means of τ between 1 and 100.

We conducted what we believe would be an acceptable frequentist analysis via
proportional hazards regression to model the time to involuntary termination. The
initial model included design variables for membership in the protected group and for
the linear interaction of this variable with time. The linear interaction was insignificant,
so we presume that a frequentist would opt for a constant odds model. The maximum
likelihood estimate (and asymptotic standard error) of the log odds ratio is 1.51 (.27),
which approximates the posterior mean and standard deviation of this parameter for
large values of the smoothness parameter (see Table 11.3).

Although the frequentist and Bayesian analyses reach the same conclusion regard-
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Figure 1: Case K: Posterior mean and probability of discrimination for our preferred prior 

distribution of the smoothness parameter. Vertical bars are 95% posterior HDR's for 

quarterly aggregates with iid N(0,64) priors. Vertical dotted line indicates date of 

plaintiff's dismissal.  
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Figure 11.2: Case K: Effect of Varying the Prior Mean of the Smoothness Parameter (all
distributions are Gamma with shape parameter 1).
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Figure 4: Case K:  effect of varying the shape of the prior distribution of the 

smoothness parameter (all distributions have mean .007 and the indicated shape 

parameters).   

 

Figure 11.3: Case K: Effect of Varying the Shape of the Prior Distribution of the Smoothness
Parameter (all distributions have mean .007 and the indicated shape parameters).

ing the presence of discrimination in Case K, we believe that the frequentist analysis
does not produce probability statements relevant to the particular case in litigation
and in no way constitutes a gold standard for our analysis. On the bases of these anal-
ysis, a statistical expert would be able to report that there is strong, robust evidence
that discrimination against employees aged 40 and above was present in terminations
between days 528 and 1,322, and, in particular, on the day of the plaintiff’s termina-
tion.
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Figure 2: Case K:  effect of varying the prior mean of the smoothness parameter (all 

distributions are Gamma with shape parameter 1).   
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Figure 3.  Case K -- Posterior mean for continuous (Wiener process, prior mean 

smoothness = 100) and smooth (Integrated Wiener process, prior mean smoothness = 

.007) distributions of the log odds ratio. 

 

We conducted what we believe would be an acceptable frequentist analysis via 

proportional hazards regression to model the time to involuntary termination.  The initial model 

included design variables for membership in the protected group and for the linear interaction of 

this variable with time.  The linear interaction was insignificant, so we presume that a frequentist 

would opt for a constant odds model.  The maximum likelihood estimate (and asymptotic 

standard error) of the log odds ratio is 1.51 (.27), which approximates the posterior mean and 

standard deviation of this parameter for large values of the smoothness parameter (see Table 3).  

Figure 11.4: Case K: Posterior mean for continuous (Wiener process, prior mean smoothness,
100) and smooth (integrated Wiener process, prior mean smoothness, .007) Distributions
of the Log Odds Ratio.

Table 11.3: Table 3. Sensitivity Analysisa for Case K

Posterior distribution for Case K
Model Priorb Mean SD P (β > 0/Data)
Smooth E(τ) = .001 2.22 .37 1.0000

E(τ) = .007
Gamma(1) 2.15 0.35 1.0000
Gamma(10) 2.10 0.33 1.0000
Pareto(1.5) 2.13 0.35 1.0000
E(τ) = .07 2.06 0.37 1.0000
E(τ) = 100 1.46 0.28 1.0000

Continuous E(τ) = 100c 2.11 0.49 1.0000
Maximum likelihoodd Linear log odds ratio 1.44 0.28 n/a

Constant log odds ratio 1.51 0.27 n/a
a P (β > 0) for Case K (day 766) is robust to specification of the prior distribution
of the log odds ratio.
b Where not indicated otherwise, the smoothness parameter, τ , had a Gamma(1)
prior with the indicated mean.
c The shape parameter was 1 except for the smooth prior with mean 100, which
had shape parameter 5.
d Maximum likelihood estimates were computed by proportional hazards regression;
asymptotic approximations to the one-sided p values are less than .0005.
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11.3.2 Case W

Two plaintiffs, terminated about a year apart, brought separate age discrimination
suits against the employer. The plaintiffs’ attorneys requested data on all individuals
who were in the defendant’s workforce at any time during an approximately 4.5-year
observation period containing the termination dates of the plaintiffs. Dates of hire and
separation and reason for separation were provided by the employer as well as age in
years at entry into the dataset (the first day of the observation period or the date of
hire) and at separation. The data request was made before the expert statistician was
retained and it failed to ask for dates of birth; however, from the ages at entry and
exit, it was possible to determine a range of possible birth dates for each employee.
Thus, at any given time during the observation period, there is some uncertainty
about whether the handful of nonterminated employees near the protected age (40
and older) were or were not in the protected class. We did not attempt to incorporate
that uncertainty into this analysis and resolved ambiguities by assuming the birth
date was at the center of the interval of dates consistent with the reported ages.

Over an observation period of about 1,600 days, the workforce was reduced by
about two-thirds; 103 employees were involuntarily terminated in the process. A new
CEO took over at day 862, near the middle of the observation period. The plaintiffs
asserted that employees aged 50 (or 60) and above were targeted for termination under
the influence of the new CEO. So in our reanalysis we have divided the protected class
into two subclasses: ages 40–49 and ages 50–64 and estimated separate log odds ratios
for each of the protected subclasses relative to the unprotected class. Here we present
a fully Bayesian analysis of two models, one with smoothly time varying odds ratios
for each protected subclass and one with smoothly time varying odds ratios in two
phases–before and after the arrival of the new CEO.

The personnel data were aggregated by status (involuntarily terminated, other)
into 171 time bins as described in Case K and three age categories (< 40, 40-49,
50-64). Aggregated data along with posterior means, standard deviations, and proba-
bilities of discrimination for the two protected subclasses for bins containing at least
one termination are reported in Table 11.4. Table 11.4 also reports posterior means,
standard deviations, and probabilities of discrimination for our preferred choice of the
prior distribution of the smoothness parameters–gamma with shape parameter 1 and
mean .007. Figure 11.5 shows posterior means and probabilities of discrimination for
different choices of the prior mean of the smoothness parameter. Figure 11.6 contrasts
two-phase and non-interrupted models for employees aged 50–64.

The figures make it clear that the log odds ratios for either protected subclass were
close to 0 before the new CEO arrived. After his arrival it appears that terminations
of employees aged 40–49 declined and terminations of employees aged 50–64 increased.
This is clearest in the interrupted model, but present to some extent in all models for
all smoothness parameter values.

Two plaintiffs, indicated by vertical dotted lines in Figures 11.5 and 11.6, brought
age discrimination suits against the employer. Plaintiff W1, who was between 50 and
59 years of age, was one of 12 employees involuntarily terminated on day 1,092. His
theory of the case was that the new CEO had targeted employees aged 50 and above for
termination. Under the two-phase model, which corresponds to the plaintiff’s theory
of the case, the probability of discrimination at the time of this plaintiffs termination
was close to 1.00. However, the posterior probability of discrimination in this case is
somewhat sensitive to the choice of model and smoothness parameter (Figure 11.6).

In the original case the plaintiff’s statistical expert tabulated involuntary termina-
tion rates for each calendar quarter and each age decade. He reported that, “[invol-
untary] separation rates for the [period beginning at day 481] averaged a little above
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Figure 5: Case W: Sensitivity to the smoothness parameter. 

 

Figure 11.5: Case W: Sensitivity to the smoothness parameter.

three percent of the workforce per quarter for ages 20–49, but jumped to six and a half
percent for ages 50–59. The 50-59 year age group differed significantly from the 20-39
year age group (signed-rank test, p = 0.033, one sided).” Our reanalysis is consistent
with that conclusion (Figure 11.6, two-phase model). The plaintiff alleged and the
defendant denied that the new CEO had vowed to weed out older employees. The case
was settled before trial.

The case of plaintiff W2 went to trial. This 60-year-old plaintiff was one of 18
employees involuntarily terminated on day 733. On that day three of eight employees
(37.5%) aged 60 and up were terminated compared to 15 of 136 (11.0%) employees
terminated out of all other age groups (one-sided hypergeometric p = .0530). Although
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Figure 6.  Comparison of non-interrupted and two-phase odds-ratio 

models.  For the two-phase model the prior distributions of the four 

smoothness parameters were gamma with shape 1 and mean .007.  

 

The case of Plaintiff W2 went to trial.  This 60-year-old plaintiff was one of 18 

employees involuntarily terminated on day 733.  On that day three of eight employees (37.5%) 

aged 60 and up were terminated compared to 15 of 136 (11.0%) employees terminated out of all 

other age groups (one-sided hypergeometric p=.0530).  Although the plaintiff had been 

terminated in the quarter prior to the arrival of the new CEO, the plaintiff's theory was that the 

Figure 11.6: Comparison of Non interrupted and Two-Phase Odds Ratio Models. For the
two-phase model the prior distributions of the four smoothness parameters were gamma
with shape 1 and mean .007.

the plaintiff had been terminated in the quarter prior to the arrival of the new CEO,
the plaintiff’s theory was that the new CEO had been seen on site before he assumed
office and had influenced personnel policy decisions prior to his official arrival date.

The defense statistician presented several analyses of the quarterly aggregated
data involving different subsets of the observation period and different subgroups of
protected and unprotected employees. Based on two-sided p values, he reported no
significant differences between any subgroups; however, one-sided p values are more
appropriate in age discrimination cases and several of these are “significant” or nearly
so. According to his analysis, for the period after the new CEO was hired, employees
aged 50-59 were terminated at a significantly higher rate than employees aged 20-39
(p = .053, one sided) and employees aged 40-49 (p = .050, one sided); for the period
beginning with the new CEO’s second quarter in office the one-sided p values were
.039 and .038, respectively. The defense expert did not analyze the interval beginning
one quarter prior to the arrival of the new CEO–the quarter in which plaintiff W2
was terminated. Thus, the defense expert’s analysis generally agrees with the reanal-
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ysis presented in this article (Figure 11.6). The defense expert also reported several
discriminant analyses meant to demonstrate that the mean age of involuntarily ter-
minated employees was not different from the mean age of the workforce.

In response to the latter analysis, the plaintiff’s statistician argued that this was
accounted for by a high rate of termination of employees in their first year of service
(“short term employees”), and presented the results of a proportional hazards regres-
sion analysis with constant odds ratios over the entire observation period. The model
involved design variables for employees in the first year of service and for employees
aged 50 and above (thus, the reference category was long-term employees under the
age of 50). Employees in their first year of service were terminated at a significantly
higher rate relative to the reference category (odds ratio = 2, p = .01, two sided) as
were employees aged 50 and older (odds ratio = 1.58, p = .03, two sided).

The plaintiff’s theory of the case, as we understand it, had three components,
(1) that the new CEO had been seen on site on several occasions in the quarter
before he assumed office and was presumably an active participant in personnel policy
decisions prior to his official arrival date, (2) that the CEO had stated his intent to
weed out older employees, and (3) that this had an adverse impact on employees aged
60 and above. The preceding proportional hazards analysis, and the analysis of the
18 terminations on day 733 (37% of 60-year-olds terminated versus 11% of all other
employees) support the disparate impact theory.

The plaintiff had refused the defendant’s offer of a different job at lower pay.
The judge instructed the jury that the plaintiff had a duty under the law to exercise
reasonable diligence to minimize his damages and if they found that he had not done
so, then they should reduce his damages by the amount he reasonably could have
avoided if he had sought out or taken advantage of such an opportunity. The jury
found that the plaintiff had proven that age was a determining factor for his discharge
but that he had failed to mitigate his damages. Therefore, the award was the difference
between what he would have earned at his original salary prior to discharge minus the
amount he would have earned had he accepted the lower salaried job. The defendant
appealed the case, but settled prior to trial of the appeal.

Our reanalysis, with time-varying odds ratios, does not support a theory of adverse
impact against employees aged 50-64 prior to the arrival of the new CEO; however,
the plaintiff’s specific claim was discrimination against employees aged 60 and older
and there does seem to be evidence of this at the time of the plaintiff’s termination
(one-sided hypergeometric p = .053).

One-sided or Two-sided? Bayesians compute probabilities of relevant events; that
is, P (β(t) > 0|data), the conditional probability of discrimination at time t given
the data. Frequentists favor two-sided p values (roughly speaking, the conditional
probability, given the assumption of no discrimination, of getting the data we got plus
the probability of getting even more deviant hypothetical data). As Bayesians, we
think such probabilities are legally irrelevant. Even within the frequentist paradigm,
however, we think that the use of two-sided p values is wrong in age discrimination
cases. We say this because frequentist inference claims to control “Type I error,” that
is, to control the conditional probability that an “innocent” employer will be found to
discriminate. In age discrimination cases the Type I errors can occur on one side only
because only protected employees have the right to sue under the age discrimination
act. Type I errors in the “other tail” would be produced by evidence of discrimination
against the unprotected class but the unprotected class has no legal right to relief.

11.3.3 Valentino v. United States Postal Service

Freidlin and Gastwirth (2000) discussed a case in which the plaintiff filed a charge of
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sex discrimination in promotion at the U.S. Postal Service after she was denied a pro-
motion in mid-1976. The judge certified the women employed at grade 17 and higher
as a class. The underlying data, raw log odds ratios, and posterior distributions of the
log odds ratios for three different specifications of the prior are shown in Table 11.5.

Using frequentist methods, Freidlin and Gastwirth (2000) reported that the p
value for discrimination against women was .0006 in period 06/74-03/75, .020 in
03/75-01/76, and greater than .5 in subsequent periods. The authors advocate using
CUSUM methods “...to determine the time period when the pattern [of discrimina-
tion] remained the same. If the original complaint was filed during a period of sta-
tistically significant [discrimination] before the change to fair [employment practices]
occurred, then the data are consistent with the plaintiffs claim.” They reported that
their CUSUM tests showed a significant change in discrimination over time and that
this effect was concentrated in grades 17-19 and 23-25. Apparently they argued from
the significant CUSUM and the pattern of p values for individual time periods that
there was discrimination in 1974-75 and 1975-76 but not later. However, no formal
test or estimate of the location of the changepoint was offered, instead, “...the graph
of [the CUSUM test statistic against time] helps to identify the time of the change
if one exists...” Thus, what we appear to be offered is a test of inhomogeneity of the
odds ratio over time combined with inspecting a CUSUM graph and a list of p values
for individual time periods.

We have reanalyzed the data using three specifications of the joint prior distribu-
tion of promotion probabilities for each period, grade, and gender. In the completely
independent model, each probability has a prior beta(0.1,0.1) distribution. In the ran-
dom effects model, the log odds ratio (female versus male) for each year and grade
consists of a year effect, a grade effect, and an interaction. In the exchangeable model,
each class of effects (time, grade, interaction) has an exchangeable multivariate nor-
mal prior distribution. In the AR(1) × AR(1) model, time and grade effects have
multivariate normal priors with AR(1) covariance structure and the interactions are
exchangeable.

Table 11.5 shows the posterior mean and standard deviation of the log odds ratio
and the probability of discrimination (negative log odds ratio) for each year and grade.
We agree with Freidlin and Gastwirth that there is strong evidence of discrimination
against women in grades 17-19 in periods 1974-75 and 1975-76 and against women
in grades 23-25 in year 1974-75 and not much evidence of discrimination elsewhere.
However, we do not see the relevance of a formal changepoint test. If there is inho-
mogeneity, then it should be incorporated into the model. Our analysis does this and
it shows that not all members of the certified class have equal claims for relief. We
believe that a neutral statistician analyzing these data would report that the evidence
of discrimination is not uniform over grades or time periods, but is concentrated in
grades 17-19 and 23-25 in year 1974-1975 and in grades 17-19 in year 75-76. We believe
that this is precisely the information that the court needs to determine how the award
(if any) should be distributed among members of the certified class.

11.4 Discussion

A standard criticism of Bayesian analyses is that the prior assumptions are arbitrary.
One response is, “Compared to what?” Bayesian analysis can be explained to a jury
in less convoluted ways than frequentist analyses and makes explicit the necessity to
think about sensitive assumptions, rather than covering them with a mantle of false
objectivity. The assumption of constant odds ratios in particular and the functional
form of a model in general are examples of unexamined subjectivity. The Bayesian
approach to model specification involves specifying a prior distribution over a more
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general class of time-varying odds ratio models. The subjective component of model
specification resides in the prior distribution of the smoothness parameter. To some
the need to think carefully about the prior distribution of the smoothness parameter
may seem fatally to open the analysis to attack by opposing counsel on the grounds
of arbitrariness. To that we respond that the assumption of constant or (piecewise)
linear odds ratio is not only arbitrary but implausible on its face and that a more
realistic analysis has a better chance of prevailing.
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Chapter 12

Age- and Time-Varying Proportional Hazards
Models for Employment Discrimination (2010)

Foreword

It turned out that George and I weren’t done with this topic yet. The impetus was
partly legal. In our previous work (papers #3 and 11 in this volume), we had catego-
rized employees as being either over 40 or under 40. But legally, that’s not the whole
story. Suppose an employer replaces employees in their 60’s with others in their 40’s.
Both are in the protected class. Hence on the basis of our previous work, the 60’s have
a valid claim, because they are over 40 and they were replaced, in this hypothetical,
because of their age. Thus, to be most helpful to the court, age, as well as time, should
be treated as a continuous variable.

The results of such analysis are shown in Figures 12.11 and 12.2 in the paper.
Figure 12.1 plots the median log odds relative to under 40 employees, with stripes
marked for the day that employee W1 in case W was fired, and W1’s age at that
time. Because the point of intersection is above the grey surface, this is evidence
that employee W1 was disproportionately disadvantaged by age. How sure can we be
of this conclusion? That’s addressed in Figure 12.2, which shows that the posterior
probability of disproportionate disadvantage is about 70%.

Technically we use a thin-plate spline as a bivariate smoothness prior, generalizing
our prior in paper #11. We used the same intuition as in paper #11 to find a prior
for the smoothness parameter. However, there is a new parameter introduced because
we are dealing with smoothing in two dimensions, namely an anisotropy parameter ρ,
which governs the relative amount of smoothing by age and time.

The anisotropy parameter turned out to be difficult to deal with. We ultimately
decided to permit only six values for it (8, 4, 2, 1, 0.5 and 0.25). We also conducted
a sensitivity analysis on our priors on the smoothness and anisotropy parameters.
However, we were at the edge of what was feasible to compute at the time, especially
with respect to anisotropy.

Revisiting a topic because there’s an unsatisfying aspect of previous work happens
from time-to-time, and contributes to a deeper understanding of the issues. The earlier
work is not necessarily wrong, just incomplete.

This paper was originally in the Annals of Applied Statistics, 4, (#3), pp. 1139–
1157. The Institute of Mathematical Statistics does not require permission to repub-
lish.
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Abstract

We use a discrete-time proportional hazards model of time to involuntary employment termi-
nation. This model enables us to examine both the continuous effect of the age of an employee
and whether that effect has varied over time, generalizing earlier work (Kadane and Wood-
worth, 2004). We model the log hazard surface (over age and time) as a thin-plate spline, a
Bayesian smoothness-prior implementation of penalized likelihood methods of surface-fitting
(Wahba, 1990). The nonlinear component of the surface has only two parameters, smoothness
and anisotropy. The first, a scale parameter, governs the overall smoothness of the surface,
and the second, anisotropy, controls the relative smoothness over time and over age. For
any fixed value of the anisotropy parameter, the prior is equivalent to a Gaussian process
with linear drift over the time-age plane with easily computed eigenvectors and eigenval-
ues that depend only on the configuration of data in the time-age plane and the anisotropy
parameter. This model has application to legal cases in which a company is charged with
disproportionately disadvantaging older workers when deciding whom to terminate. We il-
lustrate the application of the modeling approach using data from an actual discrimination
case.

Keywords and phrases: Age discrimination, thin plate spline, smoothness prior, discrete
proportional hazards, semiparametric Bayesian logistic regression.

12.1 Introduction

Federal law prohibits discrimination in employment decisions on the basis of age. There
are two different bases on which a case may be brought alleging age discrimination.
First, in a disparate impact case, the intent of the defendant is not at issue, but
only the effect of the defendant’s actions on the protected class, namely, those forty
or older. For example, a rule requiring new hires to have attained bachelor’s degrees
after 1995 would be facially neutral, but would have the effect of preventing the hiring
of older applicants. For such a case, data analysis is essential to see whether the data
support disproportionate disadvantage to persons over 40 years of age with respect to
whatever employment practices might be in question. Those practices might include
hiring, salary, promotion and/or involuntary termination. A disparate treatment case,
by contrast, claims intentional discrimination on the basis of age. Malevolent action,
as well as intention, must be shown in a disparate treatment case. While statistics can
address the defendant’s actions in a disparate treatment case, usually intent is beyond
what data alone can address.

This paper uses a proportional hazards model as the likelihood (Cox, 1972). Finkel-
stein and Levin (1994) used such a model using as dependent variable the positive part
of (age −40) as an explanatory variable. Kadane and Woodworth (2004) treat age as
a continuous variable, but do not model the response as a function of calendar time.
This paper models both age and time continuously. This choice enables us to exam-
ine both the effect of age of an employee on employment decisions (our example uses

215



216 Continuous Time and Age Employment Decisions

involuntary terminations) and whether that effect has varied over time. Hence, there
are two continuous variables, time and the age of the employee. In this way, the work
here generalizes our earlier work (Kadane and Woodworth, 2004) that allowed con-
tinuous time, but reduced age to a binary variable (over 40/under 40). The analysis
presented here allows us to address the extent to which a pattern or practice of age-
based discrimination extends over a period of time. Proportional hazards regression
is particularly suited to a pattern or practice case because it concerns the probability
or odds of a person of a given age being involuntarily terminated relative to that of
a person of another age (or range of ages), and hence directly addresses whether an
older person is disproportionately disadvantaged.

