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Abstract

This paper explores the usefulness of robust Bayesian analysis in the
context of an applied problem, finding priors to model judicial neutrality in
an age discrimination case. We seek large classes of prior distributions with-
out trivial bounds on the posterior probability of a key set, that is, without
bounds that are independent of the data. Such an exploration shows qualita-
tively where the prior elicitation matters most, and quantitatively how sensi-
tive the conclusions are to specified prior changes. The novel non-parametric
classes proposed and studied here represent judicial neutrality and are rea-
sonably wide, so that when a clear conclusion emerges from the data at hand,
this is arguably very reliable.
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1 Introduction

Robust Bayesian analysis (RBA), as championed by Berger and others (Berger,
1994) examines the maximum and minimum over a set of prior distributions, of
a quantity of interest, like the posterior expectation of a function in the parameter
space, for instance, the posterior probability of some set C'. This paper explores
what can be learned from such an analysis in the context of a specific example,
the modeling of judicial neutrality in employment discrimination lawsuits.

What might be learned from a robust Bayesian analysis? We think there are
at least two senses in which it can shed light on a standard Bayesian analysis that
used a single, or a very few, prior distributions. The first is qualitative. If the class
of prior distributions is unrestricted, for example if it contains both priors putting
probability zero and probability one on the set C, the posterior probability will
also be bounded by zero and one, independent of the data. This phenomenon,
bounds attained whatever be the data, is referred in this paper as a set of priors
leading to trivial bounds. At the other extreme, a class of prior distributions con-
sisting of a single prior distribution is indistinguishable from an ordinary Bayesian
analysis. However, if one can find a large class of prior distributions leading to
non-trivial bounds, such an analysis can be informative about what aspects of the
prior are particularly important to the determination of C’s posterior probability.
This qualitative information, in turn, can help direct attention in elicitation to the
aspects of the prior that matter most for the application.

The second kind of information that might be gleaned from an RBA is quan-
titative, namely how much the probability of C changes as the class expands in a
qualitatively sensitive direction. This in turn can lead to a judgment of whether a
Bayesian analysis is sufficiently robust to changes in details of the prior specifica-
tion to be relied upon in a specific application with specific data. Robust Bayesian
analyses, with reasonable wide classes of priors ("reasonable” meaning that dog-
matic priors are excluded), are particularly well suited to judicial weighting of
evidence.

While there has been a rich theoretical development in RBA (which this pa-
per uses to guide the calculations), applications have been fewer. One reason is
that in settings involving several parameters, the extrema over large classes of
prior distributions tend to be difficult to find (analytically or computationally),
and the bounds tend to be extreme. Kass and Greenhouse (1989) discuss the fa-
mous ECMO trial (Ware (1989)) from a robust Bayesian viewpoint. They report
having calculated with 84 different priors, spanning what they claim is “a satis-



factory range of appropriate skeptical opinions,” and report reasonable robustness
in stopping the trial.

Greenhouse and Wasserman (1995) uses an e-contamination model in which
the class of priors considered is

{(1 = e)m + €eq : qeQ}

where 7, is the tentatively believed prior, and Q is all possible prior distributions.
As e | 0, the posterior probability of a set C approaches that under 7,; ase 1 1, the
bounds on a set C' become the trivial bounds 0 and 1. They find that a cancer trial
was appropriately stopped, but that the ECMO decision is more equivocal. Fi-
nally, Greenhouse and Wasserman (1996) considers a testing framework in which
they want to discern which of four models is favored by the data. They choose
a main prior, and consider four variants of it to show robustness. A general and
more radical approach that focus on upper and lower probabilities, is presented in
Walley (1991).

This paper re-analyses the age-discrimination data of Kadane (1990). In that
paper, four firing waves were studied using two-by-two doubly constrained con-
tingency tables. Since the likelihood in this case has a single parameter with a
natural interpretation, it is reasonable to hope that a broad class of priors might
lead to reasonable bounds. This application has the difficulty, however, that the
decision maker (judge or juror) is unavailable for prior elicitation. For this reason,
it might be argued that RBA is unavoidable here. Hence we seek the prior of an
idealized “judicially neutral”” person.

