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Chapter 1
Introduction

1.1 Data Analysis in the Brain Sciences

The brain sciences seck to discover mechanisms by which neural activity is
generated, thoughts are created, and behavior is produced. What makes us see, hear,
feel, and understand the world around us? How can we learn intricate movements,
which require continual corrections for minor variations in path? What is the basis
of memory, and how do we allocate attention to particular tasks? Answering such
questions is the grand ambition of this broad enterprise and, while the workings of the
nervous system are immensely complicated, several lines of now-classical research i
have made enormous progress: essential features of the nature of the action potential, i
of synaptic transmission, of sensory processing, of the biochemical basis of memory,
and of motor control have been discovered. These advances have formed conceptual
underpinnings for modern neuroscience, and bave had a substantial impact on clinical
practice. The method that produced this knowledge, the scientific method. involves
both observation and experiment, but always a careful consideration of the data.
Sometimes results from an investigation have been largely qualitative, as in Brenda
Milner’s documentation of implicit memory retention, together with explicit memory
loss, as a result of hippocampal lesioning in patient H.M. In other cases quantitative
analysis has been essential, as in Alan Hodgkin and Andrew Huxley’s modeling of ;
ion channels to describe the production of action potentials. Today’s brain research
builds on earlier results using a wide variety of modern techniques, including mole-
P \mi ‘j ’7’&’ ular methods, patch clamp recording, two-photon imaging, single and multiple
s W@(@u‘@i? ~electrode studies producing spike trains and/or local field potentials (LEFPs), opti-
K‘@—“”"”:m - : cal imaging, electroencﬁephalography (producing EEGs}, and functional imaging—
i*;u e D positron emission tomography(PET), functional magnetic imaging ({MRI), magne-
<\ toencephalography (MEG)—as well as psychophysical and behavioral studies. All of
these rely, in varying ways, on vast improvements in data storage, manipulation, and

display technologies, as well as corresponding advances in analytical techniques.

As a result, data sets from current investigations are often much larger, and more
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complicated, than those of earlier days. For a contemporary student of neuroscience,
h a working knowledge of basic methods of data analysis is indispengigle.

The variety of experimental paradigms across widely ranging investigative levels
in the brain sciences may seem intimidating, It would take a multi-volume encyclo-
pedia to document the details of the myriad analytical methods out there. Yet, for
all the diversity of measurement and purpose, there are comumonalities that make
analysis of neural data a single, circumscribed and integrated subject. A relatively
small number of principles, together with a handful of ubiquitous techniques—some
quite old, some much newer—Ilay a solid foundation. One of our chief aims in writing
this book has been to provide a coherent framework to serve as a starting point in
understanding all types of neural data.

In addition to providing a unified treatment of analytical methods that are crucial
to progress in the brain sciences, we have a secondary goal. Over many years of
collaboration with neuroscientists we have observed in them a desire to learn all that
the data have to offer. Data collection is demanding, and time-consuming, so it is
natural to want to use the most efficient and effective methods of data analysis. But
we have also observed something else. Many neuroscientists take great pleasure in
displaying their results not only because of the science involved but also because of
the manner in which particular data summaries and displays are able to shed light
on, and explain, neuroscientific phenomenon; in other words, they have developed
a refined appreciation for the data-analytic process itself. The often-ingenious ways
investigators present their data have been instructive to us, and have reinforced our
own aesthetic sensibilities for this endeavor. There is deep satisfaction in compre-
hending a method that is at once elegant and powerful, that uses mathematics to |
describe the world of observation and experimentation, and that tames uncertainty
by capturing it and using it to advantage. We hope to pass on to readers some of
these feelings about the role of analytical techniques in illuminating and articulating
fundamental concepts.

A third goal for this book comes from our exposure to numerous articles that report
data analyzed largely by people who lack training in statistics. Many researchers have
excellent quantitative skills and intuitions, and in most published work statistical
procedures appear to be used correctly. Yet, in examining these papers we have
been struck repeatedly by the absence of what we might call statistical thinking, or
application of the staristical paradigm, and a resulting loss of opportunity to make
full and effective use of the data. These cases typically do not involve an incorrect
application of a statistical method (though that sometimes does happen). Rather, the
lost opportunity is a failure to follow the general approach to the analysis of the data,
which is what we mean by the label “the statistical paradigm.” Our final pedagogical
goal, therefore, is to lay out the key features of this paradigm, and to illustrate its
application in diverse contexts, so that readers may absorb its main tenets.

To begin, we will review several essential points that will permeate the book. |
Some of these concern the nawre of neural data, others the process of statistical |
reasoning. As we go over the basic issues, we will introduce some data that will be
used repeatedly.
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1.1 Data Analysis in the Brain Sciences 3

1.1.1 Appropriate analytical strategies depend crucially
on the purpose of the study and the way the data
are collected.

The answer to the question, “How should I analyze my data?” always depends on
what you want to know. Convenient summaries of the data are used to convey appar-
ent tendencies. Particular summaries highlight particular aspects of the data—but
they ignore other aspects. At first, the purpose of an investigation may be stated
rather vaguely, as in “T would like to know how the responses differ under these two
experimental conditions.” This by itself, however, is rarely enough to proceed. Usu-
ally there are choices to be made, and figuring out what analysis should be performed
requires a sharpening of purpose.

Example 1.1 SEF neural activity under two conditions Olson et al. (2000} exam-
ined the behavior of neurons in the supplementary eye field (SEF), which is a frontal
fobe region anterior to, and projecting to, the eye area in motor cortex. The general
issue was whether the SEF merely relays the message to move the eyes, or whether
it is involved in some higher-level processing. To distinguish these two possibilities,
an experiment was devised in which a monkey moved its eyes in response to either
an explicit external cue (the point to which the eyes were to move was illuminated) or
an internally-generated translation of a complex cue (a particular pattern at fixation
point determined the location to which the monkey was to move its eyes). If the
SEF simply transmits the movement message to motor cortex and other downstream
arcas, one would expect SEF neurons to behave very similarly under the two exper-
imental conditions. On the other hand, distinctions between the neural responses in
the two conditions would indicate that the SEF is involved in higher-level cognitive
processing. While an individual neuron’s activity was recorded from the SEF of an
alert macaque monkey, one of the two conditions was chosen at random and applied.
This experimental protocol was repeated many times, for each of many neurons.
Thus, for each recorded neuron, under each of the two conditions, there were many
trials, which consist of experimental rethitions designed to be as close to identical
as possible. 4

Results for one neuron are given in Fig. I.1. The figure displays a pair of raster plats
and peri-stimulus time histograms (PSTHs). Each line in each raster plot contains
results from a single trial, which consist of a sequence of times at which action
potentials or spikes occur. The sequence is usually called a spike train. Note that for
each condition the number and timing of the spikes, displayed on the many lines of
each raster plot, vary from trial to trial. The PSTH is formed by creating time bins
(here, each bin is 10ms in length), counting the total number of spikes that occur
across all trials within each bin, and then normalizing (by dividing by the number of
trials and the length of each bin in seconds) to convert count to firing rate in units of
spikes per second. The PSTH is used to display firing-rate trends across time, which
are considered to be common to! the many separate trials.

I One source of variation across trials is that the behavior of the monkey is not identical cn every
trial. For instance, the eyes may move along slightly different paths and at different rates. Even
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Fig. 1.2 MEG imaging. Lef drawing of the way the SQUID detectors sit above the head in a MEG
machine. Right plots of sensor signals laid out in a two-dimensional configuration to correspond,
roughly, to their three-dimensional locations as shown in the left panel of the Lgure.

A detectable MEG signal is produced by the net effects of currents from approxi- 5
mately 50,000 active neurons. See Fig. 1.2 :

Because the signals are weak, and the detectors extremely sensitive, it is important
to assess MEG activity prior to imaging patients. Great pains are taken to remove
sources of magnetic fields from the room in which the detector is located. Nonethe-
less, there remains a background signal that must be identified under steady-state
conditions. O

Many analytical methods assume a steady state exists. The mathematical formu-
lation of “steady state,” based on stationarity, will be discussed in Chapter18.

1.1.2 Many investigations involve a response to a stimulus
or behavior.

@ %iiff)/ In contrast to the steady state conditions in Example 1.2, many experiments involve
- . perturbation or stimulation of a syfem, producing a temporally evolving response.
This does not correspond to a steady state. The SEF experiment was a stimulus-

response study. Functional imaging also furnishes good examples.

Example 1.3 fMRI ir a visuomotor experiment Functional magnetic resonance
imaging (fMRI) uses change in magnetic resonance (MR) to infer change in neural
activity, within small patches (voxels) of brain tissue. When neurons are active they
consume oxygen from the blood, which produces a local increase in blood flow
after a delay of several seconds. Oxygen in the blood is bound to hemoglobin, and
the magnetic resonance of hemoglobin changes when it is oxygenated. By using an
appropriate MR pulse sequence, the change in oxygenation can be detected as the
bloed-oxygen-level dependent (BOLD) signal, which follows a few seconds after the
increase in neural activity. The relationship between neural activity and BOLD is not



réseve

MPWM

12 1 Introduction

pair, (x2, y2) the second, and so forth. The y-coordinate on the line y = 57 + 51x
corresponding to x; is
¥ =055 + Bix

The number 3 is calledhe fitted value at x; and we may think of it as predicting y;.
We then define the(i t}}}residual as

ei=YEA5’f-

The value ¢; is the error at x; in fitting, or the error of prediction, i.e., it is the vertical
distance between the observation (x;, y;) and the line at x;. We wish to find the line
that best predicts the y; values, which means we want to make the ¢;’s as small as
possible, in aggregate. To do this, we have to minimize some measure of the size of all
the e;’s taken together. In choosing such a measure we assume positive and negative
values of the residuals are equally important. Two alternative aggregate measures
that treat e; and —e; equally are the following:

I
sum of absolute deviations = z le;]
i=1

n
sum of squares = Ze?. (1.3)

i=1

Data analysts sometimes choose 3 and 3] to minimize the sum of absolute devia-
tions, but the solution can not be obtained in closed form, and it is harder to analyze
mathematically. Instead, the method of least squares works with the sam of squares,
where the solution may be found using caleulus (see Chapter 12).

The least-squares estimates B and 31 are the values of A and 3} that minimize
the sum of squares in (1.3). The least-squares line is then

y=%+@x

Having motivated least-squares with (1.2} let us return to that equation and note
that it is not vet a statistical model. If we write

Yi = fx) + 6, (1.4)

take
fx)=[o+ bix

and, crucially, let the noise term ¢; be a random variable, then we obtain a linear
regression model. Random variables are introduced in Chapter 3. The key point in
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Fig.1.5 Excitatory post-synaptic current. Current recorded from a rat hippocamgal neuron, together

with smoothed version (shown as the thin line within the noisy current trace) dbtained by fitting 2
suitable function of time, given in the text. The current values are connected by the dark line. When
values recorded sequentially in time are plotted it is a common practice to connect them. (Figure
courtesy of David Nauen.)

neurons were held in voltage clamp and post-synaptic currents were recorded fol-
lowing an action potential evoked in a presynaptic cell. Figure 1.5 displays a plot of
membrane current as a function of time. One measurement of size of the current is
found by integrating the current across time (which is implemented by summing the
current values and multiplying by the time between observations), giving the total
charge transmitted. Other quantities of interest include the onset delay, the rate at
which the curve “rises” (here, a negative rise) from onset to peak current, and the rate
at which the curve decays from peak current back toward steady state. The current
trace is clearly subject to measurement noise, which would contaminate the calcu-
lations. A standard way to reduce the noise is to fit the data by a suitable function
of time. Such a fit is also shown in the figure. It may be used to produce values for
the various constants needed in the analysis. To produce the fit a statistical model of
the form (1.4) was used where the function y = f(x), with y being post-synaptic
current and x being time, was defined as

[(x) = Ay(1—exp((x—10}/m1)) (A2 exp({x — 19)/72) — (1 — Az)exp(lx — 1) /73)).

This was based on a suggestion by Nielsen et al. (2004). Least squares was then
applied, as defined in Section 1.2.1. The fit is good, though it distorts slightly the
current trace in the dip and at the end. The advantage of using this function is that
its coefficients may be interpreted and compared across experimental conditions. [

The simple linear fit in Example 1.5, p. 11, is an example of linear regression, dis-
cussed in Chapter 12, while the fit based on a combination of exponential functions
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signal) at each frequency, for each time bin, indicated in the figure by three different
colors representing low, medium, and high power. In Fig. 2.2 the most easily visible
oscillations are the alpha thythm (roughly 8-13Hz) in the second half of the EEG
trace in the awake phase (when the eyes are closed) and the delta rhythm (below
4Hz) during the surgical phase. Precise scientific statements often require statistical
inferences (indications of uncertainy or tests of hypotheses), but spectrograms are
very useful in displaying time-frequency information even without formal inferential
assessments. (|

2.2 Data Transformations

2.2.1 Positive values are often transformed by logarithms.

Measurement scales arise from convenience, and need not be considered in any way
absolute or immutable; changing the scale often produces a more elegant description.
A canonical example involves the acidity of a dilute aqueous solution, which is
determined by the concentration of hydrogen ions. The larger the concentration
[# 7] of hydrogen ions, the more acidity. Rather than using [H *] to measure acidity,
we use its logarithm, which is known as pH. Specifically, pH = —log;o([HT]),
so that an increase in [/ 1] corresponds to a decrease in p H. Because the defining
property of the logarithm is

logab = loga + logb, 2.1)

log transformations are used when multiplicative effects seem more natural than
additive. In the case of pH, a solution having a hydrogen ion concentration of 1072
mol 71 is 1 unit greater pH (less acidic) than a solution having a concentration of
10~* mol 17}, Similarly, a solution having a hydrogen ion concentration of 107°
mol 171 is | unit greater p H than a solution having a concentration of 10"8 mol 171,
In both cases, a 1 unit increase in p H corresponds to a 10-fold decrease in hydrogen
ion concentration, regardless of the concentration we started with. In chemical cal-
culations, the log concentration scale is simpler to work with than the concentration
scale.

Many other familiar scales are logarithmic. One example is the use of decibels to
measure the strength of an auditory signal. Not only are log scales familiar and
intuitive but, in addition, some batches of data look more nearly like observations
from a normal distribution following a log transformation. In particular, it frequently
happens that a batch of data look highly skewed in a given measurement scale, but
are much closer to being symmetric in the log scale.

Example 2.1 (continued from p.24) Figure2.3 displays the saccadic reaction time
data in beth the original scale and the log transformed scale. To transform the data
to the log scale we have replaced x = reaction time by logyq(x) for each of the 119
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Fig. 2.4 High field of BOLD signal intensities. The frequencies are plotted as dois, rather than bin
heights. The distribution across voxels is skewed toward high values, Reprinted with permission
from Lewis et al. (2005).

symmetrical. Presumably, this has to do with effects of the Central Limit Theo-
rem. We will discuss this great theorem in Chapter 6. For now let us be content
to state it this way: if we add up many small, independent effects their sum will
be approximately normally distributed. The empirical observation of approximate
normality may then be interpreted as follows: if we choose the right scale, the data
values may be considered sums of many small, independent effects.

We can understand this a little more deeply by returning to the logarithmic rela-
tionship in Eq. (2.1), and considering the role it may play when many small effects are
combined to produce variability. The cases where the log transformation is valuable
are those where it is natural to think in terms of proportionality. So suppose the reason
that two measurements are different is that many small proportional effects, of some-
what different sizes in the two measurements, have been combined. For example, the
length of a dendritic spine may depend on contributions to the cell membrane and
its contents by vast numbers of lipid and protein molecules. If we break the growth
process into many thousands of pieces, each might be considered a small effect, so
that the net result is a composition of many, many small effects. When we see that
one spine is longer than another, we might imagine that the many small effects in
the longer spine tended to be proportionally larger than those in the shorter spine.
Now consider two such small growth effects x; and x2, occurring, respectively, in
the shorter and longer dendrites. If we think of the variation as proportional, we may
relate the values x1 and xp by writing x2 = x1{1 + €}, where € is a small number
representing the proportional change (e.g., € = .05, or 5 %) in going from x; to x;.
From Eg.(2.1) together with a little calculus, for small € we have log(1l +€) =~ ¢
(see Section}24 of the Appendix). We then have A4
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If we let U7 A; = A UAp U -+ - U A, then Axiom 3 may be written instead n the
form

3. If A1, Aa, ..., are mutually exclusive events, then P(U?_A)) = 37 P(A).

A technical point is that in advanced texts, Axiom 3 would instead involve infinitely
many events, and an infinite sum:
3. If Ay, As, ..., are infinitely many mutually exclusive events, then P(U72 | A;)

= >, P

Regardless of whether one worries about the possibility of infinitely many events, it
is easy to deduce from the axioms the elementary properties we need.

Theorem: Three Properties of Probability For any events A and B we have

(i) P(A%) =1 — P(A), where A€ is the complement of A,
(i) If A and B are mutually exclusive, PLANB) = 0.
(iii) P{AUB) = P(A)+ P(B) — P(ANDB).

Proof : To prove (i) we simply note that 2 = A U A®. From axiom (2) we then

have P(A U A°) = 1 and becanse A and A° are mutually exclusive axiom (3)
gives P(A) + P(A%) = 1, which is the same as (i). It is similarly easy to prove (ii)
and (iii}). O

To illustrate, suppose we pick at random a playing card from a standard 52-card
deck. We may compute the probability of drawing a spade or a face card, meaning
either a spade that is not a face card, or a face card that is not a spade, or a face
card that is also a spade. We take A to be the event that we draw a spade and B
to be the event that we draw a face card. Then, because there are 3 face cards that
are spades we have PAN B) = 5,,, and, appying the last formula above, we get

PAURB) = 4 + 13 532 = 26 This matches a simple enumeration argument: there
are 13 spades and 9 non-spade face carde, for a total of 22 cards that are either a
spade or a face card, i.e., PAUBRB) = 52 = éé The main virtue of such formulas is
that they also apply to contexts where probabilities are determined without reference
to a decomposition inte equally-likely sub-components.

Example 3.1 (continued from p. 38) From 1,200 replications of the 100 ms stim-
ulus Kelly calculated the probability that the first neuron would fire at least once
was P(A) = .13 and the probability that the second neuron would fire at least
once was P(B) = .22, while the probability that both would fire at least once was
P(A N B) = .063. Applying the formula for the union (property (iii) above), the
probability that at least one neuron will fire is PAU B) = .13 + 22 — .063 = .287.

O
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P(A|B) = P(ANB)/P(B) = P(A)P(B)/P(B) = P(A).

Multiplication of probabilities should be very familiar. If a coin has probability .5
of coming up heads when flipped, then we usually say the probabijlty of getting two
heads is .25 = .5 x .5, because we usually assume that the two tlips are independent.

Example 3.1 (continued from p. 39) For the probabilities P(A), P(B) given on
p. 39 we have P(A}P(B) = .029 while the probability of the intersection was reported
to be P(A N B) = .063. The latter is more than double the product P{(A)P(B). We
conclude that the two neurons are not independent. Their tendency to fire much more
often together than they would if they were independent could be due to their being
connected, to their having similar response properties, or to their both being driven
by network fluctuations (see also Kelly et al. (2010)). i

The definition of independence extends immediately to more than two events: if
A1, Az, ..., A, are independent then

PO A = D P(A)

i=1

where N | 4; = A1 NA2 N+ - NA,.

Independence is extremely useful. Without it, dependencies represented by con-
ditional probabilities can become very complicated. Independence simplifies calcu-
lations and is often assumed in statistical models and methods. On the other hand,
as illustrated in Example 3.1, above, if the assumption of independence s wrong,
the calculations can be way off: in Example 3.1 the probability P(A N B) predicted
by independence would be too small by a factor of more than 2. In many situations
independence is the most consequential statistical assumption, and therefore must
be considered carefully.

3.1.4 Bayes’ theorem for events gives the conditional probability
P(A|B) in terms of the conditional probability P(B|A).

Bayes® theorem is a very simple identity, which we derive easily below. Yet, it has
profound consequences. We can state its purpose formally, without regard to its appli-
cations: Bayes’ theorem allows us to compute P{A|B) from the reverse conditional
probability P(B|A), if we also know P(4). As we will see below, and in Chapter 16,
there are more complicated versions of the theorem, and it is ¢specially those that
produce the wide range of applications. But the power of the result becomes apparent
immediately when we take B to be some data and A to be a scientific hypothesis. In
this case, we can use the probability P(data hypothesis) from the statistical model
to obtain the scientific inference P(hypothesisidata). In the words used in Chapter 1,
p. 14, Bayes’ theorem provides a vehicle for obtaining epistemic probabilities from
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descriptive probabilities (see Section 16.1.1). The inverting of conditional probabil-
ity statements, together with the recognition that a different notion of probability
was involved, led to the name “inverse probablity” during the early 1800s. This has
been replaced by the name “Bayes” in the theorem, and the adjective “Bayesian”
to describe many of its applications.” To derive the theorem we need a preliminary
result which is also important.

Theorem: Law of Total Probability For events A and B we have

P(B) = P(BIA)P{A) + P(BIA®)P(A").

Proof : We begin by decomposing B into two pieces: B = (BN A) U (BN A").

Because A and A° are disjoint, (B N A) and (B N A%) are disjoint. We then have
P(B) = P(BNA) + P(BNA*). Applying the multiplication rule to P(B M A} and
P(B N A®) gives the result. O

Bayes’ Theorem in the Simplest Case If P(B) > 0 then

P(BlA)P(A)

me}:Pwmywn+Pwm0qu'

(3.1)

Proof : We begin with the definition of conditional probability and then use the mul-
tiplication rule in the numerator and the law of total probability in the denominator:

P(ANB)
P(B)
_ P(BJAYP(A)
"~ P(BIA)P(A) + P(BIACYP(A®)

P(A|B) =

O

The “simplest case” modifier here refers to the statement of the theorem in which
the law of total probability is applied to the denomoninator P(B) by decomposing
B by intersection with only two events, A and A°. We discuss other versions of the
theorem below.