We choose to use Bayesian inference because we find that it directly gives the prob-
ability that a person of a given age at a particular time is more likely to be fired than
another person of a given other age at the same time. This contrasts with sampling-
theory methods that give probabilities in the sample space, even after the sample is
observed (Kadane, 1990b). When combined with sensitivity analysis, Bayesian analy-
sis permits us to assess the relative influence of the data and the model. We undertook
the line of research in Kadane and Woodworth (2004) and in this paper to deal with
temporally-sparse employment actions taken over a long time period. We particu-
larly wanted to avoid the need to aggregate data into arbitrary time periods–months,
quarters, years, etc.–in order to apply Cochran-Armitage type tests and the like.

12.2 Proportional Hazards Regression

The data required to analyze age discrimination in involuntary terminations com-
prise the beginning and ending dates of each employee’s period(s) of employment,
that employee’s birth date, and the reason advanced by the employer for separation
from employment (if it occurred). Table 12.1 is a fragment of the data analyzed in
Section 12.3, below. Data were obtained for all persons employed by a firm at any
time between 06/07/1989 and 11/21/1993. The tenure of the last employee shown is
right censored; that is, that employee was still in the work force as of 12/31/1993,
and we are consequently unable to determine the time or cause of his or her eventual
separation from the firm (involuntary termination, death, retirement, etc.).

Table 12.1: Flow data for the period June 1, 1989 to December 31, 1993

Birth Date Entry Date Separation Date Reason
...

...
...

...
3/1/1925 3/1/1961 6/1/1990 Vola

4/9/1938 4/8/1961 8/17/1992 Vol
10/17/1934 4/5/1962 6/3/1992 Invol
12/9/1939 4/7/1962 12/18/1991 Invol
11/29/1932 5/29/1962 8/26/1989 Invol
9/5/1928 10/27/1962 6/12/1991 Vol
5/31/1941 1/12/1963 n/a n/a

...
...

...
...

a“Voluntary” termination includes death and retirement.
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12.2.1 Overview

The purpose of our statistical analysis is to determine how an employee’s risk of
termination depends on his or her age and how the risk for employees of a given age
changes with time. The idea is to estimate a surface such as the one in Figure 12.1 in
such a way that it balances a penalty for infidelity to the data and for a penalty for
a surface that is unrealistically “rough” (Gersch, 1982). The result is a surface that
is generally within the margins of sampling error but is also smooth. Smoothness,
generally speaking, amounts to not having areas of high curvature (i.e., spikes, cliffs,
buttes, sharp creases, etc.). The idea is to get a good fit to the data without sacrificing
smoothness.

The mesh surface in Figure 12.1 is derived from a thin-plate spline model of the log
odds (logit) of the probability of involuntary termination at a given time and age. The
vertical axis shows the posterior median log odds ratio of termination for employees
of a given age on a given date relative to the weighted average rate for employees aged
39 years or younger on the same date (the legally unprotected class often used by
statistical experts as a reference class for claims of disparate impact1). The gray plane
corresponds to odds ratios equal to 1.00, indicating no age discrimination relative
to the reference class; points above this plane exhibit discrimination. Although the
underlying thin plate spline is smooth, the log-odds ratio surface is locally slightly
rough because the observed numbers of employees in each age bin at the time of each
termination were used as weights in computing the termination rate in the reference
class.

The black ribbon in Figure 12.1 is the trajectory of the log-odds ratio over time
for employees aged 56-57, and the dashed ribbon is the log-odds ratio as a function
of age on day 1121 (05/30/92), the date of the involuntary termination of 57-year old
plaintiff W1 in Case W described in Kadane and Woodworth (2004). The height of the
surface at their intersection (0.297) is the posterior median log odds on the involuntary
termination of 56-57 year-old employees relative to those under 40 on that date.

Figure 12.2 shows the posterior probability of age discrimination relative to under-
40 employees as a function of age and date. Points above the gray plane represent dates
and ages at which there was at least 70% posterior probability of age discrimination.
By itself, this would be comparatively weak evidence; however, Kadane (1990a) com-
menting on empirical research by Mosteller and Youtz (1990), suggests that this level
of probability could, in standard usage, be said to make it “likely” that discrimination
had occurred. The height of the surface at the intersection of the dashed and black
ribbons (0.79) is the posterior probability that employees aged 56-57 were terminated
at a higher rate compared to under-40 employees.

12.2.2 Proportional Hazards Models for Time to Event Data

We are analyzing a group of individuals at risk for a particular type of failure (involun-
tary termination) for all or part of an observation period. The jth person enters the risk
set at time hj (either his/her date of hire or the beginning of the observation period)
and leaves the risk set at time Tj either by failure (involuntary termination), or for
other reasons (death, voluntary resignation, reassignment, retirement), or was still em-

1Note, however, that Mr. Justice Scalia’s majority opinion in O’Connor v. Consolidated Coin Caterers
Corp., 517 U.S. 308 (1996) states that “though the prohibition is limited to individuals who are at least 40
years of age, §631(a). This language does not ban discrimination against employees because they are aged
40 or older; it bans discrimination against employees because of their age, but limits the protected class to
those who are 40 or order. The fact that one person in the protected class has lost out to another person in
the protected class is thus irrelevant, so long as he has lost out because of his age.”
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Figure 12.1: Smooth-model-derived log-odds of termination relative to under-40 employees.

ployed at the end of the observation period. The survival function Sj (t) = P (Tj > t)
is the probability that the jth employee is still employed at time t.

In practice, we rescale time and age to the unit interval [0,1] and, to make com-
putations tractable, discretize each to a finite grid; 0 = t0 < t1, < · · · < tp = 1,
0 = a0 < a1, < · · · < ar = 1. Let piw be the conditional probability that employee
(worker) w is terminated in the interval (ti−1, ti] given the parameters and given
that s(he) was in the workforce at time tj−1. The discretized data for this employee
are fiw, · · · , fpw; riw, · · · , rpw where riw = 1(0) if the employee was (not) in the
work force (risk set) at time ti−1, and fiw = 1(0) if the worker was (not) involun-
tarily terminated (fired) in that interval. The joint likelihood for all employees is,∏W
w=1

∏p
i=1 p

fiw
iw (1− piw)

riw−fiw , where W is the total number of employees. Letting
aw (t) denote the age of employee w at time t, we use the natural parametrization
logit (piw) = β (ti, aw (ti)), where β (t, a) is a smooth function of time and age.

The aggregated data nij and xij are, respectively, the number of employees with
ages in the interval [aj−1, aj) at time ti and the number of those who were terminated
in that interval. At this level of aggregation, the likelihood is

l (β) =

p∏
i=1

r∏
j=1

exp (βijxij − nij ln (1 + exp (βij))) , (12.1)

where βij = β (ti, aj). We assume that the grid is fine enough and the function smooth
enough that variation of β within a grid cell is negligible. Changing the grid requires
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Figure 12.2: Probability of age discrimination relative to under-40 employees.

recomputing the cell counts, (nij , xij) and basis vectors defined below, which is fairly
time consuming. We did a few runs with a grid roughly twice as fine (which quadrupled
the run time and storage requirements) without observing substantive changes in the
results; however, we focused our sensitivity analysis on varying the prior distribution
of the smoothness parameter, which appeared to have much greater impact on the
results. We compute the log odds ratio at time ti for employees aged aj relative to
unprotected employees (i.e., employees under age 40) as

βij − logit

 ∑
ageu≤40

niupiu

/ ∑
ageu≤40

niu

 , (12.2)

where ageu is age in years corresponding to scaled value au, and logit (pij) = βij.

12.2.3 Thin-Plate Spline Smoothness Priors

Likelihood measures fidelity to data (the larger the better); however, it does not incor-
porate our belief that the hazard ratio varies comparatively smoothly with time and
age; this is provided by a roughness penalty (the smaller the better) that is subtracted
from the log-likelihood,

λ

2

∫∫ [(
∂2β (t, a)

∂2t

)2

+ 2

(
∂2β (t, a)

∂t∂a

)2

+

(
∂2β (t, a)

∂2a

)2
]
dtda. (12.3)

The smoothness parameter, λ, weights the importance of smoothness relative to
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fidelity to noisy data (larger values of the smoothness parameter produces smoother
fitted surfaces). However, there is no reason to expect the log odds to be isotropic–
equally smooth in time and age–and for that reason we assume that there is a
rescaling T = t/

√
1 + ρ2, and A = ρa/

√
1 + ρ2, such that the function b (T, A) =

β
(
T
√

1 + ρ2, A
√

1 + ρ2/ρ
)

is equally smooth (isotropic) in A and T . That is, the

roughness penalty is

λ

2

∫∫ [(
∂2b (T,A)

∂2T

)2

+ 2

(
∂2b (T,A)

∂T∂A

)2

+

(
∂2b (T,A)

∂2A

)2
]
dTdA, (12.4)

which reduces to the anisotropic roughness penalty,

λ̃

2

∫∫ [(
ρ2

1 + ρ2

∂2β (t, a)

∂2t

)2

+ 2

(
ρ

1 + ρ2

∂2β (t, a)

∂t∂a

)2

+

(
1

1 + ρ2

∂2β (t, a)

∂2a

)2
]
dtda,

(12.5)
where ρ is called the anisotropy parameter and λ̃ = λρ3/

(
1 + ρ2

)
. When ρ = 1 the

surface is isotropic, and as ρ → ∞(or ρ → 0), there is relatively less constraint on
roughness in the age (or time) dimension.

It is interesting to compare this model to the earlier one of Finkelstein and Levin
(1994), which is a special case of ours. In their case, our function β(·, ·) takes the form

β(ti, aw(ti)) = (aw(ti)− 40)+.

Since that function has zero second partial derivatives (except at 40, where they do
not exist), their function imposes smoothness in our sense. One could think of this
computationally as setting λ = 0.

Since the likelihood depends on the smooth function β (t, a) only through the values
βij , the roughness penalty is minimized for fixed βij when β (t, a) is the interpolating
thin-plate spline with values β (ti, aj) = βij . We have from Wahba [1990, page 31, eq.
2.4.9] that there exist coefficients c such that the isotropic thin plate spline b (T,A)
can be represented as

b (T,A) =
∑
ij

cijH (T − Ti, A−Aj) + l (T,A) , (12.6)

where l (T,A) is an arbitrary linear function, H (v) = |v|2ln (|v|) / (8π), and the
coefficients cij satisfy the conditions:

∑
ij

cij =
∑
ij

ticij =
∑
ij

ajcij = 0. Then the

isotropic roughness penalty, equation (12.4), reduces to λc′Kρc, where c is the vector
of coefficients and Kρ is the pr × pr symmetric matrix with elements of the form

kij,uv = H (Ti − Tu, Aj −Av) = H

(
(ti−tu)√

1+ρ2
,
ρ(aj−av)√

1+ρ2

)
. To accommodate the con-

straints on vector c, let P be the projection onto the linear space orthogonal to the
constraints so that c = Pc .

Finally, let PKρP = UρΛρUρ
′ be the spectral decomposition of PKρP and define

the basis vectors Bρ as the nonzero columns of UρΛρ
1/2. It follows that the model for

the vector of logits is

β = Kρc + Lφ̃

= KρPc + Lφ̃

= PKρPc + (I−P) KρPc + Lφ̃,

(12.7)
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where β is the matrix with ijth row βij and the ijth row of matrix L is (1, ti, aj). But
I−P is the projection onto the column space of L and, consequently, (I−P) KρPc
can be absorbed into the linear term. Therefore, the model reduces to

β = PKρPc + (I−P) KρPc + Lφ̃

= UρΛ
1
2
ρ

(
Λ

1
2
ρ Uρc

)
+ Lφ

= Bρδ + Lφ

(12.8)

where δ = Λ
1
2
ρ Uρc and Bρ = UρΛ

1
2
ρ . Thus, for a given anisotropy, ρ, the columns of

Bρ are basis vectors for the nonlinear part of the logit vector β.
The roughness penalty is, λc′Kρc = λc′PKρPc = λc′UρΛρUc = λδ′δ. The

standard Bayesian interpretation of penalized likelihood estimation is that the penalty
function is the log of the prior density of δ. Consequently, the components of that
vector are a-priori independent and identically distributed normal random variables
with precision λ. It follows that the prior conditional variance of β given λ, ρ and φ is

V ar (Bρδ) = λ−1BρB
′
ρ

= λ−1PKρP

and, consequently, if d is a vector such that d′L = 0, then

Var (d′β) = λ−1d′Kρd. (12.9)

The posterior distributions of λ and ρ are not well identified by the data and
it is necessary to be somewhat careful about specifying their priors. However, the
regression coefficients, φ, of the linear component do not influence smoothness, are
well identified by the data, and can be given diffuse, normal prior distributions.

Viewing both time and age as continuous variables allows a more precise and
general view of a firm’s policy. However, due to the comparative sparseness of the
data, some constraint on or penalty for roughness is needed to avoid an unrealistically
rough model, unlike that depicted in Figure 12.1. It is, of course, possible to introduce
discrete discontinuities into an otherwise smooth model at time points where there is
other evidence of a shift in employment practices [see, for example, Figure 6 in Kadane
and Woodworth (2004), i.e., Figure 11.6 in this volume]. However, we do not think that
it is appropriate to “mine” for unknown numbers of discontinuities at unknown time
points in the sparse data common in age-discrimination cases. Hence, it is necessary
to smooth the data. The key parameters in doing so are smoothness and anisotropy.
The smoothness parameter controls the average smoothness of the surface and the
anisotropy parameter controls the relative degree of smoothing in the age and time
coordinates.

12.3 Case W Revisited

Over an observation period of about 1600 days the workforce at a firm was reduced
by about two thirds; 103 employees were involuntarily terminated in the process. A
new CEO took control at day 862, near the middle of the observation period. The
plaintiff asserted that employees aged 50 and above were targeted for termination
under the influence of the new CEO. Here we present a fully Bayesian analysis with
smoothly time- and age-varying odds ratio. The personnel data were aggregated by
status (involuntarily terminated, other) into one-week time intervals and two-year
age intervals (20-21, 22-23, . . ., 64-65). Figures 12.1 and 12.2 show posterior medians
and posterior probabilities of age-related discrimination (i.e., of increased odds of
termination relative to unprotected employees).
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12.3.1 Forming an Opinion about Smoothness and Anisotropy

The anisotropy parameter ρ governs the relative smoothness in time relative to age.
This is clearly illustrated in Figure 12.3, which shows the seventh eigensurface (basis
function) for a) the isotropic case where there is about one cycle in either direction in
contrast to (b) the anisotropic case ρ = 4 in which the surface is four times rougher
in the age dimension (there are about 3 half cycles in the age dimension to about 3/4
of a half cycle in the time dimension).

Figure 12.3: Effect of anisotropy on the 7th basis function.

In the context of employment discrimination we think that, in terms of roughness
of the logit, a 3 year age difference is about equivalent to a business quarter. Recalling
that we have rescaled 1600 calendar days and a 45-year age span into unit intervals, a
quarter is 0.056 and a three-year age interval is 0.067 of the unit interval, corresponding
to anisotropy ρ = 1.2. We have found empirically that doubling or halving anisotropy
has a fairly modest effect on surface shape; consequently, we used the prior distribution
shown in Table 12.2, which has prior geometric mean 1.4.

Table 12.2: Prior Distribution of the Anisotropy Parameter

ρρρ 8 4 2 1 0.5 0.25
Prior 0.08 0.16 0.26 0.26 0.16 0.08

Larger ρ-values favor smoothness in time.

As in our earlier analysis of this case (Kadane and Woodworth, 2004), we now
derive a prior distribution for the smoothness parameter from our belief that the odds
ratio on termination for a 10-year age difference are unlikely to change more than 15%
over a business quarter. This implies that a particular mixed difference is unlikely to
exceed 0.15 in absolute value; i.e., Prior

(
`
∣∣∆2

t ∆aβ (t0, a0)
∣∣ ≤ 0.15

)
is large, where

∆2
t∆aβ (t0, a0) = β (t0 + 2dt, a0 + da)− 2β (t0 + dt, a0 + da) + β (t0, a0 + da)

−β (t0 + 2dt, a0) + 2β (t0 + dt, a0)− β (t0, a0) ,

where dt is a rescaled half-quarter and da is a rescaled decade. We have from
equation ((12.9)) above that the prior distribution of ∆2

t∆aβ (t0, a0) is normal
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with mean zero and conditional variance, d′Hd/λ = Vρ/λ, where H is the ma-
trix with entries H (Ti − Ti′ , Aj −Aj′), d is the vector (1,−2, 1,−1, 2,−1), Ti =

(t0 + tdt) /
√

1 + ρ2, i = 0, 1, 2, and Aj = ρ (a0 + jda) /
√

1 + ρ2, j = 0, 1. Values of Vρ
are listed in Table 12.3.

The conditional prior distribution of the smoothness parameter given the
anisotropy parameter is gamma with shape parameter and scale parameter selected
so that Prior

(∣∣∆2
t ∆aβ (t0, a0)

∣∣ ≤ 0.15
)

= 1 − α is large. To complete the derivation,
we have, conditional on ρ, that

[
∆2
t∆aβ (t0, a0)

]2
v Vρ ·

scρΓ (0.05)

Γ (shρ)
∼ Vρ · scρ

1− β (shρ, 0.05)

β (shρ, 0.05)
,

where, abusing the notation somewhat, we let Γ (sh) denote an independent gamma-
distributed random variable with shape parameter sh, and let β (sh, 0.5) denote a
beta-distributed random variable. Consequently, if

Prior
([

∆2
t ∆aβ (t0, a0)

]2 ≤ 0.152
)

= 1− α,

then

scρ =
0.152βα (shρ, 0.5)

Vρ (1− βα (shρ, 0.5))
,

where βα (shρ, 0.5) is the αth quantile of the β (shρ, 0.5) distribution. The third column
of Table 12.3 shows the values of the scale parameter, scρ that we used to compute
the surface in Figures 12.1 and 12.2.

Table 12.3: Prior variance×λ of ∆2
t∆aβ (t0, a0) and prior scale parameter of λ

Anisotropy ρρρ VVV ρρρ scscscρρρ for shshshρρρ=0.5 and α = 0.05α = 0.05α = 0.05
8 0.000383 5.04
4 0.000453 4.26
2 0.000492 3.93
1 0.000449 4.30

0.5 0.000332 5.81
0.25 0.000195 9.90

12.3.2 Computing the Posterior Distribution

To estimate this model, we included enough basis vectors in the last row of equation
(12.8) to account for at least 95% of the total roughness variance a priori (i.e., we
included basis vectors accounting for 95% of the sum of the eigenvalues of Kρ). We
computed the posterior distribution of the probabilities of involuntary termination,
and of the odds ratios relative to under-40 employees in each time-age bin using a
program written in SAS IML language. For a given anisotropy value, ρ, we used the
Metropolis-Hastings within iteratively reweighted least squares algorithm proposed by
Gamerman (1997) to separately update the logistic regression coefficient vectors φ and
δ, and a Gibbs step to update the smoothness parameter, λ. Anisotropy values were
chosen from the six shown in Table 12.2; where, beginning with an arbitrary initial
value, we attempted a jump from the current anisotropy value to an adjacent value
with transition probabilities from the 6 doubly stochastic matrix shown in Table 12.4.
Letting current parameter values be δ, φ, λ, and ρ, we attempt a reversible jump,
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ρ → ρ̃. We then propose values φ̃ = φ, and λ̃ = ρ · sc/s̃c, where sc and s̃c are
scale parameters from Table 12.3 corresponding to ρ and ρ̃ , respectively. Finally, we
generate a proposal for δ̃ as follows. Let β = Bρδ + L · φ be the current logit vector
and let p be the current vector of termination probabilities in time-age bins [i.e.,
logit(p) = β] and let q = 1 − p . Let vectors n and y be the numbers at risk and
terminated in the time-age bins. Then, δ̃ is proposed from the multivariate normal

distribution with precision Π̃ = [λ̃ + B′ρ̃npqBρ̃] and mean µ̃ = Π̃
−1

B′ρ̃npq·ŷ where
Bρ is the matrix of basis vectors corresponding to anisotropy ρ, as defined in the
paragraph after equation (12.8), and ŷ = Bρδ+(y − p) /pq. The proposal is accepted
with probability

α = min

[
1,
p(ρ̃)p(λ̃|ρ̃)p(δ|λ̃)`(β̃)

p(ρ)p(λ|ρ)p(δ|λ)`(β)
· p(ρ̃→ ρ)(δ|λ̃, δ̃, φ)

p(ρ→ ρ̃)q(δ̃|λ, δ, φ)
· ∂λ̃
∂λ

]

= min

[
1, p(ρ̃)λ̃q̃/2 exp

(
−1

2
λ̃δ′δ̃

)
`(β̃)

×
∣∣∏∣∣0.5 exp

(
−1

2
(δ − µ′)

∏
(δ − µ)′

)
/(

p(ρ)λq/2 exp

(
−1

2
λδ′δ

)
`(β)

×
∣∣∏̃∣∣0.5 exp

(
−1

2
(δ̃ − µ̃)′

∏̃
(δ̃ − µ̃)′

))]

where l (β) is the likelihood function [equation 12.1], q and q̃ are the ranks of Bρ and
Bρ̃, and µ and Π are the mean and precision of the reverse proposal (Green, 1995).

12.3.3 Sensitivity Analysis

It is a good statistical practice to investigate whether and to what extent the results of
an analysis are sensitive to the prior distribution. That means in this case investigating
the influence of the prior distribution of the smoothness and anisotropy parameters.
Figures 12.1 and 12.2 above are based on our preferred prior distribution as specified
in Tables 12.2 and 12.3. In Figure 12.3 we compare Figure 12.1(a) with an analysis
(b) in which the scale parameters in Table 12.4 are multiplied by 10, decreasing the
roughness penalty by a factor of 10 and producing a substantially rougher surface.
Figure 12.5 shows the effect of this variation on the probability of discrimination.

Table 12.4: Jump proposal probabilities for the anisotropy parameter.