Section 2 reviews the application and previous efforts at a robust analysis of
it, which are still too narrow. Section 3 proposes some new classes of priors, and
examines the conclusions that might be drawn from them. Section 4 concludes
the paper with a discussion of the implications of our findings for the application,
and for robust Bayesian analysis in general. The computational methods we used
are described in the appendix.

2 AgeDiscrimination

The data come from a single company, which reduced its workforce in four firing
waves, of 6/30/82, 11/30/82, 5/31/83 and 6/28/84, respectively. An employee was
fired in the 4th wave, and sued the company claiming that persons whose age
is over 40 were fired at uncommonly high rates. Table 1 gives the four 2 x 2
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contingency tables. For example, in the first firing wave, 18 employees over 40
were fired, and none under forty were fired; among those not fired, 129 were over
forty and 102 were under 40.

Kadane (1990) analyzed the data in Table 1 using 2x 2 contingency tables. He
took both the marginal distribution by age (over and under 40) and the marginal
distribution by employment status (fired or retained) as fixed, since they are legally
irrelevant. Thus both the age structure of the work force and the number fired are
neutral happenstances, and the examination is based on who (by age) was chosen
to be fired or retained.

The likelihood for a single firing wave is

(nll,n1+—n11,n+1—:11,n—n1+—n+1+n11) mtf
f(nll | 9) = w ( n )6j0 , (1)
I=Y \jnig—jny1—jn—ni4—ny1+j

where v = max(0,n14+ + ny1 — n), w = min(ny4,n4q). The parameter 6 has
the interpretation of being the log-odds-ratio, i.e. 8 = log(p11p22/p12p21), the
log-odds of being fired if an employee is over forty compared to one under forty.
Therefore § = 0 means that the firing policy is age-neutral, § > 0 means that the
firing policy disadvantages people older than 40, and conversely, # < 0 means that
younger workers are disadvantaged. Since # < 0 is legal, while # > 0 is not, there
are only two decisions available to the decision maker. Thus we concentrate on
P[6 > 0]. Notice, in passing, that one of the advantages of the Bayesian approach,
preserved under the RBA, is its probability coherence. Thus the conclusions are
invariant under smooth transformations of the parameter 6, although this is a very
natural parameterization of the likelihood.

A hierarchical model might be useful to address the four firing waves jointly.
Since there are only four observations at the second level of this hierarchy, infer-
ences at the second level are quite sensitive to the assumptions made about the
second level. Instead we address this issue by examining two extreme cases of
such a hierarchical model: (i) treating firing waves as independent, leading to four
separate analyses and (ii) treating the log-odds parameter # as identical over all
four firing waves, leading to a joint treatment of the four tables together. Varying
amounts of assumed smoothing would lead to pulling the results of (i) toward the
joint treatment results of (ii).

To be useful in court, a prior for this problem needs to represent not the real
prior opinion of an expert witness, but rather an opinion that is judicially neutral,
i.e. that does not bias the analysis in either direction. In some circumstances, one
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might imagine eliciting the prior of a decision-maker. The institutional context of
a legal case makes this impossible. However, some features of a suitable neutral
prior are apparent. Kadane proposes symmetry for # around zero and unimodality
as reasonable features for such a neutral prior to have. Judicial neutrality might
be compared to the “skeptical” prior proposed by Spiegelhalter, Freedman and
Parmer (1994), intended “to formalize the belief that large treatment differences
are unlikely” (p. 364). Thus the motivation of such a prior is to avoid being
overenthusiastic about either treatment after the clinical trial is over, which is a
different issue than judicial neutrality, which seeks to avoid prejudice against the
position of either party. Carlin and Perez (2000) discuss the usefulness of classes
of priors in biostatistical settings.