One interesting class of problems where this simple case is useful is in the inter-
pretation of clinical diagnostic screening tests. These tests are used to indicate that a
patient may have a particular disease A, based on a test outcome B, but they are not
definitive. The probability P(B|A) that a patient having the disease tests positively is
known as the sensitivity of the test, the probability P(B°|A®) that a patient who does
not have the disease tests negatively is known as the specificity of the test, and the
probability P(A) that a patient drawn randomly from the population has the disease

4 For historical conuments see Stigler (1986) and Fienberg (2006).
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is known as the prevalence of the disease. Good diagnostic screening tests have sen-
sitivity and specificity close to 1 but, as we will describe, Bayes’ Theorem serves as
a quantitative reminder that when a disease is rare, screening tests are preliminary,
and other information will be needed to provide a diagnosis. Specifically, if we let
PPV == P(A|B), which stands for positive predictive value, we get

sensitivity x prevalence
PPV = — — . (3.2)
sensitivity x prevalence + (1 — specificity) x (1 — prevalence)

and, when the prevalence is small, the value of PPV will also typically be small—
sometimes surprisingly small.

A famous example involves screening for prostate cancer based on the radioim-
munoassay prostatic acid phosphatase (PSA). Even though the test is reasonably
accurate, the disease remains sufficiently rare among young men that a random male
who tests as positive will still have a low probability of actually having prostate
cancer, An application of Bayes” Theorem (with A being the event that a randomly
chosen man will have the disease and B the event that he tests positive) to data from
Watson and Tang (1980), places the probability of disease given a positive test at
about 1/125. The intuition comes from recognizing that, among men under age 65 in
the United States, the disease has a prevalence of about 1/1,500. Suppose we were to
examine 1,500 men, 1 of whom actually had the disease. If the screening test were
90 % accurate, a 10 % false positive rate would mean that about 150 men would test
positively. In other words, about 1/150 of the positively tested men would actually
have the disease. Bayes’ Theorem refines this very crude calculation. Here is an
example drawn from neurology.

Example 3.2 Diagnostic test for vascular dementia Vascular dementia (VD) is
the second leading cause of dementia. It is important that it be distinguished from
Alzheimer's disease because the prognosis and treatments are different. In order
to study the effectiveness of clinical tests for vascular dementia, Gold et al. (1997)
examined 113 brains of dementia patients post mortem. One of the clinical tests these
authors considered was proposed by the National Institute of Neurological Disorders
and Stroke (NINDS, an institute of NIH). Gold et al. found that the proportion of
patients with VD who were correctly identified by the NINDS test, its sensitivity,
was .58, while the proportion of patients who did not have VD who were correctly
so identified by the NINDS test, its specificity, was .80. Using these results, let us
consider an elderly patient who is identified as having VD by the NINDS test, and
compute the probability that this person will actually have the disease. Let A be the
event that the person has the disease and B the event that the NINDS test is positive.
We want P(A|B), and we are given P(B|A) = .58 and P(B°|A") = .8. To apply
Bayes’ Theorem we need the disease prevalence P(A). Let us take this probability to
be P(A) = .03 (which seems a reasonable value based on Hébert and Brayne (1993)).
We then also have P(AS) = .97 and, in addition, P(B|A®) = 1 — P(B°|A") = 2.
Plugging these numbers into the formula gives us
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Fig. 3.2 Histogram of spike counis from a motor cortical neuron, The histogram displays 60 spike
counts from a particular neuron recorded in primary motor cortex across 60 repetitions of the
practiced condition.

together with Bayes’ Theorem, we may determine from the spike count 5 the prob-
ability that the saccade will be in each of the four directions. In Bayesian decoding,
the signals from many neurons are combined, and the direction A; having the largest
probability P(Ax|B) is considered the “predicted” direction. In unpublished work,
our colleague Dr. Valérie Ventura found that, from 55 neurons, Bayesian decoding
was able to predict the correct direction more than 95 % of the time. U

3.2 Random Variables

So far we have discussed the basic rules of probability, which apply to sets repre-
senting uncertain events. A far more encompassing framework is obtained when we
consider quantitics measured from those events. For example, the number of times a
neuron fires during a particular task may be observed, yielding a spike count. When
the behavior is repeated across many trials, the spike counts will vary.

Example 3.4 Spike counts from a motor cortical neuron Matsuzaka et al. (2007)
studied cortical correlates of practicing a movement repeatedly by comparing the
firing of neurons in primary motor cortex during two sequential button-pressing tasks:
one in which the sequence was highly practiced, and the other in which the sequence
was detemineg’%uandom. Figure 3.2 displays spike counts from a single neuron
across 60 repifitions of the practiced condition. The histogram displays substantial
variation among the counts. ]

To describe variation among quantitative measurements, such as that seen in
Fig. 3.2, we need to introduce mathematical objects called random variables, which
assign to each outcome (e.g., neuronal spiking behavior on a particular trial) a number
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P(X =2) =ph,
PX=D=pl-p)+ (0 —-p)p=2p(1-p)
PX =0) = (1 —p)*

In this sitvation X is a random variable and it has a binomial distribution. More
generally, given a sample space 2, a random variable is a mapping that assigns to
every element of 2 a real number. That is, if w € Q (see p. 38) then X(w) = x
is the value of the random variable X when w occurs. In the context above, &2 =
[AA, AAS, AA, A°AC} and X(AA) = 2, X(AA°) = 1, X(A°A) = 1, X(A®A°) = 0.

In Chapter 1 we discussed the distinction between continuous and discrete data.
We may similarly distinguish continuous and discrete random variables: a random
variable is continuous if it can take on all values in some interval {4, B), where
it is possible that either A = —o0 or B = o0 or both. The mathematical distinc-
tions between discrete and continuous distributions are that (1) discrete distributions
assign probabilities to specific values (such as non-negative integers} that can be sep-
arated from each other, but continuous distributions assign probabilities to intervals
of non-separable numbers (such as numbers in the interval (0, 1)) and (ii) wher-
ever summation signs appear for discrete distributions, integrals replace them for
continuous distributions.

3.2.2 Distributions of random variables are defined using
cumulative distribution functions and probability density
functions, from which theoretical means and variances may
be computed.

There are several definitions we need, which will apply to other probability distri-
butions besides the binomial. In the case of two trials from patient P. S., discussed
on p. 47, the probabilities P(X = 0), P(X = 1), and P(X = 2) form the proba-
bility mass function. For convenience, as indicated in Section 3.2.3, we generally
instead call the probability mass function a probability density function (pdf). We
would typically write P(X = x), with x taking the values 0, 1, 2, and we also use
the notation f(x) = P(X = x). The function F(x) = P(X < x) is called the cumii-
lative distribution function (cdf). Thus, in the case of two trials from patient P.S.
we have F(O) = PX = O), F(1) = PX < 1) = P(X = 0) + P(X = 1), and
F(2) =PX <=2y =PX = 0)+ P(X = 1)+ P(X = 2). From the pdf we can
obtain the cdf, and vice-versa. When we speak loosely of the “probability distribution
of X,” or the “distribution of X,” we will be referring generically to the range of
probabﬂi%g\as attached to X, which could be specified by either the pdf or the cdf.
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that all n values of x are equally likely) we get back’ 1ix = X. Because data are
often called samples, the data-based mean and standard deviation are often called
the sample mean and the sample standard deviation to differentiate them from pix
and oy, which are often called the population mean and standard deviation. This
terminok’,y distinguishes samples from “populations,” rather than distributions, with
the word “sample” connoting a batch of observations randomly selected from some
large population. Sometimes there is a measurement process that corresponds to
such random selection. However, as we have already mentioned, probability is much
more general than the population/sample terminology might lead one to expect;
specifically, we do not need to have a well-defined population from which we are
randomly sampling in order to speak of a probability distribution. So, at least in
principle, we might rather avoid calling r¢x a population mean. On the other hand,
the “sample” terminology is useful for emphasizing that we are dealing with the
observations, as opposed to the theoretical distribution, and it is deeply imbedded in
statistical jargon. Similarly, the “population” identifier is frequently used rather than
“theoretical.” The crucial point is that one must be careful to distinguish between
a theoretical distribution and the actual distribution of some sample of data. Many
analyses assume that data follow some particular theoretical distribution, and in doing
s0 hope that the match between theory and reality is pretty good. We will look at
ways of assessing this match in Section 3.3.1.
The following properties are often useful.

Theorem For a discrete random variable X with mean py and standard deviation ox
we have

Ea-X+b)=a-ux+5b 3.4
crazX+b =a". 0)2( (3.5
oax-b = lal - ox. (3.6)

Proof : We have
E(@X +b) = D (ax+b)f(x)
=a(Q_ @) +b Y )

which is the same as (3.4). The derivation of (3.5) is similar, and taking square-roots
gives (3.0). (1

7 We also get oy = ./ % >0 = Lix)? which, when we replace py with X, is not quite the same
thing as the sample standard deviation; the latter requires a change from i ton — | as the divisor for
certain theoretical reasons, including that the sample variance then becomes an unbiased estimator
of 0. See p. 183.
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3.2.3 Continuous random variables are similar to discrete
random variables.

Suppose X is a continuous random variable on an interval (4, B), with A = —o¢
and B = oo both being possible. The probability density function {pdf) of X will be
written as f(x) where now

b
P(aSXib):/ f(x)dx

and, because (from Axiom 2 on p. 38) the total probability is 1, we have

B
f F)dx = 1.
A

Note that in this continuous case there is no distinction between P{a < X) and
P(a < X) (we have P(X = @) = 0). We may think of f(x) as the probability per
unit of x; f(x)dx is the probability that X will lie in an infinitesimal interval about x,
that is, f(x)dx = P(x < X < x -+ dx). In'some contexts there are various random
variables being considered and we write the pdf of X as fx{(x).

A technical point is that when either A > —oco or B < 0o or both, by convention,
the pdf f(x) is extended to (—o0, 0c) by setting f{x) = 0 outside (A, B). When we
say that X is a continuous random variable on an interval (A, B) we will mean that
f(x) > 0on (A, B) and, if either A or B is a number, f (x) = 0 outside of (A, B). We
next give several examples of continuous distributions.

INustration: Uniform distribution Perhaps the simplest example is the uniform
distribution. For instance, if the time of day at which births occurred followed a
uniform distribution, then the probability of a birth in any given 30min period would
bé the same as that for any other 30 min period throughout the day. In this case the
pdf £ (x) would be constant over the interval from 0 to 24 h. Because it must integrate
to 1, we must have f(x) = 1/24 and the probability of a birth in any given 30 min
interval starting at & hours is ff+‘5 F(x)dx = 1/48. When a random variable X has
a uniform distribution on a finite interval (A, B) we write this as X ~ U(A, B) and
the pdf is f(x) = 715 (]

In this illustration above we have introduced a convention that is ubiquitous, both
in this book and throughout statistics: the squiggle “~” means “is distributed as.”

Figure 3.3 displays pdfs for four common distributions. For the two in the top
panels, exponential and gamma distributions, X may take on all positive values, i.e.,
values in (0, 00). The lower left panel shows a beta distribution, which is confined
to the interval (0, 1). A normal distribution, which ranges over the whole real line, is
shown in the bottom right panel. We discuss the exponential and normal distributions
briefly below and return to them, and to the beta and gamma di;{ibutions in Chapter5.
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is the variance of X. Note that in each of these formulas we have simply replaced
sums by integrals in the analfgous definitions for discrete random variables. Note,
too, that pdf and cdf values for certain continuous distributions may be computed
with statistical software.® We again have

MHax+h = Q- [x + b (3‘8)
Tax+b = lal - ox. (3.9}

These formulas are just as easy to prove as (3.4) and (3.6). Another formula is useful
for certain calculations:
V(X) = E(X%) — u? (3.10)

and this, too, is easily verified. In many contexts the variation relative to the mean is
summarized using the coefficient of variation, given by

CVX) = 2. (3.11)
n

The quantiles or percentiles are often used in working with continuous distribu-
tions: for p anumber between 0 and 1 (such as .25), the p quantile or 100pth percentile
(e.g., the .25 quantile or the 25th percentile) of a distribution having cdf F(x) is the
value n such that p = F(#). Thus, we write the p quantile as n, = F 1), where
F~1is the inverse cdf.

Ninstration: Exponential distribution Let us illustrate these ideas in the case of
the exponential distribution, which is special because it is easy to handle and also
because of its importance in applications. We provide an application in Example 3.5
A random variable X is said to have an exponential distribution with parameter

A, with X = 0, when its pdf is
Fx) = AN : (3.12)

for x > 0, and is 0 for x < 0. We will then say that X has an Exp()) distribution
and we will write X ~ Exp(\). The pdf of X when X ~ Exp(1) is shown in Fig. 3.6.
Also illustrated in that figure is computation of probabilities as areas under the pdf
for the case

PX >2) = /oof(x)dx
2

which means we compute the arca under the curve to the right of x = 2. For the
exponential distribution this value is easy to compute using calculus. The cdf of an
exponential distribution is

& The definitions of expectation and variance assume that the integrals are finite; there are, in fact,
sorne important probability distributions that do not have expectations or variances because the
integrals are infinite.
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Fig. 3.8 Duration of channel openings. Panel a depicts the distribution of burst durations for a
particular agonist. Panel b displays the distribution of bursts for which there was only 1 opening,
with an exponential pdf overlaid. This itlustrates the good fit of the exponential distribution to the
durations of ion channel opening. Panel c displays the distribution of bursts for which there were 2
apparent openings, with a gamma pdf, with shape parameter 2, overlaid. Panel ¢ again indicates good
agreement. Panels d—f show similar results, for bursts with 3-5 openings. Adapted from Colguhoun
and Sakmann (1985},

Tlustration: Uniform distribution (continued from p. 52) If a contir}é)us randaom
variable X has cdf F'(x) = x on the interval (0, 1) we may differentiate to get the
U0, 1) pdf f(x) = 1. On the other hand, if X ~ U(0, 1} we integrate flx)y = 1to
get

F(x)=fx1-dx=x.
¢

In other words, X has a U(0, 1) distribution if and only if its cdf is '(x) = x on the
interval (0, 1). O

Iustration: Normal distribution (continued from p. 53) When X is distributed
normally with mean z and standard deviation o it has a pdf given by Eq. 3.7. Its cdf

is given by . | |
F(x) =/ exp (__(X—M)z) dx.
—0o 2o 2 c

This integral can not be evaluated in explicit form. Therefore, normal probabilities
of the form P(a < X < b} are obtained by numerical approximation. O
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Fig.3.9 Convergence of the empirical cdf to the theoretical cdf. The left panel displays the empirical
cdf for a random sample of size 10 from the gamma distribution whose pdf is in the top right panel
of Fig. 3.3, together with the gamma cdf (dashed line). The right panel shows the empirical cdf for
a random sample of size 200, again with the gamma cdf. In the right panel the em[;}\rical cdf is quite

close to the theoretical gamma cdf, = M/__m
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Fig. 3.10 A P-P plot of the MEG noise data from Fig.3.4. The straightness of the plot indicates
excellent agreement with the normal distribution,

that there is no unique analogue and instead one of several variants may be used. If we
start from a sample of observations x1, x2, . . ., X, we first put the data in ascending !
order according to the size of each observation: we write X(1), X(2), - - - » X(z)» Where |
x¢1) is the smallest value, x(y) is the second-smallest, and x(n) is the largest. Let us use
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3.2.4 The hazard function Y ara

------
3

Another useful characterization of a probability distribution arises in specialized con-
texts, including the analysis of spike train data, where a random variable X represents
the waiting time until some event occurs. In the case of a spiking neuron, X would
be the elapsed time since the neuron last fired, and the event of interest would be
next time it fires, We want a formula for the instantaneous probability that the neuren
will fire at time x, i.e., that it will fire in an interval (x, x + ), given that it has not
yet fired in (0, x). Assuming X is a continuous random variable, the event that the
ncuron has not yet fired in (0, x) is the same as X > x. Recall that if P(B) > 0 then

PANB)

PAIB) =
(AlB) P(B)
Applying this with A being the event X € (x, x+ &) and B being the event that X > x
we have
F(x -+ h)y — F{x)

PXe(x,x+hX>»>x)= e

Passing to the limit as # vanishes gives

bm PXexx+MNX>x)  fx)
b B T1-F

which we may interpret as the probability X € (x, x +dx) given X > x. The function

AMx) = AN
1 — Fix)

is called the hazard function of X. For example, if X is the elapsed time that an ion
channel is open, so that its values are times x, then A(x)dx becomes the probability the
ion channel will close in the interval (x, x 4 dx), given that it has remained openup to
time ¢. Similarly, if X is the elapsed time since a neuron last fired an action potential
then A(x)d: becomes the probability the neuron will fire in the interval (x, x + dx),
given that it has not yet fired again before elapsed time x. In spike train analysis,
the hazard function for a neuron becomes its theoretical firing rate (its instantaneous
probability of firing per unit time), which is known in general as the infensity or
conditional intensity function. See Chapter 19,

The “hazard” terminology comes from lifetime analysis, where the random vari-
able X is the lifetime {of a lightbulb or a person, etc) in units of time ¢ and A(f)dr is
the probability of failure (death) in the interval (z, ¢ + df) given that failure has not
vet occurred.
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Fig. 3.11 Q-Q plots for 200 randomly-drawn observations from a three distributions. Lejt: obser-
vations from a N (0, 1) distribution; middle: observations from a gamima distribution, whose pdf is
shown in the fop right panel of Fig. 3.3, which is skewed to toward high values; right: observations
from a ¢ distribution (see Section3.4.7), which is symumnetric with heavy tails. In each case the
theoretical quantiles come from a normal distribution.

Working by analogy with the definition n = F ~L(p) we could define the » sample
quantile, or the 100% sample percentile, by setting p = ; and replacing F with F,
to get ﬁ‘;i(g) = x,. We then define

= P
My = -

for r = 1,...,n and plot the ordered data against these values. That is, we plot
the points (71, X(1y)s - - +» Mays Xy}, Most software modifies the details of this
procedure, but the idea remains the same.

Details: A common variation is to take x, to be the 100%‘—‘i sample
percentile. To see why this makes some sense, suppose we have n = 7
ordered observations. Then the 4th is the median. This divides the 7
numbers into the 3 smallest and the 3 Jargest and, effectively says that
the 4th is part of both the smallest half of the numbers and the largest
half of the numbers. It could therefore be considered the 3.5th ordered
value. The reasoning behind the designation of x(» as the ;;ﬂs_ quantile
is similar, Statistical software sometimes chooses alternative defini-

tions based on expected values of x,) under particular assumptions.
r—.5
=

[

Also, in creating a PP plot, some software plots £ (x(»)) against

Figure 3.11 displays three Q-Q plots, for which the theoretical quantiles are based
on the normal distribution. Thus, we would make these plots in order to check whether
the data could reasonably be described by a normal distribution. The three data sets
were generated on the computer from three very different probability distributions.

7 to denote the index of ordered values, meaning that x;») is the r({tﬁ;llest value. CF 'Hf\
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variables the most commeon way to measure dependence is through their correlation,
which is discussed in Section4.2.1. We first interpret the correlation as a measure
of linear dependence then, in Section4.2.2, describe its role in the bivariate normal
distribution. After we discuss conditional densities in Section4.2.3 we re-interpret
correlation using conditional expectation in Section4.2.4. We then turn to the case
of arbitrarily many random variables (X1, ..., X, with n > 2), providing results
in Section4.3 that will be useful later on. We discuss general multivariate normal
distributions later, in Section 5.5.

4.2.1 The linear dependence of two random variables
may be quantified by their correlation.

When we consider X and ¥ simultaneously, we may characterize numerically their
joint variation, meaning their tendency to be large or small together. This is most com-
monly done via the covariance of X and ¥ which, for continuous random variables, is

Cov(X, ¥) = E((X ~ )Y — i)
- / / G — i) (6 — ) Gx, y)edxdly

and for discrete random variables the integrals are replaced by sums. The covariance
is analp@ous to the variance of a single random variable. We now generalize Eq. (4.5)
to the case in which the random variables may not be independent.

Theorem: Variance of a2 Sum of Random Variables For random variables X1 and
X7 we have

ViaX] + bX2) = a? V(X)) + b*V(Xa) + 2abCov(X|, X2).

More generally, for random variables X1, Xp, ..., X; we have
n n
VO aX) = (2 a%V(X,-)) +2 " aigiCov(X;, X)). (4.6)
i=1 i1 i<j

Proof: The proof follows from the definition by straightforward algebraic manipu-
lations and is omitted. g

The covariance depends on the variability of X and ¥ individually, as well as their
joint variation, and therefore depends on scaling. For instance, as is immediately
verified from the definition, Cov(3X, ¥) = 3Cov(X, ¥). To obtain a measure of joint
variation that does not depend on the variance of X and Y, we standardize. The
correlation of X and ¥ 18
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o
Byy = p— (4.20)
oy

so that if we combine (4.19) and (4.20) we get the following expression for the

correlation:
o = sign(Byx )/ Brix Oxiy (4.21)

where sign(By|x) is —1 if By |x is negative and 1 if By)x is positive.
Compare Eq. (4.18) to Eqs.(4.9) and (4.10). From(4.9) and (4.10) we have that
the best linear predictor of ¥ based on X is f(X) where

FG) =y + p% = px) (4.22)

In general, we may call this the linear regression of ¥ on X. In the case of bivariate
normality, the regression of ¥ on X is equal to the linear regression of ¥ on X, i.e.,
the regression is linear. We derived (4.22) as the best linear predictor of ¥ based
on X by minimizing mean squared error. More generally, if we write the regression
function as M {(x) = E(Y|X = x). Then M(X) is the best predictor of ¥ in the sense
of minimizing mean squared errot,

Prediction Theorem The function f(x) that minimizes E((Y — f(X )2 is the con-
ditional expectation f(x) = M(x} = E(Y|X = x).