Anisotropy 8 4 2 1 0.5 0.25
8 0.9 0.1
4 0.1 0.8 0.1
2 0.1 0.8 0.1
1 0.1 0.8 0.1

0.5 0.1 0.8 0.1
0.25 0.1 0.9
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Figure 12.4: Effect of the smoothness prior on the log odds ratio

Figure 12.5: Effect of the smoothness prior on the posterior probability of discrimination

12.3.4 Identification of the Anisotropy Parameter

Table 12.5 shows the marginal posterior distribution of the anisotropy parame-
ter for the preferred prior distribution of the smoothness parameter (Table 12.3).
The posterior probability P (ρ|Data) is the observed rate of sampler visits to value
ρ of the anisotropy parameter in 19,000 replications, the marginal likelihood is
P (ρ|Data) /P (ρ)∝ P (Data|ρ), and p0.025 and p0.975 are nominal Monte-Carlo error
bounds computed on the assumption that the observed rate has a binomial distribu-
tion.

It is clear from the marginal likelihood that the data carry information about
anisotropy and, in particular, that models with large values of ρ (i.e., which are very
rough in the time dimension) are disconfirmed by the data. However, high levels of
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smoothness in the time dimension are not disconfirmed by data and apparently must
be discouraged by the prior. Because of this, we investigated the effect of a prior that
forces more smoothness in the time dimension.

Table 12.5: Posterior distribution and marginal likelihood of the anisotropy parameter

Posteriora Marginal Likelihood
ρρρ Prior P (ρρρ|Data) p0.025p0.025p0.025 p0.975p0.975p0.975 ∝∝∝ P (Data|ρρρ) p.025p.025p.025 p.975p.975p.975

8 0.08 0.122 0.12 0.13 1.53 1.47 1.61
4 0.16 0.231 0.22 0.24 1.44 1.40 1.50
2 0.26 0.286 0.28 0.30 1.10 1.07 1.14
1 0.26 0.217 0.21 0.23 0.83 0.81 0.87

0.5 0.16 0.101 0.10 0.11 0.63 0.61 0.67
0.25 0.08 0.043 0.04 0.05 0.54 0.50 0.59

ap0.025 and p0.975 are Monte-Carlo error bounds (see text).

In Figure 12.6 we altered the prior distribution for the anisotropy parameter to
favor smoothness in the time dimension (Table 12.6). In this case the prior geometric
mean of the anisotropy parameter is about 4, meaning that we think that, in terms
of roughness of the log odds on termination, a decade of age is about equivalent to a
business quarter (see Section 12.3.1). Evidence of discrimination in the plaintiff’s case
(the intersection of the dashed and black ribbons) is slightly stronger for the prior
that forces more smoothness in the time dimension; P (OR > 1 |Data) is about 0.79
for the preferred prior (a) and about 0.83 for the more time-smoothing prior (b).

Although the analysis in panel (b) is more favorable to the plaintiff, we think it
would be less persuasive to the trier(s) of fact (judge or jury) since it does not seem
to distinguish between the periods before and after the arrival of the new CEO (day
862).

Table 12.6: Alternate prior distribution of the anisotropy parameter

ρρρ 8 4 2 1 0.5 0.25
Prior 0.5 0.25 0.125 0.0625 0.03125 0.03125

Larger ρ-values favor smoothness in time.

12.3.5 Previous Analyses of Case W

The plaintiff who was between 50 and 59 years of age was one of 12 employees invol-
untarily terminated on day 1092. He brought an age discrimination suit against the
employer under the theory that the new CEO had a pattern of targeting employees
aged 50 and above for termination.

In the original case, the plaintiff’s statistical expert tabulated involuntary termi-
nation rates for each calendar quarter and each age decade. He reported that, “[Invol-
untary] separation rates for the [period beginning at day 481] averaged a little above
three percent of the workforce per quarter for ages 20 through 49, but jumped to six
and a half percent for ages 50 through 59. The 50-59 year age group differed signifi-
cantly from the 20-39 year age group (signed-rank test, p = 0.033, one sided).” The
plaintiff alleged and the defendant denied that the new CEO had vowed to weed out
older employees. The case was settled before trial.

In a subsequent re-analysis (Kadane and Woodworth, 2004), we employed a pro-
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Figure 12.6: Effect of the anisotropy parameter on the posterior probability of discrimina-
tion.

portional hazards model with separate, smoothly time-varying log hazard ratios for
ages 40-49, and 50-64, with ages 20-39 as the reference category. Thus the log hazard
ratio was smooth over time but piecewise constant over age; Figure 12.7, is reproduced
with permission from that paper. Our preferred model, represented by the solid curves,
had prior mean smoothness 0.007. For this prior the posterior probability probability
of age-discrimination in the case of Plaintiff W1 was 0.842.

The model depicted in Figure 12.7 has two explanatory variables for age, an in-
dicator variable for age in the range 40-49 and an indicator variable for age 50 and
above (there are no employees 65 and over in the data set). The likelihood model was
proportional hazards regression with smoothly time-varying coefficients for the two ex-
planatory variables. Three analyses are shown here with different prior means for the
smoothness parameter, λ. The upper panel shows posterior means of the proportional-
hazards regression coefficients as functions of time and the smoothness parameter. As
suggested in the figure, the regression coefficients are interpretable as instantaneous
log odds ratios with unprotected, under-40, employees as the reference category. The
second panel presents posterior probabilities that the two regression coefficients are
positive; that is, that the termination rate is higher for the protected subclasses com-
pared to the unprotected class. For example, at the time of plaintiff W2’s termination,
the posterior probability exceeds 80% that employees age 50 and above had a higher
risk of termination than the protected class.

A second plaintiff, W2 aged 60 terminated on day 733, also brought an age-
discrimination suit on the theory that employees aged 60 and above were dispropor-
tionately targeted at the time of his termination. On that day three of eight employees
(37.5%) aged 60 and up were terminated compared to 15 of 136 (11.0%) employees
terminated out of all other age groups (one-sided Fisher exact test p=0.0530). In our
re-analysis the posterior probability of age discrimination against employees aged 50-
64 was about 50% but did not distinguish between employees aged 50-59 and 60-64.
Our second re-analysis reported in this paper remedies that deficiency and gives a
more detailed picture of the impact of age on the risk of discrimination; in partic-
ular, for our preferred prior, the posterior probability of age discrimination against



228 Continuous Time and Age Employment Decisions

Day

0 180 360 540 720 900 1080 1260 1440 1620

Lo
g 

O
dd

s 
R

at
io

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

Day

0 180 360 540 720 900 1080 1260 1440 1620

P(
 

 >
 0

 )

0.0

0.2

0.4

0.6

0.8

1.0

Plaintiff W1

Age 40-49

Age 50-64

Plaintiff W2

New CEO
E( ) = .07
        = .007

    = .0007 

Figure 12.7: Smooth by piecewise constant proportional hazards model.

60-year old employees on day 733 is about 65% but is only about 37% for 50-year old
employees.

12.3.6 Summary

Table 12.7 summarizes the results of the three analyses of case W for each of the
two plaintiffs. In the first, classical, analyses for Plaintiff W1, it is assumed that each
employee in the age groups 20-39 and 50-59 has the same chance of being involuntarily
terminated (i.e., fired) in each quarter-year after day 481. The test of significance
calculates the probability of obtaining data as or more extreme than that observed
were it true that persons in these two age groups have the same chance of being fired
in any given quarter. The classical analysis for plaintiff W2 is somewhat different, in
that it focuses solely on what happened on the day that W2 was fired. It conditions
on both the age distribution of the workforce at the time (eight of 144 employees 60
years old or older) and the number fired (18) and computes the probability of three
or more of the eight older employees being fired, if employees were equally likely to be
fired.
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Table 12.7: Summary of three analyses of case W

Figure of Treatment of Age × Time Plaintiff
Analysis Method Merit Age Interaction W1 W2

Original Frequentist p-value categorical: none 0.033 0.053
Expert’s 40-up
Report
Kadane and Bayesian probability of categorical: smooth 0.84 0.50
Woodworth disproportional 40–49,
(2004) disadvantage 50–64 smooth/w 0.88 0.49

discontinuity
at day 862

This paper Bayesian probability of smooth smooth 0.65 0.37
disproportional
disadvantage

Anonymous Cox p-value, linear none but p:0.041 n/a
referee of regression OR, and above 40 restricted OR: 2.04
this paper 90% LCL to day LCL: 1.01

1000 up

The second analysis is based on a model for the log-odds of being fired that is
continuous in time but still assumes constancy in age categories. The analysis of this
paper relaxes this latter assumption, and allows smoothness in both age and time.
In both Bayesian analyses, the probability computed is that an employee of a given
age was more likely to be fired at a particular time than was an employee in the
unprotected 20-39 age group,

Although the classical analyses are computing probabilities in the sample space
while the Bayesian analyses are computing probabilities in the parameter space, the
stronger effect here appears to be that as the assumptions get less rigid, there is less
certainty that these plaintiffs’ cases were meritorious, as Table 12.7 shows. In view of
the tendency of Bayesian analyses to draw estimates toward each other, this is perhaps
not too surprising.

12.4 Discussion

In a nonhierarchical model, the effect of the prior can be isolated by separately report-
ing the likelihood function and the prior distribution. In particular, if the parameter
space is divided into two disjoint subsets, the likelihood ratio and the prior odds
suffice. However, in a hierarchical model such as this one, such a separation is not
possible. For this reason, we have reported the results of changing our prior directly,
in Sections 12.3.3, 12.3.4 and 12.3.5.

We have presented a global analysis of involuntary terminations that incorporates
all of the data but reflects fine-grained variations over time and age of employee. The
results are somewhat sensitive to assumptions about prior distribution of the smooth-
ness parameter, although not enough to materially alter the strength of evidence
supporting the plaintiff’s discrimination claim in Case W. This analysis, in our view,
casts new light on the apparent patterns in coarser-grained descriptive presentations
that might be easier for nonspecialists to grasp.

Our intent is to develop a methodology that does not require complex assumptions
about the relationship between time, age and risk of termination. Indeed, the only
structural assumption is smoothness and the only prior opinion required has to do with
the degree of smoothness. We have suggested how that prior opinion could be elicited
by considering how rapidly the risk of termination is likely to change over a business
quarter and over a decade of age. A referee described our analysis as “staggeringly
complex” and “shuddered to think what a judge or jury would make of this approach.”
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All statistical analyses are “staggeringly complex” to most laypersons. We think our
responsibility as statisticians (and experts in court) is to present our best analysis of
the data, and to explain it as best as we can.

A global analysis such as this one is more powerful and more appropriate than
analyzing subsets of the data, perhaps in the form of individual termination waves or
individual business quarters, and more appropriate than analyzing coarse aggregations
such as employees aged 40 and above compared to younger employees. The fallacy of
subdividing the data is that such analyses implicitly assume that there is no continuity
in the behavior of a firm and no difference in treatment of employees of different ages
within the same broad age category (40 and older). We believe that the appropriate
approach to possible inhomogeneities of the age effect is to incorporate them in a global
model–see for example, our discussion of Gastwirth’s (1992) analysis in Valentino v.
United States Postal Service (Gastwirth, 1992; Kadane and Woodworth, 2004).

Finally, it has not escaped our notice that our analysis of Case W has made it clear
that only a subgroup of older employees, centered around the peak at day 1275 and
age 54-55, has even moderately strong statistical evidence to support a claim of age
discrimination. We believe that this is precisely the information that the court needs
in order to determine how an award (if any) should be distributed among members of
a certified class.

Supplementary Material

Supplement A: Employment – Case W (DOI: 10.1214/10-AOAS330SUPPA;.txt).
Data from two cases described in the paper “Hierarchical models for employment de-
cisions,” by Kadane and Woodworth. A constant number of days has been subtracted
from each date to preserve confidentiality.

Supplement B: Code for calculations (DOI: 10.1214/10-AOAS330SUPPB;.zip).

REFERENCES

Cox, D. (1972). “Regression models and life-tables.” Journal of the Royal Statistical Society
Series B , 34, 187–220. MR034178. 215

Finkelstein, M. and Levin, B. (1994). “Proportional Hazard Models for Age Discrimination
Cases.” Jurimetrics Journal , 34, 153–171. 215, 220

Gamerman, D. (1997). “Sampling from the posterior distribution in generalized linear mixed
models.” Statistics and Computing , 7, 57, 57–68. 223

Gastwirth, J. (1992). “Employment discrimination: A statistician’s look at analysis of
disparate impact claims.” Law and Inequality: A Journal of Theory and Practice, 11, 1,
151–179. 230

Gersch, W. (1982). “Smoothness priors.” In Encyclopedia of Statistical Sciences, eds.
S. Kotz, N. L. Johnson, and C. B. Read, vol. 8, 518–526. John Wiley & Sons. 217

Green, P. (1995). “Reversible jump Markov chain Monte Carlo computation and Bayesian
model determination.” Biometrika, 82, 4, 711–732. MR1380810. 224

Kadane, J. (1990a). “Comment: Codifying chance.” Statistical Science, 5, 18–20. 217

— (1990b). “A Statistical Analysis of Adverse Impact of Employer Decisions.” Journal of
the American Statistical Association, 85, 925–933. 216

Kadane, J. and Woodworth, G. (2004). “Hierarchical Models for Employment Decisions.”
Journal of Business and Economic Statistics, 22, 2, 182–193. MR2049920, also Chapter
11 in this volume. 215, 216, 217, 221, 222, 226, 230



Pragmatics of Uncertainty 231

Mosteller, F. and Youtz, C. (1990). “Quantifying probabilistic expressions.” Statistical
Science, 5, 2–12. MR1054855. 217

Wahba, G. (1990). Spline models for observational data. Philadelphia: Society for Industrial
and Applied Mathematics. MR1045442. 215





Chapter 13

Error Analysis for Small Angle Neutron
Scattering Datasets using Bayesian Inference

(2010)

Foreword

Sara Majetich is an experimental physicist, and a colleague at Carnegie Mellon. As I
recall, we started chatting while waiting at the airport, and agreed to meet after we
returned from our trips.

What she wanted was a well-based statement of uncertainty about results she was
getting from SANS (small angle neutron scattering) experiments she was conducting
at the National Institute of Standards. Quickly, Chip Hogg, then a physics graduate
student, and Jong Soo Lee, a postdoctoral fellow in statistics, joined our discussions.

It took quite a while to get to a common language and point of view. The physicists
were used to running their data through a program that was basically a black box to
them, and getting answers quickly. The Bayesian statisticians wanted to know about
each potential source of uncertainty, how to parameterize it, and what was reasonably
known about it. But gradually we converged. Fortunately, we had a dataset that had
been previously analyzed as physicists were used to doing, so we could contrast our
results to the traditional ones. (See Table 13.5 and Figure 13.14).

This took us two years to complete, but it is a good example of a real and compli-
cated system analysed Bayesianly with results that add substantively to knowledge.

This paper was originally published in Bayesian Analysis, (with discussion and
response), 5, 1–34. The International Society for Bayesian Analysis does not require
permission to republish.

Where are they now? Charles Hogg works for Google in Pittsburgh. Jong Soo Lee
is an Assistant Professor in the Department of Applied Economics and Statistics at
the University of Delaware, and Sara Majetich continues as Professor of Physics at
Carnegie Mellon University.
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Abstract

We present a Bayesian methodology for extracting correlation lengths from small-angle neu-
tron scattering (SANS) experiments. For demonstration, we apply the technique to data from
a previous paper, which investigated the presence of dipolar ferromagnetism in assemblies
of ferromagnetic Co nanoparticles. Bayesian analysis confirms the presence of multiparticle
dipolar domains even at zero magnetic field, but higher-field correlation lengths were found
to be much smaller than previously believed, yielding new information on the maximum
lengthscale which the instrument can reliably probe. We use two complementary types of
graph to visualize the results. Plots of standardized residual distributions show quality of fit,
and guide model refinement. These principles can be applied to other types of sample, and
even to other small-angle scattering techniques.

13.1 Introduction

A bar magnet is perhaps the most familiar magnetic object. As illustrated in Fig-
ure 13.1, if placed in a magnetic field, the magnet rotates to line up with that field.
Once aligned, it moves in the direction where the field increases most rapidly. It also
generates its own magnetic field, whose pattern is shown in Figure 13.1(b). The bar
magnet is a good example of a more general class of magnetic objects, called magnetic
dipoles (Figure 13.1(c)), which behave in this way.

Figure 13.1: Basic concepts relating to bar magnets and magnetic dipoles. (a) When placed
in a magnetic field (represented by the grey lines), the magnet rotates until the lines point
from the south to the north pole. It also moves in the direction where the lines are densest,
which is where the field is strongest. (b) The magnetic field of a bar magnet. (c) A bar
magnet and its equivalent magnetic dipole representation: an arrow pointing from the south
to the north pole.

Despite their familiarity, important questions remain about their behaviour when
large numbers of magnetic dipoles interact. One key goal is to learn whether, in regular
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assemblies of dipoles, large regions spontaneously order to share the same direction, a
phenomenon known as dipolar ferromagnetism (Luttinger and Tisza, 1946). Though a
vague sense that “magnets prefer to align” might make this seem trivial, Figure 13.2
shows that this is far from true. Dipoles lined up along the axis indeed prefer to align,
but adjacent dipoles prefer to anti -align, and the preference for dipoles at other angles
can be anywhere in-between.

Figure 13.2: Demonstration that the preferred orientation of one dipole (B) with respect to
another (A) depends on the angle between them. Dipole A is shown in the lower left, along
with its magnetic field. Along A’s dipole axis (position B1), the dipoles preferentially align.
Perpendicular to this axis (position B2), B prefers to anti -align with A. At intermediate
angles (e.g. position B3), the preferential alignment may be anywhere in-between.

Monodomain magnetic nanoparticles are an ideal test system to investigate this
phenomenon. Each nanoparticle consists of aligned atomic dipoles so that it be-
haves effectively as a single giant dipole (Stoner and Wohlfarth, 1948). Additionally,
their highly regular size allows them to self-assemble into ordered two- and three-
dimensional structures (Murray et al., 1995; Talapin et al., 2001; Narayanan et al.,
2004), as shown in Figure 13.3.

The homogeneous regions where nanoparticles are magnetized in the same direc-
tion are called dipolar domains (Yamamoto et al., 2008), and the size of these do-
mains is the main quantity we are interested in. An example is given in Figure 13.4.
Although both samples have zero average magnetization, the domains in (a) are twice
as large as domains in (b). Instruments which measure only the total magnetization,
called magnetometers, could not distinguish between these samples. However, scatter-
ing techniques can determine the average domain size.

The geometry of a general scattering experiment is shown in Figure 13.5. The
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Figure 13.3: A picture of a thin cobalt magnetic nanoparticle crystal, taken with a trans-
mission electron microscope (TEM). This particular crystal is only one monolayer thick, so
that individual particles are easily distinguished.

Figure 13.4: Two hypothetical magnetic samples, identical except for the domain structure.
A magnetometer would measure both to be demagnetized, but the correlation length in (a)
is twice as large as in (b).

sample is placed in a beam of radiation, whose component particles1 it deflects (or
scatters) at an angle θ. The scattering of each individual particle is a stochastic event,
whose governing distribution is determined by the size of the ordered regions within
the sample. When many particles have been scattered, the intensity pattern built up
on the detector can be analyzed using theoretical models, yielding information about
the parameters characterizing the sample.

The connection between characteristic sizes and scattered radiation can be briefly
illustrated by explaining Bragg’s Law (Kittel, 2004), the most basic scattering relation.
Atoms in a crystal are arranged in planes, each of which reflects a small amount2 of the
incoming radiation, as in Figure 13.6. These reflected rays undergo interference when
they recombine at the detector, where a high intensity signal occurs only if they all
have the same phase. Rays reflected from deeper planes must travel a correspondingly
longer distance, ∆L = 2d sin θ (see Figure 13.6); accordingly, their phase is more
advanced by an amount 2π∆L/λ, with λ the wavelength of the radiation. Since a
phase difference of 2π makes no difference, the first bright spot occurs when ∆L = λ,

1All radiation is composed of particles, according to the “particle-wave duality” in quantum mechanics.
2Since only a small fraction of the incident radiation is scattered, we neglect higher-order corrections

accounting for multiple scattering.
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Figure 13.5: Schematic of a general transmission-geometry scattering experiment. (a) The
incident beam comes in from the left and strikes the sample, which deflects the radiation
at an angle θ towards a two-dimensional detector. Here, a single scattering event is shown,
but the detector records the total amount of radiation scattered into all areas, as indexed
by the scattering vector ~Q. (b) The definition of ~Q: the wavevector ~k has the direction of
the incident neutron, and magnitude 2π/λ, with λ the wavelength of the radiation. (c) A
sample pattern of scattered radiation which might be observed on a detector.

i.e.
λ = 2d sin θ. (13.1)

Equation 13.1 shows the connection between a measured size, d, and the angle
θ where radiation is strongly scattered. For many scattering experiments, λ is held
constant, and the scattered intensity is measured as a function of θ (Hammouda,
2008). Since the right side of Equation 13.1 must also be constant, structures with
larger sizes d must scatter at smaller angles θ. Though many systems exist whose
scattering is not described by Bragg’s law, this inverse relationship between sizes and
scattering angles is quite generally true, as Figure 13.7 shows schematically.

Figure 13.6: An illustration of Bragg’s Law for scattering. The incident beam comes in from
the left and is partially reflected from each plane of atoms. The path lengths of rays 1 and
2 differ by the amount ∆L, as shown in the figure.

13.1.1 Correlation Lengths

The sizes measured by Bragg’s Law correspond to distances between nearest neigh-
bours. By contrast, we’re interested in measuring regions of order, which often extend
across many neighbours. The size of these ordered regions is measured by a quantity
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Figure 13.7: An illustration of the relationship between the scattering angle θ and the size
of ordered regions. In both cases, the sample is placed in the path of a neutron beam, and
it scatters the neutrons into a detector. The sample in (a) has larger ordered regions than
(b), and consequently scatters proportionately more neutrons at smaller angles.

known as the “correlation length”. The term, ‘correlation,’ is well-established in both
the physics and statistics communities, but the meanings differ.