For convenience, Kadane chose the normal family with zero mean, and calcu-
lated posteriors using standard deviations of 1, 2, 4, 8, and oo. This is an example
of parametric robust inference, in that the families of priors permitted are indexed
by a parameter, here the standard deviation. Kadane put greatest stress on large

standard deviations, infinity for waves 11, 111, and IV, and eight for wave | (in wave
I, the zero in the table leads to an improper posterior under an unbounded uniform
prior).

As explained above, this paper revisits the question of judicial neutrality, to
see whether the techniques of RBA were useful in this context.

Perez and Pericchi (1994) noticed that the likelihood (1) belongs to the Expo-
nential Family which can be written, in obvious notation as:

f(n11 | 0) o< exp[ni160 — M (6)]g(n),
so that a natural conjugate prior exists of the form,
(60 | ng, xo) x exp[noxel — noM(0)].

Perez and Pericchi (1994) explore this conjugate family, which has hyperparam-
eters zo and ny. They suggest using ng = 1 and zy = nyyn.1/n, denoted C
here. This choice is nearly, but not exactly, symmetric around zero. Consequently
they suggest the even part of the conjugate prior, which is symmetric by construc-
tion (Cg). Additionally, they report the consequences of the Jeffreys prior, and
its even part (denoted here J and Jg respectively) shown in Perez (1994) to be
proper. These results of Kadane and Perez and Pericchi are summarized in Table
2, which shows a broad, general consistency in the results.



None of these reflect a class of priors, so, even together, they do not address
fully the issue of the robustness of the inference. To address this, Perez and Per-
icchi study two kinds of classes of prior.

The first, following Edwards, Lindman and Savage (1963), and Dickey (1976),
considers the class of all priors () satisfying

() _

£0) = A V0, 2
where £(6) is a fixed operational prior and A > 1. Using as operational prior C, J,
and N(0,1), they compute lower bounds for P(6 > 0) for several \’s.

The second class studied by Perez and Pericchi uses an idea introduced by
DeRobertis and Hartigan (1981). They consider the class of unnormalized prior
distributions 7 (6) satisfying £(8) < w(f) < u(#) for almost all 8, where ¢()
and u(#) are specified and need not integrate to unity. Using the choices ¢(0) =
N(0,0?), where ” is chosen so that £(0) = C(0) and u(f) = "5*(Cg(f)) *
max (%) they again derive lower bounds for the posterior probability that ¢
is positive. These results are given in Table 3. Again, they indicate a certain
qualitative robustness. But these classes do not articulate well with the idea that
the class of priors should represent judicial neutrality, since they do not require
symmetry and unimodality around O.

3 Robust Neutrality

The most natural class, from the viewpoint of judicial neutrality, is the class of
unimodal priors symmetric around 0. However, as the analysis below shows, this
class turns out to be too broad.

According to the Khinchine representation theorem (see Dharmadhikari and
Joag-Dev. (1988), p. 10), every prior in this class can be represented as an arbi-
trary mixture of uniform densities symmetric around zero. Kadane (1990) remarks
that a prior that puts all its weight uniformly on [—n, n] will put posterior proba-
bility 1/2 on the set # > 0, (as n — 0) regardless of what the data are. Denote
this prior (really a limit of priors) as U(01). Another important prior is U(co—),
found by taking a uniform prior on [—m, m| as mm — oc. Consider now the prior
mixture of two uniforms:



noy =4 7 VOV ©)
1—p U(oo—)

for some p € (0, 1]. Also suppose there are no zeros in the data table (thus exclud-
ing Table I), which corresponds to v < n;; < w. Thenas | § |— oo, itis easy to
see that f(ny; | ) — 0 exponentially fast. Now consider the posterior that results
from the prior (3).

(1/2)pf(nu1 | 6= 0)
(n11 [0 =0) + (1 = p) limy, 00 /77, 5 f (711 | 6)

P{O<0|nn}= (4)
{ [t =3
But since f(n11 | #) — 0 exponentially fast, the limit in the denominator of
(4) is zero, so

for all members of the class (3), irrespective of the data nq;. We were surprised
by this property of the class (3).