Proof details: Note that E(Y — M(X)) = E(Y) — E(E(YIX)) and by
the law of total expectation (p. 85) this is zero. Now write ¥ — f(X) =
(Y — MO + (M) — (X)) and expand E{(Y — F(XH?%) to get

E(Y —f(X)%) = E((Y — M(X)?) + 2E((Y — M(X))
MX) —fCON + E(MX) — FEND.
(4.23)

Applying the law of total expectation to the second term we get

E(Y —MXNMX) —f(X)) = EEY - MXDNMX)
—fX)IXN)

but for every x we have

EQY — MEZ))YMEX) — fOOIX = x) = (M(x) — M) (M ()
—f) =0

so that the second term in (4.23} is 0. The third term E((M(X) —
FXN?) is alwaﬁnon—negative and it is zero when f(x) is chosen
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; X, Y) = —% log(1 — p*). (4.29)

E
Thus, w;hen X and Y are independent, [(X,Y) = 0 and as they become highly
correlatég:l (or negatively correlated) (X, Y) increases indefinitely. [

Theoren%; For random variables X and Y that are either discrete or jointly continuous
having alpositive joint pdf, mutual information satisfies (i) /(X, ¥) = I(Y, X), (ii)
Ix,v 3> 0, (iii) I(X, ¥) = 0 if and only if X and ¥ are independent, and (iv) for
any one- fo-one continnous transformations f(x} and g(y), I(X, ¥) = I(f(X), g(¥)).

Proof: Ortntted See, e.g, Cover and Thomas (1991). O

Proper}l (iv) makes mutual information quite different from correlation. For cor-
relation,{Cor (X, ¥) = Cor(f(X), g(Y)) when f(x) and g(y) are linear functions, but

when they are nonlinear the value of the gorrelation can change.
The use here of the word “information” is important. For emphasis we say, in
somewhat imprecise terms, what we think is meant by this word.

Roughly speaking, information about a random variable V" is associated with
the random variable X if the uncertainty in ¥ is larger than the uncertainty in
¥Y|X.

For example, we might interpret “uncertainty” in terms of variance. If the regres-
sion of ¥ on X is linear, as in (4.18) (which it is if (X, ¥) is bivariate normal), we
have

o}y = (1—pHoy. (4.30)

In this case, information about Y is associated with X whenever [p| > 0 so that
1 — p? < 1. The reduction of uncertainty in ¥ provided by X becomes

2 2 _ 22
Oy —0yix = F Py>

which retains the multiplier 012, (coming from the multiplicative form of (4.31)). To

remove the factor a% we may consider the relative reduction of uncertainty,

2 2

9 —9%x 4

— =
oy

" In this sense, p> becomes a measure of the information about Y supplied by X.
A different rewriting of (4.30) will help us connect it more strongly with mutual
information. First, if we redefine “uncertainty” to be standard deviation rather than

variance, (4.30) becomes
oylx =v1-— proy. {4.31)
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representing a transmitted message and Y is a random variable representing the
received message after noise has been injected during the transmission process, then
the channel capacity is

= m}?x IX, N

where the maximum is taken over all possible distributions of X. This concept,
developed to characterize electronic communication channels, has also been applied
to human behavior and neural activity. Because the mutual information in this context
concerns discrete distribations for (X, ¥), and log, is used, the units are said to be
in bits for “binary digits” (because, for a positive integer n, log,(n) is the number
of binary digits used to represent 7 in base 2). Thus, human and neural information
processing capacity is usually reported in bits.

Example 4.5 The Magical Number Seven In a famous paper, George Miller
reviewed several psychophysical studies that attempted to characterize the capacity
of humans to process sensory input signals (Miller 1956). One study, for example,
exposed subjects to audible tones of several different values of pitch (frequency) and
asked them to identify the pitch (e.g., pitch 1,2, or 3, corresponding to high, medium,
or low). The question was, how many distinct values of pitch can humans reliably
discriminate? It turned out that with five or more tones of different pitch, the human
observers made frequent mistakes. The experimental design allowed calculation of
the probability of responding with a particular answer ¥ based on a particular input
tone X, and with this the mutual information could be calculated. By examining
several different studies, of similar yet different types, Miller concluded that mutual
information had an asymptotic maximum at about C = 2.6 + .6 bits, which could
be interpreted as the chanpel capacity of a human observer. Transforming this back
to numbers of discernfble categories gives 2*676 = 4 and 226+6 = 92 After
looking at other, relatéd psychophysical data Miller summarized by saying there was
a “magical number seven, plus or minus two,” which characterized many aspects of
human information processing in terms of channel capacity. d

Mutual information has also been used extensively to quantify the information
about a stochastic stimulus ¥ associated with a neural response X. In that context
the notation is often changed by setting S = Y for “stimulns” and R = X for neural
“response,” and the idea is to determine the amount of information about the stimulus
that is associated with the neural response.

Example 4.6 Temporal coding in inferotemporal cortex In an influential paper,
Optican and Richmond (1987} reported responses of single neurons in inferotempo-
ral (IT) cortex of mornkeys while the subjects were shown various checkerboard-style
grating patterns as visual stimuli. Optican and Richmond computed the mutual infor-
mation between the 64 randomly-chosen stimuli (the random variable ¥ here taking
64 equally-likely values) and the neural response (X), represented by a vector of
time-varying firing rates across multiple time bins. They compared this with the
mutual information between the stimuli and a single firing rate across a large time
interval and concluded that there was considerably more mutual information in the
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4.3.4 Bayes classifiers are optimal.

Suppose X is a random variable (or random vector) that may follow one of two pos-
sible distributions having pdf f (x) or f2 (x). If X = x is observed, which distribution
did it come from? This is the problem of binary classification. Typically, there is a
random sample X1, ..., X, and the problem is to classify (to one of the two distri-
butions) each of the many observations. A decision rule or classification rule is a
mapping that assigns to each possible x a classification (that is, a distribution). A
classic scenario for binary classification is when patients having characteristics sum-
marized in a vector x (for example, brain features found from PET imaging), are to be
considered diseased (e.g., having Alzheimer-like amyloid deposits, see Vandenbergh
et al. (2013)) or not. The problem extends to m categories, where X follows one of
many alternative distributions, with pdf fi(x), fori = 1, ..., m. A classification error
is made if X ~ fi(x) and the observation X = x is classified as coming from f;{x)
with [ # k. In this section we present a remarkable result: it is, in principle, possible
to define a classifier that minimizes the probability of classification error.

Let C; refer to the case X ~ fi(x}. We use the letter C to stand for “class,” so
that the problem is to assign to each observed x a class C;. We assume that X is
selected from class C; with probability P(C = ;) = m, fori =1, ..., m. Often the
7; probabilities are taken to be equal, i.e, m; = 1/m, fori = 1,..., m (so that the
classes are a priori equally likely), but the theory does not require this. The Bayes
classifier assigns to each observed value x the class having the maximal posterior
probability

Sex)my

Z?—L1fi(x)7ri

among all the classes C;. Writing fi(x) = fx;c(x|C = C;), Eq.{4.38) has the same
form as (4.37). The following theorem says that Bayes classifiers minimize the prob-
ability of classification error.

PC=CGiX =x)= (4.38)

Theorem on Optimality of Bayes Classifiers Suppose X is drawn from a distribution
having pdf fi(x), where fi(x) > 0 for all x, with probability =;, fori = 1,...,m
where ] + -+« 4+ 7, = 1, and let C; be the class X ~ f;(x). Then the probability of
committing a classification error is minimized if X = x is classified as arising from
the distribution having pdf f; (x) for which Cy has the maximum posterior probability
given by (4.38).

The proof is somewhat lengthy and appears at the end of this section.

Corollary Suppose that with equal probabilities X is drawn either from a distribution
having pdf fi (x), where f1(x) > 0 for all x, or from a distribution having pdf f3(x),
where f3(x) > 0 for all x. Then the probability of committing a classification error
is minimized if X = x is classified to the distribution having the higher pdf at x.

Corollary Suppose_n observations X3, ..., X, are drawn, independently, from a
distribution havin%})df fi(x), where fi(x) > 0 for all x, with probability m;, for

C

%{va QQ

i
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Some additional references concerning ideal observer analysis, and Bayesian
approaches to modeling neural systems more generally, appear at the beginning
of Chapter 16. Here is a different setting in which utilities and Bayes rules have been
invoked.

Example 4.9 ACT-R theory of procedural memory ACT-R is a theory of human
problem-solving that is implemented in a computer program (Anderson 1993, 2007).
A typical domain is elementary algebra problem-solving, involving equations such

‘as 7x+3 = 38. The many steps involved in solving algebra problems include actions

such as “subtract,” which require calls to memory (e.g., to retrieve 8 —3 = 5). These
are encoded as production rules which are IF-THEN statements, and are often called
procedures. At the completion of each step ACT-R must select from memory the
next production rule to use. To do so it considers a utility function based on the value
V of the goal, the probability P; of achieving the goal if production rule i is selected,
and the cost [J; of rule i. Each production rule is then assigned the utility

U;=FV —-D;.

ACT-R picks the production rule with the highest utility. Because the probabilities
are actually posterior probabilities based on previous experience, ACT-R may be
considered to be using a Bayes rule for this situation. The acronym ACT stands for
“adaptive character of thought” and the R is tacked on as a nod to “rational” in the
sense of optimal decision-making. O

Proof of theorem on optimality of Bayes classifiers:

We consider the binary case where m = 2. We also assume the two
distributions are discrete and, for simplicity, we take m = % Here, the
Bayes clas%@er assigns class Cq to X = x whenever f1(x) > f(x), and
assigns class Cy when f2(x) = fi{x).

Let R = {x : fi(x) < fr(x)}. We want to show that the classification
rule assigning x — f>(x) whenever x € R has a smaller probability
of error than the classification rule x — f5>(x) whenever x € A for
any set A that is different than R. To do this we decompose R and its
complement R® as R = (RNA)U(RNA®) and R® = (R°NA)U(RNA®).

We have
SAm= > A0+ D AW (4.39)

XeR xeRMNA xeRMNAS

and

Sha@= > s+ D K. (4.40)

xeRE xeRMA XERNAL

By the definition of R we have, for every x € R, f1(x) < f2(x) and, in
particular, for every x € RN A, fi(x) < fa(x). Therefore, from (4.39)
we have
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effective medications (such as Ritalin) involve inhibition of dopamine transport.
There is also evidence of involvement of the nicotine system, possibly due to its
effects on dopamine receptors. Kent et al. (2001) examined genotype frequencies
for the nicotinic acetylcholine receptor subunit o4 gene among children with ADHD
and their parents. At issue was the frequency of a7 — C exchange in one base in the
gene sequence. In order to carry out the standard analysis the authors first examined
whether the population appeared to be in equilibrium. If so, the probabilities of the
allele combinations TT, CT, CC would be given by B(2, p} distribution, according to
the Hardy-Weinberg model. The frequencies for the 136 parents in their sady were
as follows:

TT CT CC
Number 48 71 17
Frequency 35 52 .13

Hardy-Weinberg Probability .38 47 .15

In this case, the probabilities determined from the Hardy-Weinberg model (how
we obtain these will be discussed in Chapter7) are close to the observed allcle
frequencies, and there is no evidence of disequilibrivm in the population (we also
discuss these details later). Kent et al. went on to find no evidence of an association
between this genetic polymorphism and the diagnosis of ADHD.

In some cases the probability p is not stable across 1631'%0118 Indeed, sometimes f\f’, eki £f on E)
the change in probability is the focus of the experiment,’as when learning is being
studied.

Example 5.2 Learning impairment following NMDA antagonist injection Exper-
iments on learning often record responses of subjects as either correct or incorrect in
sequences of trials during which the subjects are given feedback as to whether their
responses are correct or not. The subjects typically begin with a probability of being
correct that is much less than 1, perhaps near the guessing value of .5, but after some
number of trials they get good at responding and have a high probability of being
correct, i.e., a probability near 1. An illustration of this paradigm comes from Smith
et al. (2005), who examined data from an experiment in rats by Stefani et al. (2003)
demonstrating that learning is impaired following an injection of an NMDA antag-
onist into the frontal lobe. In a first set of trials, the rats learned to discriminate light
~, from dark targets, then, in a second set of trials, which were the trials of interest, they
'needed to discrimate smooth versus rough textures of targets. In two groups of rats
" a buffered salt solution with the NMDA antagonist was injected prior to the second
set of trials, and in two other groups of rats the buffered salt solution without the
antagonist was injected. Figure 5.1 displays the responses across 80 learning trials
for set 2. It appears from the plot of the data that the groups of rats without the NMDA
antagonist did learn the second task more quickly than the second group of rats, as
expected.




5.2 The Poisson Distribution 115

B converges to ¢~ and the expression over the third underbrace
defining B converges to 1. This gives (5.7). ]

5.2.3 The Poisson distribution results when the binary
events are independent.

In thinking about the binomial assumption for a random variable X one generally
ponders whether it is reasonable to conceptualize X as a sum of Bernoulli trials with
the independence and homogeneity assumptions, Similarly, in the Poisson case, one
typically asks whether the count variable X could be considered a sum of Bernoulli
trials for small p and large . The first requirement is that the counts really are sums
of binary events. This means that X results from a string of Os and s, as in Fig. 5.1,
p. 109, In Example 5.4, p. 111, each emission event corresponds to a state transition in
the nucleus of a particular atom. It is reasonable to assume that it is impossible for two
nuclei to emit particles at precisely the same time and, furthermore, that each Geiger-
counter “click” corresponds to exactly one particle emission. Independence, usually
the crucial assumption, here refers to the independence of the many billions of nﬁiae/ie/
residing within the specimen. This is an assumption, apparently well justified, within
the quantum-mechanical conception of radioactive decay. It implies, for example,
that any tendency for two particles to be emitted at nearly the same time would be due
to chance alone: because there is no interaction among the nuclet, there is no physical
“bursting” of multiple particles. Furthermore, the probability of an emission would
be unlikely to change over the course of the experiment unless the specunnﬁ'ﬁ'g_r—e | en
so tiny that its mass changed appreciably. To summarize, the Poisson disttibution §P ccim
for counts of events across time makes intuitive sense when we can conceptualize e
the events as Bernoulli trials, which are homogeneous and independent, where the
success probability p is small.

The framework we have constructed above to discuss emission of « particles
would apply equally well to quanta of light in the Hecht et al. experiment. What
about the vesicles at the neuromuscular junction? Here, the quantal hypothesis is
what generates the sequence of dichotomous events (release vs. no release). Is release
at one vesicle independent of release at another vesicle? If neighboring vesicles tend
to release in small ¢lumps, then we would expect to see more variability in the counts
than that predicted by the Poisson, while if release from one vesicle tended to mhibit
release of neighbors we would expect to see more regularity, and less variability
in the counts. It is reasonable to begin by assuming independence, but ultimately
it is an empirical question whether this is justified. Homogeneity is suspect: the
release probability at one vesicle may differ substantially from that at another vesicle.
However, as del Castillo and Katz realized, homogeneity is actually not an essential
assumption. We elaborate on this point when we return to the Poisson distribution,
and its relationship to the Poisson process in Section 19.2.2.
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PX>tr+h X >1)
PX =0
_ PX>1+h)
T P(X>1)
e—}\(H—k}

PX>t+hX>0=

em)\t
— 87/\]:

= P{X > h).
Thus, every exponential distribution is memoryless. On the other hand,

let G(x) = 1 — F(x) where F(x) is the distribution function of X.
Memorylessness implies

PX>t+h=PX>t)P(X>h)

ie.,
G+ h)=GH)GHh)

for all positive ¢ and A. But (as mentioned in Section A4 of the
Appendix), G(x) can satisfy this equation for all positive 7 and /2 only
if it has an exponential form G (x) = aeb® Because F(x) = 1 —G(x)
is a distribution function, it satisfies F(x) — 1 as x — oo, which
implies b < 0, and it satisfies F(x) —» 0 as x — 0, which 1mplies
a = 1. Thus F(x) = 1 — ¢ for some A, i.e., X ~ Exp(\). .

An additional characterization of the exponential distribution is that it has a con-

stant hazard function.
Theorem: A continuous random variable X satisffies X ~ Exp(A¢) if and only if its
hazard function is A(x) = Ag.

Proof: First suppose X ~ Exp(Ap). The hazard function is easy to
compute from the definition

_ fW)
A =T Foy

Substituting f(x) = Aoe™ 0% and F(x) =1 — e~ 2% e have

Aoe_AOx

)\(x) ol ?Ux—-
= o

On the other hand, if the hazard function is A(x) = Ay we may rewrite
the definition of A{x) and solve for F(x),
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probabilities in the middle of the distribution, the #, distribution may be considered
essentially the same as N (0, 1). For small v, however, the probability of large positive
and negative values becomes much greater than that for the normal. For example, if
X ~ N(, 1y then P(X > 3) = .0014 whereas if T ~ #3 then P{T > 3) = 029,
about 20 times the magnitude. To describe this phenomenon we say that the 3
distribution has much heavier tails (or thicker tails) than the normal.

The ¢ distribution was first derived by William Gosset under the pen name
“A. Student.” Tt is therefore often called Student’s t distribution.

ITX ~ Xz%l and ¥ ~ X;%Z, independently, then

_ X/
- Y/J/z

is said to have an F distribution on 11 and »; degrees of freedom, which are usually
referred to as the numerator and denominator degrees of freedom. We may write this
as F ~ F, .. This distribution arises in regression and analysis of variance, where
ratios of sums of squares are computed and each sum of squares has (under suitable
assumptions) a chi-squared distribution.

When 1) = 1 the numerator is the square ofanormal and F = T2, where T isthe
ratio of a N (0, 1) and the square-root of a Xm That is, the square of a ¢, distributed -~ \
random variable has an Fq ,, distribution. Also, anal gously to the situation with thd G0 Ck\ 0 % 0ud j !
t,, distribution, when 1 gets large the denominator Y /12 is a random variable that
takes values mostly very close to 1 and Fy, ,, becomes close to a X?,i. ©

5.5 Multivariate Normal Distributions

5.5.1 A random vector is multivariate normal if linear
combinations of its components are univariate normal.

We now generalize the bivariate normal distribution, which we discussed in
Section 4.2.2. We say that an m-dimensional random vector X has an m-dimensional
multivariate normal distribution if every nonzero linear combination of its
components is normally distributed. If 1+ and ¥ are the mean vector and variance
matrix of X we write this as X ~ N, (i, X ). Using (4.25) and (4.26) we thus char-
acterize X ~ N, (u, £) by saying that for every nonzero m-dimensional vector w
we have w?T X ~ N(wT g, w! Tw).

Notice that, just as the univariate normal distribution is completely characterized
by its mean and variance, and the bivariate normal distribution is characterized by
means, variances, and a correlation, the multivariate normal distribution is completely
characterized by its mean vector and variance matrix. In many cases the components
of a multivariate normal random vector are treated separately, with each diagonal
element of the covariance matrix furnishing a variance, and the off-diagonal elements
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to the degenerate random variable X for which P(X = ¢) = 1. We often write this
as .
X, — c.

The notion of convergence in probability is more general than the defintion above d\ e‘;\ ny XT o)
indicates, but we do not need the general definition. There are also two stronger

notions of convergence, convergence in quadratic mean and convergence with prob- |

ability one—but again we do not need these here.

Details: In applying convergence in probability, the criterion that is
used is the following.

Theorem A sequence Xy, X2, ... converges in probability to ¢ if and
only if for every € > 0, P(|X, —¢| > ¢) = Oasn > 00,

Proof: This involves straightforward manipulations using the defini-
tion. The details are omitted. O

6.2 The Law of Large Numbers

6.2.1 As the sample size n increases, the sample mean converges to
the theoretical mean.

The LLN is an accessible result, in the sense that its statement may be understood
without advanced mathematics. The proof is not especially difficult, and we include
it here, but we will regard it as an inessential detail.

Theorem: The Law of Large Numbers If X, X5, ... is a sequence of i.i.d.
random variables having a distribution with mean py and standard deviation
ox, then X converges in probability to 1y, i.e.,

Xo— X,

The form of the LLN given here is sometimes called the “weak” law of large |
numbers. The strong law instead says that convergence occurs with probability 1. ‘
However, considerably more machinery is needed in order to say this in precise
mathematical terms. Intuitively, “with probability 1” means that the convergence is
certain to occur.

Details: The proof will require the following lemma.
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theory, and also why it seems to fit, at least crudely, so many observed phenomena.
It says that whenever we average a large number of small independent effects, the
result will be approximately normally distributed.

A detail: Another way to interpret the CLT uses entropy, as defined
in Eq.(4.33). Among all distributions having mean u and standard
deviation o, the N (u, 02) distribution is the most disorderly possi-
ble, in the sense of having maximal entropy. The CLT says that as
the sample size gets very large the distribution of the sample mean
becomes as disorderly as possible. This characterization provides an
alternative way to understand and prove the CLT. See Madiman and
Barron (2007).