In physics, correlation always refers to systems possessing some kind of order, and
the correlation length ξ measures how large the ordered regions tend to be (Yeomans,
1992). In the case of our dipolar domains, the ordering is found in the normalized3

dipole orientation ~S on different nanoparticles. This ordering is measured as a function
of separation by means of the correlation function, G(r):

G(r) = 〈~Si · ~Sj〉r (13.2)

where the angle brackets denote averaging over all pairs of nanoparticles, i and j,
separated by a distance r.

The behavior of G(r) relates to ξ as follows. When r � ξ, most pairs of locations
separated by r are within the same domain, so G(r) ∼ 1. On the other hand, when
the separation r is large (r � ξ), the magnetization in remote regions is just as likely
to point one way as the opposite way, so G(r)→ 0. The correlation length ξ therefore
sets the scale of how quickly G(r) goes to zero, and it can be obtained by fitting to
the rate of damping of G(r).

Some systems, such as ours, require more than one correlation length for their
complete description (Bernhoeft, 1999). Within each dipolar domain, smaller regions
of inhomogeneities (Figure 13.8) are found, where clusters of nanoparticles deviate
slightly from the average domain orientation (Michels et al., 2003). We denote the
“domain size” correlation length as ξS , and the “inhomogeneity” correlation length as
ξL. These correlation lengths are the parameters of greatest interest.

3By “normalized,” we mean that |~S| = 1.
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Figure 13.8: An example configuration of dipoles in a nanoparticle array. The dipole ori-
entation is shown both by the central arrow and the color of the nanoparticle. Here, three
dipolar domains are shown, separated by thick solid lines: the downward domain occupies
the left half, and the right half supports a leftward domain on top and a rightward domain
on the bottom. Within each domain are shown smaller regions of inhomogeneities, bounded
by thin dashed lines, where subgroups of nanoparticles deviate slightly from the average
direction in the domain.

13.1.2 Small-angle Neutron Scattering

Neutrons have several key advantages for studies of condensed matter, particularly
of magnetic materials (Hammouda, 2008; Squires, 1997). They are uncharged, which
allows them to penetrate very deeply through most matter. “Slow” neutrons — those
travelling less than roughly v = 1 km/s — have wavelengths4,

λ =
h

mv
, (13.3)

suitable for scattering studies on structures of current interest (typically a few tens
of nm, where 1 nm is one billionth of a meter). Finally, each neutron also possesses a
magnetic moment, which enables it to interact magnetically with the sample.

In small-angle neutron scattering (SANS), theory predicts the relative scattered

intensity as a function of the scattering vector ~Q, which was defined in Figure 13.5(b).

SANS scattering tends to be elastic, meaning that |~k′| = |~k|, and | ~Q| can be evaluated
based purely on geometry:

| ~Q| = 4π sin(θ/2)

λ
≈ 2πθ

λ
(13.4)

A key result of scattering theory is that the intensity I( ~Q) is simply related to G(~r)

by a Fourier transform (Van Hove, 1954). This shows the connection between I( ~Q)
(the quantity measured experimentally) and ξ (the quantity of interest).

The two types of regions discussed in Section 13.1.1 each give rise to a distinctive
type of scattering. The correlation function for dipolar domain-like ordering decays
like exp(−r/ξS)/r (Sachan et al., 2008), and its Fourier transform has a Lorentzian-
Squared (“S”) lineshape:

IS(Q) ∝ 1

(κ2
S +Q2)

2 , (13.5)

4Here, m is the mass of the neutron, and h is Planck’s constant.
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where we define the parameter κS = 1/ξS for convenience. Similarly, the inhomogeities
yield a correlation function like (Sachan et al., 2008) exp(−r/ξL), which Fourier trans-
forms to a Lorentzian (“L”) lineshape:

IL(Q) ∝ 1

κ2
L +Q2

, (13.6)

again defining κL = 1/ξL. Adding in appropriate scaling constants ΣS and ΣL, the
total magnetic scattering at low Q becomes

I(Q) =
ΣS

(κ2
S +Q2

i )
2

+
ΣL

κ2
L +Q2

i

. (13.7)

Changes in the ratio of ΣL to ΣS , from one run to another, indicate changes in the
relative prominence of domains versus the inhomogeneities within them.

13.2 The SANS Instrument

We now describe the SANS instrument, shown in Figure 13.9, in greater detail. The
workings of each major component are briefly explained, with emphasis on their con-
tributions to uncertainty. Readers desiring a more in-depth description are referred to
(Glinka et al., 1998).

Figure 13.9: The SANS instrument. Here, we show an abstracted view for simplicity, which
includes only the conceptual parts necessary to understand our model.

13.2.1 Instrument Components

Neutron Source

The neutron source as we model it has two main stages: production, and moderation.
Production takes place in a nuclear fission reactor, where neutrons are liberated dur-
ing the splitting of heavy atomic nuclei. Moderation sets the wavelength distribution
of the resulting beam, both by changing the speeds5 of the neutrons, and by filtering
out neutrons of certain speeds. The end result is that the beam has some measurable
wavelength distribution ϕ(λ) (Hammouda, 2008, Chapter 12), where ϕ(λ) dλ is pro-
portional to the amount of neutrons in the beam having wavelengths between λ and
λ + dλ. Typically, this distribution is reported in terms of the peak wavelength λ+,
and a relative wavelength spread σλ/λ+.

5From Equation 13.3, the wavelength of the neutron is directly related to its speed.
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Rate Monitor

The output from the source varies, necessitating a rate monitor to measure it. A thin
235U plate, which has a low probability to capture each passing neutron, is inserted
immediately after the source. Captured neutrons are counted for a predetermined time,
and the totals are recorded in a datafile. The monitor averages roughly 106 counts per
minute.

Sample

The sample must be held in the path of the beam by a sample holder. The neutrons
scattered from this assembly constitute the measured signal. Though the holder is
necessary, its presence complicates data interpretation, as discussed in Section 13.2.2.

Beam Stop

Because the transmitted beam is very intense, and would quickly damage the detec-
tor, a beam stop is inserted which blocks the central portion of the detector. This
unfortunately renders the lowest-Q range inaccessible, but is necessary to protect the
detector. Datapoints close to the beamstop edge should be viewed with suspicion, and
are typically discarded.

Neutron Detector

The two-dimensional neutron detector consists of a 128 × 128-pixel grid, where each
pixel records the cumulative number of neutrons passing by its position. The grid is
comprised of horizontal and vertical wires, immersed in a high-pressure mixture of
3He and CF4 gases. Passing neutrons have some probability to ionize this gas, and the
resulting charge is detected on the nearest wires: one horizontal, one vertical. Their
intersection defines the location of a pixel, whose counter is then incremented by one.

Each pixel i detects only some fraction of the neutrons which impinge upon it.
This fraction, known as the detection efficiency ηi, must be carefully measured before
the data can be quantitatively analyzed. Typically, this is done by staff scientists on
a regular basis, and the latest measured efficiencies are distributed to users.

The expected number of counts also depends on the solid angle βi which the pixel
covers, i.e. the apparent size of the pixel as viewed from the sample. Since all pixels
have the same area, solid angle is primarily determined by the distance from the
sample to the detector. We define the detection capacity γi ≡ ηiβi as the product of
detection efficiency and solid angle.

We point out that each pixel corresponds to a given scattering angle θ, determined
by its displacement from the center and the detector’s distance from the sample.
However, the neutron count from each pixel is recorded at a specific ~Q-value. Equation
13.4 shows that mapping θ onto Q is unique only if the wavelength λ is precisely
defined. The fact that the wavelength spread σλ/λ+ is nonzero means that each pixel
actually contains a probability distribution of Q-values, an effect known as smearing.

13.2.2 Instrument Configurations

The sample signal is but one of three contributions to the measured I( ~Q). By recon-
figuring the instrument, the other two can be measured. We show these configurations
schematically in Figure 13.10, explaining below the contributions they account for.

The experimental room contains additional sources of neutrons which are indepen-
dent of the beam configuration, known collectively as the “background”. This back-
ground rate is measured by blocking the beam completely (Figure 13.10(a), “BGR”)
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Figure 13.10: A schematic showing the three contributions to the signal, and how they are
measured by including them one by one. (a) The beam is blocked, and only the background
contributes. (b) Scattering and transmission are measured for the empty sample holder.
(c) The sample is inserted into the holder, both attenuating the holder’s signal and adding
its own contribution. Neutrons scattered by both sample and holder are neglected in the
single-scattering approximation. (We emphasize that this is a schematic; the paths show
the history of the neutrons, and are not intended to represent trajectories.)

and counting neutrons. An empty sample holder (Figure 13.10(b), “EMP”) is next
inserted, letting us account for neutrons scattered by the holder. Finally, the sample
is added inside the holder (Figure 13.10(c), “SAM”), contributing both nuclear and
magnetic scattering to the measured signal.

The sample transmits undisturbed only some fraction of neutrons, and the holder’s
contribution is smaller by this amount. This fraction can be measured in transmission
mode, which only counts the neutrons in the transmitted beam: it is the ratio of the
intensity with the sample in the holder, to that with the sample removed.
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Magnetic Scattering

Accounting for the above effects permits isolation of the sample signal, which is the
sum of nuclear and magnetic scattering. To separate them, note that magnetic scat-
tering along the local magnetization direction is always zero (Squires, 1997, chap.
7). By applying a magnetic field large enough to saturate the sample, we obtain a
purely nuclear signal along the field direction. Since nuclear scattering is isotropic, the
remaining magnetic signal can be extracted in all directions.

13.3 SANS Error Analysis

This paper presents an alternative technique for error analysis of SANS data. We will
give an overview of the traditional method, before describing how we have applied
Bayesian techniques to SANS.

13.3.1 Traditional Error Analysis

Existing tools for SANS error analysis have relied upon traditional statistical methods.
These tools are mature and refined through years of heavy use with a variety of users
studying diverse types of systems. We illustrate using the package written by Steven
Kline at NIST (Kline, 2006), where we performed our experiments.

Two separate steps are involved in analysis of SANS data: reduction, and fitting.
The former involves using the configurations described in Section 13.2.2 to compen-
sate for the undesired contributions. This procedure is inherently tied to the specific
instrument where the data was taken: reduction procedures are not generic. Tradi-
tional fitting procedures, by contrast, can be quite generic, since the reduced data is
expected to have all major instrument-specific effects accounted for.

Figure 13.11 shows a diagram of the traditional reduction process. We applied it to
our data, and then converted the resulting 2-D function of ~Q to a 1-D function of Q,
by averaging a narrow range of angles perpendicular to the applied magnetic field. We
measured the nuclear signal as described in Section 13.2.2, and subtracted it off to yield
the magnetic data, which we fit to the sum of a Lorentzian and Lorentzian-squared.

Data Fitting

The “best fit” is traditionally decided by minimizing the χ2 per degree of freedom,
as follows. Each datapoint yi is assigned a standard error syi , and associated with
a coordinate xi. The yi are assumed to be based on a model function f(x), such
that the deviations (f(xi) − yi) should be small compared to syi . These deviations
are called standardized residuals when normalized by syi . χ

2 is the sum of squares of
these standardized residuals,

χ2 =

N∑
i=1

(
f(xi)− yi

syi

)2

, (13.8)

and the curve which minimizes χ2 is taken to be the “best fit” for a given model. The
model itself may be checked by examining the standardized residuals and looking for
trends. Figure 13.12 shows the results of applying this method to our data at H = 0;
the yi are shown in black, and f(x) is the green curve.
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Figure 13.11: The datafiles used in our Bayesian analysis, processed here using traditional
analysis. Note the horizontal and vertical lines visible in COR, which are removed by the
DIV correction.

13.3.2 The Bayesian Alternative

Bayesian analysis is an alternative methodology; (Lindley, 2006) gives a very read-
able general introduction, and (Agostini, 2003) introduces Bayesian methods from a
physicist’s perspective.

We distinguish two types of quantities. Data (denoted by Latin letters) are directly
observed in the experiment, and parameters (denoted by Greek letters) are unobserved
quantities which affect the distribution of data. The sole reason for collecting the
former is to learn about the latter. We use ~y as shorthand for the set of all data
values, and ~α for the set of all parameter values.

The information about ~α yielded by ~y is encoded in the posterior probability
distribution P (~α|~y). Bayesian analysis relates this to two other distributions through
Bayes’ rule,

P (~α|~y) =
P (~y|~α)P (~α)∫

P (~y|~α′)P (~α′) d~α′
. (13.9)

The likelihood, P (~y|~α), gives the probability of obtaining the observed data, given a
particular set of values for the parameters. The prior, P (~α), summarizes all knowledge
of the sample before the experiment was performed. These two distributions constitute
the model. When combined with the observed data ~y0, they contain all statistical
information about the parameters ~α.

Calculations using P (~α|~y) involve integrals in a high-dimensional space (i.e. param-
eter space). We performed these integrals using a Markov chain Monte Carlo (MCMC),
written in the R programming language (R Development Core Team, 2008). The re-
sulting chain of MCMC steps was analyzed using the boa package, short for Bayesian
Output Analysis (Smith, 2007). Both the code and the datafiles used in our analysis
are available online (Hogg, 2009). We ran for 106 steps at each field, then used boa
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Figure 13.12: The results of traditional fitting methods applied to data from this experiment
(Sachan et al., 2008, Figure 3). The red Lorentzian-squared curve corresponds to scattering
from the dipolar domains, and the blue Lorentzian corresponds to magnetic inhomogeneity
scattering. Standardized residuals plotted at bottom show that the line of best fit agrees
with most datapoints within standard errors.

to discard steps until the remaining chain represented equilibrium. The final MCMC
chains contained 4973 steps at H = 0 T, 2813 steps at H = 0.2 T, and 10987 steps at
H = 1.0 T. Execution took roughly 4 days on our computer cluster, but recoding in
C++ could yield a significant advantage in speed.

We now describe our model in greater detail.

Data

Most data analyzed in this paper comes directly as a raw number of neutron counts
in some detector. Associated with instrument configuration X, we have a count N i

X

for each pixel i of the detector, and a monitor count MX. The different configurations
are listed in Table 13.1.

The only data not in the form of a raw number of neutron counts is the detector
efficiency data (Section 13.2.1). The efficiency ei of the ith pixel is based on raw data
from an isotropic scatterer, but the final values have been processed by instrument
scientists. We note in passing that the posterior distribution on the detector efficiencies
could be measured once by instrument scientists, and distributed to users desiring to
use Bayesian analysis.



Pragmatics of Uncertainty 247

Abbreviation Name Purpose
BGR Background Measure background

neutron rate
EMP Empty holder Measure sample holder

scattering
SAM-n Sample (high field) scattering Measure the nuclear

(i.e. nonmagnetic)
contribution to the
scattering signal

SAM Sample (low field) scattering Contains the signal
of greatest interest

EMP-t Empty cell transmission
Measured sample transmission
ratio at different fields

SAM-n-t Sample (high field) transmission
SAM-t Sample (low field) transmission

Table 13.1: A list of the instrument configurations.

Name Description
σG Spread of the transmitted beam
µB Normalized, per-pixel mean rate of background neutrons
ΦE Normalized rate of incident neutrons reaching the sample holder,

which are either scattered or transmitted
ρE Fraction of neutrons which the sample holder transmits
ρn The transmission of the sample in high field
ρ The transmission of the sample in low field

Σ
(E)
L Fraction of neutrons which the sample holder scatters with a

Lorentzian signal

Σ
(n)
L Fraction of neutrons undergoing nuclear Lorentzian scattering

Σ
(n)
S Fraction of neutrons undergoing nuclear Lorentzian-squared scat-

tering
ΣL Fraction of neutrons undergoing magnetic Lorentzian scattering
ΣS Fraction of neutrons undergoing magnetic Lorentzian-squared scat-

tering
κE Inverse correlation length for Lorentzian scattering from sample

holder

ξ
(n)
L Nuclear Lorentzian correlation length

ξ
(n)
S Nuclear Lorentzian-squared correlation length
ξL Magnetic Lorentzian correlation length (average size of magnetic

inhomogeneities)
ξS Magnetic Lorentzian-squared correlation length (average size of

dipolar domains)

Table 13.2: A list of parameters in our model, and a brief description of the role of each

Parameters

Our model requires 16 parameters to describe our system. Of these, the magnetic
correlation lengths ξS and ξL are the most important. A complete list of parameters
is given in Table 13.2.

Several additional parameters would be required for complete rigor, but have been
approximated as constants for this preliminary version. The relative detection effi-
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ciency ηi of pixel i is not known with certainty, but assumed to be equal to the
measured efficiency ei. Similarly, the instantaneous reactor output during datafile v,
Ωv, is assumed to be equal to the number of monitor counts Mv. In both cases, the
error introduced by these simplifications is negligible compared with the uncertainty
from other sources: using Poisson statistics, it is less than 0.01 for η, and less than
0.001 for Ω. Nevertheless, it is important to verify with each new experiment that the
counts are high enough to make these errors negligible compared to other sources of
uncertainty.

Likelihood

We make the assumption that the data are conditionally independent from one an-
other, given the parameters. It should be noted that this is equivalent to assuming
that there are no unaccounted-for parameters that influence multiple pixels. Under
this assumption, the likelihood can be decomposed into a product of likelihood func-
tions for each individual neutron count — whether from the rate monitor, or a pixel
in the two-dimensional detector.

We can simplify considerably by grouping pixels receiving the same number of
incident neutrons per solid angle. Because of this assumption, each such group may
be treated as a giant pixel P , whose detection capacity γP (Section 13.2.1) is the sum∑
i∈P γi of capacities of the pixels which comprise it. For example, the background

neutron rate is modeled as independent of location on the detector, so we can replace

the separate counts from all pixels by the single count NBGR =
∑Npixel

i=1 N
(i)
BGR. Another

example is the signal at the bottom of Figure 13.11, which only depends on the pixel’s
distance Q from the center; here, our groups would be the rings of pixels which have
the same Q. Subject to these reductions, the data we consider are

~y =
{
NBGR; ~NEMP; ~NSAM-n; ~NSAM; ~NEMP-t; ~NSAM-n-t; ~NSAM-t;

MBGR;MEMP;MSAM-n;MSAM;MEMP-t;MSAM-n-t;MSAM-t;~e}
(13.10)

where ~NEMP is shorthand for the set of all grouped neutron counts in the EMP con-
figuration, and similarly for ~NSAM and ~NSAM-n.

With this notation, we use our assumption of conditional independence to write
the explicit form of the likelihood:

P (~y|~α) = [P (NBGR|~α)]× [P (NEMP|~α)]× [P (NSAM-n|~α)]× [P (NSAM|~α)]×
[P (NEMP-t|~α)]× [P (NSAM-n-t|~α)]× [P (NSAM-t|~α)]

(13.11)

Each factor in Equation 13.11 corresponds to one of the seven datafiles used in fitting.
Factors corresponding to the measured detector efficiencies ~e, or to any of the Mv, are
missing because we have approximated them as constants.

Each neutron count N is modeled with an underlying Poisson distribution (Hen-
gartner, 2008), with mean ν:

N |ν ∼ νNe−ν

N !
(13.12)

Here, ν is proportional to the normalized mean µ, but also to the detection efficiency η,
the solid angle β which the pixel covers, and reactor output Ω, i.e. ν = µηβΩ. The sum
of independent Poisson-distributed random variables is another Poisson distribution,
with the aggregate mean given by the sum of the individual means, but η, β, and Ω
are the same for neutrons of all sources. Accordingly, the factor corresponding to each
datafile v can be described simply by giving the form of this aggregate mean, µv.
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The functional forms for the µv are complicated by an additional source of ex-
perimental uncertainty, known as instrumental smearing. As discussed more fully in
Appendix 13.5, neutrons at a given pixel correspond not to a single Q-value, but to a
distribution of Q-values. It is the unsmeared mean µ̄v which we model, but the smeared

mean µ̄
(Sm)
v which we measure, where the bar indicates that background neutrons are

excluded because they are not smeared, i.e.

µv = µB + µ̄(Sm)
v . (13.13)

We now give the associated unsmeared mean µ̄ for each of the seven factors listed
in Equation 13.11. The corresponding likelihood factor is given by:

P (N |µ(~α), η, β,Ω) =
(µ(~α)ηβΩ)N exp [µ(~α)ηβΩ]

N !
; (13.14)

here, the functions L(Q;κ), S(Q;κ), and G(Q) are defined precisely in Appendix 13.5:

µ̄BGR =0

µ̄EMP =ΦE

[
Σ

(E)
L L(Q;κE) + Σ

(E)
S S(Q; 1/Lt)

]
µ̄SAM-n =ΦE

{
ρn

[
Σ

(E)
L L(Q;κE) + Σ

(E)
S S(Q; 1/Lt)

]
+

ρE

[
Σ

(n)
L L(Q; 1/ξ

(n)
L ) + Σ

(n)
S S(Q; 1/ξ

(n)
S )

]}
µ̄SAM =ΦE

{
ρ
[
Σ

(E)
L L(Q;κE) + Σ

(E)
S S(Q; 1/Lt)

]
+

ρE

[
Σ

(n)
L L(Q; 1/ξ

(n)
L ) + Σ

(n)
S S(Q; 1/ξ

(n)
S ) + ΣLL(Q; 1/ξL) + ΣSS(Q; 1/ξS)

]}
µ̄EMP-t =ΦEρattρEG(Q)

µ̄SAM-n-t =ΦEρattρEρnG(Q)

µ̄SAM-t =ΦEρattρEρG(Q).

(13.15)

Priors

We decompose the parameters into disjoint independent subsets. The functional form
of the prior on each of these subsets is given, along with a brief justification of why
we believe its parameters are independent from all other parameters.