This fact already suggests at least one qualitative result: a subclass of all uni-
modal priors symmetric around zero can lead to a non-trivial bound only if it
avoids putting too much probability close to zero, and avoids allowing too much
probability to be put on extremely high and low values of 8. This explains the
failure of a number of our early attempts to restrict the class of unimodal, sym-
metric priors: (i) by fixing the height of 7 at 0,%(ii) by bounding the variance of =
from below, and (iii) by fixing a quantile of . In each case, a member of (3) can
be found to satisfy the constraint, thus showing that the class, even restricted, is
uninterestingly broad, in the sense that 1/2 would be one of the possible values of
P{6 > 0}, regardless of the data. This demonstration that class (3) leads to trivial
bounds cannot be taken as evidence that only class (3) leads to trivial bounds.

The priors U(0+) and U(oco—) are not satisfactory representations of judicial
neutrality. The former says essentially that the neutral arbitrator is sure, before
hearing any evidence, that if there were age discrimination at all, its magnitude is

1To see this, suppose that 7(0) < h for some fixed h. Consider a prior that puts w(z) = h
for —n < x < 7, and puts 1 — 2hy probability on U(co—). For each > 0, such a prior has
P{6 < 0| n11} nearly 1/2 independent of the data n11. Hence as 7 decreases, this continues to
be the case.



so small as to have a negligible effect. The prior U(co—) is also unreasonable, as
it puts all its predictive weight on » and w. Thus a neutral arbitrator holding this
prior is sure, before seeing the data, that all the firings will be of employees under
forty or all will be of employees over forty. Not only is this not generally the case,
but it is not a good model for a neutral arbitrator either.

A referee proposed a class that restricts priors to be (i) symmetric around 0,
(if) unimodal, (iii) has bounded height at 0 and (iv) has a specified quantile. We
agree that such a class can have non-trivial bounds. However we think that the
joint elicitation required would be difficult. Also the interpretation of such a class
would be less natural than the proposals below, as it depends on two parameters
instead of just one.

Predictive distributions are a particularly useful way to think about the conse-
quences of a prior distribution because it refers to what a neutral arbitrator might
expect about the number of employees over forty fired, after learning the age
structure of the work force and the number of employees to be fired. Berger
(1994) interestingly points out that the predictive distribution is in fact the likeli-
hood of the prior (for a fixed likelihood), and a limitation of some RBA studies is
that robustness might be missing due to priors which have a very low (posterior)
likelihood. In other words lack of robustness might be caused by priors which are
ruled out by the data. Berger’s insight seems to be consistent with the following
principle in our situation: Neutrality might be considered in terms of not being
too surprised at any way the data might come out. More formally, suppose that
the prior is w(#), and the likelihood is f;(#) where i = ny; is the datum. Let

0.0) = [ £Or(O)db. ©

Then the neutral class A can be defined as

A = {m(0) : m(6)is unimodal and symmetric around 0, @)

and g, (i) > eforall i,v < i < w}

The parameter e of this class is then the minimum prior predictive probability
of the possible data. The idea of this class is that it constrains the neutral arbitrator
to have at least probability e > 0 on each possible data point. In other words, only
priors which have a non-negligible likelihood, for all possible data, are allowed in
our neutrality class. Every e > 0 prevents U(oco—) as a possible prior. To prevent
U(0+) from being a possible prior, it would be necessary to have
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€ > min (0| 4).

On the other hand, it is necessary to have ¢ < 1/(w — v + 1) in order for the
class to be non-empty.

For each wave and for the combined waves as given in Table 1, there is a
maximum value of epsilon, above which the class A is empty. For waves | to 1V,
and the combined waves, these maxima are .032, .016, .023, .041, and 8.57 1032,
respectively. Thus any useful choice for epsilon must not exceed these numbers
for the associated data set. It seems reasonable to allow epsilon to be one tenth or
one hundredth of this maximum value, and to see the extent to which the posterior
probability of positive @ varies as a result.