There are also versions of the CLT for non-independent variables, though they
are considerably more complicated. Those results typically require the sequence to
be stationary, as defined on p. 515 of Chapter 18, and further limit the dependence

among the random variables X; and X ; within the sequence as j — / increases. Secm_y__,,.,.,.»«-f--*"""'“‘““”“W'""”““‘w\
Billingsley (1995, Theorem 27.4) and also Francq and Zakoian (2005). . DP@{’
T prpered TR
e () o3
/ o —
B R S ——
6.3.2 For large n, the multivariate sample mean //""' AN
is approximately multivariate normal. Cor X, L\“ \) = O /;
'The multivariate version of the CLT is analogous to the univariate CLT. We bcgin_\;fuihfﬁwww Y
a set of multidimensional samples of size xn: on the first variable we have a sample
X1, X12, ..., X1, on the second, X21, X»2, ..., X2,, and so on. In this notation, S

X;j is the Jth observation on the ith variable. Suppose there are m-variables in all,
and suppose further that E(X;;) = p, V(X)) = cr and@ﬂ%{w Xi) = pﬂ:\‘
foralli =1,...,m, j=1,...,n,and k = 1,..., m. As before, Tet us collect the
means into a Vcctor 1 and the variances and covariances into a matrix 2. We assuine,
as usual, that the variables across different samples are independent. Here this means
Xi; and Xy are independent whenever i # 4. The sample means

. 1 <
X =- X1
1 HZ 1
j=t
ln
X2 =— Xa;
2 n; 2

_ 1 <
X = EZ{XMJ'
J:
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It took roughly 50 more years to refine the early concepts to its full-fledged modern
incarnation and, in fact, new variants of algorithms continue to be developed so that it
may be applied to ever more complicated situations. In contexts where finitely-many
parameter values completely specify® the statistical model, implementation of ML
estimation is conceptually straightforward while, from a theoretical perspective, ML
estimation is also provably unbeatable—no other method offers better performance,
for large samples. ML estimation has, therefore, become the dominant approach to
parameter estimation. We will review basic properties and uses of ML estimation in
Chapter 8.
In Section 7.3 we discuss confidence intervals. In Chapter 1, on p. 13, we described
the use of a confidence interval to assess the uncertainty associated with responses
of patient P.S. when forced repeatedly to choose between pictures of burning and
non-burning houses; we noted that an approximate 95 % confidence interval for her
propensity to choose the non-burning house was (.64, 1.0) and we concluded it was not
very likely that she was choosing them with equal probabilities (a propensity of .5);
instead, she apparently saw the two complete pictures without conscious awareness
of processing their left ends, which is where the fire appeared. As a data-analytic tool, T T
cfonﬁdence 1nterve.115 have bf‘:come stralghtfoxvarfl to usg in many, varied SltLlaUOl‘]S 5_\—(\0\‘ \,\-\vgé Pw&f‘d |
We treat several simple yet important problems in Section7.3 and supplement with
more general methods in Chapters 8 and 9. As one thinks harder about interpretation, r ‘
the subject gets somewhat more subtle. We review the issues in Sections7.3.8 and
7.3.9. On the other hand, confidence intervals are fundamental to statistical practice
and, from a contemporary standpoint, they seem very natural. Seen in historical
context, the introduction of confidence intervals by Jerzy Neyman in the 1930s was
quite ingenious, and a giant leap forward.
One of the ways confidence intervals are found in conjunction with maximum
likelihood is to apply the bootstrap, which is discussed in Chapter9. As additional
motivation for the discussion in this and subsequent chapters, here is a concrete
example where these methods have been used in fitting a statistical model of mental
processes.

Example 7.1 A Model of Visual Attention Experiments on visual attention often
study the ability of subjects to see and remember multiple objects that are exposed
to them for a very short time. Following Sperling (1967), Bundesen and colleagues
developed a quantitative theory of visual attention (Bundesen, 1998) according to
which, objects in the visual field are compared with representations in visual memory,
and if the comparison is completed prior to the end of visual exposure, the object
is recognized. In this theory the time taken to process and store an object identity
is a random variable. For object i call this random variable X;. The processing is
considered to begin after a latency of length #;, so that if 7 is the total time an object
is displayed then the ith object is recognized if X; < ¢ — 7. Bundesen assumed
X; ~ Exp(N;). Letting fi(x) and F;(x) be the Exp(A;) pdf and cdf, for exposure
of length x = ¢ — 1y, F;(t — tp) is the probability of object recognition success

! From the point of view of the mathematical theory, 2 nonparametric method docs not eliminate
the parameters but rather makes them infinite dimensional.
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op = JM. (7.4)
n

The formula in Bq. (7.4) quantifies the variation we can associate with the observed
proportion p = 14/17 = .824. However, we can not compute a numerical value
for o from Eq.(7.4) because we do not know what value of p to use. The obvious
solution is to substitute p for p in Eq. (7.4). When we do this we obtain the standard
error for the binomial proportion

T
SE(P) = 1/p(Tp). (7.5)

Applying this to the data from P.S. we get

14 14
-7
17

SE = =.092.

We then typically write the estimate in the form .824 & .092, with the & indicating
that the likely variability in the estimate is .092. When, instead, we write p L 25E
we get the confidence interval (.64, 1.0), reported on p. 13. O

The general procedure for computing the standard error is, in essence, the same
as in the binomial case. To emphasize the substitution of the estimated parameter for

_x”'/’—” 1 the unknown paramﬁfé%'\fe define the standard error of an estimator 1" to be of the
P aramw €0 Jorm A
SE(T) =/ V(T) (7.6)

€
with the hat on V indicating that we have estimated the variance. In fact, definition
(7.6) is very general in the sense that it does not specify how we estimate the variance.
As we will see in Chapters8 and 9, several different methods are used to obtain
variance estimates. We have used 7 in (7.6) to emphasize that it is a random variable,
but in an alternative notation we use more often we may rewrite (7.6) as

SE(D) =/ V().

One note on terminology: the term “standard error” is sometimes used to refer to the
standard error of the mean, as in Eq. (7.17), which is a special case of (7.6).

It is very common practice to report an estimate together with its standard error
in the form

6+ SE(D).

This gives a simple, rough sense of how accurate the estimate is. A more refined
statement, made in terms of probability, comes from the use of a confidence interval:
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have written the subscript n on T to indicate that we are examining its behavior
as n — oc. Two things drove the derivation of £7.22) above. First, the CLT was
invoked to produce the approximate normality of X according to (7.20) and, second,

fp{l-p)

in the standard deviation m

, p was replaced by p (which was justified by the

convergence of X to p in probability). If we assume these two phenomena apply, then
we obtain (7.8) according to the following theorem.

Theorem If T, is an asymptotically normal estimator of ¢ satisfying

<, ~0rp

= N(O, 1)
TTy
and &7, satisfies
M £y
ar,
then we have
< -
(T, — 0
Tn =08 o, 1),
Tt
Proof: This follows by Slutsky’s theorem (p. 163), as in the binomial case. U

We now re-state the theorem as a “result”, by putting it in a form that is less precise
mathematically but more useful in practice.

Result It T, is an asymptotically normal estimator of # satisfying

2t oy
U‘Tn

Yr 7 SN, D (7.23)

and &7, provides the standard error of T, in the sense that

ar. P
L £y

UTH
then
approx. 95% Cl = (T, — 261, Tn + 267,)

which may also be written, equivalently, in the form (7.8), i.e.,

approx. 95% CI = (§ — 2SE(0), § + 2SE(H)).
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The key extra assumption is that the standard error tends to decrease as /n. This
holds for many estimators, including MILEs (which follows from the discussion in
Section 8.4.3). Let us suppose that SE7 is based on a sample of size i1 and we wish to
determine the sample size n; that would give us SE». Because we want the standard
error SE to decrease by a factor SE /5E> (e.g., if we want SE; to be half the size of
SE; we want to decrease SE1 by a factor of 2, we write

SE;q _/m
SE,  Vm
and solve for 1, which gives
SE1\*
=n . 7.25
ny =ny ( SEZ) (7.25)

If, for instance, we wanted to decrease the standard error by a factor of 2 we would
have to multiply our current sample size by a factor of 4. This is just a restatement
of the /n decrease in the standard error, with (7.25) providing the explicit formula
we would use to compute #; in practice.

Using confidence intervals, the simple rule® in Eq.(7.25) is about as far as we
can go. An investigator may wonder about step one, the choice of the “desired” SE3.
The selection of SE; must be determined by careful thinking about the scientific
issues involved in the particular case at hand. The desired size of the standard error
in Example 3.4, p. 164, for instance, depends on the way the information about spike
counts will be used as part of the overall project. In Example 3.4 a relatively large
munber of trials were collected because the experiment was part of a comparative
study in which relatively small differences across conditions appeared possible—
yet still would have been of interest. According to the standard error on p. 164,
the firing rate was determined within-about £1 Spike per second. I 15-trials had

been used instepd of 60, acgordmg to the f law and (7 25) we would expect an \
accuracy of pﬂl—%lbouti nd foFamme ATOU

pmg,c.gnd,thlsssems,m

Eﬂ&i!@ seemed &ée%%a,%e ;

 More complicated formulas exist; however, the uncertainties involved in replicating results when
collecting more data are often much larger than any extra precision one might gain from a more
detailed calculation,
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of the table below give the resulting possible credible intervals using .025 and .975
quantiles of the Beta(x + 1, 17 — x + 1) distribution, labeled g g25 and g.975.

X goms 4go7s Cover
7 22 .64 N
8 26 .69 N
g 31 4 N
10 36 78 N
11 41 .83 Y
12 47 87 Y
13 52 90 Y
14 59 .94 Y
15 B35 .96 Y
16 73 69 Y
17 81 1 N

We again suppose p = .8. From this table we find that the Bayesian credible
intervals would cover the true value of p = .8 when 11 < x < 16 {again indicated
by “Y” for “yes” in the last column). To find the level of confidence associated with
the credible intervals we compute P(11 < X < 16) when X ~ B(17, .8). We find
P(11 < X < 16) = .94, which says that these credible intervals have probability .94
of containing the true value .8. This is very nearly equal to the desired value of .95, and
is much closer to .95 than the value of .87 obtained on p. 171 for the approximate CL
The discrepancy between the putative value .95 and the correct coverage probability
.87 for the approximate CT is due to the small sample size (» = 17). As the sample
size gets large, the approximate 95% CI found from (7.22) will have very nearly
probability .95 of covering the true value of p. The Bayesian method performs better
in this small-sample setting. When sample sizes are relatively small it is often possible
to study coverage probabilities numerically in order to determine whether they are
likely to be performing according to specifications, at least approximately. L

There are many important theoretical results concerning posterior distributions, In
particular, the approximate CIs given by (7.22) have a Bayesian justification for large
samples (see Section 8.3.3), making valid interpretation B of Section 7.3.8, which is
re-phrased above. We return to Bayesian methods in Chapter 16.

7.3.10 For small samples it is customary to use the t distribution

instead of the normal.

When the sample size is small, the approximation (7.18) may not be accurate. An
alternative is to derive an “exact” confidence interval analggous to (7.14) that corrects
for the substitution of s for o. This leads to an adjustment of the multiplier put in front
of the standard error. The adjustment to the small-sample CT uses the ¢ distribution.
Recall from Chapter5 that if U ~ N(0, 1) and V ~ - independently then
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therefore, E(2(T — py) (g — 8)) = 0. Thus, we have
E((T — 8)*) = E(T — pr)*) -+ (Eur — 6))°

and, since V(T == E((T ~ /.u,r)z), we have proven the theorem.
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This decomposition of MSE into squared bias and variance terms is used in various
contexts to “tune” estimators in an attempt to decrease MSE. This typically involves

some increase in one term, either the squared bias term or the variance term, in order

to gain a larger decrease in the other term. Thus, reduction of MSE is often said to
involve a bias variance trade-off. For an example, see p. 434.

Before we present an illustration of a MSE calculation, let us mention a property of

the sample mean and sample variance. Assuming they are computed from a random

sample X1, ...

. X,,, we have E(X) = px which may be written

EX) — px =0.

This says that, as an estimator of the theoretical mean, the sample mean has zero bias.
When an estimator has zero bias it is called unbiased. If an estimator T is unbiased

we have MSE(T) = V(T) so that consideration of its performance may be based on

a study of its variance.
In addition to the sample mean being unbiased as an emmator of the theoretical
mean, it also happens that the sample variance, defined by

is unbiased as an estimator of the theoretical variance:

E(S%) = o2. (8.4)

Details: We wish to evaluate

1 ! _
E(S?) = ( Z(X X) ): mE(Z(X,- wX)z).
=1

We write X; — X=X - wx) + (pxy — X) and expand the square

n n

S0 -8 =3 (K - ) + Gy — D)’

i=1 =1

= (X — ) + D 2% — o) (px — X)

i=1 i=1

nator

@U7

€
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n
2
+ > (px = X7
i=1

We now rewrite the three terms in the last expression above. Because
E(X; — ,ux)2 = U%, and the expectation of a sum is the sum of the
expectations, the first term has expectation

(Z(X 1x) )—— nog. (8.5)

Next, the second term may be rewritten

> 2% — ) (x — X) = 2(ux — X) D (X — px)

=1 i=1

= —2(X — px) D (Xi — )

=1
= —2n(X — ux)%,

where the last equality uses Zle (X; — px) = a(X — py), and then,
because E((X — ,ux)z) =V(X) = 0}2( /n, the expectation of the second
term becomes

E(Z 206, — ) x 50) - 20} 86)
=1

Finally, because again, £ (X — ,u ¥)?) = CTX /1, the expectation of the
third term is
E (Z(,ux - 502)) = 0% (8.7)
i=1

and, combining (8.5), (8.6), and (8.7) we get

E (Z(Xi - )'()2) = (n— oy
i=1

”76% i (,\5@(& Nes 5 which gives (8.4). 0
We use the unbﬁ(@edness of the sample mean and sample variance in the following

itlustration of the way two estimators may be compared theoretically.

[lustration: Poisson Spike Counts On p. 164 we considered 60 spike counts from a
motor cortical neuron and found an approximate 95 % CI for the resulting firing rate
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using the sample mean. The justification for that approximate CT involved the CLT,
and the practical implication was that as long as the sample size is fairly large, and the
distribution not too far from normal, the CI would have approximately .95 probability
of covering the theoretical mean. In this case, the spike counts do, indeed, appear
not too far from normal. Sometimes they are assumed to be Poisson distributed. This
is questionable hecause careful examination of spike trains almost always indicates

\some depargilte from the Poisson. On the other hand, the departure is sometimes

not large enough to make a practical difference to results. In any case, for the sake
of illustrating the MSE calculation, let us now assume the counts follow a Poisson
distribution with mean A. The sample mean X is a reasonable estimator of A, but one
might dream up alternatives. For example, a property of the Poisson distribution is
that its variance is also equal to A; therefore, the sample variance § 2 could also be used
to estimate the theoretical variance A. This may seem odd, and potentially inferior,
on intuitive grounds because the whole point is to estimate the mean firing rate, not
the variance of the firing rate. On the other hand, once we take the Poisson model
seriously the theoretical mean and variance become equal and, from a statistical point
of view, it is reasonable to ask whether it is better to estimate one rather than the
other from their sample analogues. Our purpose here is to present a simple analysis
that demonstrates the inferiority of the sample variance compared with the sample
mean as an estimator of the Poisson mean A. We are going through this exercise so
that we can draw an analogy to it later on.

Now, because, as we mentioned immediately before beginning this illustration, X
and $2 are unbiased for the theoretical mean and variance they are, in this case, both
unbiased as estimators of A, As a consequence, MSE(T) = V(T) forboth T = X and
T = $2. Analytical calculation of the variance of these estimators (which we omit
here) gives

V(X) =

252
n—1

B ISR B

V(s =

where 1 is the number of counts (the number of trials). Therefore, the MSE of §2 s
always larger than that of X so that S* tends to be further from the correct value of
A than X. For example, if we take n = 100 trials and A = 10, we find V(X) = .10
while V(§2) = 2.12. The estimator 52 has about 21 times the variability as X, so
that estimating A using 2 would require about 2,100 trials of data to gain the same
accuracy as using X with 100 trials. Figure 8.2 shows a pair of histograms of X and
52 values calculated from 1,000 randomly-generated samples of size n = 100 when
the true Poisson mean was A = 10. The distribution represented by the histogram on
the right is much wider. [

This illustration nicely shows how one method of estimation can be very much
better than another, but it is admittedly somewhat artificial; because the distribution
of real spike counts may well depart from Poisson, a careful comparison of X versus
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then MSE is the risk function
MSE(T) = E (L{d(X1, ..., Xx), 0)) .

This terminology, viewing MSE as “risk under squared-error loss,” is quite common.

8.2 Estimation in Large Samples

8.2.1 In large samples, an estimator should be very
likely to be close to its estimand.

In the introduction to this chapter we offered the reminder that the sample mean
satisfies v
X0

which is the law of large numbers. Suppose T, is an estimator of 6. If, as n —» 00,
we have ,
T, — 0 (8.14)

then 7,, is said to be a consistent estimator of 6. This means that for every positive e,
as i —> 00 we have
P(|T, - 8| > ¢) — 0.

-Note that, by (8.3), if MSE(T},) — 0 then T, is consistent. Also, if 75, safisfies (8.1)

and o, — (0 then T}, is consistent.

Details: Multiplying the left-hand side of (8.1) by o7, and applying

Slu'gky’s theorem we have T,, —¢ kA 0, which is equivalentto 7, £
O

In words, to say that an estimator is consistent is to say that, for sufficiently large
samples, it will be very likely to be close to the quantity it is estimating. This is
clearly a desirable property. When T, satisfies (8.1) and o7, — 0 we will call T,
consistent and asymptotically normal.

8.2.2 In large samples, the precision with which a parameter may
be estimated is bounded by )ﬁsher information.

Letus consider all estimators of  that are consistent and asymptotically normal inthe
sense of Section 8.2.1. For such an estimator T = 1), we may say that its distribution
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for all », When this happens the estimator contains all of the infor-
mation about & that is available in the data, and i( is called a sufficient
statistic. For instance, if we have a sample from a N (g, o2y distribu-
tion with o known, then the sample mean X is sufficient for estimating
1. Sufficiency may be characterized in many ways. If T is a sufficient
statistic, then the likelihood function based on T is the same as the like-
lihood function based on the entire sample. For example, it is not hard
to verify that the likelihood function based on a sample (xi, ..., Xx)
from a N(u, o2) distribution with o known is the same as the like-
lihood function based on X. This property is sometimes known as
Bayesian sufficiency (see Bickel and Doksum (2001)). In addition, if
8 is given a prior distribution as in Section7.3.9, then T' is sufficient
when the mutual information between # and T is equal to the mutual
information between # and the whole sample (see Cover and Thomas
(1991)). Parametrized families of distributions for which it is possible
to find a sufficient statistic with the same dimension as the parameter
vector are called exponential families. See Section14.1.6. O

A related result is the following. If we let ¥»(8) = E(T'), where the expectation is
based on a random sample from the distribution with pdf f(x|¢), it may be shown®

i ——

that " 9):3,, 5 \"\.,
A . ¢ s M
v(T) = 70 D S \\k‘f”’ / &}Bw/ ,,/}

Therefore, if T is an unbiased estimator of # based on a random sample from the
distribution with pdf £ (x|f)) we have ¢'(#) = 1 and

1
V() = 0" (8.24)

This is usually called the Cramér-Rao lower bound. Although Eq. (8.24) is of less
practical importance than the asymptotic result (8.23), authors often speak of the
bound in (8.23) as a Cramér-Rao lower bound.

Fisher information also arises in theoretical neuroscience, particularly in discus-
sion of neural decoding and optimal properties of tuning curves (see Dayan and
Abbott (2001)).

8.2.3 Estimators that minimize large-sample
variance are called efficient.

A consistent and asymptotically normal estimator 7 satisfies (8.1) and it also satisfies
(8.22). In (8.1) we suppressed the dependence of T and o on n. The information
I7(8) also depends on #, as does I(f). We now consider what happens as n — oo.

% See Bickel and Doksum (2001, Chapter 3).
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In other words, instead of the expected information evaluated at 6 in (8.33), we
use the negative second derivative of the loglikelihood, evaluated at 8, without® any
expectation. Again, under certain conditions, we have

VIoas @ —6) 3 N, 1), (8.35)

Details: Note that

n 2

1 1 d
80 = —— 3 - log f (1|6
~0(6) = — ?:1 7 log f (xi[6)

and that the expectation of the right-hand side is /p (#). From the LN
we therefore have

1
——2"® L 1p0),
f

and it may also be shown that

lops®) »p

e = L,

- — hich, again by S! LZR/ ’s Th ives (8.35) .
. [U+S ii 5 ) which, again by Slutgky’s Theorem, gives (8.35).

' ,“M__..m---f‘”‘E'cf]uation (8.35) provides large-sample standard errors and confidence intervals
based on ML estimation, given in the following result.

Result For large samples, under certain general conditions, the MLE § satisfies
(8.35), so that its standard error is given by

1
SE = —— (8.36)

V—t'®

and an approximate 95 % CI for ¢ is given by (0 — 2SE, § + 28E).

Additional insight about the observed information can be gained by returning to
the derivation of (8.17) and applying it, instead, to the likelihood function based on
a sample x1, ..., x, froma N{y, o) distribution with o known, as in Section7.3.2.
There, we found the loglikelihood function to be

% For the special class of models known as exponential families, which are used with the generalized
linear models discussed in Chapter 14, we have I{¢)) = Iogs(9) (see, €.g., Kass and Vos (1997)) but
this is not true in general,
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n M2
g(g):_z(x.t &)

z
— 2o
which simplified to Eq. (7.2),
1l b} -
£(0) = —2—0—2-(9 — 2xt).
Differentiating this twice we get

" n
&0 =——,

so that ?

foa 1
e 8.37
NOERNES () (837

In other words, 1/4/—27 () gives the standard error of the mean in that case.

Quite generally, for large samples, the likelihood function has an approximately = d\ o |
normal form and there is a strong analogy with this parad{g‘f‘h/case. Specifically \@ﬂf{\& \O\\) o
a quadratic approximation to the loglikelihood function’(using a second-order — ‘
l

Taylor expansion) produces a normal likelihood (because if O{&) ts quadratic then
exp(Q(9)) is proportional to a normal likelihood function) and in this normal likeli-

hood the value of the standard deviation is 1/1/ —£7(8). This heuristic helps explain
(8.36).

Details: The quadratic approximation to £(4) at 8 is

OO = ey + £(B)(8 — 6 + %ﬂ”(é)(a — )%

Using £/(0) = 0 and setting ¢ = exp(ﬁ(é)) we have
1 PR
exp(Q(9) = cexp (WE(—ﬂ(en(e - 9)2) : (8.38)

The function on the right-hand side of (8.38) has the form of a likeli-
hood function based on X ~ N{(4, 02) where § plays the role of x and

o= 1/ —2"(6). 0
We now consider two simple illustrations.

Tustration: Exponential distribution Suppose X; ~ Exp(A) fori = 1,....n,
independently. The likelihood function is
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n
L) = H De ™A
=1

— Anef)\ >

= N e#)\m“c
and the loglikelihood function is
£(A) = nlog A — nAx.

Differentiating this and setting equal to zero gives

0=n(%—5c)

and solving this for A yields the MLE

Continuing, we compute the observed information:

M _i
—£"(N) = 32
= ni?

which gives us the large-sample standard error

@ 1
SE(N) = m O

the observed information

') =

pl—p)

YT
SEG) = /P - P

which is the same as the SE found in Section 7.3.5. Therefore, the approximate 95 %
Clin (7.22) is an instance of that provided by ML estimation with SE given by (8.36).
)

This gives
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—— Beta
-~~~ Normal

<&

0.2 0.4 0.6 0.8 1
)

Fig. 8.8 Normal approximation N (.6, (.049)?) to beta posterior Beta(61, 41).