Background Neutrons

Background neutrons are completely described in our model by the parameter µB ,
the mean number of background neutrons arriving at each pixel per monitor count.
We do not expect this rate to be affected by the experimental setup in any way, so
the assumption of independence is well-justified. We turn to previous runs to elicit
a prior: for each BGR file, the total number of neutrons detected, divided by the
monitor counts for that file, gives an approximation for µB . We can calculate the
sample mean and variance of µB values obtained from several such runs, and use
these as the mean and variance for our prior distribution. The specific form chosen is
a Gamma distribution, since its domain is the same as for µB : (0,∞). The results are
shown in Table 13.3. The rightmost column was obtained by dividing the total number
of neutron counts by the monitor counts for that datafile, then further dividing by the
number of pixels (i.e. 214). The mean and standard deviation for our prior distribution
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Filename
BGR Neutron
Counts

Monitor Counts Count time µB Estimate

AUG07154.ASC 1486 23.91 ×106 20 min. 37.9 ×10−10

AUG07156.ASC 8094 23.92 ×106 20 min. 206.5 ×10−10

JUN08007.ASC 738 6.02 ×106 5 min. 74.8 ×10−10

Table 13.3: Total neutron counts, compared to monitor counts, for blocked-beam files from
different runs. The first two were taken on the same day with the detector at different
locations, and the third was taken almost a year later. Variation arises because the back-
ground depends on the location of the detector in the room, and also on what other neutron
experiments are being run at the same time. Despite agreeing only to within an order of
magnitude, the background is overall a very small effect, and minimally affects the param-
eters of greatest interest.

are estimated using the sample mean and sample standard deviation of these values:

sold
BGR =

√√√√ 1

N − 1

N∑
i=1

(xi − x̄)
2
. (13.16)

Values for µold
BGR and sold

BGR, along with all other values needed to describe our priors,
are found in Table 13.4.

Beam Spread

Our transmitted beam is fit to a Gaussian form (Hammouda, 2008). Since the beam
is centred around Q = 0, only the spread σG is needed to characterize its shape. We
expect that the transmitted beam will be insignificant outside the beamstop, whose
edge Qb should therefore be at least 2σG from the center. We use a Gaussian (normal)
prior having mean Qb/2 and standard deviation Qb/4.

Independence is justified because the intrinsic spread of the beam does not depend
on the sample holder, sample, or background rate.

Incident Non-absorbed Flux

We define ΦE as the rate of neutrons incident on the sample holder, considering
only neutrons which contribute to some measured signal in some way. Other incident
neutrons are either absorbed or scattered at wide angles; since they have no effect on
any measured signal, we exclude them from ΦE . We have not performed an absolute
calibration in this experiment, so we do not know the magnitude of ΦE . To express
this, we choose a prior which is uniform in log-space, subject to a cutoff X representing
the maximum order of magnitude we will probe:

P (ΦE) =
1

ΦE
Θ (X − |log10(ΦE)|) , (13.17)

where the theta-function Θ(x) is 1 if its argument is positive and zero otherwise.
All other parameters relating to the sample or holder are expressed as fractions of

the flux incident upon them; hence, we may treat ΦE as an independently adjustable
measure of this flux.

Partitioning of Neutrons for Sample Holder Alone

Consider all neutrons incident on the bare sample holder which are either scattered
at small angles or transmitted. The relative fractions transmitted and scattered are
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intrinsic properties of the holder, and hence independent of all other parameters.
Calling the fraction transmitted ρE , the fraction undergoing Lorentzian scattering

Σ
(E)
L , and the fraction undergoing Lorentzian-squared scattering Σ

(E)
S , we have

ρE + Σ
(E)
L + Σ

(E)
S = 1, (13.18)

since we have disregarded all other neutrons. Because this constraint leaves only two

free parameters, we only explicitly specify ρE and Σ
(E)
L . Our prior on these parameters

is a Dirichlet distribution, governed by the hyperparameters A
(E)
ρ , A

(E)
ΣL

, and A
(E)
ΣS

.

Partitioning of Neutrons for Sample (both high- and low-field)

These parameters partition the neutrons incident on the sample according to the
type of interaction they experience (i.e. magnetic Lorentzian-squared scattering, undis-
turbed transmission, nuclear Lorentzian scattering, etc.). We divide them into three
groups: nuclear scattering, SAM, and SAM-n. Our strategy is to first specify the prior
for the nuclear scattering, which contributes to both SAM and SAM-n configurations.
Parameters in the remaining two groups are independent of each other, given values for
the nuclear scattering parameters, so we can specify these two groups separately. All
of these parameters are intrinsic properties of the sample, justifying our assumption
of independence from all other parameters.

The prior for the nuclear scattering parameters is Dirichlet, governed by A
(n)
ΣL

,

A
(n)
ΣS

, and A(n). The remaining two priors are scaled Dirichlets, on the domain (0, F ),

where we define F = 1 − (Σ
(n)
L + Σ

(n)
S ) for convenience. Conservation of neutrons is

expressed for SAM-n as

Σ
(n)
L + Σ

(n)
S + ρn < 1, (13.19)

and for SAM as
Σ

(n)
L + Σ

(n)
S + ρ+ ΣL + ΣS < 1. (13.20)

The total prior for these sample partitioning parameters is thus

P (Σ
(n)
L ,Σ

(n)
S , ρn,ΣL,ΣS , ρ) =D(Σ

(n)
L ,Σ

(n)
S , F ;A

(n)
ΣL
, A

(n)
ΣS
, A(n))×

D(ρn/F, 1− ρn/F ;A(n)
ρ , A

(n)
δ )×

D(ΣL/F,ΣS/F, ρ/F ;AΣL , AΣS , Aρ).

(13.21)

Sample Holder Correlation Lengths

We now turn our attention to correlation length-describing parameters. The normal-
ization described in Appendix 13.5 means that each of these should be a priori inde-
pendent of its corresponding Σ, and we have only to consider prior knowledge on any
possible relationship among the correlation lengths.

The prior for κE should be uniform in ξ
(E)
L = 1/κE , since any correlation length

is as likely as any other; hence,

P (κE) =
1

κ2
E

. (13.22)

We simulate the inverse length κE because that is what appears directly in L(Q).
The sample holder also has a Lorentzian-squared signal which is important at

lower Q. Because the holder is made from highly crystalline aluminum, we expect this
correlation length to be longer than this SANS instrument can probe. This limitation is

the transverse coherence length Lt. Setting ξ
(E)
S = Lt saves computation time without

compromising accuracy, as we verified by checking the fits at low Q.
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Nuclear Correlation Lengths

The nuclear correlation lengths ξ
(n)
S and ξ

(n)
L describe the positional arrangement of

the elements in our sample. The nuclear data is known to be well-fit by the sum of a
Lorentzian and Lorentzian-squared, and that like any other correlation lengths they
are constrained to be less than Lt. Accordingly, the prior for each is uniform within
the region (0, Lt).

Magnetic Correlation Lengths

The magnetic correlation lengths are similar to their nuclear counterparts, except that
we identify ξL as the size of magnetic inhomogeneities within dipolar domains of size
ξS (Michels and Weissmuller, 2008). This implies that ξS > ξL always. Additionally,
because our nanoparticles are single-domain, the domains can never be smaller than
the diameter dNP of a single nanoparticle. This allowed region roughly has the shape
of a triangle with the bottom corner snipped off, as shown in Figure 13.13. We choose
our prior to have uniform probability density inside this region and zero outside.

Figure 13.13: Probability distribution for the length scales of the Lorentzian and Lorentzian-
squared terms, ξL and ξS . Lt is the transverse coherence length of the beam, here 1000 nm;
correlation lengths larger than this cannot be distinguished by the instrument. Dparticle is
the diameter of a single particle, here 8 nm. The probability distribution is flat within the
shaded region, and zero outside.

These are the parameters of greatest interest.

13.4 Results and Discussion

The data we fit are identical to those in (Sachan et al., 2008). The same datafiles were
used in both cases. Pixels have been grouped according to sector averaging within
a ±5◦ range around the given direction: horizontal for the pure nuclear signal, and
vertical for the mixed nuclear-plus-magnetic signal. These pixels were subsequently
binned to match the Q-values from (Kline, 2006), with the center of each Q-bin placed
at the corresponding Q-value from the traditional analysis.

The general picture which emerges is qualitative reproduction of general trends,
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Category Hyperparameter Value Description

Experimental
setup

Qb 0.04 nm−1 Q-value of the edge of the beamstop
λ 0.5 nm Mean wavelength of incident neu-

trons
Lt 1000 nm Transverse coherence length of neu-

tron beam
ρatt 0.0003 Transmission ratio of attenuator (in-

serted during transmission mode)
dNP 8 nm Diameter of a single Co nanoparticle

Priors

µold
BGR 106× 10−10 Prior mean of µB
sold

BGR 89× 10−10 Prior standard deviation of µB
X 10 Cutoff order of magnitude for ΦE

A
(E)
ΣL

2 Dirichlet portion for Lorentzian scat-
tering from sample holder

A
(E)
ΣS

2 Dirichlet portion for Lorentzian-
squared scattering from sample
holder

A
(E)
ρ 16 Dirichlet portion for transmission

through sample holder

A
(n)
ΣL

2 Dirichlet portion for nuclear
Lorentzian scattering from sam-
ple

A
(n)
ΣS

2 Dirichlet portion for nuclear
Lorentzian-squared scattering
from sample

A(n) 6 Dirichlet portion for neutrons not
nuclearly scattered

AΣL 3 Dirichlet portion for magnetic
Lorentzian scattering from sample

AΣS 3 Dirichlet portion for magnetic
Lorentzian-squared scattering from
sample

Aρ 4 Dirichlet portion for neutrons trans-
mitted by sample in low field

Aδ 2 Dirichlet portion for remaining neu-
trons in low field (absorbed, high-
angle scattered, etc.)

A
(n)
ρ 4 Dirichlet portion for neutrons trans-

mitted by sample in high field

A
(n)
δ 8 Dirichlet portion for remaining neu-

trons in high field (absorbed, high-
angle scattered, etc.)

Table 13.4: List of hyperparameters which characterize our experimental setup or govern
the shape of our prior distributions, along with the values used in our analysis.
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Parameter Method H = 0 H=0.2 T H=1.0 T

ξL/nm T.A. 37± 8 9.1± 0.3 1.4± 0.1
B.A. 50 ± 10 11 .8 ± 0 .4 1 .68 ± 0 .04

ξS/nm T.A. 72± 9 91± 4 1000
B.A. 64 ± 1 102 ± 10 504 ± 34

Table 13.5: Traditional fit results (“T.A.”) presented alongside new Bayesian results
(“B.A.”). Bayesian uncertainty estimates represent one standard deviation of the poste-
rior distribution.

with significant quantitative differences. For direct comparison, Bayesian analysis can
easily reproduce the traditional style of uncertainty reporting, where the parameter
mean is given along with standard deviations. However, the richness of information
available in P (~α|~y) enables novel forms of presentation, capable of conveying deep
insight into uncertainty and correlation at a glance.

Among the parameters listed in Table 13.2, ξS and ξL are the two of overwhelmingly
greatest interest. Henceforth, our discussion concerns not the full posterior P (~α|~y), but
the marginal posterior P (ξL, ξS |~y), with all other parameters integrated out.

13.4.1 Separate Marginal Distributions on ξL and ξS

Table 1 of (Sachan et al., 2008) gave values for four different field configurations. Be-
cause the final two gave very similar results, we focus on the first three. We calculated
uncertainty estimates of one standard deviation based on our MCMC results. For ease
of comparison, the results from the original paper (“T.A.”, for “traditional analysis”),
are presented alongside the updated uncertainties (“B.A.”, for “Bayesian analysis”),
in Table 13.5.

The agreement is best at H = 0, which is the configuration of greatest interest for
proving the existence of domains. Here the Bayesian results overlap the traditionally
obtained values, but with significantly smaller uncertainty for ξS . The fact that ξS(H =
0)� dNP indicates magnetic correlations extending over multiple particles, providing
strong supporting evidence for the presence of dipolar domains.

At higher fields, the agreement is more qualitative, and only the general trends in
ξS(H) are reproduced. In particular, correlations in the apparently-saturated sample
are closer to 500 nm than the nominal limit of 1000 nm. This shorter correlation
length may indicate that the sample is not fully saturated, but we feel this is unlikely,
because (Sachan et al., 2008) shows negligible change from 1 T to 5 T. A more likely
explanation is that the limit of what SANS can probe (i.e. the transverse coherence
length Lt is lower than we previously believed).

13.4.2 Joint Posterior Distribution on (ξL, ξS)

A plot of the full joint posterior distribution P (ξL, ξS |~y) is perhaps the most in-
formative way to present data. We used the hexbin package (Carr, 2008), without
smoothing, to estimate the posterior density by counting the number of MCMC steps
within each bin. The results are shown in Figure 13.14.

The most probable regions are darker. Moreover, correlations which are not
straightforward to obtain in traditional analysis are readily apparent in these plots.
For instance, there is a high positive correlation between ξS and ξL at 0.2 T: in this
regime, larger domains are particularly likely to be found containing larger inhomo-
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Figure 13.14: The joint posterior distribution P (ξL, ξS |~y), plotted for (a) H=0, (b)H=0.2 T,
(c)H = 1.0 T. The red × marks the location of the best fit according to traditional analysis,
and the box represents the region within one standard deviation of the traditional fit. The
diagonal line in (a) represents the constraint ξS > ξL; recall that the prior is uniform above
and to the left of this line. Note that in (c), the red bar has been moved down from its
actual location of ξS = 1000 nm, for ease of visualization.

H = 0 H=0.2 T H=1.0 T
Cor(ξL, ξS) 0.384 0.781 0.031

Table 13.6: Measured correlations between ξL and ξS at different applied field strengths.

geneous regions. This qualitative visual observation is supplemented by Table 13.6,
which lists the calculated correlation between the parameters at each field.

If we were to represent traditional uncertainty graphically, summarizing the two
separate means and standard deviations, it might take the form of a box, with side
lengths given by the standard deviation. Depending on the number of standard de-
viations included, we would be more or less “confident” to find the true parameter
values within the box, and more or less surprised to find them outside. It should be
noted, however, that the confidence bounds in the traditional analysis are frequency
proportions of a procedure, implemented in only a single instance. Thus their correct
interpretation is that, “repeating the procedure used to calculate these bounds many
times, 68% of the time the bounds calculated as these were would contain the param-
eter value.” Additionally, reporting parameters separately from one another always
implies an assumption of independence, and this traditional method therefore cannot
capture the correlations which are so evident in, say, Figure 13.14b.

Note that Bayesian analysis has done more than simply refine the uncertainty
estimates. As Figure 13.14 starkly shows, it has shifted the estimates of the param-
eters, to the point that the traditionally obtained values do not overlap for H > 0.
In part, this may be due to neglecting high-Q datafiles in the present work: ξL is al-
ways shifted in the same direction, and the missing datafiles contain a Q-range which
strongly constrains the Lorentzian. But the main reason they differ is that a proper
accounting of uncertainty can have profound effects on the parameter values extracted
from experimental data.

13.4.3 Representing Fits Graphically: “family of curves” and Standardized Residual
Distributions

Though the joint posterior plots of Figure 13.14 are informative, they give no indication
of how well these parameters fit the data, only that they fit better than the others
which were explored. We consider the traditional method of representing variation in
graphs, then present an attractive Bayesian alternative.
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Traditionally, datapoints are plotted along with error bars of one standard devia-
tion, which represent the variation one might expect if the experiment were repeated
numerous times. Automated fitting routines then determine the “best fit” values of
the parameters, and the curve described by these parameters is plotted with the data,
hopefully passing nearer each datapoint than its associated error bar. Two things are
peculiar here. First, plotting a single curve gives no indication when other parameter
values might fit just as well. Second, associating uncertainty with data is misplaced,
since it inevitably refers to quantities which might have been observed, but in fact
were not. (If the experiment is repeated, all repetitions may be analyzed as part of
the data. If not, then statements about uncertainty should depend only on what was
actually observed.)

Bayesian analysis assigns no uncertainty to datapoints. Instead, variation may be
shown by taking a random subset of MCMC steps, plotting the curves corresponding to
each, and plotting the datapoints on top. As a bonus, correlations between datapoints
are automatically accounted for. (By contrast, two adjacent datapoints with errorbars
implies they are just as likely to vary oppositely as together, which is generally untrue.)

Figure 13.15: The “family of curves” corresponding to a randomly chosen subset of 16
MCMC steps from the chain. In this case, the difference between curves is indistinct when
the plot is fully zoomed out, so a central portion has been expanded to show the varia-
tion. (Note that in contrast to Figure 13.12, these data include contributions from nuclear
scattering, background, and the sample holder, making direct comparison difficult.)

In this case, we see that the shape of the curve is quite tightly constrained, giving no
visual indication of the degree to which the parameters vary. Significant magnification
is required before the curves can be distinguished, suggesting the need for alternative
plots to show goodness of fit.

Standardized residuals fit this role, and can also show all MCMC steps simulta-
neously, like the joint posterior plots of Figure 13.14. The residual ∆s

i for pixel i at
MCMC step s is (Ni − νsi ), where Ni is the observed number of neutrons, and νsi the
number expected based on the parameter values at s. Considering all MCMC steps
leads to a residual distribution at each Q, shown in Figure 13.16.

The residual distributions at all fields exhibit wide variation at low Q, and be-
come narrow at higher Q. This trend is a consequence of the higher counts at low Q.
The variation expected from Poisson statistics,

√
νsi , is plotted in the middle row of

Figure 13.16. Dividing each residual (top) by the expected variation (middle) yields
the standardized residuals (bottom), δsi = (Ni − νsi )/

√
νsi . These plots are the closest

Bayesian analogue to the bottom of Figure 13.12, but we caution against direct com-
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parison, because different data are being fit: traditional analysis processes the data
first, while Bayesian analysis models all contributions and fits the unaltered data.

Figure 13.16: Residual distributions at each field. Each distribution is binned, with darker
bins having higher density, and black representing the most populous bin for each plot.
The top row shows a distribution at each Q of non-normalized residuals, i.e. the difference
between the number of neutrons observed and the number expected for each MCMC step.
The expected variation is plotted in the middle row as the square root of the fit function
at each step. (Discontinuities correspond to changes in the number of grouped pixels.) The
bottom row plots distributions on standardized residuals, equivalent to dividing the top row
by the middle row.

The zero-field data lie within 2σ of most fits, but display clear systematic trends
as a function of Q. We attribute these trends to the extra contributions, and suggest
that refining the models for nuclear and holder scattering may mitigate these effects.
At intermediate field (H = 0.2 T), only the last several points disagree significantly.
The fits systematically and increasingly underestimate the data, but since data near
the detector edges are inherently less trustworthy, we expect the inclusion of higher-Q
datafiles to improve agreement in this region. The datapoints at the highest field (H=
1.0 T) agree well all around, generally within 1σ of most fits. Note that at all fields,
the residual distributions widen at lowest Q, even after standardization.

13.5 Conclusions

In conclusion, we have applied Bayesian analysis to data from a recently published
SANS paper (Sachan et al., 2008). Our analysis supports the main conclusions, that
dipolar domains existed in a Co colloidal crystal even at zero field, and grew larger
as higher fields were applied. Our new approach has put our uncertainty analysis on
firmer footing and yielded quantitative results.

More broadly, small-angle neutron scattering datasets can be analyzed using a
Bayesian approach, which yields the conditional posterior probability P (~α|~y). Corre-
lations between parameters can be made obvious by a glance at a plot of this posterior
distribution. Furthermore, since the MCMC explores all of parameter space, it often
finds possibilities in obscure regions, which traditional analysis might easily miss. Mod-
eling the system in detail requires eliciting reasonable priors for the parameters, and
often reveals important details about the system or key gaps in knowledge even before
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the MCMC is run. Bayesian analysis is more computationally intensive than conven-
tional forms of data fitting, due to the need to run a Monte Carlo simulation. Finally,
the lack of a mature, versatile analysis package constitutes an additional barrier to
scientists who might otherwise make use of Bayesian analysis. We hope this work will
serve as the first step to the creation of just such a tool.

Appendix A. Normalization Conventions

Our Σ parameters are intended to represent the total scattering from a given functional
form (i.e. Lorentzian or Lorentzian-squared). It is therefore important to normalize
these functional forms, much more so than for traditional fitting, where no model gives
meaning to the magnitudes of the relative scaling factors.

We begin by considering the Lorentzian function; the discussion for the Lorentzian-
squared is similar. When we say that the Lorentzian L(Q;κ) should be normalized,
we mean that it should represent the stochastic scattering pattern for an individual
neutron. In other words, since the neutron must be scattered with some ~Q, integration
over all allowed ~Q-values should yield unity:∫

R

L(Q;κ) d~Q = 1, (13.23)

where R stands for the region of integration.
This equation is required to hold for all κ. The integral of the non-normalized

Lorentzian,

L̃(Q;κ) =
1

Q2 + κ2
, (13.24)

typically depends on κ; hence, the normalization factor must be some function of κ
and of the region R of integration, i.e.

L(Q;κ) = FL(κ;R)L̃(Q;κ) =
FL(κ;R)

Q2 + κ2
, (13.25)

where FL is the normalizing factor for the Lorentzian function.
Since SANS is an elastic technique, we normalize over all elastically scattered

vectors. This region takes the form of a sphere of radius 2π/λ, whose center is displaced
from the origin by this same amount. For radiation of wavelength λ scattered at an
angle θ, we have

Qelastic =
4π sin(θ/2)

λ
. (13.26)

In order to turn our integral from d~Q into dQ, we must weight the integrand by
the amount of ~Q-space available at each value of Q. The amount of ~Q-space available
on the sphere at an angle θ is proportional to (4π2/λ) sin θ. Solving the geometry to
express everything in terms of Q, we find that the Q-dependent weighting factor is

W (Q) = 2πQ

√
1−

(
Qλ

4π

)
, (13.27)

Note that this reduces to 2πQ at small angles, as it must, before the curvature of the
sphere distorts this factor.