Another base that might be used is the height that the predictive distribution
would have if it were uniform, namely 1/(w — v + 1) and then taking 1/10 or
1/100 of this base. For waves | to 1V, and the combined waves, these heights are
.053,.027, .036, .063, and 3.2 x 1079, respectively. For the individual waves, these
numbers are larger than but the same order of magnitude as the maxima reported
above. However, this idea is infeasible for the combined table, as it leads to an
empty class.

Table 4 records the results for the data in Table 1. (The appendix to this pa-
per shows how the computations were done). The computations in Table 4 show
that the upper and lower bounds come together as the class of priors narrows by
increasing epsilon, as expected. It also shows that each computation is unaffected
by epsilons much smaller than one or two orders of magnitude below the maxi-
mum or the height the predictive distribution would have if it were uniform. Thus
the calculations look quite insensitive to selection in class A with €’s chosen as
suggested above.

It may be, however, that predictive probabilities themselves are hard to think
about, because they depend so much on the margins taken to be fixed. This con-
sideration led to the construction of a second class of prior distributions, class B.
The idea here is to constrain the ratio of predictive probabilities, i.e. so that

max g, (i)
———— <s (8)
min g, ()

3
for some s > 1 (among 7’s unimodal and symmetric around zero). Here there is a
minimum value of s below which the class again goes empty. Respectively, those



values are 2.94, 4,52, 3.40, 3.57 and 77.1. Here again it makes sense to allow
variations of one or two orders of magnitude (factors of 10 to 100). Again, the
appendix shows how the calculations were done. Table 5 records the results.

Again, variations of one or two orders of magnitude on the minimum s do not
affect the results. Thus these calculations confirm the results of Kadane (1990) and
Perez and Pericchi (1994) that the calculations are robust. The classes considered
are indeed very wide, allowing a plethora of different behavior, but at the same
time obeying the natural requirement of being neutral and non-dogmatic, in order
to be fair in the final judgement, whatever the outcome of the data.

A referee raises the question of whether the classes of priors specified here
is data-dependent. The likelihood used in this paper is doubly-constrained; both
the row and column sums are fixed. Hence, under one interpretation, the row and
column sums are not data, and the classes of priors proposed here are not data-
dependent. Another interpretation treats the row and column sums as data. In this
sense the classes of priors proposed here are data-dependent.

4 Conclusions

The Robust Bayesian analyses performed here lead to two kinds of conclusions.
Qualitatively, they show that there are two sensitive areas of prior elicitation, close
to 8 = 0, and @ very large in absolute value. Neither of these comports well with
the idea of judicial neutrality: not favoring either litigant and being open to being
influenced by the data. Quantitatively, the analyses confirm the impression gained
from the earlier studies, that for this particular application and data sets, the results
are satisfactorily robust.

What have we learned from RBA to judicial weighting of the evidence? That
a RBA is the natural implementation of the Bayesian approach to convey that a
conclusion is very reliable.

On the other hand, what have we learned from this representative case study
to RBA in general? That a RBA should take into account the likelihood of the
priors in the class. This is encapsulated in the principle that classes that claim to
model judicial neutrality, should yield non-negligible likelihoods of any possible
outcome. It is our hope that this study will motivate similar principles in other
realms of knowledge, and make closer to current judicial practice sensible Robust
Bayesian analyses.
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Appendix Finding the Extremafor ClassesA and B

The data may consist of a single table, or of several tables. In either case, the
sample space is discrete. For a single table, it consists of integers ¢ such that
v < i < w. For several tables indexed by t, it consists of a vector of integers of
length 7', ¢ = (41,...,ir) such thatv, < 4, < w; forallt,1 <t <T. Let N
denote this sample space.