8.3.3 In large samples, ML estimation is approximately &ayesian.

In Section7.3.9 we said that Bayes’ theorem may be used to provide a form of
estimation based on the posterior distribution according to (7.28), i.¢.,

L(B)yn ()

fox (Olx) = W

One of the most important results in theoretical statistics is the approximate large-
sample equivalence of inference based on ML and inference using Bayes™ theorem.

Result For large samples, under certain general conditions, the posterior distrib-
ution of @ is approximately normal with mean given by the MLE  and standard
deviation given by the standard error formula (8.36).

We elaborate in Section 16.1.5 and content ourselves here with a simple illustra-
tion.

Ilustration: Binomial distribution Suppose ¥ ~ B(n, #) with n = 100 and we
observe y = 60. As we said in Section7.3.9, if we take the prior distribution on
6 to be U(0, 1), which is also the Beta(1, 1) distribution, we obtain a Beta(61, 41)
posterior. The observed proportion is the MLE 6 = x/n = .6. The usual standard

error then becomes SE = +/ é(l — @) /n = .049. As shown in Fig. 8.8 the normal

distribution with mean 0 and standard deviation 4/ 9(1 —& /n 18 a remarkably good
approximation to the posterior. g

For the data from subject P.S. in Example 1.4, which involves a relatively small
sample, we already noted (see p. 174) that the approximate 95 % confidence interval
(.64, 1.0) tound using (8.36) (which is the same as (7.22), see p. 206) differed by
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prop. perceived

1.0 1.5 2.0 25
log intensity

Fig. 8.9 Proportion of trials, out of 50, on which light flashes were perceived by subject 5.5. as a
function of log | intensity, together with fits, Data from Hecht et al. (first series of trials) are shown
as circles. Dashed lire is the fit obtained by linear regression. Solid curve is the fit obtained by
Togistic regression.

1o one as x o~ The fitted curve in Fig. 8.9 is based on the following statistical
model: for thd iéth}value of light intensity we let ¥; be the number of light flashes on
which the subject perceives light and then take

Yy~ B(ng, pi) (8.43)
exp(Bo + Prx:)

= : 8.44

=TT exp(Fo + Bixi) (8.44)

This is known as the logistic regression model. There are many possible approaches
to estimating the parameter vector ¢ = (8y, 1) but the usual solution is to apply
maximum likelihood. The observed information matrix is then used to get stan-
dard errors of the coefficients. These calculations are performed by most statistical
software packages. For the data in Fig. 8.9 we obtained ,@’0 = —20.5+ 2.4 and
By = 10.7 + 1.2. Further discussion of logistic regression, and interpretation of this
result, are given in Section 14.1. O

8.4.4 When using numerical methods to implement
ML estimation, some care is needed.

There are three issues surrounding the application of numerical maximization to ML
estimation. The first is that, while loglikelihood functions are usually well behaved
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4. Increment j and return to Step 2.
5. Repeat Steps 2-4 until convergence. 0

A key step in formulating the EM algorithm in the mixture of two Gaussians
model, above, was the introduction of the random variables W;. In order to maximize
the loglikelihood £y(8) defined by the pdf fy(y|0) we effectively introduced the
loglikelihood £y z)(f) in (8.46) based on the augmented data pdf fiy z)(, z|6).
——-Step-2.of the algorithm, known as the expectation step, is based on the expectation
E(ly.zy (9)1% 2% § = 69). In Step 2 the conditional expectation in (8.49) was
evaluated for & = 69, In Step 3 the loglikelihood was maximized in terms of the
expectations computed in Step 2.

In general, if Y =Yy is the data vector augmented by Z = z we define

T 00,69 = Bt (9@ 0 =06, (8.50)

Beginning with an initial guess #, for each j the EM algorithm computes Q(6, 89))
and sets 891 equal to the maximizer of Q(9, A9} as a function of §. The EM
algorithm works well for problems in which some kind of data augmentation greatly
simplifies the problem, so that Q(8, 6V is easy to compute (as in Step 2 of the
mixture of two Gaussians illustration above). In addition to models that incorporate
latent variables, the EM algorithm is often applied to problems with missing data,
where the missing data are treated as augmenting the observed data. (See also the
related discussion of Gibbs sampling in Section 16.2.2.)
One way to see that this iterative scheme should work is to apply the formula'!

——Q(9 0} o=ps = L5 (0%) (8.51)

(see the details below). If 800, 82 . is a sequence of EM iterates that converge to
a value 8% then, because each iterate maximizes (4, 69y its derivative is 0, i.e.,

d
— %Y g=px = 0.
dGQ(G’ Mo=64

From (8.51) we then have

£5(0%) == 0.
Thus, for sufficiently good initial values, when the EM- algorithm converges to &
we get #* = 0, i.e., the EM algorithm converges to the MLE B. } {% - é Qx)
Details: We derive Eq.(8.51). From (8.50) we have . M-f—_‘l-w;?:
____________ o B $yi0%)
O 70gf(y 216z, e

- M&E :
. ATTACHED

1 This formula was used by Fisher, in his discussion of sufficiency, to substantiate the argument ( S HEET |
menticned in Section 8.2.2 (see p. 200 and Kass and Vos (1997, Section2.5.1)) t\ /}
: P
B
,f
\“\

o
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226 9 Propagation of Uncertainty and the Bootstrap

Result: Simulation-Based Propagation of Uncertainty in Estimation Sup-
pose the random vector X is a consistent estimator of a parameter vector & having
an approximate distribution from which we are able to simulate observations and
we wish to estimate ¢ = f(#) for some real-valued function f(x). If we apply
simulation-based propagation of uncertainty, with G large, then an approximate
95 % CI for ¢ is given by (w g5, w.o75) where w 25 and w 975 are the .025 and
.975 quantiles among the pseudo-data wh w® W,

The beauty of this simulation-based method of getting approximate confidence
intervals is its simplicity and practicality, as long as it is easy to generate observations
from the distribution of the esimator X. If, in addition, the estimator é =f (@) is
approximately normal, then we have a slightly different option. Although it will
often produce essentially the same answers, it simplifies the reporting of results by
producing a standard error, which is connected to the confidence interval by the 95 %
rule (p. 117).

Result: Simulation-Based Propagation of Uncertainty in Estimation When the
Estimator is Approximately Normal Suppose X is an approximately multivariate
normal estimator of # having estimated variance matrix ¥, and we want to estimate
¢ = f(0) for some real-valued (univariate) function f(x). Let us take ¥ = f(X) to
be the estimator of ¢. We will write the observed estimate of 6 as X = 0 and the
observed estimate of ¢ as ¥ = q'S = F(8). If the function f (x) is approximately linear
near x = 6 and il (é) is not the zero vector (i.e., not all of its partial derivatives are
zero) then

1. Y is approximately normally distributed, and
2. the standard error obtained from (9.6) by simulation-based propagation of
uncertainty

G
SE($) = E;““l_—f > WO Wy 9.7

g=1

furnishes approximate inferences. In particular, an approximate 93 % Cl is given
by (Y — 2SE(Y), Y + 28E(Y)). I

Ifthese two methods differ, it is an indication that the distribution of q3 is noticeably
non-normal and it is better to use the quantiles as they are likely to be more accurate.
The second method, based on approximate normality, is justified by the theorem on
p. 235 leading to (9.20).

We illustrate both methods by returning to the example involving perception of
dim light.

Example 5.5 (continued from p. 221) At the beginning of the chapter we motivated
propagation of uncertainty using the problem of calculating x50, defined on p. 221,
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He

Fig. 9.1 The effect of the ransformation y = a + bx operating on a normally distributed random
variable X having mean jx and standard deviation ox. The random variable ¥ = a + bX is again
normally distributed, with mean py = a + by and standard deviation oy = |bloy. The normat
distributions are displayed on the x and y axes; the linear transformation is displayed as a line, which
passes through the point (ux, iy} so that it may be written, equivalently, as y — py = bx — px).

and the approximate mean and variance of Y is given from the approximating linear
transformation, as in the theorem on p. 63.

Theorem Suppose that a sequence of random variables X1, X, ..., X, . . . satisfies

X_
nTHE B No, D

ax,

as n — 00, and that the function £ (x) is continuously differentiable with f'(z) # 0.

Then
fXn) —f(w) b
—
O-Yli

NOD

but give the essential idea.

First, from the theorem on transformation of a normal random variable (p. 63),
if Y = a+bX and X ~ N(px,02) then ¥ ~ N(uy, 03) with py = a + buy and
oy = |bjox. A pictorial display of this situation is given in Fig. 9.1. Now, suppose that
f{x) is not linear, but let us assume that it is only mildly nonlinear within the “most
probable” range of X. That is, f (x) is mildly nonlinear within, say, tix =2.50, which
is the range over which we are assuming X to be approximately normally distributed.
Then we may approximate f (x) with the best-fitting linear approximation at x = pix:

with oy, = [f"(w)lox,.
ot "‘“"““L»--\..\\ -
Proof: We omit the proof, which is a consequence of Slu ficy’s theorem (p. 16£ SIU‘ < /@ )
. \-.»M‘""“ .,--»’/—/
5
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is based on Behseta et al. (2009), which provides some details about propagation of

error for the difference index. L] i .
Additional details: We may also propagate uncertai%r analytically to Q\f\ cev t&\n o :
xso = f (5o, 1) using Eq. (9.19) with (9.10), which gives the standard
error + :

SE = 7o, BT S5 Go, B

where the partial derivates are

of 1
B By = T
af Bo

8531 E(Bo,fm = EIE

Plugging into the formulas above the values of f)’o, Gy and £, the logyg
intensity at which subject S.S. would have perceived half the flashes
is estimated to have been Xsp = 1.921 £ .019, This agrees with the
approximate 95 % CI obtained by the simulation method. =

9.2 The Bootstrap

The hootstrap is a very stmple way to obtain standard errors and confidence inter-
vals. It has turned out to be one of the great inventions in the field of statistics. In
Section 9.2.1 we explain the essential idea, and we contrast the parametric boot-
strap with the nonparametric bootstrap, elaborating on these two distinct methods
in Sections 9.2.2 and 9.2.3. :

9.2.1 The bootstrap is a general method of assessing uncertainty.

The algorithm for simulation-based propagation of uncertainty (p. 225) began with
a random vector X having a known distribution (from which observations could be
generated on the computer). In practice, applying the result on p. 226, X becomes
an estimator of a parameter vector § and its distribution is known approximately,
typically it is a normal distribution. From this, uncertainty can be propagated from X
to an estimator qg of ¢ = f(8). As illustrated in Example 5.5 on p. 226, an essential
input to the algorithm is the variance matrix of X (inExample 5.5 we had X — (,[;'0, ﬁ’l }
and used £ = IOBS(,@O, )@1)_1). But what if it is difficult to compute the variance
matrix of X7 The bootstrap instead backs up a step, using the variation in the data
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which is the same as (7.19). The idea of the bootstrap is analogous: we replace
Fy by an estimate of it and then apply the algorithm above. If we have a paramet-
ric model and we use ML estimation to estimate the parameters, we can use the

model with the fitted parameters to generate the pseudo-data Ul(g), e, U,gg). This

scheme is called the parametric bootstrap. Otherwise, we replace Fy by the empirical

cdf F ,, and draw the pscudo-data Ul(g), ciy ,Sg ) from F°,,. This is the nonparamet-

ric bootstrap. Both methods extend to cases in which we replace scalar estimates
(e.g., ,@1) by vectors of estimated quantities (e.g., (Bg, (3’1)).

The parametric bootstrap and nonparametric bootstrap both begin, conceptually,
by estimating the data distribution Fx. The parametric bootstrap uses a specific
assumption, such as normality of the data. The nonparametric bootstrap does not
require any specific data distributional assumption, and this is the sense in which it is
“nonparametric.” The nonparametric bootstrap is also usually easier to implement.
Its disadvantage is that it requires i.i.d. random variables to represent the variation
in the data. There are many cases where the data are not moedeled as i.i.d., such as _
in regression, time series, and point processes. Sometimes a clever transformation e - B T :
makes the nonparametric bootstrap applicable (see Davison and Hinkﬁﬁr 1997, for &.L\ﬂ \(\ gﬂ ‘
examples), but in other cases the parametric bootstrap is either the only available :
approach or at least a more straightforward methodology to apply. Both forms of |
bootstrap use propagation of uncertainty.

9.2.2 The parametric bootstrap draws pseudo-data from an
estimated parametric distribution.

Suppose we assume that a set of data x¢, xo, ..., %, is a random sample from a
distribution with pdf £ (x;|?), and we estimate ¢ with the MLE 8. If we assume for the
moment that the parameter ¢ is a scalar then, according to the scheme in Section9.2.1,
we may obtain the standard error of 6 as SESim(é) by generating pseudo-samples
U%q ), 2(9), R U,gg) from the distribution with pdf f (x;]#). Because we do not know
the value of 8 we plug in the MLE 0 and instead generate pseudo-samples from the
distribution with pdf f(x; Eé). This is a parametric bootstrap, and the resulting value
of SEim (5) is a parametric bootstrap standard error.

Algorithm: Parametric bootstrap estimate of standard error To obtain the stan-
dard error SE(8) we proceed as follows:

1. Forg=1to G

Generate a random sample Ufg), u9..

1),

Find the MLE @ based on U\, U7, ..., U and set W& = 69,
2. Compute W = £ >0 | W@ and then

e ,(lg ) from the distribution having pdf
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V=THELAD), ... fild),

by following step 1, above, for each of f1(#), f2(8), ..., fi{#) 1o get
Wj(g) :ﬁ(é(g))

forj =1,..., k, and then setting 1% equal to the sample variance matrix (see p. 90)
of the k-dimensional vectors W& = (ng), ey W,Eg )). O

Example 8.2 (continued from p. 193) In discussing the way previous seizures
affect the relationship between spike width and preceding inter-spike interval length
we displayed results based on change-point models. The statistical model assumed
that, on average, Y decreases quadratically with x for x < 7 but remains constant for
x > 7, with 7 being the change point. In Fig. 8.7 we displayed fitted change-points
together with standard errors, which led to the conclusion that the selzure group
reset to baseline average spike widths earlier than the control group. We said that the
standard errors shown in Fig. 8.7 were based on a parametric bootstrap. The specifics
of computing the bootstrap standard errors followed the steps given above: based on
the fitted 7, together with the fitted parameters for the quadratic relationship when
x < 7 and the constant relationship when x > 7 (see p. 408), pseudo-data samples
were generated and for the gth such sample a value 7@} was calculated following
the same procedure that had been used with the real data; then formula (9.25) was
applied. ]

There are modifications of the bootstrap confidence interval procedure that offer
improvements. These are reviewed by DiCiccio and Efron (1996). Particularly
effective” are the bias-corrected and accelerated (or BC,) intervals, which are often
used as defaults in bootstrap software.

9.2.3 The nonparametric bootstrap draws pseudo-data
from the empirical cdf.

In Section 9.2.2 we showed how the parametric bootstrap is used to get standard
errors and confidence intervals, The key theoretical point was captured by Eq. (9.24),
which says that, for large samples, the distribution of the pseudo-data based on the
MLE plug-in estimate will be close to the distribution of the data. The idea of the
nonparametric bootstrap is to generate pseudo-data, instead, from the empirical cdf

3 'The bootstrap approximate 95 % CI based on percentiles in Eq. (9.26) has the property that as
n —» oo the probability of coverage is .95 + 5, where 7, vanishes at the rate of 1/./n. The BC,
intervals have the analgous property with 7, vanishing at the rate 1/n, which means the theoretical
coverage probability gﬁould be closer to .95.
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The nonparametric bootstrap has been studied extensively, and has been shown
to work well in a variety of theoretical and empirical senses. For more information
about the bootstrap, see Efron and Tibshirani (1993) and Davison and Hinkley(1997).

Animportant caveat is that arbitrary shuffles of the data do not necessarily produce
bootstrap samples, The key assumption is independent and identically distributed
sampling of X1, ..., X,, so that the key result (9.27) applies. Many problems may
be put in this form, but the nonparametric bootstrap only applies once they are.

9.3 Discussion of Alternative Methods

At the beginning of this chapter we considered the data on perception of dim light
to illustrate propagation of uncertainty according to the diagram in (9.4). We went
on to discuss analytical propagation of uncertainty, simulation-based propagation
of uncertainty, and then both the parametric and non-parametric bootstrap methods
of obtaining uncertainty about the target estimand, in this case xsp, the intensity at
which a flash of light is perceived 50 % of the time.

The choice among these methods is largely a matter of convenience. It is often
easy to obtain the variance matrix of the parameter MLEs and then simulation-based
propagation of uncertainty is easy to implement. Sometimes it is also easy to get
the derivatives analytically, and the analytical approach becomes an option. The
percentile method of getting confidence intervals from simulation becomes more
accurate than that based on £2SE when the nonlinearity in the target estimand as a
function of the parameters is pronounced (relative to the uncertainty in the parameters,
as explained in Section9.1.2). With i.i.d. data the nonparametric bootstrap is very
easy to apply, and is often the preferred method. But many examples involve non-
i.i.d. data. In regression or time series contexts, for instance, nonparametric bootstrap
methods require modification and may be difficult or impossible to apply (this is the
case for some point process models of neural spike train data). In such settings the
parametric bootstrap is often used.

These methods can produce valid 95% confidence intervals, which cover the
estimand 95 % of the time, when the statistical model is correct and the sample size
is sufficiently large. The statistical model used with the nonparametric bootstrap, in
the form we have presented, assumes i.i.d. sampling but is otherwise very general.
All of the methods aim to provide an appropriate spread of the confidence interval
about the estimate, which is what leads to the correct coverage probability. The bias
in the estimator is ignored because, for sufficiently large samples, it becomes vanish-
ingly small. Furthermore, as we noted in Chapter 8, the bias squared often becomes
vanishingly small faster than the variance becomes vanishingly small, so that the
MSE is dominated by the variance. In practice, however, it is worth remembering
that nontrivial bias in the estimator can greatly diminish the coverage probabili
of a putatively 95% confidence interval. If a statistical model isgrossly incorrect
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Result: Suppose X1, ..., X, has joint pdf f(x1, ...x,|6), with & a scalar, and
suppose further that 7}, is an asymptotically normal estimator of & with standard
error SE(T,) = &r,. Then the null hypothesis Hy: # = 6y may be tested by
using the statistic

Tn— 6o

m, (10.12)

loby =

with large values of |z,5| indicating evidence against Hy. If the sample size is
large, an approximate p-value may be obtained from

2 = P(Z| = |zobs]) (10.13)

where Z ~ N{0, 1).

This result follows from the theorem in Section 7.3.5, which said that if &7, is the
standard error of T, in the sensc that

A

ar,

M i 1
o7,
then T, ~ 0)
AL I N
ar,
If 8 = 8y then the random variable
- Tn - 90
SE(T,)

follows, approximately, for large n, a N(0, 1) distribution and the p-value based on
Z ~ N(0, 1) will be approximately correct. Because Z is a common notation for a
N(0, 1) random variable, the value z,p, in (10.12) is often called az-score and the
procedure in (10.12) and (10.13) is az-test.

Example 1.4 (continued from p. 257) Suppose X ~ B(n, &) and we wish to test
Ho . 8 = 6. The usual formula for SE is SE(@) = @ It is customary to

find SE under the null hypothesis, 0 = .5, i.e., we replace* § with 6y = 5 in
the calculation of SE. In the case of the data from P.5. we had n = 17 so we get
SE = J/(3){(.5)/17 = 121, and z,p; = (.824 — .5)/.121 = 2.68. This gives us a

4 The Jogic of the procedure does not demand that we use dg in place of f. The justification of the
large-sample significance test, the Theorem in Section 7.3.5 that says Z is approximately N(G, 1),

. andis not refined cnou gh 1o distinguish hetween the two alternative choices for SE(T,,) (both would

satisfy the theorem). However, because we are doing the calculation under the assumption that
§ = By, it makes some sense to use the value § = & in computing the standard error,
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10.4 Interpretation and Properties of Tests

We now turn to some theoretical aspects of significance tests. In practice, new situa-
tions arise where no standard test is available. Researchers then invent significance
tests, and sometimes they are not valid, What do we mean by this? The key property
is Eq. (10.24). For an evaluation of statistical significance to be correct, theoretically,
(10.24) must be satisfied.

Let Fp(x) be the cdf of Q under the statistical model specified by Hp and let
us assume that O follows a continuous distribution. We then have P(Q < g) =
I — P(Q > ¢) and we obtain from (10.24} the equivalent form

p=1—Folqops)- {10.26)

This will help below. Sometimes (10.24) does not hold exactly, but it does hold
approximately, as in the case of chi-squared tests. In Section 10.4.1 we derive two
consequences that allow us to check whether (10.24) is approximately true. That
section describes the behavior of a valid significance test when Hy is true. In Section
10.4.3 we consider what happens when Hy is false.

10.4.1 Statistical tests should have the correct probability
of falsely rejecting Hy, at least approximately.

The criteria for determining statistical significance, usually taken to be .05 or .01, are
called significance levels. Disher suggested9 that research workers might routinely
use p < .05 as a “convenient convention” to summari ¢ evidence against Hy
Indeed, this became standard practice. Neyman and Pearson then considered, for-
mally, the behavior of such a procedure. They began by saying one might reject Ho
for sufficiently large values of the test statistic . If we let ¢ be the cut-off value for
which Hy is rejected whenever Q > ¢, then ¢ is called the critical value and

a=PQ=c)

is called the level of the test for the critical value ¢. Now, for the #-test on p. 265
based on @ = |T| and gups = tops defined in (10.19), at a particular level, such as
« == .05, we may reverse the process and, for any «, we can find a critical value ¢,
such that

a= PO = cy). (10.27

? See pages 114 and 128 of the fourteenth (1970) edition of Fisher (1925).
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as 16 is typically used; from many repeated trials, with a 6 point scale, 5 points are
obtained along an empirical ROC curve. (For the lowest confidence value there is
never a perception of response at all, so it is considered to correspond to ¢ = ©0.)
The common terminclogy used in SDT replaces the y-axis label of power with “hit
rate,” or “hits,” and the x-axis label of level with “false alarm rate,” or simply “false
alarms.” As in the case of statistical tests, the null and signal-plus-noise distributions
are often assumed to be normal, but that is not essential to the logic of the method.