Putting it all together, we find

∫
R

L(Q;κ) d~Q =

4π/λ∫
0

W (Q)FL(κ;R)

Q2 + κ2
dQ = 1, (13.28)
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which implies that

FL(κ;R) =

 4π/λ∫
0

W (Q)dQ

Q2 + κ2


−1

. (13.29)

After carrying out this integration, along with a similar one for the Lorentzian-
squared S(Q;κ), we find the following normalized forms of the functions, defining the
dimensionless variable κ̃ = κλ/4π for convenience:

L(Q;κ) =

(
1

2π [(1 + κ̃2) arcsinh (κ̃−1)− 1]

)
1

Q2 + κ2

S(Q;κ) =

(
8π
√

1 + κ̃2

λ2
[
κ̃−2
√

1 + κ̃2 − arcsinh (κ̃−1)
]) 1

(Q2 + κ2)2

(13.30)

It is these forms which we have used in our simulation.

Appendix B. Smearing Corrections

Equation 13.4 makes the connection between the scattering vector ~Q, used in theory,
and the deflection angle θ which is experimentally measured. This connection is one-
to-one as long as only neutrons of a single wavelength are used. However, no single
wavelength gives enough neutrons to yield a detectable signal in a reasonable amount
of time; in other words, SANS is a flux-limited technique. In practice, we are forced to
allow a distribution of wavelengths, which means that each deflection angle θ corre-
sponds to a distribution of Q-values. This effect is known as smearing, and it distorts
the measured signal.

Traditional analysis uses one of two methods to account for smearing. The first
is to “desmear” the data, by attempting to invert the function. Desmearing has the
advantage that it only needs to be performed once, thus saving computation time.
However, smearing is not strictly invertible.

The alternative is to smear the model function before fitting it to the measured
data. Smearing at every step incurs a considerable computational cost, but leaves the
experimental data inviolate. This latter option is very commonly done in traditional
analysis; in Bayesian analysis, it is the only option.

The technique for smearing correction is outlined in (Kline, 2006). The fit function,
I(Q), is a continuous function determined by the values of its associated fit parameters
(i.e. ξL, ξS , . . . ). To calculate the smeared intensity Is(Qi), at the ith Q-value, one
takes a weighted average of the unsmeared intensity,

Is(Qi) =

∞∫
0

R(Q,Qi)I(Q) dQ (13.31)

where R(Q,Qi) is the resolution function of the instrument at the point Qi. This
resolution function is well approximated as a Gaussian

R(Q,Qi) ≡
fs(

2πσ2
Q

)1/2
exp

[
−
(
Q− Q̄

)2
2σ2

Q

]
, (13.32)

characterized by a mean Q̄, standard deviation σQ, and a parameter fs which rep-
resents the fraction not shadowed by the beamstop (typically, fs = 1 for all but the
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lowest-Q points). Each of these parameters varies with the nominal Q (i.e. the angle
θ), and these values are measured by the instrument scientists and provided to the
users.

To improve execution time, we have replaced the integral in Equation 13.31 by a
sampled Riemannian sum. A series of Q-values is generated, consisting of the original
Q-values plus F more between each pair. The unsmeared fit function is evaluated at
each Q-value in this new series. To calculate the smeared intensity at the original Q-
values, a cutoff C is supplied by the user, such that only points between (Q̄i − CσQ)
and (Q̄i + CσQ) are considered. These points are averaged according to

Is(Qi) = Ki

∑
j;|Qj−Q̄i|<CσQ

I(Qj)exp

[
−
(
Qj − Q̄

)2
2σ2

Q

]
, (13.33)

where the normalizing factor

Ki = fs

 ∑
j;|Qj−Q̄i|<CσQ

exp

[
−
(
Qj − Q̄

)2
2σ2

Q

]−1

(13.34)

ensures that the weights sum to fs.
The results presented in this paper correspond to F = 5 and C = 3.
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Chapter 14

Impacts of Beliefs about Tropical Cyclone
Detection on Conclusions about Trends in

Tropical Cyclone Number (2011)

Foreword

One of the purported consequences of the increased release of carbon dioxide into the
air due to the industrial revolution is an increase in the number and/or intensity of
hurricanes in the North Atlantic. To examine the extent to which this is the case,
one looks to data on North Atlantic hurricanes in the last 150 years, and this does
indeed show an increase. However, the criteria for recording a hurricane in the standard
database are strict, and it is obvious that our ability to detect hurricanes has increased
enormously. Where once we relied on reports of ship captains and landfall, we now have
satellites that plausibly detect every tropical disturbance. Accordingly, it is necessary
to model the extent to which detection capabilities have improved in order to assess
whether hurricanes have increased.

This paper proposes such a model. By changing one of the priors in the detection
model with a seemingly small variation, we obtain increasing, constant, or decreasing
numbers of hurricanes over the period. The consequence is that the historical record
is ambiguous. This doesn’t mean that climate change isn’t a serious matter, or that
human activity isn’t responsible for a large part of it. Rather it simply means that we
don’t know, and aren’t likely to know, whether hurricanes in the North Atlantic have
increased. This is an example in which uncertainty has important strategic implications
for science: study climate change, certainly, but don’t look to hurricanes in the North
Atlantic for evidence either way.

This paper is an outcome of Anne-Sophie’s Advanced Data Analysis project. Surya
Tokdar and I were her advisors in the Statistics Department. Her subject-matter ex-
perts were Iris Grossmann and Mitchell Small from the CMU Department of Engi-
neering and Public Policy.

This paper was published in Bayesian Analysis, 6, (#5), pp. 547–572. The Inter-
national Society for Bayesian Analysis does not require permission to republish.

Where are they now? Surya Tokdar is Assistant Professor in the Department of
Statistical Science, Duke University. Iris Grossmann is Research Scientist at the Center
for Climate and Energy Policy, Department of Engineering and Public Policy, Carnegie
Mellon University, Anne-Sophie Charest is Assistant Professor in the Department of
Mathematics and Statistics, University of Laval, Montreal, and Mitchell J. Small is
H. John Heinz III Professor of Environmental Engineering, Department of Engineering
and Public Policy, Carnegie Mellon University.
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S.T. Tokdar1, I. Grossmann2, J.B. Kadane3, A.-S. Charest4 and M.J. Small5

Abstract

Whether the number of tropical cyclones (TCs) has increased in the last 150 years has be-
come a matter of intense debate. We investigate the effects of beliefs about TC detection
capacities in the North Atlantic on trends in TC numbers since the 1870s. While raw data
show an increasing trend of TC counts, the capability to detect TCs and to determine in-
tensities and changes in intensity has also increased dramatically over the same period. We
present a model of TC activity that allows investigating the relationship between what one
believes about the increase in detection and what one believes about TC trends. Previous
work has used assumptions on TC tracks, detection capacities or the relationship between
TC activity and various climate parameters to provide estimates of year-by-year missed TCs.
These estimates and the associated conclusions about trends cover a wide range of possi-
bilities. We build on previous work to investigate the sensitivity of these conclusions to the
assumed priors about detection. Our analysis shows that any inference on TC count trends
is strongly sensitive to one’s specification of prior beliefs about TC detection. Overall, we
regard the evidence on the trend in North Atlantic TC numbers to be ambiguous.

Keywords: Atlantic tropical cyclones, HURDAT, tropical cyclone data, tropical cyclone
detection.

14.1 Introduction

Whether anthropogenic global warming may be impacting tropical cyclones (TCs)
has become a matter of intense debate (Knutson et al., 2010; Grossmann and Mor-
gan, 2011). Raw data from the North Atlantic show an increasing trend of annual TC
counts in the region (Vecchi and Knutson, 2008; Holland and Webster, 2007). A simi-
lar observation holds for the number of high-intensity TCs (Webster et al., 2005). The
difficulty of interpretation is that the capability to detect TCs and to determine in-
tensities and change in intensity has also increased dramatically over the same period
(e.g. Landsea et al., 2004, 2006; Landsea, 2007). Consequently there is a relationship
between what one believes about the increase in detection capability and what one be-
lieves about trends in TC activity. This paper investigates the effects of beliefs about
TC detection capacities in the North Atlantic on trends in Atlantic TC numbers.

The inference on the trend of tropical cyclone counts shares common elements
with other statistical problems in trend analysis with missing observations, particu-
larly where there is systematic bias in observations over a portion of the temporal
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or spatial domain (Coles and Sparks, 2006; Cornulier et al., 2011; Kéry and Royle,
2010). An effective approach for dealing with nonrandom missing data is to include a
representation for the observation process (or the missing data mechanism) as part of
the overall statistical model (Little, 1995; Zeger and Liang, 1996; Ibrahim et al., 2001;
Tingley and Huybers, 2010). Missing data are then imputed as part of the parameter
estimation process, resulting in a joint distribution for the model parameters and the
missing observations (Rubin, 1996; Allison, 2001; Honaker and King, 2010).

The dataset used for studies on North Atlantic TC trends is the “best track”
dataset of the National Hurricane Center (HURDAT) (Jarvinen et al., 1984). HUR-
DAT includes observed positions, maximum wind speeds, and some central pressure
measurements for TCs dating back to 1851. The North Atlantic is widely regarded as
having the most reliable TC data and the longest TC time series. Trend detection in
all basins, in particular the North Atlantic, is complicated by natural variability on
several time scales, including the multidecadal (Klotzbach and Gray, 2008; Vecchi and
Knutson, 2008). Consequently, long historical coverage is essential for trend analysis.
However, Atlantic TC records from the earlier period prior to the availability of re-
connaissance aircraft and satellites rely on sparsely populated coasts and limited ship
tracks (Landsea et al., 2004, 2006), with the consequence that some TCs likely did not
get recorded. Thus, an increasing trend of the observed counts might be attributed
entirely to improvements in detection technology (Landsea, 2007).

The extent of data quality issues in HURDAT has been the subject of intense
discussions (Landsea, 2007; Holland and Webster, 2007; Vecchi and Knutson, 2008;
Chang and Guo, 2007; Mann et al., 2007; Bengtsson and Hodges, 2008; Landsea et al.,
2010), with some studies suggesting that the Atlantic TC record can be regarded as
reasonably reliable back into the late 19th century because ships could not be warned
off from approaching TCs (Mann and Emanuel, 2006; Holland and Webster, 2007).
A number of recent studies aim at interpreting the HURDAT records by augmenting
it with estimates of year-by-year missed TC counts. These studies can be categorized
into three groups based on the principles they employ to estimate missed TCs. One
group matches satellite-era TC tracks with earlier ship tracks and land points (Chang
and Guo, 2007; Vecchi and Knutson, 2008). A second group analyzes time trends of
the proportion of TCs possessing certain characteristics, such as TCs making landfall,
which can be argued to have enjoyed good detection even in the earlier times (Solow
and Moore, 2000, 2002; Landsea, 2007; Nyberg et al., 2007; Elsner and Bossak, 2006).
A third group predicts TC counts by modeling their relationship to other climate
variables with more accurate historical records (Mann et al., 2007; Solow and Beet,
2008).

Building on these studies, our analysis investigates the sensitivity of conclusions
about trends in TC numbers to the assumed priors about detection. Our goal is to
encourage climate researchers to use the platform we develop, possibly in conjunction
with other trend models, and to draw their attention to the extremely important
issue of carefully quantifying one’s beliefs about detection probabilities. To illustrate
this latter point, we first develop a belief quantification that produces estimates of
missed TC counts that match the numbers reported in Vecchi and Knutson (2008),
thus recapturing their conclusion of an increasing trend of yearly TC counts since
the 1870s. We then show that seemingly minor changes to this belief quantification
result in either roughly constant or negative trends. This sensitivity of the inference
to the prior input is not a negative feature of our approach, rather a simple reminder
of the inherent ambiguity of the HURDAT records caused by missing observations.
Our analysis shows that any inference on TC count trend is strongly sensitive to one’s
specification of prior beliefs about TC detection.

In Section 14.2, we begin by reviewing changes in TC detection methods and
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Figure 14.1: A timeline of Atlantic TC observation cataloging main changes in observation
technology along with other major events that may have impacted TC recording.

technologies over time. We then briefly discuss the assumptions that had to be made
by different previously published approaches for the estimation of missed Atlantic
TCs. Section 14.3 explains the data and methods. Our results in Sections 14.4 and
14.5 show the strong sensitivity to the assumptions made on TC detection capacities
and highlight the resulting ambiguity in the trend of TC numbers. In Section 14.6 we
present possible ways to resolve this ambiguity.

14.2 TC Detection and Recording over the Years

Tropical cyclones are warm-core low pressure systems with a closed circulation over
tropical or subtropical oceans. The weakest form of a TC is called tropical depres-
sion. TCs with wind speeds of 35 knots or more are called tropical storms, TCs with
speeds of 65 knots or more are called hurricanes; the latter range from the less in-
tense category 1 to the very intense category 5 (Simpson, 1974). Trend analysis of TC
numbers considers “named storms”, that is, TCs of tropical storm strength or greater.
Two criteria determine whether wind speed observations of tropical storm strength
or greater are recorded as tropical cyclones within HURDAT (Landsea et al., 2008).
First, evidence of a closed circulation and the non-frontal character of the system are
required to distinguish the cyclone from an extratropical or subtropical cyclone. Sec-
ond, at least two wind speed measurements or estimates by independent observers are
required (Landsea et al., 2008). Thus, the reasons leading to a TC not being recorded
in HURDAT are twofold: first, an actual lack of observations of the TC in question,
and second, a lack of information to classify the observed wind anomaly as a tropical
cyclone. Figure 14.1 gives a timeline of how TC observation technology has changed
over the years, along with the occurrences of the major events that may have impacted
our ability to record TCs.
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The US Signal Service has been observing Atlantic TCs since approximately 1873
(Sheets, 1990; Fernández-Partagás and Diaz, 1996). Several forecast offices were es-
tablished in the 1930s, followed by the designation of the Miami forecast office as
National Hurricane Center in 1955 (Sheets, 1990). Satellite observations have been
available since 1967, aircraft reconnaissance since 1945. Prior to 1945, TC records re-
lied entirely on ship and coastal observations. In parts of the US, insufficient coastal
density and limited reporting in the early part of the century may have led to a failure
to detect landfalling TCs that had not been reported by ships (Landsea, 2007; Land-
sea et al., 2008; Sheets, 1990, Figure 1). This is illustrated by the recent addition of
four new landfalling storms to the 10-year period from 1911-20 in the course of the
ongoing reanalysis of the HURDAT records (Landsea et al., 2008).

Ships may not have sighted and reported all TCs that occurred due to insufficient
coverage with regular ship routes, insufficient observation equipment, and possibly
conscious avoidance of an approaching storm. Until radio became available in 1905,
TC observations relied on ship reports after the ship returned to port. TC observations
were evaluated with the Beaufort scale, which specifies differences in waves and the
ocean state up to category 1 hurricanes, and with marine barometers if available
(Landsea et al., 2004). In 1900, approximately one quarter of ships were equipped
with marine barometers; by 1930, most had barometers (C. W. Landsea, personal
communication, 2007). Prior to the opening of the Panama Canal in 1915, ship routes
were concentrated in the northern and eastern parts of the basin and near the US
East coast. The opening of the Panama Canal significantly increased the likelihood
of observation of TCs south of 32◦N (Vecchi and Knutson, 2008). Methods to detect
approaching TCs prior to recording gale force winds were available although it is
unclear to what extent mariners made use of these methods to avoid contact with
approaching TCs (Bowditch, 1841; Piddington, 1860; Bowditch, 1995).

Both limited coverage by ship tracks and the possible conscious avoidance of TCs
may have resulted in missed TCs. Evidence of a closed circulation usually relied on
weather maps or multiple observations of the same TC. With the limited coverage
and limited quality of observations, such evidence was not always available, likely
resulting in the omission of several TCs from HURDAT during this era. Aircraft
reconnaissance has been used sporadically since 1944, and more regularly since 1956
after the devastation caused by several New England hurricanes (Dorst, 2007). Until
the 1960s, reconnaissance flights were typically dispatched to investigate TCs that had
already been detected; in addition, regular patrols covered the route from Bermuda
to east of St. Croix, St. Croix to Miami and back to Bermuda (Dunn and Miller,
1960). Flights generally did not travel beyond 55◦W. Dunn and Miller (1960, page
155), report that about half of all TCs were initially detected by ships until the 1960s.
While some TCs were probably first detected by aircraft, this leaves a large number of
TCs to be initially detected by islands or coastal areas, implying that at least some of
those TCs that remained at a reasonable distance from islands and coasts were likely
missed altogether.

During the early satellite era beginning in 1967, TC observations relied on a combi-
nation of visible satellite imagery and aircraft reconnaissance (Neumann et al., 1999).
Nighttime observations became possible only with the launch of infrared (IR) satel-
lites in 1974 and the adoption of a Dvorak-scheme for the interpretation of IR im-
agery in 1984 (Dvorak, 1984). Further significant changes were gradual improvements
in coverage and resolution (Sheets, 1990; Landsea et al., 2006), and the addition of
the Advanced Microwave Sounding unit (Brueske and Velden, 2003), the Quick Scat-
terometer, or “QuikSCAT” (Atlas et al., 2001) and the Cyclone Phase Space analysis
tool (Harper and Callaghan, 2006), during the years 2000 to 2003 (Landsea, 2007).

Two types of systems might be underrepresented to some extent prior to these
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more recent improvements. First, TCs with very short lifetimes could have been missed
(Landsea et al., 2010), in particular due to a lack of nighttime IR imagery and due to
viewing gaps. Knapp and Kossin (2007) find that in the 1980s, satellite observations
were not available during 5.5% of all 6-hour periods during which a TC was present
in the North Atlantic; during the 1990s and 2000s this was reduced to 1.6% and 0.5%,
respectively. Second, storms may have been detected but not classified as TCs as they
exhibited tropical characteristics or tropical storm strength for only a short period of
time. The capacity to classify storms that were tropical only for short time periods has
also improved dramatically over time; in fact Landsea (2007) suggests that capacities
may have become adequate only in recent years with the help of new tools. The original
Dvorak developmental sample (Velden et al., 2006) did not include subtropical systems
– storms that exhibit both tropical and extratropical characteristics and that might
or might not become fully tropical at some stage of their lives.

Approaches that estimate missed TCs necessarily rely on assumptions about detec-
tion capacities, and in some cases, aspects of TC activity and the presence or absence
of changes in TC activity over time. Matching ship tracks with satellite era TC tracks
requires the assumption that the spatial distribution of satellite era TC tracks is sim-
ilar to the distribution during earlier time periods (Vecchi and Knutson, 2008). How-
ever, tracks may not be static in time if they respond to shifts in atmosphere-ocean
conditions such as the recent warming of the eastern Atlantic (Holland, 2007).

A second type of assumption made by approaches using ship tracks is that the
number of recorded TCs during the satellite era matches the number of TCs that
actually occurred. This assumption is problematic given the insufficiency of observa-
tional capacities for the correct classification of short-lived or weak tropical storms
until very recently (Landsea, 2007; Landsea et al., 2010). Models using climate vari-
ables are affected by a similar problem, as the assumed relationship between TCs and
climatic variables has to rely on data over a certain time period (or time periods)
to estimate the parameters in the model. However, available observation technologies
and interpretation schemes continued to undergo significant changes and improve-
ments during the satellite era, with likely effects on the completeness of TC records
(Landsea, 2007; Landsea et al., 2010). Hence even the satellite era records are likely
not to be complete.

A third type of assumption made by approaches that consider ship tracks con-
cerns observation and detection capacities and practices. Available studies assume
land points to be perfect storm detectors. This means, first, that coasts were popu-
lated at sufficient density to detect TCs, which may not have been the case in the
first two or three decades of the century (Sheets, 1990; Landsea et al., 2006). Second,
it is assumed that land points everywhere were sufficiently equipped to observe and
correctly classify TCs (Vecchi and Knutson, 2008; Chang and Guo, 2007). It is further
assumed that ships did not alter their course to avoid encounters with TCs before
tropical storm force winds and in particular evidence for a closed circulation could be
reported (Vecchi and Knutson, 2008). If TCs were avoided, this should have caused
the record of observed TCs to be even more incomplete. It is also assumed that obser-
vation by one (Chang and Guo, 2007) or two (Vecchi and Knutson, 2008) observers
always led to a storm being recorded. The additional requirement that evidence of the
storms’ tropical characteristics be available has not been incorporated into available
studies (Vecchi and Knutson, 2008).

14.3 Combining Detection Probability with Raw Counts

Let ni denote the raw TC counts in the HURDAT records corresponding to calendar
year yi, i = 1, 2, · · · , N . We cover the period from y1 = 1871 through yN = 2008 with
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N = 138. Let mi denote the missed TC counts for these years, and ti = ni + mi the
actual total TC counts. Our aim is to infer about the trend of ti’s. We achieve this
within a Poisson trend model (Solow, 1989; Elsner and Kara, 1999):

ti ∼ Po(λi), ti’s are independent across i, (14.1)

log λi = η1 + η2
yi − ȳ
N − 1

+ φ1 cos

(
π

{
φ2 + φ3

yi − y1

yN − y1

})
(14.2)

where ȳ = 1
N

∑
i yi = 1939.5 denotes the “central year” for the period under study.

In (14.2), η1 + η2
yi−ȳ
N−1 reflects a linear trend (in log scale) of the total TC counts: eη1

gives the mean TC count in the central year and eη2 − 1 gives the relative change in
mean counts over the N years with respect to year 1. The important parameter here
is the slope η2. A positive, zero or negative value of η2 indicates an increasing, flat or
decreasing trend of the total TC counts. The cosine term in (14.2) is introduced to
allow for multidecadal oscillation in TC frequency (Klotzbach and Gray, 2008; Elsner
and Jagger, 2006; Goldenberg et al., 2001; Vecchi and Knutson, 2008; Knutson et al.,
2007). Here, φ1 encodes the amplitude of this oscillation; φ2 encodes a phase shift,
φ2 = 0 makes year 1 coincide with a peak (positive or negative depending on the sign
of φ1) of this oscillation; φ3 encodes the number of oscillation cycles within the period
of study.