The likelihood function may then be written as f;(6). The class A is then
defined in equation (7), with the modification above in the case of more than one
table. Using Khinchine’s representation, the set of priors in A can be expressed as
the set of distribution functions F satisfying

o 1
n(0)= [ ~dF(a), (©)
where F'is a distribution function in the set 7 = {F(-) : [{° dF (a) = 3,
/ " fi(@)dF(a) > ¢ > 0 for all ieN} (10)
0

where e
fi@) = = ["i(=0)+ F;0)do , >0

and f7(0) is defined by continuity.
The quantity of interest is the probability of {# > 0} posterior to observing 2
when the prior is w(0)eA. This can be rewritten as

. . Joso F;(=0)m(0)do]
P z0li= 1+ fezoﬁi(e))w(e)de] Y
or, equivalently as
. I fi@)dP ()]
PEO>0|d = |1+ fooof:?(a)dF(a) (12)
where
fila) = 2§ f;(=0)ds,
fila) = 2[5 f;(0)de,



Then the supremum of the posterior probability that & > 0 can be written as

supp™(0 > 0[4) = supp”(0 >0 |49)
TeA FeF
-1

inf J5° £1(a)dF(a)

T RF I F @)

(13)

By the linearization algorithm (Lavine, Wasserman and Wolpert, 1993), the
infimum in (13) is the unique solution in A of the equation

it [* [7H(@) = A2 (@) dF(a) = . 14

Once A has been found,
sup P"(0 >0 1]14) = (14 X)) " (15)
TeA

Using Kemperman (1987) (see also Salinetti (1994) and Liseo, Moreno and
Salinetti (1994)), (14) can be rewritten

0= { > i), [fi (=A@ = 3 difi ) dF“‘)}
:;v 2N 2 eN
5 (16)

where Fy is the class { F'(-) : [;° dF'(a) = 1/2}.

While (16) may look formidable, and hence not a simplification, it has im-
portant consequences. First, the internal infimum occurs at an F' that puts all its
probability at a single point a. This means that the extremum will occur at a single
uniform distribution for #. Thus

int | [fg (@ =) = X dpfy(a)| (o)
= inf 5 [f,%(co @) - X dyt; (a>] , 1)
2 eN
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which permits reduction of (16) to

0 = sup inf {f%(a) SIHOEDY (f3:(a) — 26)di'} = 0. (18)

d.<0o a>0 o
4 T eN
LenN
From (18), if for any 4, f*(a) < 2e, allowing the corresponding d; to go to
infinity results in a sup of infinity, so (18) cannot be satisfied. Hence the supremum
is attained when d; = 0 for all 7. Thus (18) further simplifies to finding a value \q
of A such that

inf {( le (a) — A ff(a))l{azm f%(amﬁvm(a)} = 0. (19)

a>0

Now there are two cases to be considered separately. Since the supremum
of P™(6 > 0 | i) corresponds to a small value of ), find the value of a for which
f;(a)/ f7(a) isaminimum. If that value of a satisfies the constraint min; fi(a) >
2¢, then the supremum has been found. If not, then the constraint is binding. In
this case, because f% (a) — )\ff(a) is continuous in a, the infimum in (19) occurs
when fZ(a) = 2¢ for some zeN.

Thus the search for a solution of (19) in the second case can be found at the
points a at which

min f§(a) = 2, (20)
LeN
and then
Aa) = fi(a)/f}(a). (21)

If there are several points a satisfying (20), the smallest A(a) in the set corre-
sponds to the infimum in (13). This can be accomplished by a one-dimensional
search over possible values a.

To find inf,.4 p™(0 > 0 | i), simply reverse the roles of inf and sup in (13).
This can be done by reversing the roles of f;'(a) and fi(” (a) in each of the subse-
quent formulas.

Finding the extrema for the class B is quite similar to finding them for class A.
Here the constraints (10) are replaced by the constraints (8), which are equivalent
to
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59x(2") > g.(¢") forall ¢',2"eN. (22)