Example 10.6 Dual-frocess 'fheory of Memory One method of studying mem-
ory has involved recall of words taken from a list that was previously studied.
A variant of this uses a list of words consisting of some previously studied {(or “old™)
words together with some new words; then, for each word taken from the composite
list the experimental subject is asked to say whether the word is new or old, This
produces a series of binary judgments to which SDT may be applied: the old words
define the signal-plus-noise condition, while the new words define the null condition.
According to certain dual-process theories of memory, there is a distinction between
remembering based on some set of details or related events, and remembering with-
out such corresponding details being available and, instead, there is only a sense of
“familiarity.” Yonelinas (2001) reported an experiment in which 19 subjects were
each given a list of 58 words to study, and then were tested on a composite list of
75 words. Half of the old words were studied under “full attention” and half were
studied under “divided attention.” In the full attention condition subjects saw each
word for 1.5s and were instructed to try to remember it. In the divided attention
condition the subjects also had to judge the magnitude of a number, presented on
the same screen as the word. The composite list of 75 test words consisted of 25
old words studied under full attention, 25 studied under divided attention, and 25
new words. The subjects were required to judge whether each test word was new or
old using a 6 point scale (ranging from “sure it was new” to “sure it was old”) and
then, after the judgment had been made (and the word was no longer visible), they
were also required to indicate whether they could remember details about the word,
such as what it looked like or sounded like, and whether they would be able to report
such details. Words were considered to be recognized based on familiarity when no
details could be recalled.

According to the dual-process model of Yonelinas, ROC curves for familiar
objects should be similar to those obtained from a pair of displaced normal distribu-
tions, as in Fig. 10.3, whereas words recollected with details would have a constant
probability of memory retrieval once a minimal confidence threshold was exceeded.
A pair of ROC curves for the familiarity words, in both the full attention and divided
attention conditions, are shown in the left-hand part of Fig. 10.4. As support for the
dual-process theory, Yonelinas also presented ROC curves for the words recognized
with detailed recollection, and these curves were quite flat, with an apparent threshold
at which recollection occurred. These are in the right-hand part of Fig. 10.4. D
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Fig. 10,4 ROC curves, adapted from Yonelinas (2001). On the Left are curves from words recog-
nized based only on familiarity, and on the Right are curves from words for which recognition was
based on detailed recollection. Curves for full attention and divided attention words are plotted
scparately.

10.4.5 The p-value is not the probability that Hy is true.

The p-value is commonly misinterpreted as the probability that the null hypothesis
is true. ﬁns«twro&gng correct statement is necessarily rather cumbersome. Let us
continue to write a generic test statistic as Q and the value it takes when calculated
from data as g,ps. In the case of the chi-squared tests we used Q = X ~ X%/ with
Xobs = X2p, and for the two-sided £ test (10.19) we used @ = |T| with qons = |fobs!.
We chose the notation g,p, S0 that we can clearly distinguish the observed value
from the theoretical random variable Q. The p-value is then given by Eq.(10.24).
In words, p is the probability that one would observe a value of the test statistic as
discrepant from the null hypothesis as the one observed from the data, if the null
hypothesis were true. Or, again, in slightly different words: if the null hypothesis
were true, the test statistic @ would have a probability distribution; the p-value is
the resulting probability that ¢ would be as discrepant from the null hypothesis
as the value g,p, actually observed. There is no substantially simpler way to say
this. The important point about the correct interpretation is its subjunctive nature:
the p-value is a probability based on what might have happened if a random sample
had been drawn under Hy.

Because the logic behind p-values is somewhat convoloted, they are very often
misinterpreted to mean something much simpler and more direct, namely the prob-
ability that Hy is true based on the data. That is, a value p = .05 is often misinter-
preted as meaning that .05 is the probability that Hy is tree, which we would write
as P(Hpl|data) = .05. This is sometimes called the p-value fallacy (Goodman et al.
1999a, b). There is no denying how nice it would be to have P(Hy|data). In principle,
that probability may be obtained, instead, from Bayes’ Theorem:
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Yi ~ NGy, 0%),
independently, for i = 1, ..., n is nested within the simple linear regression model
Y; ~ N(Bo + i, o),
independently, fori = 1, ..., n. Note that LR ps satisfies LRyps < 1:1f

LG, 0 = mag)gL(w, 8)

(w

and
L(&g, ) = max L{w, 8p),

as in (11.5), then, by definition of the maximum, L(&, 9) > L{w, &) for any other
value of (w, #), including (&g, ). Therefore, we have

L&, 6) = Ly, 6o). (11.8)

The likelihood ratio test accounts for this necessity, and judges the degree to which
L(&, ) exceeds L(o, 8y) according to (11.7).

When two models are to be compared and neither is a reduced special case of the
other the models are called non-nested. For non-nested models the likelibood ratio test
no longer applics. How should non-nested models be compared? If the two models
have the same parameter dimensionality it is possible to compare their maximized
loglikelihood functions. However, because of (11.8), when non-nested models of
different dimensionality are to be compared, some adjustment for dimensionality
of the parameter vectors must be made. The most common methods introduc?gf
criterion that starts with the maximized loglikelihood and then subtracts a penality P
for dimensionality. By convention, to match the usual form of the loglikelihood ratio
statistic, these criteria are often defined to include a multiplier of —2 so that they
may be written as

criterion = —2 - max loglikelihood - penalty.
The most widely used criteria are the Akaike information criterion, or AIC (Akaike
1974), and the Bayesian information criterion, or BIC (Schwarz 1978), for which
the penalties are
AIC penalty = 2m

where m is the number of parameters in the model, and

BIC penalty = mlogn,
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where 7 is the sample size. Thus, for a random vector X following a model M having
an m-dimensional parameter vector ¢ and pdf f(x|¢)) we have

AIC(M) = —2log £ (x|6) + 2m

and R
BIC(M) = —2logf(x|#) + mlogn.

Many variants on these two model selection criteria have also been proposed; they
begin with the same idea, and have more or less the same general form. Note that
according to the definition we have just given of AIC(M) and BIC(M), smaller
values indicate better models. Alternative equivalent forms, such as that obtained
by omitting the multiplier —2 (so that larger values indicate better models), are also
used frequently in the literature.

Example 11.1 Interspike interval distribution in resting retinal ganglion cells
In Section 5.4.6 we introduced the inverse Gaussian distribution as the distribution of
interspike intervals for a theoretical integrate-and-fire neuron. Brown et al. (2003),
following Iyengar and Liao (1997), analyzed interspike intervals from a resting retinal
ganglion neuron recorded in vitro, and compared the fits of exponential, gamma,
and inverse Gaussian distributions. They obtained AIC = 8,598, 8,567, 8,174 for

 these three models, respectively, indicating a much better fit for the inverse Gaussian

distribution than for either of the other distributions. Plots of fitted pdfs overlaid on
the interspike interval histogram were consistent with this evaluation. U

The motivation for AIC begins with the Kuilback-Lieblea‘A'&sefe-paﬂeyez’ defined
on p. 92. Suppose we let f(x) be the true pdf and we wish to obtain a model with
pdf g(x) that is a close as possible to f{x) in the sense of minimzing D (f,
When we minimize over g(x) we are maximizing Ey(log(g(X))). Consider the spe=
cial case of trying to determine the value of a single scalar parameter £, where the
true value is Bg, based on data x. Then we are trying to find the closest pdf g(x[#) to
f(x) = g(x|6p). Itis not too hard to show that the expectation Er(log g(X |7}) is max-
imized by # = 6. Because 8y is unknown we might use the loglikelihood log g{x|#)
as an estimate of Er(log g(X|#), and thus might maximize to get the maximized

loglikelihood log g(xl@). But this is, in general, a biased estimate of Er{log g(X|0).
Akaike proposed to subtract off an estimate of the bias, and then showed that the
bias is, in general, approximately equal to the dimensionality of 6. (See Konishi and
Kitagawa (2007) for full details.) Multiplying the maximized loglikelihood by ~2
gives the form of AIC above.

BIC begins, instead, with the Bayesian formulation of choosing between models
M7 and M» based on posterior probability:

f M) P(MY)
P(M = 11.
M) = e D PO + HOIM) P (Ma) (11.9)
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Example 7.2 (continued from p. 300) Applying the bootstrap procedure based on
the statistic (11.14) we obtained p = .0022, U

11.3 Multiple Tests

11.3.1 When multiple independent data sets are used to test
the same hypothesis, the p-values are easily combined.

Sometimes results for each of several subjects, or several experimental units (sach as
neurons), are equivocal vet all lean in the same direction. Intuitively, such consistency
seems to provide additional evidence of a possible effect. Fisher (19235) suggested a
simple method of combining multiple independent p-values.

Example 11.2 Precisely repeated intracellular synaptic patterns It has been

suggested that precisely timed patterns of synchronous neural activity may propagate

across a cortical circuit and, indeed, that such propagation is a crucial mode of

information transmission in the brain (see Abeles (2009)). Experimental evidence

aimed at supporting this idea, which is controversial, was provided by Ikegaya et al.

(2004), who recorded spontaneous intracellular activity in vitro from slices of mouse

primary visual cortex and in vivo from cat primary visual cortex. Ikegaya et al.

(2008) conducted additional experiments and reanalyzed the original data. The in

vitro recordings produced relatively long traces of post-synaptic currents which the

authors examined for repeated precise patterns. To judge whether observed patterns

might be explained by chance, in one of their analyses they performed a kind of

permutation test. Because the computations were very time consuming they used

onty 50 permutations and, when they found their observed test statistic to exceed ;’r\
the values obtained from all 50 sets of pseudo-data they thus ach}\ved statistica@
significance p < .02. This was repeated across 5 neurons. In other words, for each of

5 neurons they achieved p < .02, which would seem to be strong statistical evidence &

that their null hypothesis should be rejected.’ [

Suppose we have p-values from n independent tests. Fisher observed that under
Hy the p-value for test i would be a uniformly distributed random variable P;, with
i=1,...,n(seep.273) and, therefore, the random variable

1]
X=-2>"logP (11.15)
i=1

3 Some care is required to state correctly the null hypothesis, but roughly speaking it corresponds
to time intervals between post-synaplic currents being i.i.d., which they would not be if there were
repeated patterns,
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Example 11.3 Adaptation in fMRI activity among autistic and control subjects
Autism is characterized by difficulty in social interaction and communication. One
proposal is that autism may involve a defect in the mirror neuron system, which is
active in response to observation of activity by other subjects (thus the idea that an
individual subject’s brain may “mirror” the activity of the other subject). Several
studies found the human mirror system to contain subpopulations of neurons that
adapt when hand movements are observed or executed repeatedly. Specifically,
fMRI responses to observed or executed movements decreased when the movement
occurred for a second time. Dinstein et al. (2010) studied brain response adaptation
using fMRI, and found that adaptation occurred among autistic subjects as well as
controls across multiple regions of interest. The authors considered this to be evidence
against mirror system dysfunction in autism.

A crucial step in their argument involved the definition of each region of inter-
est (ROI). For this they combined anatomical and functional characterizations: for
each ROI they included every voxel that was both (i) located within 15 mm of an
anatomically-defined region and (i) significantly active based on a t-test of experi-
mental condition versus baseline. Across their ROIs, however, there were thousands
of voxels to be examined. In other words, the authors had to perform thousands of
tests, of thousands of null hypotheses. This is very common in fMRI studies. J

To see that multiple tests require an additional calculation consider what happens
when 100 tests are made. It might be tempting to declare any of the tests signficant
when p < .05. However, if each of the 100 null hypotheses were true, then we
would expect about (.05)(100) = 5 of the p-values to satisty p < .05, indicating
statistical significance. Thus, we would expect several such tests (about 5) to yield
spurious (false) results of evidence against the null. An additional calculation makes
the situation even more worrisome. Let us suppose that we have 100 random variables
T; representing test statistics for null hypotheses Ho ; with?

P(|Ti| > colHy) = o (11.19)

This implies
P(Ti| S colHp ) =1 —«a

fori =1,2,...,100.If all the tests are independent then we have
P(|Ti| < co forall i|Hy; forall i) = (1 — a)'®

and, therefore,

4 This is important to the logic of the mirror peuron argumient. See Dinstein (2008).

3 We use the absolute value form |T;| > ¢, for consistency with the two-sided tests emphasized in
Chapter 10 but the logic is the same for all significance tests,
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noise

Fler o Xp). (12.4)

¥V «— [

This diagram is supposed to indicate a variety of generalizations of linear regression
which, together, form the class of methods known as modern regression.

In this chapter we provide a concise introduction to linear regression. In
Sections 12.1-12.4 we treat the simple linear regression model given by

Yi= Bo+ Prxi + ¢ (12.5)

fori=1,...,n, where ¢; is a random variable. The adjective “simple” refers to the
single x variable on the right-hand side of (12.5). When there are two or more x vari-
ables on the right-hand side the terminology multiple regression is vsed instead. We
go over some of the most fundamental aspects of multiple regression in Section 12.5.
That section also lays the groundwork for modern regression. Generalizations are
described in Chapters 14 and 15.

12.1 The Linear Regression Model

To help fix ideas, as we proceed we will refer to several examples.

Example 12.1 Neural correlates of reward in parietal cortex Platt and
Glimcher (1999) suggested that cortical areas involved in sensory-motor processing
may encode not only features of sensation and action but also key inputs to decision
making. To support their claim they recorded neurons from the lateral intraparietal
(LIP) region of monkeys during an eye movement task, and used linear regression to
summarize the increasing trend in firing rate of intraparietal neurons with increasing
expected gain in reward (volume of juice received) for successiul completion of a
task. Figure 12.1 shows plots of firing rate versus reward volume for a particular LIP
neuron following onset of a visual cue. U

Example 2.1 (continued from p. 24) In their analysis of saccadic reaction time in
hemispatial neglect, Behrmann et al. (2002) used linear regression in examining the
modulation of saccadic reaction time as a function of angle to target by eye, head, or
trunk orientation. We refer to this study in Section 12.5. [

In Chapter 1 we used Example 1.5 on neural conduction velocity to illustrate
linear regression. Another plot of the neural conduction velocity data is provided
again in Fig. 12.2.

Before we begin our discussion of statistical inference in linear regression, let us
recall some of the things we said in Chapter 1 and provide a few basic formulas.

Given (éa&?x n data pairs (x;, y;), least squares finds ,@0 and 5; that satisfy
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Fig.12.1 Plots of firing rate (in spikes per second) versus reward volume (as fraction of the maximal
possible reward volume). The plot represents firing rates during 200 ms following onset of a visual
cue across 329 trials recorded from an LIP neuron. The 329 pairs of values have begn reduced
to 7 pairs, corresponding to seven distinet levels of the reward volume. Each of the #y; values in
the figure is 2 mean (among the trials with x; as the reward volume), and error bars representing
standard errors of each mean are also visible. A least-squares regression line is overlaid on the plot.
Adapted from Platt and Glimcher (1999).

n . . 2 ) 23 2
> (= o+ Fxw) = min > (i — (B + Bix) (12.6)
— Boo BT T
=1 i=1
where we use 8 and 8] as generic possible estimates of g and 1. The least-squares
estimates {obtained by calculus) are

5o 20— —X)
= 12.7
b= (12.7)
“and R .
Bo=y— pix (12.8)
The resulting fitted line A .
y=po+ pix (12.9)

is the linear regression line {and often “linear” is dropped).

Details: To be clear what we mean when we say that the leasi-squares
estimates may be found by calculus, let us write

9(Bo. By = D i — (Bo + rx))* -

i=1

The formulas (12.8) and (12.7) may be obtained by computing the
partial derivatives of g(f8y, 1) and then solving the equations

e T—
-~ e

. oy
(eee)
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Confidence interval for o

Suppose we have a random sample from a bivariate normal distribution with
correlation p and R, = r is the sample correlation. Then an approximate 95 %
confidence interval for p is given by (L, U} where L and U are defined by
(12.43), (12.42), and (12.40).

The result (12.41) may also be used to test Hy:p == 0, which holds if and only if
Hy: By = 0. The procedure is to apply the z-test in Section 10.3.2 using

Tobs == V1 — 32Zp,

which is z, divided by its large-sample standard deviation 1/+4/n - 3, and is thus a
z-ratio.

12.4.4 When noise is added to two variables, their correlation
diminishes.

When measurements are corrupted by noise, the magnitude of their correlation
degcreases. The precise statement is given in the theorem below, where we begin
with two random variables U/ and W and then add noise to each, in the form of
variables € and 8. The noise-corrupted variables are then X = U -feand ¥ = W+-4.

Theorem: Attenuation of Correlation Suppose U and W are random variables
having correlation prw and € and 8 are independent random variables that are also
independent of U and V. Define X = U + ¢ and ¥ = W -+ 4, and let pxy be the
correlation between X and Y. If pyw = 0 then

0 < pxy < puw.

If pyw < 0 then
pow < pxy < 0.

Proof details: We assume that V{¢) > 0 and V() > 0 and we begin
by writing

Cov(X,Y)=Cov(U +¢, W4 8)
= Cov(U, W) + Cov(U, §) + Cov(W, €) 4+ Cov(e, 8).

Because of independence the last 3 terms above are 0. Therefore,
Cov(X, Y) = Cow(U, W), which shows that pxy and pyw have the
same sign. Suppose pyw > 0, so that Cov(U, W) > 0. Then we have
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o

Example 12.4 Neural correlates of developmental change jw'working memory - \ 1[ k 1
from fMRI Many studies have documented the way visudy$patial working memory M
(VSWM) changes during development. Kwon et al. (2002) used fMRI to examine :
neural correlates of these changes. These authors studied 34 children and young
adults, ranging in age from 7 to 22. Each subject was given a VSWM task while
being imaged. The task consisted of 12 alternating 36-s working memory (WM) and
control epochs during which subjects viewed items on a screen. During both the WM
and control versions of the task the subjects viewed the letter “O” once every 2s at
one of nine distinct locations on the screen. In the WM task the subjects responded
when the current location was the same as it was when the symbol was presented
two stimuli back. This required the subjects to engage their working memory. In
the control condition the subjects responded when the “O” was in the center of the
screen.

One of the y variables used in this study was the maximal BOLD activation (as a
difference between WM and control) among voxels within the right prefrontal cortex.
They were interested in the relationship of this variable with age (x1). However, it
is possible that ¥ would increase due to better performance of the task, and that
this would increase with age. Therefore, in principle, the authors wanted to “hold
fixed” the performance of task while age varied. This is, of course, impossible. What
they did instead was to introduce two measures of task performance: the subjects’
accuracy in performing the task (x;) and their mean reaction time (x3). Ll

Example 12.1 (continued, see p. 310) The firing rates in Fig. 12.1 appear clearly
to increase with size of reward, and the analysis the authors reported (see p. 326}
substantiated this impression. Platt and Glimcher also considered whether other vari-
ables might be contributing to firing rate by fitting 2 multiple regression model using,
in addition to the normalized reward size, amplitude of each eye saccade, average
velocity of saccade, and latency of saccade. This allowed them to check whether
firing rate tended to increase with normalized reward size after accounting for these
eye saccade variables. [

Equation (12.6) defined the least squares fit of a line. Let us rewrite it in the form

" fi
2 0v =50t =mwin 3 00 =¥ (12.45)

where y; = fo +;§;xi,y;‘ = B3 + Bix; and B* = (B, B). If we now re-define y;as

with 8% = (85, By, - - -- B;). Eq.(12.45) defines the least-squares multiple regression {/" Mmbb‘u‘";p‘*? ff\
problem, We write the solution in vector form as \\ﬂi‘f‘}i /

B = b B, (12.46)
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where the components satisfy (12.45) with the fitted values being oo™
e e Fsubsccigt 4 )
Ji = o+ Bigyit -+ Lppr- (1247) Kjﬂﬁss he

s

[ —

We interpret the multiple regression equation in Section 12.5.1 and discuss the
decomposition of sums of squares in Section 12.5.2. In Section 12.5.3 we show how
the multiple regression model may be written in matrix form, which helps in demon-
strating how it includes ANOVA models as special cases, and in Section 12.5.4 we
show that multiple regression also may be used to analyze certain nonlinear relation-
ships. In Section 12.5.5 we issue an important caveat concerning correlated explana-
tory variables; in Section 12.5.6 we describe the way interaction effects are fitted by
multiple regression; and in Section 12.5.7 we provide a brief overview of the way
multiple regression is used when there are substantial numbers of alternative explana-
tory variables. We close our discussion of multiple regression in Section 12.5.8 with
a few words of warning.

12.5.1 Multiple regression estimates the linear relationship
of the response with each explanatory variable,
while adjusting for the other explanatory variables.

To demonstrate multiple regression in action we consider a simple example.

Example 12.5 Toxicity as a function of dose and weight [n many studies of
toxicity, including neurotoxicity (Makris et al. 2009) a drug or other agent is given
to an animal and toxicity is examined as a function of dose and animal weight. A
relatively carly example was the study of sodium arsenate (arsenic) in silkworm
larvae (Bliss 1936). We reanalyzed data reported there. The response variable (y)
was log(w/1,000) where w was minutes survived, and the two predictive variables
were log weight, in log grams, and log dose, given in 1.5 plus log milligrams. A
plot of log survival versus log dose is given in Fig. 12.8. Because there were two
potential outliers that might affect the slope of the line fitted to the plotted data we
have provided in the plot the fitted regression lines with and without those two data

pairs. The results we discuss were based on the complete set of data. /”N/"”’/‘W T "'“‘w\
The linear regression of log survival on log dose gave the fitted line e ?%3
i @ - ém“‘"mmmw/&' ?’@‘J@% L"‘; o s
log survival = .140(x£.057) — .7(3*24(:1:.0;51% dose # ,j.,,,r"“”’/y

which says that survival decreased roughly 704(£.078) log 1,000 min for every log
milligram increase in dose. The regression was very highly significant (p = 10712y,
consistently with the obvious downward trend.