For the j-th TC in the i-th year, let the detection probability be πij , j = 1, 2, · · · , ti,
i = 1, 2, · · · , N . We let πij depend both on the detection technology available in year
i and a scalar zij denoting some measure of strength of the TC being detected. The
latter is included to reflect the notion that for any given detection method, a stronger
TC was more likely to be detected than a weaker one. This measure of strength can be
defined in various ways and a vector of multiple measures could also be considered. For
our illustration, we consider a simple measure where zij denotes the time (in hours)
the corresponding TC had wind speed in category 1 or higher. We specify

πij = Φ(γi + βzij) (14.3)

where the scalar parameter γi gives the contribution of the i-th year’s detection tech-
nology, and the scalar parameter β gives the influence of TC strength on its detectabil-
ity; Φ(x) =

∫ x
−∞(
√

2π)−1 exp(−z2/2)dz denotes the cumulative distribution function
of the standard normal distribution. In principle, one can replace β with a year de-
pendent βi, but we shall stick to a constant β to maintain simplicity.

Note that zij is unobserved for every TC that went undetected. This requires a
probability distribution to describe what these missing measurements could have been,
with parameters underlying the distribution that can be learned from the zij that
were actually recorded. Toward this, we define zij = max(0, vij) with vij ∼ N(µi, σ

2
i )

independently of each other. This definition reflects that each zij is non-negative and
can equal zero with probability 1−Φ(µi/σi). The year specific means µi and variances
σ2
i allow year to year variation in the overall strength of the North Atlantic TC season.

Although other models for zij could be considered, we prefer the truncated normal
model because it leads to simple computations for learning its parameters within a
Bayesian setting with a conjugate prior specification.

The unknown parameters in our model are η1, η2, φ1, φ2, φ3, {µi}Ni=1, {σ2
i }Ni=1,

{γi}Ni=1 and β. For our illustrations, we fix the detection parameters β and {γi}Ni=1,
partly to emphasize that the inference on the other parameters, particularly η2, is
quite sensitive to the choice of these parameters. Specific choices are given in the next
section. Prior beliefs about each of the remaining parameters are specified by choosing
an appropriate probability distribution as described in Table 14.1. These parameters
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Parameter Prior
Related TC

characteristic
TC characteristic
median (95% CI)

η1
N(2, 1) Mean TC count in cen-

tral year: eη1
7 (1, 52)

η2 N(0, 0.72)

Percentage change over
N years in mean TC
count relative to year 1:
eη2 − 1

0% (-75%, 294%)

φ1
Discrete uniform on
{−.5,−.475, · · · , .5}

Percentage change
from minimum to max-
imum mean TC count
due to oscillation:
e2|φ1| − 1

65% (3%, 165%)

φ2
Discrete uniform on
{−.5,−.4, · · · , .5}

Oscillation phase shift:
πφ2

0 (−π/2, π/2)

φ3
Discrete uniform on
{2, 2.2, · · · , 8}

Number of oscillation
cycles: φ3/2

2.5 (1, 4)

(µi, σ
2
i )Ni=1

µi|σ2
i ∼ N(25,

σ2
i

100 ),

σ−2
i ∼ Ga(50, 50·104),

independent over i

A. Fraction of years
with 40% or more
non-hurricane TCs:
#{i: Φ(−µiσi )≥.4}

N

51% (43%, 60%)

B. Fraction of years
with 1/6-th or more
TCs staying cat-
egory 1 or higher
for 5 or more days:
#{i: Φ(

120−µi
σi

)≥1/6}
N

57% (49%, 64%)

Table 14.1: Prior distributions on model parameters (except for detection probability pa-
rameters).

are taken to be a priori independent of each other, i.e., the joint prior distribution on all
these parameters is simply the product of the marginal prior distributions that appear
in Table 14.1. The entries in Table 14.1 are chosen as follows. For each parameter, we
look at model features (usually one) that are directly influenced by the parameter.
Then a prior distribution is chosen to provide reasonable values for the a priori mid-
point and range for each of these model features. All prior distributions are chosen from
simple exponential family distributions or discrete distributions. A normal-inverse-
gamma prior for the (µi, σ

2
i )’s is chosen because of its conjugacy properties.

14.4 Illustration

To specify the detection probability parameters β and {γi}Ni=1, we first split the study
period into 10 sub-periods. The separation points are chosen to reflect significant
changes in detection technology over the years as well as some other global events
that are likely to have affected TC recording. These ten sub-periods are shown on the
first column of Table 14.2, with the events determining the onset of these sub-periods
described in the second column. The γi values for all years within a sub-period are
taken to be identical.
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E1 E2 E3

yi Comments γi γi γi
1871-1872 Beginning of study -3.5 -3.5 -3.5
1873-1905 US Signal Service -2.75 -3.25 -3.25
1906-1916 Ships with radio -0.75 -1.5 -1.5
1917-1920 US in WWI & after-effects of WWI -1.5 -2.25 -2.25
1921-1940 Post WWI 0.5 -1.25 -1.25
1941-1945 US in WWII -2.5 -2.5 -2.5
1946-1966 Post WWII & aircraft 0.5 0.5 0.5
1967-1973 Early satellite era 1.5 1.5 1.5

1974-2001
Infrared satellites; better resolution &
coverage

2 2 2

2003-2008
New tools (QuikSCAT, Microwave Sound-
ing Unit, Cyclone Phase Space Analysis)

2.5 2.5 2.5

β β β
0.02 0.02 0.01

Table 14.2: Choice of detection probability parameters γi and β for experiments E1, E2 and
E3.

In our first experiment (E1 hereafter), we consider values of γi and β as given in
the E1 column of Table 14.2. The detection probabilities in E1 were chosen to obtain a
posterior summary of missed TC counts similar to that of Vecchi and Knutson (2008).
For this choice, detection probabilities of 7 hypothetical TCs are shown in the top-left
panel of Figure 14.2. These 7 TCs correspond to 7 different levels of strength, starting
from a TC that never reached category 1 windspeed, to one that was category 1 or
more for 10 days. For each sub-period, the detection probabilities of the 7 storms are
shown by 7 dots in the middle. Detection probabilities are flat within a sub-period;
the lines joining dots from one sub-period to the next are purely for visual assistance.

Once the detection probabilities are specified, we learn about other model pa-
rameters from data through their joint posterior distribution as determined by the
likelihood function and the prior. We use a reversible jump Markov chain Monte
Carlo (Green, 1995) to sample from the joint posterior of the model parameters plus
the missing observations mi and zij (for unobserved TCs). A Metropolis update with
Gaussian increment is used for each of η1 and η2, with increment size chosen to achieve
an acceptance rate close to 45%. Gibbs updates are used for φ1, φ2, φ3, and the block
{(µi, σ2

i )}i. The conditional posterior distribution of each of these parameters assumes
a simple form thanks to either discreteness or well-known conjugacy properties of the
normal-inverse-gamma prior.

The missing observations {(mi, {zij}ni+mij=ni+1)}Ni=1 are updated via reversible jump
Metropolis. For a randomly chosen year, an “addition” or a “deletion” is proposed
with equal probability. In the case of addition, a missing TC, with zij generated from
the prior, is proposed to be added to that year’s TC count. For deletion, a TC from
that year’s list of missing TCs is chosen randomly and is proposed to be removed.
These proposals are complementary to each other and lead to simple calculations of
acceptance probabilities that preserve detailed balance. For a year with no missing TC
currently imputed, only the addition proposal is made. We use 50 addition-deletion
moves per iteration of the MCMC. Additionally, we update the zij values of all imputed
TCs by a Gibbs update which is available due to our formulation of zij = max(0, vij)
with a normal prior on the vij ’s.

Posterior sampling is done through two parallel runs of the Markov chain, with
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starting points overdispersed with respect to the imputed TC counts. One run starts
with zero imputation (mi = 0) for all years while the other run starts with mi’s
generated from Po(λi(1 − Φ(γi))) distributions. Each run is 20,000 iterations long.
Convergence takes place within a few hundred iterations (see supplementary mate-
rials). The first quarter of each chain is discarded, the rest is thinned and the two
chains are then pooled together to form a sample of 6000 draws from the posterior
distribution.

E1 E2 E3
P(η2 > 0 | data) 0.98 0.81 0.31
E (eη2 − 1 | data) 25% 11% -4%

Table 14.3: Posterior inference on the trend of mean TC count under experiments E1, E2
and E3.

The bottom-left panel of Figure 14.2 shows the posterior distribution over missed
TC counts mi under choice E1. The posterior means of mi are shown by the gray
line. Overlaid on this is the black line showing the missed TC counts reported by
Vecchi and Knutson (2008). The detection probabilities in E1 were chosen to obtain a
posterior summary of missed TC counts similar to that of Vecchi and Knutson (2008).
The top and middle panels on the right show posterior densities of η1 and η2. The
posterior mean total TC count in the central year is approximately 10. The posterior
places an overwhelmingly large probability (98%) on the slope η2 being positive. Thus
the assumptions of E1 strongly support the conclusion of increasing TC activity. The
posterior mean of eη2 − 1, the change in TC counts over the N years (relative to
beginning of the study) is 25%. On top of this linear growth, the posterior also supports
additional fluctuation in annual TC counts through multidecadal oscillation (bottom-
right panel) with a mean of 2.3 (95% interval = (2.1, 2.5)) oscillation cycles (φ3/2) over
the entire period. The oscillation alone accounts for an average 49% (95% interval =
(28%, 82%)) relative change from minimum to maximum mean TC counts (e2|φ1|−1).
Posterior summaries of several model parameters are provided in the supplementary
materials.

14.5 Sensitivity to Prior Quantification

We consider two other choices of detection probability parameters, as given in the E2
and E3 columns of Table 14.2, to illustrate how the posterior trend critically depends
on these choices. E2 is similar to E1, except for the years 1878 through 1940. E1
assigns very high detection probabilities (≈ 80% or more) even to tropical storm
strength TCs in the period 1921-1940, when measurements were based on ship and
land records only. E2 (Figure 14.3) presents a somewhat less optimistic view, where
the detection probabilities are more than 50% only for TCs that were category 1 or
stronger for at least 3 days. E2 also lowers detection probabilities for 1878-1920, to
maintain the same relative patterns in the 1878-1940 period as given by E1. E3 (Figure
14.4) is exactly the same as E2 except for the value of β which is halved.

Experiments E2 and E3 lead to substantially different inferences on the TC count
trend relative to E1 (Table 14.3). Under E2, the posterior probability of η2 being
positive is less overwhelming (81%) than that under E1. The posterior mean of total
percentage increase reduces to 10%. E3 presents a different picture, where the posterior
probability of η2 > 0 drops down to 31% and the mean trend is negative, with about
a 4% drop in TC counts over the study period. Both E2 and E3 support multidecadal
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Figure 14.2: A visual summary of experiment E1. Top-left panel shows chosen detection
probabilities across years for a set of 7 hypothetical TCs of various strength, measured by
the hours each TC was a category 1 or higher. The vertical dotted lines mark the end of
detection sub-periods as described in Table 14.2. Bottom-left panel shows posterior mean
and range (95% equal-tail credible interval) for missed TC counts across years, overlaid
with missed TC counts reported in Vecchi and Knutson (2008). Posterior (solid) and prior
(broken) densities of η1 and η2 are shown on the top and middle panels on the right. Bottom-
right panel shows posterior mean and 95% credible band of annual TC counts (observed +
imputed).
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Figure 14.3: Visual summary of experiment E2. Conclusion of a positive trend is much
weaker than that in E1.
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Figure 14.4: Visual summary of experiment E3. The posterior assigns 70% chance of a
negative trend, with a mean drop of 4% in average TC counts across the period of study.
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oscillation similar to E1, with an average 2.3 oscillation cycles, but with reduced
amplitudes.

14.6 Concluding Remarks

14.6.1 Resolving Ambiguity with Further Studies

Our three experiments point to significant ambiguity present in the historical tropical
cyclone occurrence records, with the assessment of TC counts trend clearly linked to
assumptions regarding historic detection probabilities. Can we draw any reasonable
conclusions about the trend despite this ambiguity? We feel the answer is yes, but it
would involve using beliefs about detection probabilities that are deemed reasonable
by the scientific community.

First, formal elicitation could be conducted with experts on past tropical cy-
clone detection to derive expert-specific detection probability formulation. This can be
achieved by an extension of the statistical framework presented here. The main vehicle
for this extension is the probability detection plot that appears on the top-left panel
of Figures 14.2, 14.3, and 14.4. This plot provides an interface between our statistical
model and quantities that can be elicited from a climate expert.

The expert would be required to generate her version of this plot by quantifying
her belief about detection probabilities of a collection of TCs of various intensities,
durations, tracks, etc. across different eras starting from the mid nineteenth century.
These elicited quantities would be used to identify a suitable detection probability
function (14.3) with zij possibly reflecting a multitude of TC characteristics and Φ
possibly replaced with a different distribution function. It might also be necessary to
use a non-trivial prior distribution on the parameters in (14.3) to accommodate the ex-
pert’s uncertainty about them. Once a suitable detection probability function is found
to match the expert’s belief, the rest of the modeling, computing and summarizing
can proceed in exactly the same manner as in the examples presented here.

Ideally, such a study would be carried out with many different experts, generating
a catalog of conclusions about TC trend based on current expert opinions. Whether
any kind of scientific consensus might result from this remains to be seen.

14.6.2 Sensitivity to Formulation

In incorporating an expert’s quantified belief, it is important to ascertain how sensitive
the results will be to the particular choice of the formulation of (14.3). In particular,
if an expert’s quantified beliefs are well represented by two different formulations of
(14.3), will the conclusions about trend depend on which formulation is used? While
such a question cannot be addressed in full generality, we report below additional
experiments that suggest the conclusions are indeed robust to moderate variations in
the choice of (14.3).

We consider three additional experiments, E1*, E2* and E3* in which (14.3) is
specified as

πij = F3(γ∗i + β∗i zij) (14.4)

where F3 denotes the cumulative distribution function of the Student-t distribution
with 3 degrees of freedom. We continue with our 10 sub-periods split of the study
period (Table 14.2) and assign a common value to γ∗i for all years i within a sub-
period. The same is done for β∗i .

In experiment E1*, we choose γ∗i ’s and β∗i ’s to match the “quantified beliefs” of
E1 as displayed on the top-left panel of Figure 14.2. For the 7 (hypothetical) TCs
displayed on that panel, with strengths zh1 = 0, zh2 = 12, · · · , zh7 = 240, we record their
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detection probabilities πh1k, π
h
2k, · · · , πh7k for all sub-periods k = 1, · · · , 10, as specified

under E1. Next we find γ̂k and β̂k for k = 1, · · · , 10, by minimizing

f(γ1, · · · , γ10, β1, · · · , β10) =

[
1

70

∑
j

∑
k

{πhjk − F3(γk + βkz
h
j )}2

]1/2

(14.5)

and set γ∗i = γ̂k and β∗i = β̂k for all years i within sub-period k. This minimization
is done numerically by using the optim() routine of R and the minimum value equals
0.0091, which suggests a reasonably good fit. The rest of the model is kept as before.
Posterior summaries are generated by the reversible jump Markov chain sampler as
discussed earlier with a suitable modification to reflect the change from (14.3) to (14.4).
Experiments E2* and E3* are similar in design, but with “quantified beliefs” coming
from E2 and E3, respectively. The minimum value of f(γ1, · · · , γ10, β1, · · · , β10) equals
0.0101 for E2* and 0.0102 for E3*.

E1* E2* E3*
P(η2 > 0 | data) 0.98 0.83 0.34
E (eη2 − 1 | data) 24% 12% -3%

Table 14.4: Posterior inference on the trend of mean TC count under experiments E1*, E2*
and E3*.

Table 14.4 shows conclusions about trend under E1*, E2* and E3*. Full graphical
summaries, as in Figure 14.2 etc., are included in the supplementary materials. Despite
the differences in (14.3) and (14.4), the conclusions about trend in these new experi-
ments are virtually indistinguishable from the conclusions drawn in, respectively, E1,
E2 and E3.

It is possible to obtain different conclusions than E1 etc. by replacing F3 in (14.4)
with a function that is more dissimilar to Φ. In fact, with F1 instead of F3, the
minimum value of f(γ1, · · · , γ10, β1, · · · , β10) undergoes about a 3-fold increase to
values of 0.0247, 0.0259 and 0.0275 for E1*, E2* and E3* respectively, suggesting a
less satisfactory fit. The conclusion about η2 is different, but not by a big margin
(supplementary materials). Equation (14.4) with F1 instead of F3 does not provide
as good a fit to the “quantified beliefs” of E1 and so the difference in conclusion is
not worrying. However, determining lack of fit to an expert’s quantified beliefs is a
nontrivial task and should be based upon both graphical plots of detection probabilities
and numerical values of f .

14.6.3 Toward a Flexible Formulation

Both (14.3) and (14.4) are limited in their ability to encode an expert’s quantified
beliefs. A slightly richer formulation, of which both (14.3) and (14.4) are special cases,
can be obtained by taking πij = Fν(γ∗i + β∗i · zij) where the degrees of freedom pa-
rameter ν is also to be included in the minimization of f(γ1, · · · , γ10, β1, · · · , β10, ν) =
[ 1
70

∑
j

∑
k{πhjk − Fν(γk + βkz

h
j )}2]1/2. Here zij is taken to be a vector of strength

measures which would possibly include summaries of duration, size and trajectory.
This vector is to be decided upon in consultation with the expert to characterize the
variation in TCs she chooses as the examples for her belief quantification.

14.6.4 Incorporating Climate Models

The proposed analysis could be extended further by combining expert knowledge with
climate model projections of North Atlantic TC activity. Climate model studies have
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investigated how TC intensity, frequency and tracks may change in a warmer climate
both globally and in individual basins such as the North Atlantic. Global climate
models that are used to project temperature increases resulting from increased CO2

levels have low resolution (Knutson et al., 2010) and consequently are limited in their
ability to simulate TCs. Recent approaches have combined the output from global
models with regional higher-resolution models that are able to simulate more realistic
TCs (Emanuel et al., 2008; Knutson et al., 2010, 2008).

Ideally, the results of such models would be used to specify priors for the vector zij ,
where this vector includes a multitude of TC characteristics such as intensity, duration,
seasonal variation, and geographic distribution of tracks. This would allow the experts
to focus on the detection probabilities during the elicitation process. However, despite
the improvements in model resolution, currently available models remain somewhat
limited in their capacity to simulate realistic distributions of these TC properties. In
particular, projections of TC frequencies in individual basins and changes in tracks and
duration are regarded as rather unreliable at present as is evident, for instance, in the
disagreement on the sign of changes in these parameters (Knutson et al., 2010; Gross-
mann and Morgan, 2011). A recent model driven by annual observed North Atlantic
ocean temperatures and atmospheric parameters over the 27-year period 1980-2006
was able to simulate North Atlantic TC activity that agreed remarkably well with
observed activity. However, this model first had to be calibrated to the observed bas-
inwide TC counts, the very dataset that is sought to be corrected. This introduces
a circular problem. We also note that this kind of study cannot be extended to the
period prior to 1980 because the required detailed atmospheric parameters are only
available from 1980 onwards (Kalnay et al., 1996).
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Chapter 15

The Number of Killings in Southern Rural
Norway, 1300–1569 (2013)

Foreword

I have been in a room with Ferdinand Næshagen only once, when he was visiting
a mutual friend at CMU. He outlined his question, which was how to estimate how
many killings there might have been in medieval Norway, based on the numbers that
appear in the written record.

The project went through several phases, in which I proposed it to various people,
who helped get the data in shape but didn’t analyze them. Finally, I decided that
if the analysis was going to happen, I would have to do it myself. Over the years,
Ferdinand and I became internet friends.

There are several aspects of the analysis that deserve mention. The first (see paper
#1) is again that the phenomenon occurs only once. Never again will Norway expe-
rience the years in question. Technically, this is a dual systems estimate. With only
two systems, a dual systems model perforce requires the assumption of independence
between the systems. In this application the two systems are: (1) survival of at least
one of five official documents sent to the killer as part of the legal process and (2) men-
tions of the killing in other surviving documents from the period, such as bishopric
records, personal letters, etc. Third, model checking is done against what I take to be
the most problematic aspect of the model, the binomial distribution for the number
of surviving letters to a given killer. I prefer this kind of targeted model checking to
the more general sort against a very general and vague alternative. This model check-
ing required the use of a somewhat novel distribution, the Conway-Maxwell binomial
distribution.

As with many collaborations, together we wrote something that neither of us could
have written alone.

This paper was originally published in the Annals of Applied Statistics, 7, (#2),
846–859. The Institute of Mathematical Statistics does not require permission to re-
publish.

Other readings:

Kadane, J. and Næshagen (2014). Homicide Rates in southern rural Norway, 1300–
1569. Scandinavian Journal of History, 39 (3), 287–298. http://dx.doi.org/10.

1080/03468755.2014.822270

Kadane, J.(2015). Sums of Possibly Associated Bernoulli Variables: The
ConwayMaxwell-Binomial Distribution, Bayesian Analysis, to appear. Advance Pub-
lication, 14 May 2015. doi: 10.1214/15-BA955. http://projecteuclid.org/euclid.
ba/1431607821

http://dx.doi.org/10.1080/03468755.2014.822270
http://dx.doi.org/10.1080/03468755.2014.822270
http://projecteuclid.org/euclid.ba/1431607821
http://projecteuclid.org/euclid.ba/1431607821
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Where are they now? Ferdinand Næshagen is retired, and writing a book, in South-
ern rural Norway.
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Abstract

Three dual systems estimates are employed to study the number of killings in southern rural
Norway in a period of slightly over 250 years. The first system is a set of five letters sent to
each killer as part of the legal process. The second system is the mention of killings from all
other contemporary sources. The posterior distributions derived suggest fewer such killings
than rough demographic estimates.

Key words and phrases. Dual systems, com-binomial distribution, integrated likelihood

15.1 Norwegian Homicide Law and the Documentary Evidence

This paper studies the number of killings in Norway in the period 1300–1569, that is,
the last fifty years of Norway’s High Middle Age, through the Late Middle Ages, and
a generation or so into the Early Modern Age. The extant written data about such
killings, is of course, only a fraction of the documents issued.