Hence equation (10) is replaced by

/ " 13 (0)dF (@) > 0for all ', i"N, where (23)
0 3

fi (@) = é /0 s(f3(0) + fy(=0)) = (F32(0) + fz(—0))db,

and f,;i‘, z.,,(0) is defined by continuity.
The same linearization can be applied, leading to the following analog of (16):

o0
= i 1 — 2 — o o .
0= di,Sl;[I’)ZO 171'£lff0 0 fi,yz-u(a) )\fi’,iﬂ (a) .12’; dz:,zufz,,zu,s(a) dF(a)
1,1 eN

i 4" en
(24)
By exactly the same arguments, this results, in the case in which the constraints
are binding, in finding the set of a’s such that

min for o (a) =0
)

and then choosing the smallest \y(a) from the resulting set. Again, the infimum
over the class B is found by reversing the roles of f! and f2.
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Table 1: Ages of those fired and retained in four firing waves

Notation: 11
Numbers ni
Probabilities P11
| 18
Wave I 26
Il 13
v 13
Category

1,2
ni2

P12
0

10
14
2

Fired, 40+ Fired, 40-

Cell
2,1
no1

b2
129

105

92

81

Retained, 40+

(from Kadane (1990))

: Notation and Data

2,2
U»y)

P22
102

83
66
52
Retained, 40-



Table 2: Posterior Probability of § > 0 (older than 40 disadvantaged) as a function
of the prior:

Prior Wave

| 1| Il IV Combined
N(0,1) 1.000 .960 .183 .965 999
N(0,2?) 1.000 .967 .169 .981 999
N(0,4%) 1.000 .969 .165 .985 999
N(0,8%) 1.000 .970 .164 .986 999
N(0, 0) NA 970 .164 .987 999
C 997 906 .248 .930 984
Cg 997 904 .246 .925 . 984
J 1.000 .968 .165 .980 998
Jg 1.000 .969 .170 .984 999

(from Kadane (1990) and Perez and Pericchi (1993))



Table 3: Lower bound for the Posterior Probability that # > 0 as a function of the
class of prior

Operational Wave
Prior A I " IV Combined
1.5 1.000 .952 .116 .971 .997
1.000 .937 .090 .961 .996
1.000 .909 .062 .944 .993
1.000 .882 .047 .926 .991
1.000 .857 .038 .909 .989

g B~ W N

1.5 1000 .865 .128 .899 .976

2 1000 .828 .099 .896 .969
C 3 1.000 .763 .069 .816 .953
4 1.000 .707 .052 .769 .939
5 1000 .658 .042 .939 .925
1.5 1.000 .942 .132 .949 .998
2 1000 .924 .103 .933 .997
N(0,1) 3 1000 .891 .071 .903 .996
4 1000 .859 .054 .875 .995
5 1000 .830 .044 .848 .993
DeRobertis/
Hartigan 996 .893 .268 .916 .982
Class

(From Perez and Pericchi (1993))



Table 4: Upper and lower bounds on the posterior probability of age discrimina-
tion for Class A as a function of e.

Epsilon Inf. ~ Sup Epsilon Inf. Sup
4107% .50 1.00 107 50 .97
5107 .69 510716 .67
1077 .86 10715 .72
106 .98 10714 83
1075 .997 10712 .92
0% .97
Wave | Wave 11
Epsilon Inf. Sup Epsilon Inf. Sup
107" .17 .50 1078 .50 .99
510711 45 1077 .64
10710 .32 1078 .86
10-8 .20 1075 .94
106 A7 011 .98
Wave 11 Wave IV

Epsilon Inf. Sup
10742 50 .999

1074 .68
1074 81
1073 .89
10737 .96
1073 .98

Combined Waves



Table 5: Upper and lower bounds on the posterior probability of age discrimina-
tion for Class B as a function of s.

s Inf. Sup s Inf. Sup
10° .99 1.00 10 .97 .97
108 .92 1019 .95

3106 .77 102 .90
4.510% .61 1014 .74
510 .5 105 .54
Wave | Wave I
s Inf. Sup s Inf. Sup
10 .17 .18 100 .97 .99
108 24 10° .89
10° 31 108 .75
1010 41 210 .66
31019 .50 3.210% .54
Wave 111 Wave IV
s Inf. Sup
10* .998 .999
1030 992
10%* 957
10% 886
1037 .810
1038 .680
310% .569
410% 500

Combined Waves