The linear regression of log survival on both log dose and log weight gave the
fitted line
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Fig. 12.8 Plot of log survival time {log{w/1,000) where w was minutes survived) versus log dose
(1.5 plus log milligrams) of sodium agenate in silkworm larvae; data from Bliss (1936). Lines are
fits based on linear regression: solz‘a‘%ine used the original data shown in plot; dashed line after
removing the two high values of survival at low dose.

log survival = .140(+.057) — .734(£.058)log dose + 1.07(4.16)log weight.

In this case, including weight in the regression does not change very much the
relationship between dose and survival: the slope is nearly the same in both cases. g

12.5.2 Response variation may be decomposed into signal
and noise sums of squares.

As in simple lincar regression we define the sums of squares SSE and SSK, again
using (12.22) and (12.28) except that now $; is defined by (12.47). If we continue to
define the total sum of squares as in (12.24) we may again decompose it as

SST == S5R + §5E
and we may again define R? as in {12.25) or, equivalently, (12.27). In the multi-

ple regression context R? is interpreted as a measure of the strength of the linear
relationship between y and the multiple explanatory variables.
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Table 12.1 Simple linear regression results for Example 12.5.

Variable Coefficient SE Tobs p-valuc
(Tntercept) 120 057 2.1 038
Log dose —.704 078 9.1 10712

Table 12.2 Multiple regression results for Example 12.5.

Variable Coefficient SE fobs p-value
(Intercept) —.140 057 —2.49 017

Log dose —.734 058 —12.6 2 x 101
Log weight 1.07 .16 6.8 6x 1077

Example 12.5 (continued) Returning to the toxicity data, the results for the regres-

sion of log survival on log dose are given in Table 12.1. We also obtained s = .17

and R® = .59. The F-statistic was F = 82 on | and 58 degrees of freedom, with

p= 1071 in agreement with the p-value for the i-test in Table 12.1. The results for

the regression of log survival on both log dose and log weight are in Table 12.2 and

here s = .13 and R? == .77, which is a much better fit. The F-statistic was ' = 97

on 2 and 57 degrees of freedom, with p = 2 x 1071°. !
We would interpret the ¢ ratios and F-statistics as follows: there is very strong |

evidence of a linear relationship between log survival and a linear combination of 5

log dose and log weight (F = 97, p << 10~%); given that log weight is included in

the regression model, there is very strong evidence (t = —12.6,p << 1075) that log

survival has a decreasing linear trend with log dose; similarly, given that log dose is

in the model, there is very strong evidence (f = 6.8, p << 107°) that survival has

an increasing Hnear trend with log weight. L

Example 12.4 Neural correlates of developmental change in working memory
from fMRI (continmed from p. 333) Recall that in one of their analyses Kwon
et al. defined Y to be the maximal BOLD activation (as a difference between WM
and control) among voxels within the right prefrontal cortex, and they considered its
Jinear relationship with age (X1), accuracy (X7) and reaction time (X3). They then
performed multiple linear regression and found R? = 53 with 8, = .75(=.20),
p < 001, B = —.21(£.19), p = .28, and B3 = —.15(=.17), p = .37. They inter-
preted the results as showing that the right PFC tends to become much more strongly
activated in the VSWM task as the subjects’ age increases, and that this is not due
solely to improvement in performance of the task. [

Example 12.1 (continued from p. 333) Platt and Glimcher fit a multiple regression 7
model to the firing rate data using as explanatory variableﬁrmalized reward size, @“ ‘JL‘_‘/"'
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Theorem: Asymptotic normality of least squares estimators For the linear regres-

sion model (12.53) suppose conditions {i)-(iv) held and let X1, X5, ..., X, ... bea
sequence of design matrices such that

1
;XTX-erC (12.62)

for some positive definite matrix C, as n — 00. Then the least-squares estimator
defined by (12.56) satisfies

1 - D
~ X)) 2B~ B) = Npt1 (0, ) (12.63)
Proof: See Wu (1981) for references. [l

A Detail: It is also possible to use the bootstrap in regression, but this
requires some care because under the assumptions (i)—(iv) the random
variables Y; have distinct expected values,

E(Y,) ji=e (I,Xj], ey ij)/g

and so are not i.i.d. The usual approach is to resample the studen-
tized residuals (see p. 319), which are approximately i.i.d. See Davi-
son and Hinkley (1997, page 275). Alternatively, when each vector

e I x; = (X1, - - -, Xjp) 18 observed, rather than chosen by the experimenter,
ink unk ﬁi “:j :”j_ \% it is possible to treat x; as an observation from an unknown multivariate
. _____ probability distribution, and thus {x;, y;) becomes an observation from
G 73 upknown distribution, and the data vectors ({x1, y1}, - . ., (xn, yu)) may

be resampled.* This was the bootstrap procedure mentioned in Exam-
ple 8.2 on p.241. For additional discussion see Davison and Hinkley
(1997). O

There are many conveniences of the matrix formulation of multiple regression
in (12.53) together with (12.54). One is that the independence and homogeneity
assumptions in (12.54) may be replaced. Those assumptions imply

Vie) = oIy,
as in (12.54). The analysis remains straightforward if we instead assume

Viey=R (12.64)

14 Here, Eg.(9.27) becomes
~ P
Fulx,y) — F(X,Y)(Ly)

where £, is the empirical cdf computed from the random vectors (X1, Y1), ..., (Xa, Yu)).
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Table 12.3 Quadratic regression results for the artificial data in the iflustration,

Variable Coefficient SE tobs p-value
(Intercept) —2.4 2.3 —-.95 37
x 1.86 1.04 1.8 12
x? —.067 092 -73 487

where w; ~ N(0,4). We then defined wy and wo using (12.65) and (12.66) and
regressed ¥ = (y1, ..., ¥yn) on both wy (representing x} and w2 (representing x2).
We obtained the results shown in Table 12.3, with R* = .77, s = 2.1 and F = 11.9
on 2 and 7 degrees of freedom, yielding p = .0056. From Table 12.3 alone this
regressmn might appear to provide no ev1dence that y was linearly related to either
X gor x*. However, regressing y on either x or x? alone produces a highly significant
tinear regression. Furthermore, the F-statistic from the regression on both variables
together is highly significant. These potentially puzzling results come from the high
correlation of explanatory variables: the correlation between x and x” is r = 975
Keep in mind that the 7-statistic for +2 in Table 12.3 reflects the contribution of x>
after the variable x has been used to explam y and likewise the -statistic for x reflects
the contribution of x after the variable x> has been used to explain y. 0

Let us consider this phenomenon further. Suppose we want to use linear regression
to say something about the degree to which a particular variable, say x:, explains y
(meaning the degree to which the variation in y is matched by the variation in the fit
of x to y) but we are also considering other variables xz, . . ., xp. We can regress y on
x; by itself. Let us denote the resulting regression coefficient by b. Alternatively we
Can Tegress y on Xi, ..., X, and, after applying Eq (12.56), the relevant regression
coefficient would be ,B;, the first component of ﬁ When the explanatory variables
are correlated, it is not generally true that b = ﬁ] and, similarly, the quantities that
determine the proportion of variability explained by x1, the squared magnitudes of
the fitted vectors, are not generally equal. Thus, when the explanatory variables are
correlated, as is usually the case, it is impossible to supply a unique notion of the
extent to which a particular variable explains the response—one must instead be
careful to say which other variables were also included in the linear regression.

This lack of uniqueness in explanatory power of a particular variable may be
considered a conmsequence of the geometry of least squares.

Details: Let us return to the geomeiry depicted in Fig. 12.9. As in that
figure we take V to be the linear subspace spanned by the columns
of X. Because the columns of X are vectors, let us write them in the
form v1, ..., vp, and let us ignore the intercept {effectively assum-
ing it to be zero, as we did when we related the SST decomposition
to the Pythagorean theorem). The observations on the first explana-
tory variable x; then make up the vector v|. The extent to which x;
“explains” the response vector y now becomes the proportion of y that
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where Yj; is the jfth observation in the ith grodp. "1 + o is the mean for the #th
group and ¢; is the error for the jA observation in the i-th group (the discrepancy
between Yy and u + «;). Here, u is the overall mean (the “grand mean”), and o; is

that

and this implies

-foi =0. (13.2)

We take the number of groups to be I, sothati = 1, 2, ..., [, and write the number
of observations in group i as »;. In some places we also write the jth group mean as

M= g

The one-way ANOVA assumptions are

(1) the ANOVA model (13.1) holds;

(ii) the errors satisfy E(e;) = 0 for all i;

(ili) the errors ¢; are independent of each other;

(iv) Vie) = o2 for all i (homogeneity of error variances), and
(v) € ~ N, a?) {(normality of the errors).

Note that these are the same assumptions as those used in linear regression (apart
from the replacement of (12.5) with (13.1); see p. 315). As a result, residual analysis
may be used in very much the same way as in regression. Indeed, mathematically,
analysis of variance may be considered a special case of lincar regression. We return
to this in Section 13.2.

The purpose of this model is to provide a basis for statistical comparison of the
group means i + ¢;. That is, we ask whether there is evidence that the means are
different and, if so, we can estimate how different they are. Formally, we want to test
the null hypothesis that the groups means are equal:

Mto =ptoy = =pnt+ay.
The usual way the hypothesis is stated is as follows:
Hp:o; =0 (13.3)

for all i, which implies that the group means are equal. It also satisfies the condition
that the grand mean p remains the expectation of Y; under Hy.
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13.1.2 One-way ANOVA decomposes total variability info average
group variability and average individual variability,
which would be roughly equal under the null hypothesis.

At the beginning of Section 12.5.2 we wrote the basic signal and noise decomposition
for regression,
SST = SSR + SSE.

In ANOVA we decompose the variability in the data stmilarly into two pieces, replac-
ing SSR with a treatment or “group” sum of squares SSproup- To test Hy defined by
(13.3) we compute a measure of the average amount of variability due to the groups,
and an average amount of variability due to error, then compare these. Under the null
hypothests that the group means are equal, there should be no systematic variability
due to groups, so that the variability we see in our “average variability due to groups”
is the result of background variability in the measurements themselves, that is, the
error variability. In other words, the average variability due to groups should be about
the same size as the average variability due to error. Thus, to test Hy we use a ratio of
these measures of average variability and when the ratio is much larger than 1 there
is evidence against F, in favor of there being differences among the groups. We first
specify and illustrate the procedure and then indicate its motivation as a likelihood
ratio test.
We begin with the total sum of squares

SST = (v —3.)°

i

where the double dots in the subscript on y.. indicate that the mean is being taken over
all the values of y, averaging across both rows and columns. In the infant exercise
example we average across afl 24 values. We also define the error (residual) sum of
squares to be

SSE = D (v — 5i)’

Lj

R where the s}r}g%ot in the subscript on y;, indicates that the mean is being taken

within the ith group. Tn the infant exercise example there would be 4 means y;, for

T i = 1,2,3,4 and each would be an average across all 6 values in the appropriate
column. The group sum of squares is then

SSgrgup - SST - SSE-

We next obtain averages of the group and error sums of squares by dividing by their
respective degrees of freedom, dfgroup and dferror. Because of the constraint (13.2)
we have dfgronp = 1 — 1 and, with » being the total number of observations, this
leaves n — 1 — (I — 1) = n — I degrees of freedom for error, i.e., dferror = n — 1.
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analogously with Eq.(10.19). Here, however, we are using all the data from the 4
groups to compute s, rather than only the data from two groups we are currently
comparing. Therefore, we have 20 degrees of freedom going into s and thus 20
degrees of freedom for the t-test (rather than 10 degrees of freedom if we were using
only the 2 groups). We obtain p = .017.

An alternative analysis compares the active exercise group with the other three
groups, all of which could be considered controls. In this case, we would combine

e~ the’}ﬂ@tq from the 3 control groups and thereby end up with two groups: the active
_ . \\px ercise group and a single control group, the latter now having 18 observations.
Ké.f(’;i S _“,..f"We would then use the “two-sample t” analysis, as in (10.21). Carrying this out,

R =" we obtain (1) a test of the null hypothesis that the means for these two groups are
equal, which we may write as Hy: [Lactive — Heonsois = O, and (i) a 95 % CI for the
difference between the means aetive — Meonirols-

First, we find the two means and standard errors to be 10.124+0.59 and 11.81 +
.34, which gives a t-ratio of 2.46 on 22 degrees of freedom and p = .022. Second,
applying the formula for the 95 % Clin Eq. (7.31) we find our 95 % Cl for the decrease
in mean age of walking for the active group compared with controls to be (.26, 3.1)

months.
The conclusions from this analysis are different from those on p. 366, based on
the F-test. We summarize on p. 374, U

13.1.4 Two-way ANOVA assesses the effects of one factor while
adjusting for the other factor.

On p. 363 we described the distinction between one-way and two-way tables by
contrasting Examples 13.1 and 13.2. To introduce the two-way analysis let us first
look further at the data in Example 13.2.

Example 13.2 (continued from p. 363) Figure 13.2 displays the tapping rates for
the three drugs across the four subjects. We can see that the subjects have very
different tapping rates, but for all four of them the placebo rate is noticeably lower
than that obtained with theobromine or caffeine. Also, the comparison of rates for
theobromine and caffeine is inconsistent across subjects. The quantitative analysis,
below, will support these qualitative observations. O

The two-way ANOVA model is

Yi=p+a+ B+ ey, TR
A,
where Y is the observation for I th/t{g&tftﬁnt on the jf{th sabdct i + o; + ﬂj;,---'»‘;ﬁ

@ is its mean, and ¢ is the error for the i4h treatment and j¢th subject. Here, o is th@’\;b"\'b/; ==
increment added to the overall mean g in obtaining the mean for the i{t‘ﬁ'%tment -

while ; is the increment added to overall mean in obtaining the mean for the j(ﬂﬁ/f/

subject. We say that o; is the effect for the ith treatment and §; the effect for the
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source of variation. In this case their effects may be modeled as random variables.
This generates random-effects models and they too require specialized techniques.
We discuss random-effects models briefly in Chapter 16.

13.1.7 Additional analyses, involving multiple comparisons,
may require adjustments to p-values.

Because ANOVA involves comparison of several means, many possible hypotheses
may be of interest.

Example 13.1 (continued from p. 368) We have already looked at the data on
development of motor control in two different ways. On p. 366 we used ANOVA
to test the hypothesis of no differences among the mean age of walking, Hy: i1 =
wa = i3 = u4. Then, on p. 368, we reported two further analyses. The first used a
i-test to test the null hypothesis of no difference between the active exercise group
and the eight-week control group mean ages of walking, Ho: f1; = pta with a 7-test.
The second used a i-test to test the null hypothesis of no difference between the
mean age of walking in the active exercise group and that in the three control groups
combined, Hp: 1 = %(!«Lz + w3 + itq). We also could have singled out the other
control groups and tested Hy: 1 = 2 and Hy: g1 = 3. Furthermore, because the
p-value quantifies the rarity, or surprise, of the results, we ought to ask what other
results might have been as surprising as those we actually observed. What if the
passive exercise group had produced apparent earlier walking, similar to the active
exercise group, by comparison with the eight-week control group? Wouldn’t that
have been a result we would have found interesting? Once we admit that this, too,
would have been reported as a finding, then we realize that we were, effectively,
testing many possible null hypotheses. The problem of testing multiple hypotheses
was discussed in Section 11.3. [

As illustrated in Example 13.1, above, ANOVA often generates many plausible
null hypotheses and, in this context, the problem of multiple hypothesis testing is
also called the problem of muliiple comparisons. In Section 11.3 we presented the
Bonferroni correction, which can be applied when the number of comparisons (null
hypotheses) is easily enumerated. We commented that the Bonferroni method is con-
servative, in the sense of yielding adjusted p-values that sometimes seem unnecessar-
ily large, making it relatively difficult to obtain statistically significant results. This
has spawned a large literature on multiple comparison procedures, most of which aim
to provide smaller p-values under specific circumstances, so that it becomes easier to
declare statistical signficance. For example, a method due to Dunnett assumes there
is a single control group with mean 4. and considers all null hypotheses of the form
Hy: i = e, fori # ¢. When there are / means, there are 7 — 1 such null hypotheses
and, under the standard ANOVA assumptions it is possible to find an exact p-value
for this case. Similarly, when there is no single control group, a method due to Tukey
examines all pairs of means, i.e., all null hypotheses of the form Hy: y; = p; for
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comparisons. Under the standard assumptions, it may be shown that
the F-test is significant at level & if and only if there exists a linear
. contrast for which a test of Hy defined by (13.9) is significant at level
a according to the Scheffé test. ]

. Example 13.1 (continyed from p. 372) Where does all this leave us in this example?

/ o \\We may summarig€ by saying that there is some evidence, but not strong evidence,
,wmt the active group mean age of walking is a bit younger than that for the control
groups. The marginal nature of this evidence becomes clear when we ignore the

5 special feature that the latter three groups are all controls and look for differences

among all four groups: we find no evidence for this, according to the F-test. Given

that it may be difficult to determine exactly when a given child walks, and it is not

clear that the parents made this determination in the absence of knowledge about

what to expect based on the expetimental hypothesis, some skepticism would seein

appropriate.? g

PR

13.2 ANOVA as Regression

13.2.1 The general linear model includes both
regression and ANOVA models.

We now return to the matrix formulation of muitiple regression, discussed in
Section 12.5.3, and show how linear regression may be used to solve problems of
analysis of variance. The points are, first, it can be helpful conceptually to re-frame
ANOVA as regression and, second, statistical software typically does this.

ANOVA concerns the comparison of means among several groups, cotresponding
to experimental conditions. Let us consider two simple examples. Suppose X isthe
n % 1 vector of 1s

We then compute X7 X = nand X7¥ = > y; and find
& Xy =13

Therefore, the sample mean may be found by applying regression with this very
special version of the design matrix X.

4 On the other hand, the paper by Zelazo et al. presented an additional measure where the results
were more striking. On this subject, see Adolph (2002).
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Next, consider two groups of m values yi1.....Vim and y21, ..., Y2mo

corresponding to two experimental conditions, having sample means y1 and y2. We
define
i\

y=|m (13.10)

yal
\yZ.m

10
/10

and

10
X = 01 (13.11)

01

o

where the first column contains m rows of 1s followed by m rows of Os and the
second column contains » rows of Os followed by m rows of 1s. The first column
of X is an indicator variable, indicating membership in the first group, i.e., the ith
element of the first column of X is 1 if the ith element of y is in the first group and 1s
0 otherwise. The second column of X is an indicator variable indicating membership
in the second group. We compute

- (50)
=(53)

xTx)y 'xTy = ():" ) .
2

and

Thus, the sample means are obtained from multiple regression based on the design

e e AR D {13.11Y.In a similar manner we may use linear regression to compuie means

SR 1 expermental conditions: for each condition we introduce an additional
erim ’\'Gu\ across several Jm o : _

<Y f) (j"f)mdlcator variable as an additional column of the design matrix. The ANOVA from

this regression becomes the same as the ANOVA table used in 1-way ANOVA. In
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Table 13.6 Data from Frezza

; i : A 3 Non 5
t al. (1990) on first-pass Alcoholic Non-alcoholic Icoholic on-alcoholic

alcohol metabolism. Women Women Men Men
0.6 0.4 1.5 0.3
0.6 0.1 1.9 2.5
1.5 0.2 2.7 2.7
0.3 3.0 3.0
0.3 37 4.0
0.4 4.5
1.0 6.1
i1 9.5
1.2 123
1.3
1.6
1.8
2.0
2.5
2.9

13.3.1 Distribution-free nonparametric tests may be obtained
by replacing data values with their ranks.

To describe rank-based ANOVA we begin with an example.

Example 13.5 Alcohol metabolism among men and women Women seem to have
2 lower tolerance for alcohol than men, and are more prone (o develop alcohol-related
diseases. When men and women of the same size and history of drinking consume
equal amounts of alcohol, the alcohol in the bloodstream of the women tends to be
higher. In research by Frezza et al. (1990), the “first-pass’’ metabolism of alcohol
in the stomach was studied. The data shown in Table 13.6 come from 18 women _
and 14 men who volunteered to be studied. Each subject was given two doges of
3 g ethanol per kilogram of body weight, one orally and one intraven{cﬁfsﬁ/)an two §
different days. The difference in concentrations of alcohg} in the blood (at som
fixed time after administration), between the intravenﬁ)jsédﬁse and the oral dose, ;/“mw ]
provides a measure of first-pass metabolism in the digestive system and liver; thi AT en O\ S>
defines the response variable in the table, with units in mmols per liter per hour™~~.___
If first-pass metabolism werg more effective in men than women, the difference in /
levels following intravenfo’%and oral administration would tend to be higher among
men.

We begin by ignoring the distinction between alcoholic and non-alcoholic sub-
jects. This reduces the data to two groups: women and men. The data in Table 13.6
are strikingly skewed toward high values. One possibility would be transform the
data and apply the usual 7-test. Instead, we describe a rank-based analysis.

atravenov

-

SE——



13.3 Nonparametric Methods 385

13.3.2 Permutation and bootstrap tests may be used to test ANOVA
hypotheses.

Tn Section 11.2 we described how permutation and bootstrap tests may be used as
alternatives to the ¢-distribution for computing a p-value in order to test Hy: py = p2
based on data involving sample sizes nj and 2. The essential method was to (i) merge
the data, then (ii} repeatedly resample the n1 +np data values, putting them arbitrarily
into groups of size n and 1 to create pseudo-data, (iii} to each pseudo-data pair of
samples apply the z-statistic, and finally (iv) see what proportion of the pseudo-data
give ¢-statistic values greater than that observed in the real data. When the sampling
is done without replacement the method is a permutation test, and with replacement
it becomes a bootstrap test.

For one-way ANOVA the procedure is exactly analogous. For instance, with 3
conditions we would have data with sample sizes n1, n2, and n3; we would follow
step (i) then in (ii) resample the ny + ng -+ 13 data values and put them into groups
of sizes ny, m, n3; in (iii) we would get the F-statistic, and likewise in (iv) we would
see what proportion of the pseudo-data F values exceed the F obtained for the real
data.

Two-way ANOVA is more complicated because the two-way stracture must be
respected, but the concept is the same. See Manly (2007).