Certain homicides (and some other crimes) were “non-compensation crimes”
(ubotemal), which means that they, unless the king decided otherwise, were atoned
for by capital punishment or outlawry and confiscation of the criminal’s property.
Noncompensation homicides would, for instance, be the killing of a man in his own
house, the killing of a kinsman, or a killing on a holy day. A study of the documents
issued in such cases shows that King Magnus the Lawmender’s National Law of 1274
was systematically set aside in such cases, for good economic reasons. There would be
no compensation to the victim’s next of kin, and it might even be a loss to the king’s
district officer (sysselmann, the equivalent of an English sheriff) if he had to pay an
executioner the equivalent of a craftsman’s monthly pay for decapitating a pennyless
youngster. With, however, an economic atonement for the killing (botemal) the vicim’s
heirs would get their compensation, and the king’s district officer would get the fine
[strictly speaking, two fines, a recently introduced one for depriving the king of a
subject (tegngilde) and an older one for the king’s pardon (fredkjop), similar to the
continental Germanic fredus] nominally due to the king, which was about fifty percent
of the normal compensation. In case of noncompensation killings the fine would be
relatively higher, one regular fine for a killing, to which would be added another one
for the killing of a brother, a second if it took place in his own house, and a third if it
took place on a holy day. As we can see from some documents, family members would
help to pay even though their legal obligation to do so had been abolished in 1260. The
loss of a family member, cherished or not, would weaken the family. Some may have
contributed in money or species, others may have guaranteed as securities as some
documents show. Furthermore there was some opportunity for haggling and the pe-
riod before the compensation or fine was fully paid might on occasion be considerably
longer than the year specified in the letter of pardon.

This process had five documents as its outcome. The killer, who was left at large
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Table 15.1: Two-way classification of records of killings.

Number of letters
from killer’s archive

0 1 2 3 4 5 Total

Mentioned in other sources?
No n 162 20 5 3 0 190 + n
Yes 143 3 0 1 0 0 147

Total 143 + n 165 20 6 3 0 337 + n

and indeed might be said to be the prosecutor, had first to go to the King’s Chan-
cellor in Oslo to get a protection letter (gridsbrev) which both gave him a temporary
protection against avengers and also was an order to the king’s district officer to hear
the case so as to find whether the killer had fulfilled the obligation of taking pub-
lic responsibility for the killing and also whether he had sureties for the payment of
compensation and fine. In accordance with this the district officer held a hearing with
witnesses and the parties present and issued an evidence letter (provsbrev) summing
up the relevant facts, including what might make this one or several ubotemal. With
this provsbrev the killer had once more to travel to the King’s Chancellor who then
issued a permanent pardon (landsvist, right to stay in the country) which also stated
the amount to be paid in fine, and the condition that compensation and fine were to
be paid within a year. As we can see, practice did at times give the killer several years
respite before these sums were paid, but when paid they resulted in one receipt from
the king’s district officer and one from the victim’s heirs. These five letters were all
preserved in the killer’s archive as part of a farm archive together with deeds, inheri-
tance divisions etc. until fire, wetness or some overly tidy daughter-in-law put an end
to the existence of the large majority.

Supplementary materials (Kadane and Næshagen, 2012) is an index of the docu-
ments that did survive, showing evidence of 337 killings in this time period. Of these,
194 are documented from the killer’s archive, 143 are only from other sources and 4 are
mentioned both in the killer’s archive and in other sources. The other sources are quite
varied, but include local officials, the King’s Chancellor, regional potentates, church
officials, and private letters and diaries. The data used in this paper are summarized
in Table 15.1.

The purpose is to find a distribution for n and hence for 337 +n, the total number
of killings in the period.

15.2 Demographic Evidence about the Number of Killings

During this period Norway (like other European countries) underwent dramatic demo-
graphic changes. There is, furthermore, some disagreement about absolute numbers
in given years during this period, but the most recent text book authors agree that
when the plague first hit Norway in 1349 its population may have been 500,000 and
perhaps slightly lower in the preceding half century. The recurrent plague epidemics
reduced the population to its lowest point ca. 1450 to 1500, ca 200,000 or perhaps
less (Moseng et al., 2007, pp. 233–236, 294 and 295). After this population started
growing again and, in spite of recurrent epidemics, grew to 440,000 in the 1660s, the
first really reliable assessment. These estimates concern Norway as it was then, before
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the country had lost almost ten percent of its territory and population due to Danish
military misadventures. The data used here are, for the sake of comparison, only taken
from present-day Norwegian territory, so about ten percent should be deducted from
population estimates.

With two exceptions there is no conspicuous geographic bias in the data. Telemark,
which both in the Middle Ages and later had a reputation for violence, is very well
represented in these data. Due to the cases where the scene of the homicide is geo-
graphically localized, or that of the person paying for receiving compensation or fine,
or their provenience (come to an archive from a rural district) is, and the fact that
family archives are preserved in rural districts, as farm archives while similar urban
archives are unknown, we can be fairly sure that scarcely any of these documents had
an urban origin–which means that they reflect the situation in the countryside, not in
the much more violent cities and towns. This may account for the discrepancy between
the homicide estimates for the mid-sixteenth century (10–15 per 100,000) made from
another type of data (accounts of fines and confiscations) by Næshagen (2005), and
the somewhat lower estimates this study yields. Only about 3 percent of the popula-
tion lived in the three larger cities, Bergen, Trondheim, and Oslo, but their population
showed an extreme inclination to homicide. Thus, Bergen, Norway’s largest and most
heterogenous city, with a population of 6,000 had from 1562 to 1571 a homicide rate
of 83 per 100,000 (Sandnes, 1990, pp: 72–74). Thus, with these rural data one should
expect a somewhat lower estimate than Næshagen’s 10 to 15 per 100,000 from the
mid-sixteenth century which includes cities (2005).

Central Norway (Trøndelag) and Northern Norway with, respectively, 13 and 11
percent of the population (Dyrvik, 1979, page 18) seem not to be represented among
these documents. Judging from the mid-sixteenth-century lists of fines and confis-
cations, homicides may have been rarer in Central Norway than in the rest of the
country, while Northern Norway does not distinguish itself in any way (Næshagen,
2005, p. 416), and later data support the conclusion about Central Norway (Sandnes,
1990, p. 79).

So supposing that the population of Norway as it was then was 500,000 in the
period from 1300 to 1350, and roughly 200,000 in the period from 1350 to 1569, we
must deduct 10% to account for the territory lost. This yields 450,000 in 1300 to 1350,
and 180,000 for the later period. Additionally, we deduct 24% (13% in Central Norway,
11% in Northern Norway) for rural areas not covered, and another 3% for the cities,
yielding a deduction of 27%. Thus we estimate rural southern Norway to have had
a population of 330,000 in the period from 1300 to 1350, and 130,000 from 1350 to
1569. It should be emphasized that these are rough estimates only.

The next set of estimates concerns the rate of killings. Accepting the estimates
from somewhat later of 10 to 15 per hundred thousand per year overall, but a much
higher rate (83 per hundred thousand) for the 3% of the urban population suggests a
rate of 8 to 13 per hundred thousand per year in rural southern Norway.

Applied to the 50 year period before the plague and the 219 years after the plague,
this yields a range of 3600 to 5850 for the number of killings in rural Southern Norway
during the period in question.

15.3 Models of the Data

Problems of missing data are ubiquitous; indeed, every parameter not known with
certainty can be regarded as “missing data” in some sense. In biostatistics, survival
analysis can be regarded as a method for dealing with missing time-of-death data
for patients still alive. But these problems are especially acute in history, geology,
the interpretation of fossils, astronomy and archeology. In one instance, Kadane and
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Hastorf (1988), [Chapter 1 in this volume] the authors assumed known preservation
probabilities for different kinds of burnt seeds in an archeological site in Peru.

While the methods used here bear a relationship with problems of estimating the
number of species (see Bunge and Fitzpatrick (1993) for a review), the more closely
related literature is that of dual systems estimators, growing out of the early work of
Petersen (1896) and Lincoln (1930), and applied to the problem of census coverage by
Wolter (1986).

A. Simple dual systems

The simplest treatment of data of this kind is to amalgamate all mentions in the
killer’s archive together, resulting in the following 2× 2 Table 15.2.

Table 15.2: Reduced data

Killer’s Archive?
No Yes Total

Mentioned in other sources?
No n 190 190 + n
Yes 143 4 147

Total 143 + n 194 337 + n

To establish notation for this case, let the numbers in Table 15.2 be represented
as shown in Table 15.3

Table 15.3: General notation for Table 15.2.

Killer’s Archive?
No Yes Total

Mentioned in other sources?
No n00 n01 n0+

Yes n10 n11 n1+

Total n+0 n+1 n++

Note: n00 = n.

The data can be taken to be multinomial, with probabilities pij , and hence likeli-
hood

L =

(
n++

n00, n01, n10, n11

) ∏
i=0,1
j=0,1

p
nij
ij . (15.1)

A key assumption is that of independence, which would mean that whether a killing
is known from the preservation of a letter from the killer’s archive has no bearing on
whether it is known from the other sources. In this application, such an assumption
seems entirely reasonable. So if p is the probability a killing is mentioned in other
sources and q is the probability a killing is known from at least one letter from the
killer’s archive, the assumption of independence can be written as

pij = pipiqjqj i = 0, 1; j = 0, 1 (15.2)

where x = 1− x.
Substituting (15.2) into (15.1) yields

L =

(
n++

n00, n01, n10, n11

)
pn1+pn0+qn+1qn+0 . (15.3)
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The parameters p, q and n are all that matter here, and n is the parameter of
interest. Any reasonable prior distribution (i.e., one that is not strongly opinionated)
for p and q will lead to the same inference, given the values of n0+, n1+, n+0 and n+1

in this data set. Hence we accept independent uniform priors for p and q. In view
of the material in Section 15.2, the prior of interest on the total number of killings,
n + 337, is uniform (337, 5850). However, for the first computation reported here we
use a much broader uniform prior on n in order to show the uncertainty inherent in
the likelihood.

Using the well-known integration result,∫ 1

0

xn(1− x)mdx = B(n+ 1,m+ 1) =
Γ(n+ 1)Γ(m+ 1)

Γ(n+m+ 2)
=

n!m!

(n+m+ 1)!
, (15.4)

the integrated likelihood is(
n++

n00, n01, n10, n11

)
n1+!n0+!n+1!n+0!

[(n++ + 1)!]2
. (15.5)

Now n01, n10, n11, n+1 and n1+ do not depend on n. Hence, these factors do not matter
for the integrated likelihood, yielding an integrated likelihood proportional to

(n0+)!(n+0)!

n00!(n++ + 1)(n++ + 1)!
=

(n+ 190)!(n+ 143)!

n!(n+ 338)(n+ 338)!
. (15.6)

Figure 15.1 plots, as a probability distribution, the quantity n+337, the total number
of killings. Implicitly the prior on n used in this calculation is uniform with an upper
bound of at least 25,000, which is much higher than we find credible. Nonetheless, for
display purposes, we show it.

The quantiles of the data in Figure 15.1 are reported in Table 15.4. Together
Figure 15.1 and Table 15.4 suggest substantial uncertainty about the total number
of killings; the middle 80% of the distribution lies between 3337 and 10,837, a gap of
7500 killings; the median of the distribution is 5837.

Table 15.4: Quantiles for Figure 15.1

Quantile 3337 3837 4337 4837 5837 6337 7337 8337 10,837
probability 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

This suggests the desirability of making more use of the data in Table 15.1, and
in particular the data on the number of letters found in each killer’s archive.

B. Dual systems binomial model

To do so, we now establish general notation for Table 15.1, in Table 15.5.
Let n = (n00, n01, n02, . . . n05, n10, n11, . . . n15) and n! =

∏5
i=0

∏1
j=0 nij !.

Then the multinomial likelihood can be written as

L =
n++!

n!

∏
i=0,1
j=0,...5

p
nij
ij . (15.7)

Again imposing independence, we have

pij = rjs
isi j = 0, . . . , 5; i = 0, 1, (15.8)
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Figure 15.1: Simple dual systems integrated likelihood

where rj is the probability of j surviving letters in the archive and s is the probability
of being mentioned in other sources.

Substituting (15.8) into (15.7), we obtain

L =
n++!

n!

5∏
j=0

rn+j
j sn1+sn0+ . (15.9)

A simple model to impose on r = (ro, r1, . . . , r5) is binomial (5, p) where p is
here the probability that each letter in a killer’s archive survives (this assumption is
revisited in subsection C, ahead). With the binomial assumption,

rj =

(
5

j

)
pjp5−j , j = 0, . . . , 5. (15.10)

Table 15.5: Notation for Table 15.1

Number of letters in Killer’s archive
0 1 2 3 4 5 Total

Mentioned in other sources?
No n00 n01 n02 n03 n04 n05 n0+

Yes n10 n11 n12 n13 n14 n15 n1+

Total n+0 n+1 n+2 n+3 n+4 n+5 n++
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Then
5∏
j=0

rn+j
j =

5∏
j=0

(
5

j, 5− j

)n+j

p
∑5
j=0 jn+jp

∑5
j=0(5−j)n+j . (15.11)

Let S1 =
∑5
j=0 jn+j . Then

∑5
j=0(5− j)n+j = 5n++ − S1.

Hence
5∏
j=0

r
n+j

j =

5∏
j=0

(
5

j, 5− j

)n+j

pS1p5n++−S1 . (15.12)

The first term on the right can be written for our data as

5∏
j=0

(
5

j, 5− j

)n+j

=

(
5!

0!5!

)n+143(
5!

1!4!

)165(
5!

2!3!

)20(
5!

3!2!

)6(
5!

4!1!

)3(
5!

0!5!

)0

.

(15.13)

Only the first term has an exponent that depends on a parameter, and that term is
1 raised to a power, so the entire product is constant with respect to the parameters,
and can be dropped. Similarly, in the terms for n! only the first, n!, depends on the
parameters, and the others can be dropped:

L ∝ (n++)!

n!
pS1p5n++−S1sn1+sn0+ . (15.14)

Again, using (15.4) and independent uniform distributions on p and s, the integrated
likelihood for n is

(n++)!

n!

(S1)!(5n++ − S1)!

(5n++ + 1)!

(n1+)!(n0+)!

(n++ + 1)!

=
S1!(5n++ − S1)!(n1+)!(n0+)!

n!(5n++ + 1)!(n++ + 1)
.

(15.15)

Finally S1 and n1+ also do not depend on n, so those terms can be dropped as
well, yielding the integrated likelihood proportional to

(5n++ − S1)!(n0+)!

n!(5n++ + 1)!(n++ + 1)
. (15.16)

Figure 15.2 plots the posterior distribution for n + 337 whose quantiles are given
in Table 15.6. Here the median is 1155.

Table 15.6: Quantiles for dual systems posterior distribution under the binomial model

Quantile 978 1037 1076 1116 1155 1195 1234 1293 1372
Probability 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Thus this model suggests remarkably fewer killings than those suggested by the
simple dual systems estimate reported in Figure 15.1 and Table 15.6.

C. Com-binomial model

The binomial model implies that the survival of a document from a killer’s archive is
an event independent of the survival of other documents from the same killer’s archive.
Since all five letters are addressed to the same person (the killer), it is likely that they
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Figure 15.2: Binomial dual systems posterior distribution. Note that Figure 15.1 has a wider
scale of the number of killings.

would tend to be stored together. Hence, it seems prudent to expand the model to
allow for positive correlation among the events of survival of letters addressed to the
same killer. [A referee suggests that an overly tidy daughter-in-law may have kept
only one letter, leading to negative correlation. While that may have happened in a
few instances, we think that joint physical destruction (fire and water) is far more
likely, and hence expect positive correlation in the survival event of documents from
a killer’s archive.]

One model that allows for such correlation is the com-binomial distribution
(Shmueli et al., 2004). The pdf for this distribution is given by

P{X = j|p, ν} =
pj(1− p)m−j

(
m

j,m−j
)ν∑m

k=0 p
k(1− p)m−k

(
m

k,m−k
)ν , j = 0, 1, . . . ,m. (15.17)

When ν = 1, this distribution reduces to the binomial distribution, and hence to
independence of survival of the documents sent to a given killer. For ν > 1, the
survival would be negatively correlated. For ν < 1, the survival would be positively
correlated. In this application, the latter is expected. As ν →∞, the probability would
become concentrated on a single point. As ν → −∞, it would become concentrated
on 0 and m.

Because this distribution is unfamiliar, it is perhaps useful to look at some ex-
amples, displayed in Figure 15.3 for the case m = 5, which is the value of m in this
application. In this figure, looking across rows, as ν increases, the probability tends
to concentrate on a single point (except at p = 1/2, where symmetry leads to two
dominant points, 2 and 3).
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Figure 3:Com−Binomial Distribution for Various Values of p and nu
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Figure 15.3: Com-binomial distribution for various values of p and nu

As alluded to above, values of ν above 1 do not make sense in this application.
Therefore, the analysis to be presented imposes the condition ν ≤ 1 as a hard con-
straint, by using a prior that put zero probability in the space ν > 1.

To incorporate the com-binomial distribution into the model, rj in (15.10) is re-
placed by the expression in (15.17). This yields the likelihood

L =
n++!

n!
sn1+sn0+

5∏
j=0

r
n+j

j

=
n++!

n!
sn1+sn0+

5∏
j=0

[
pj(1− p)m−j

(
m

j,m−j
)ν∑m

k=0 p
k(1− p)m−k

(
m

k,m−k
)ν
]n+j

.

(15.18)

It is convenient to divide the numerator and denominator in the product term by
the factor (1− p)m(m!)ν , yielding

pj(1− p)m−j
(

m
j,m−j

)ν∑m
k=0 p

k(1− p)m−k
(

m
k,m−k

)ν =
θj/[j!(m− j)!]ν∑5
k=0 θ

k/[k!(m− k)!]ν
, (15.19)

where θ = p/(1− p).
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It is further convenient to rewrite (15.19) as follows:

θj/

{
[j!(m− j)!]ν

(
5∑
k=0

θk/[k!(m− k)!]ν

)}
=ej log θ−ν log[j!(m−j)!]/Z(θ, ν)

where Z(θ, ν) =

5∑
k=0

θk/[k!(m− k)!]ν .

(15.20)

Substituting (15.20) into (15.18) yields:

L =
n++!

n!
sn1+sn0+es1 log θ−s2ν/(Z(θ, ν))n++ , (15.21)

where s1 =
∑5
j=1 jn+j and s2 =

∑5
j=0 n+j log(j!(5− j)!).

Once again s can be integrated with respect to a uniform prior, yielding the inte-
grated likelihood

n++!

n!

(n1+)!(n0+)!

(n++ + 1)!
es1 log θ−s2ν/Z(θ, ν)n++ . (15.22)

Finally, factors not involving θ, ν and n can be eliminated, yielding

(n0+)!

n!(n++ + 1)
es1 log θ−s2νZ(θ, ν)−n++ . (15.23)

In order to have results comparable to those in Figure 15.2, proper account must
be taken of the transformation from p to θ. The differentials are related by

dp =
dθ

(1 + θ)2
, (15.24)

so p uniform on (0, 1) is equivalent to θ having the density 1/(1 + θ)2 on (0,∞). Thus,
the form of likelihood used here is (15.23) multiplied by (15.24), that is,

(n0+)!

(n++ + 1)n!
es1 log θ−s2ν Z(θ, ν)−n++

(1 + θ)2
. (15.25)

Using a grid method to integrate (15.25) with respect to θ and ν yields the posterior
distribution in Figure 15.4, with quantiles given in Table 15.7. The median for this
model is 1143, about the same as for the binomial model.

Table 15.7: Quantiles for dual systems integrated likelihood under the com-binomial model

Quantile 959 1021 1051 1113 1143 1174 1235 1265 1357
probability 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

The results of the com-binomial in Figure 15.4 are very similar to those of the
binomial in Figure 15.2. The reason for this is that the likelihood for ν strongly
indicates a preference for ν = 1. Glancing back at the data in Table 15.1, the data are
strongly piled up at 0 and 1 letters from a killer’s archive; there are no killings at all for
which all five letters have survived. Therefore, the data looks much more like it would
at ν = ∞, which makes no substantive sense in this problem. Given that the hard
constraint ν ≤ 1 has been imposed, the integrated posterior puts most weight on the
largest ν permitted, that is, ν = 1; the results therefore resemble those of the binomial
model reported in Figure 15.2. While the generalization afforded by the com-binomial
did not lead to a substantially different integrated likelihood, it was important to see
whether positive correlation in the survival of letters sent to the killer was a dominant
feature of the data. This turned out not to be the case.
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Figure 15.4: Com-binomial posterior distribution. Note that Figure 15.1 has a wider scale
for the number of killings.

15.4 Conclusion

An assumption underlying our model is that every killing resulted in the five letters
being sent to the killer. It is possible that this is not true, and possible that the
propensity to send the requisite letters varied by geography. It is also possible that
some geographical areas were more prone to document destruction by fire, flood, etc.,
and such areas might be those less carefully administered. We leave these possibilities
for further exploration.

This paper presents three analyses of the number of killings in rural Norway during
the period in question. The first (Table 15.4 and Figure 15.1) used only the presence or
absence of a mention in the killer’s archive, and found huge uncertainty in the number
of killings. The latter two, reported, respectively, in Table 15.6 and Figure 15.2, and
in Table 15.7 and Figure 15.4, are so similar that substantively they are the same.
The distribution reported indicates that perhaps rural Norway was more peaceful in
this period than had previously been thought.
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SUPPLEMENTARY MATERIAL

Criminal homicides in Norwegian letters 1300 to 1569 (DOI:10.1214/

12AOAS612SUPP;.pdf). A list of letters found in Norway concerning killings during
the period of 1300 to 1569.
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Epilogue

When I do applied work (as in the papers in this volume), my commitment is to
the applied problem. My preferences about statistical philosophy and technique are
secondary. Thus the question is fairly put in this collection of papers: to what extent
were my Bayesian preferences a help (or a hindrance) to successfully contributing to
the application. That is the issue I hope readers will ask themselves as they peruse
this volume.

A non-scientific postscript: I notice that three of my women coauthors had twins
some years after our joint work. Is there some inference I should draw from this fact?
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