13.4 Causation, Randomization, and Observational Studies

13.4.1 Randomization eliminates effects of confounding factors.

Most studies aim to provide causal explanations of observed phenomena. To claim
causality, investigators must argue that alternative explanations of an observed rela-
tionship are implausible.

Example 13.6 IQ and breast milk Lucas et al. (1992) obtained IQ test scores from
300 children who had been premature infants and initially fed milk by a tube. The
children were 8 years old when they took the IQ test. The milk they had been fed by
tube was either breast milk or prepared formula, or some combination of the two. Of
interest was the relationship between IQ test scores and the proportion of milk the
infants received that was breast milk. The amount of breast milk a baby had drunk
was determined by whether or not the mother wished to feed the infant by breast
milk, and how much milk the mother was able to express. 1

In Example 13.6, immediately we must be aware of possible confounding factors.
The decision to administer the treatment, i.e., to use breast milk or not, was the .=

mother's; whatever might determine that decision and also be related to sysequent SU

10 would affect the observed relationship between 1Q and consnmption o /} breas

. ksezwﬁ\

S
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intensity could be collected into a proportion out of 50 that resulted in perception.
We fit the data by applying maximum likelihood estimation to the logistic regression
model in (8.43) and (8.44), This? is known as logistic regression. L]

Example 2.1 (continued from p. 378) In Section 13.2.2 we discussed ANOVA inter-
actions in the context of the study by Behrmann et al. (2002) on hemispatial neglect,
where the response was saccadic reaction time and one of the explanatory variables
was angle of the starting fixation point of the eyes away from “straight ahead.”
A second response variable of interest in that study was saccadic error, i.e., whether
the patient failed to execute the saccade within a given time window. Errors may
be coded as 0 and successful execution as 1. Behrmann et al. (2002) used logistic |
regression to analyze the error rate as a function of the same explanatory variables.
They found, for example, that the probability of error increased as eyes fixated further
to the right. []

From (14.1) and (14.2) together with normality, for a single explanatory variable
x, in linear regression we assume

Y, ~ NGy + B, 0°).

There are three problems in applying ordinary linear regression with binary responses
to obtain fitted probabilities: (i) a line won’t be constrained to (0, 1), (ii) the variances
are not equal, and (iii) the responses are not normal (unless we have proportions
among large samples, in which case the proportions would be binomial for large
n and thus would be approximately normal, as in Section5.2.2). The first problem,
illustrated in Fig. 8.9, is that the linear regression may not make sense beyond a limited i
range of x values: if y = a + bx and b > 0 then y must becorne infinitely large,
or small, as x does. In many data sets with dichotomous or proportional responses
there is a clear sigmoidal shape to the relationship with x. The second problem was
discussed in the simpler context of estimating a mean, in Section 8.1.3. There we

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ derived the best set of weights to be used for that problem, and showed that an
Q%\ E e%mator that omits weights can be very much more variable, effectively throwing

away a substantial portion of the data. Much more generally it is also possible to solve

2 The analysis of Hecht et al. (1942) was different, but refated. They wished to obtain the minimurm
number of quanta, », that would produce perception. Because quanta are considered to follow a
Poisson distribution, in the notation we used above, they took W ~ P(X) and ¢ = »n, with A, the
mean nuember of quanta falling on the retina, being proportional to the intensity. This latter statement
may be rewritten in the formlog A = By + x, with x again being the log intensity. Then ¥ = 1 {light
is perceived) if W > n which occurs with probability p = 1 —P(W <n—1) = 1 = F{n— 1|,
where F is the Poisson cdf. This is a latent-variable model for the proportional data (similar to but
different than the one on p. 399). It could be fitted by finding the MLE of fy, though Hecht et al.
apparently did the fitting by eye. Hecht et al. then determined the value of n that provided the best
fit. They concluded that a very small number of quanta sufficed to produce perception, but see also
Teich et al. (1982},
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factor of 2 the log odds thus increase by 3.22 & .72 (where 3.22 = {.301)(10.7) and
72 = (.301)(2.4)). This gives an approximate 95 % CI for the factor by which the
odds increase, when the intensity doubles, of exp(3.22 £ .72) = (12.2, 51.4).

We can go somewhat further by converting odds to the probability scale by

inverting
odds = —L—
I-p
to get
_ odds
P = T3 odds’

Let us pick p = .5, so that the odds are 1. If we increase the odds by a factor ranging
from 12.2 to 51.4 then the probability would go from .5 to somewhere between .92
and .98 (where .92 = 12.2/(1+12.2) and .98 = 51.4/(1+51.4)). Thus, if we begin
at the xsq intensity (where p = .5) and then double the intensity, we would obtain a
probability of perception between .92 and .98, with 95 % confidence. This kind of
calculation may help indicate what the fitted model implies. O

Logistic regression extends immediately to multiple explanatory variables: for m
variables x1, ..., xy we write

pi

1 —pi

1Og = }60 + )813511' + o B

The multiple logistic regression model may be written in the form

Y; ~ B(ni, pi)

Pi_ _ 8 (14.6)
1 —pi

log

where [ is the coefficient vector and x; is the 1 x (mn + 1) vector of values of the
several explanatory variables cortesponding the ith unit under study.

14.1.2 In logistic regression, ML is used to estimate
the regression coefficients and the likelihood
ratio test is used to assess evidence
of a logistic-linear trend with x.

B S

It is not hard to write down the likelihood function for logistic regression. The AR sieh /o

responses Y; are independent observations from B(n;, p;) distributions, so each pdf b
has the form (;;‘) PV (1 — p;i)* ¥ and the likelihood function is
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Table 14.1 Linear regression results for data from subject 8.S. in Bxampie 5.5.

Variable Coeflicients SE {ohs p-value
Intercept —1.78 .30 -5.9 0042
Intensity 1.20 16 7.5 0017

Table 14.2 Logistic regression results for data from subject 8.5, in Example 5.5.

Vartable Coefficients SE tobs p-value

Intercept —20.5 2.4 —8.6 p < 1079

Intensity 10.7 1.2 8.6, p<107°
N4

T g

LB, By = [ [ o' (0 = p)" ™
i=1

exp(By + B1x;)
1+ exp(Bo + Fix:)

pi=

where the second equation is substituted into the first. Standard statistical software
may be used to maximize this likelihood. The standard errors are obtained from the
observed information matrix, as described in Section 8.3.2.

For a single explanatory variable, the likelihood ratio test of Section 11.1.3 may
be used to test Hp : 1 = 0. More generally, if there are variables xi, ..., %, in
model 1 and additional variable xp11, . .., Xp4m in model 2, then the likelihood ratio
test may again be applied to test Hy: Gpp1 = -+ = Bpam = 0. The log likelihood
ratio has the form X

—2log LR = —2[log(L.1) — log(L,)]

where [,; is the maximum value of the likelihood under model i. For large samples,
under Hy, —2 log LR follows the x? distribution with m degrees of freedom.

In some software, the results are given in terms of “deviance.” The deviance for a
given model is —2 log(L). The null deviance is the deviance for the “intercept-only”
model, and we denote itby —2 log IAJ(O). Often, the deviance from the full fitted model
is called the residual deviance. In this terminology, the usual test of Hy: #1 = Ois
based on the difference between the null deviance and the residual deviance.

Example 5.5 (continued) The output from least-squares regression software is given
in Table 14.1. The F statistic in this case is the square of ¢, and gives the p = .0017,
as in Table 14.1. The results for logistic regression are given in Table 14.2, The null
deviance was 257.3 on 5 degrees of freedom and the residual deviance was 2.9 on 4
degrees of freedom. The difference in deviance is

null deviance — residual deviance = 257.3 — 2.9 = 256.4
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spike counts deviated from that predicted by a Poisson distribution, the deviation
was small (Ventura et al. 2002). Here we will use the data to illustrate a version of
ANOVA based on Poisson regression. Note that in Table 14.5 there are a total of 58
spike counts, from 58 trials. C

The problem of fitting counts is analogous to, though less extreme than, that
of fitting proportions. For proportions, the (0,1) range could make linear regression
clearly inappropriate. Counts have a range of (0, o). Because the ordinary regression
line is not constrained, it will eventually go negative. The simple solution is to use a
log transformation of the underlying mean. The usual Poisson regression model is

Yi~ P(A) (14.7)
Ai = exp(Bo + Brxi)- (14.8)

To interpret the model we use the log transformation:

the experimental condition (up, down, left, right) for the ith trial. The advantage
of viewing ANOVA as a special case of regression is apparent: we immediately
generalize Poisson ANOVA by applying our generalization of linear regression to
the Poisson regression model above.

14.1.5 In Poisson regression, ML is used to estimate coefficients
and the likelihood ratio test is used to examine trends.

As in logistic regression we use ML estimation and the likelihood ratio test (“analysis
of deviance™).

Example 14.1 (continued) We perform Poisson regression using indicator variables
as described in Section 13.2.1 to achieve an ANOVA-like model. Specifically, we
concatenate the data in Table 14.5 so that the counts form a 58 x 1 vector and define
a variable left to be 1 for all data corresponding to the left saccade direction and
0 otherwise, and similarly define vectors up and right. The results from ordinary
least-squares regression are shown in Table 14.6. The F-statistic was 18.76 on 3 and
34 degrees of freedom, giving p < 109, The Poisson regression output, shown in
Table 14.7 is similar in structure, Here the null Deviance was 149.8 on 57 degrees of
freedom and the residual Deviance was 92.5 on 54 degrees of freedom. The difference
in deviances is

null deviance - residual deviance = 149.8 — 92.5 = 57.3

e
e

log Ny = By + B v (
« 1

For example, in the SEF data of Example 14.1 + is the spike count and x; TR

| Yhe \\

o 4S5
[
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Fig. 14.3 Initiation of firing in a neuron from the basal ganglia: change-point and bootstrap
confidence intervals when a guadratic model is used for the post-change-point firing rate. Two
forms of approximate 95 % confidence intervals are shown. The first is the usual estimate +25E
interval. The second is the interval formed by the 025 and .975 quantiles among the bootstrap
samples. The latter typically performs somewhat better, in the sense of having coverage probability
closer to .95.
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14.2.2 Generalized nonlinear models may be fitted using maximum
likelihood.

Nonlinear relationships also arise in the presence of non-normal noise. We use the
term generalized nonlinear model to refer to a model in which the linear function
g(2) in (14.13) is replaced by a nonlinear function. We give two examples of non-
linear Poisson regression. The first involves determination of a change-point, and is
similar to Example 8.2 in Section 14.2.1.

Example 14.4 Onset latency in a basal ganglia neuron An unfortunate symptom

of Parkinson’s disease (PD) is muscular rigidity. This has been associated with in-

creased gain and inappropriate timing of the long latency component of the stretch

reflex, which is a muscular response to sudden perturbations of limb position. One

e -~ of the important components gf the stretch reflex is mediated by a trans-cortical
7 “T\ (05 eflex, probably via cortico?s‘pinal neurons in primary motor cortex that are sensi-
@\ o ive to kinesthetic input. To investigate the neural correlates of degradation in stretch
reflex, Dr. Robert Turner and colleagues at the University of Pittsburgh have recorded

neurons in primary motor cortex of monkeys before and after experimental produc-

tion of PD-like symptoms. One part of this line of work aims at characterizing

neuronal response Jatency following a limb perturbation (see Turner and DeLong

(2000)). Figure 14.3 displays a PSTH from one neuron prior to drug-induced PD

symptoms. The statistical problem is to identify the time at which the neuron begins
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i
I

02

intensity

Fig. 14.4 Spiking activity of a rat Hippocampal place cell during a free-foraging task in a circular
environment. Lejt Visualization of animal’s path and locations of spikes. Right Place field model
for this neuron, with parameters fit by the method of maximum likelihood.

based on a 2-dimensional bell-shaped curve. For this purpose of specifying the de-
pendence of spiking activity on location a normal pdf may be used. Let us take
Y, ~ P(A;), with ¢ signifying time, and then define

1 ol o - x(ty — py '
A= expia—o (x(1) — px ¥(0) —,u,y)( * *3’) ( ) . (14.21)

Txy 05

y(E) — iy

The explanatory variables in this model are x(f) and y(¢), the animal’s x and
y-position. The model parameters are (o, fix, ty, aﬁ, cr)%, Txy), Where (fiy, fiy) s the
center of the place field, exp « is the maximum firing intensity at that point, and al,

o2, and oxy express how the intensity drops off away from the center. Note that it is

v
the shape of the place field that is assumed normal, not the distribution of the spiking
activity. The right panel of Fig. 14.4 displays a fit of the place field to the data in the
left panel. We will discuss models of this sort when we discuss point processes in

Chapter 19, 0

14.2.3 In solving nonlinear optimization problems, good starting
values are important, and it can be helpful to
reparameterize.

. . .5
As in maximization of any likelihood, use of the numerical procedures require care.
Two important issues are the choice of initial values, and of parameterizatiort. Both
of these may be illustrated with the exponential model (14.15).

Hlustration: Expenential regression To fit the exponential model (14.15) a first
step is to reparameterized from ¢ to w using wy = log(#) and wz = £ so that the
expected values have the form




Chapter 15
Nonparametric Regression

At the beginning of Chapter 14 we said that modern regression applies models dis-
played in Eqs. (14.3) and (14.4):

B =fC, - Xpi) Qm ('ga,;,&) (3{(;%,&‘“5)& '

where fy, (y#) is some family of pdfs that depend on a parameter ¢, which is related

toxy, ..., Xp according to a function f(x1, ..., x). In Section 14.1 we discussed the

replacement of the normal assumption in (14.3) with binomial, Poisson, or other
exponential-family assumptions. In Section 14.2 we showed how the linear assump-

tion for f(x1, . . ., xp) in (14.4) may be replaced with a specified nonlinear modeling /
assumption, What if we are unable or unwilling to specify the form of the function /
Fxi, ..., x;)7 In this chapter we consider fitting general functions, which are cho- L

sen to provide flexibility for fitting purposes. This is the subject of nonparametric

regression. The terminology “nonparametric” refers to the absence of a specified o ol i)
parametric form, such as in (14?9. We focus almost exclusively on the simplest

case of a single explanatory variable x, and thus consider functions f(x). Here is an

example.

Example 15.1 Peak minus trough differences in response of an I'T neuron Some
neurons in the inferotemporal cortex (IT) of the macaque monkey respond to visual
stimuli by firing action potentials in a series of sharply defined bursts. Rollenhagen
and Olson (2005) found that displaying an object image in the presence of a different,
already-visible “flanker” image could enhance the strength of the oscillatory bursts.
Figure 15.1 displays data (in the form of PSTHs) from an IT neuron under two
conditions: in the first, a black patterned object was displayed as the stimulus for
600 ms; in the second condition, prior to the display of the stimulus a pair of blue
rectangles appeared (as a flanker image) and these remained illuminated while the
patterned-object stimulus was displayed. Overlaid on the PSTHs are fits obtained
by the nonparametric regression method BARS, which will be explained briefly in
Section 15.2.6. In part b of Fig. 15.1 the BARS fits are displayed together, to highlight

R. E. Kass et al., Analysis of Neural Data, 413
Springer Series in Statistics, DOI: 10.1007/978-1-4614-9602-1_15,
© Springer Science+Business Media New York 2014
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and the hat matrix is H = X(XTX)7'X" . In the case of linear regression we are able
to propagate uncertainty using the distribution of 3 (as we did, similarly, for logistic
regression in Chapter 9), but we could instead propagate the uncertainty from the
distributions of the fitted values X ﬁ: we simply need the variance

V(FGD f@), ... . foa))T) = HV(HT
= o?HH' . (15.2)

In the case of linear regression this simplifies because (as is easily checked) H T=§g
and HHT = H so that

V({F ), FG), . FaanT) = o?H.

For linear smoothers more generally, H #= HH T but, in the case of data for which
V(Y;) = o? with the ¥;s being independent of each other, the variance formula (15.2)
continues to hold, and it remains easy to apply propagation of uncertainty. In other
words, even though we do not have an estimated parameter vector, such as /3‘, from
which to compute quantities of interest and their SEs, we can often compute quantities
of interest directly from the fitted values, as in the peak minus trough example above,
and can then obtain SEs from the variance formula (15.2) together with the large-
sample result that the fitted values are approximately normally distributed. Similarly,
when linear smoothing methods extend to logistic or Poisson regression it again
remains easy to propagate uncertainty.

15.2 Basis Functions

Suppose f(x) is a continuous function on an interval {a, b). A famous theorem in
mathematical analysis, the Weierstrass Approximation Theorem, says that f (x) may

be approximated arbitrarily well by a polynomial of sufficiently high order. One
might therefore think that polynomials could be effective for curve ﬁtting./rW
we could try to fit an unknown function y = f(x) by instead fitting a p¢th order
polynomial

y = by + brx 4 bax* 4 -+ by,

which we can do using least squares, as described in Section12.5.4. It turns out
that polynomials do not perform as well as the theoretical result might suggest.
As illustrated in Fig. 15.2, even a twentieth-order polynomial can fail to represent
adequately a relatively well-behaved function in the presence of minimal noise. The
idea of replacing f(x) with a set of simple functions, however, is very powertful. In
the case of polynomials, for data (x;, y1), - .., (X, y») we could fit a quadratic using
(12.65) and (12.66) and regressing y = (¥1, -...¥a) on wy and w7, and we could
similarly define higher-order terms up to
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Tig. 15.2 Data simulated from function f(x) = sin(x) + Zcxp(—S{)xz) together with twentieth-
order polynomial fit (shown as line). Note that the polynomial is overfitting (under-smoothing) in
the relatively smooth regions of f(x), and under-fitting (over-smoothing) in the peak. (In the data
shown here, the noise standard deviation is 1/30 times the standard deviation of the function values.)

%
%
wp = | {15.3)
X0
and conld regress y = (y1, ..., yu) 00wy, Wa, ..., wp. This is an example of regres-

sion using basis functions.

The “basis function” terminology comes from the conception that the theoretical
functions f(x) that are, in principle, to be fitted make up an infinite-dimensional
vector space for which the chosen simple functions (such as polynomials), form' a
basis (see Section A9 of the Appendix). In practice we use data (x1, y1}, - ., (Xn, Yn)
to fit only the values (f(x1),f(x2), ..., f{x,)) and thus we have an n-dimensional

! 1n Section A9 of the Appendix we give the definition of a basis for R, which is an #-dimensional
vector space. The basis function terminology refers to an extension of this idea to infinitely many
dimensions: the functions f(x) on an interval {a, b] that satisfy

b
f Flxyde < o0

¢here the Lebesgue integral is used) form an infinite-dimensional vector space and if the functions
B;(x) form a basis then every f{x) may be written as

o0

) J@) = %{f (x).
[rs
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vector space for which n vectors, defined by the simple functions (such as those n
(12.65), {1 2.66), up through (15.3) with p = n), form a basis.

A prih order polypemial regression will work well for functions y = f(x) that
look a lot like pAR order polynomials. The inability of a 20th-order polynomial to
fit the function in Fig. 15.2 is an indication that the function is different than a 20th-
order polynomial. The challenge of nonparametric regression using basis functions
is to find simple alternatives to polynomials that are flexible enough to fit a variety
of functions with relatively few terms.

15.2.1 Splines may be used to represent complicated functions.

The problem in Fig. 15.2 is that the function f(x) is not very close to being a low-
order polynomial. In particular, it has a different form near x = 0 than it does
as the magnitude of x increases. A possible solution here, and in other problems,
is to glue together several pieces of polynomials. If the picces are joined in such
a way that the resulting function remains smooth, then it is called a spline. We
will discuss cubic splines. Let [a, b] be an interval and suppose we have values
£,6,... &, wherea < § < & < - < ¢ < b. There are then p + 2 sub-
intervals [a, £11, 16, &0, - L [E-1, §p)s [€p, B A function f(x) on [a, b] is a cubic
spline with knots €1, &2, . .., & 1 f(x) is a cubic polynomial on each of the p+ 2 sub-
intervals defined by the knots such that f (x) is continuous and its first two derivatives
(%), and f”(x) are also continuous. This restriction of continuity, and continuity
of derivative, applies at the knots; in between the knots, cach cubic polynomial is
already continuous with continuous derivatives. A cubic spline is shown in Fig. 15.3,
and the result of fitting a cubic spline to the data of Fig. 15.2 is shown in Fig. 15.4.
In contrast to the 20th order polynomial in Fig. 15.2, the cubic spline in Fig. 15.4 fits
the data remarkably well.

15.2.2 Splines may be fit to data using linear models.

It is easy to define a cubic spline having knots at &1, &2, ..., &p. Let (x — &)y be
equal to x ~ & for x > & and 0 otherwise. Then the function

f®:%+ﬁm+@f+&ﬁ
b Balr = &3 4 Bsr— €3+ fosale — &5 (15.4)

is twice contimuously differentiable, and is a cubic polynomial on each segment
[, €411 Furthermore, with f (x) defined by (15.4),

Y= f(x) + &
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! !
T ' t * 1

s & £ Es T

Fig. 153 A cubic spline with three knots, on an interval [0, 7). The function f(x) depicted here
is made up of distinct cubic polynomials (cubic polynomials with different coefficients} on each

sub-interval {0, £11, [£1, &21, [€2. €3], [£3, 1.

Fig. 15.4 A cubic spline fit to the data from Fig. 15.2. The spline has knots (£1.£2,...,&7) =
(—1.8,-4,-2,0,.2,.4,18).

becomes an instance of the usual linear regression model (assuming ¢; ~ N (0, a?),
independently), so that regression software may be used to obtain spline-based curve
fitting. Specifically, we define x; = x, xp = 2 x3 = X%, x4 = (x — f;_)3,
cn Xpy3 = (X — gp)i and then regress Y on x1,x2, ..., Xp+3. 10 be concrete,
let us take a simple special case. Suppose we have 7 data values yi,...,y7
observed at 7 x Valuesf@W(—?ﬁ, -2,~1,0,1,2,3) and we want
to fit a spline with knots at §; = —1 and & = 1. Then we define y =
Oty oooydT, 1 = (=3,-2,-1,0, 1,237, 52 = (9,4,1,0,1,4,97, x3 =
(=27, —8, 1,0, 1, 8, 27)7. The variables x{, x, x3 represent x, x*, x*. We continue
by defining x4 = (0,0, 0, 1,8,27,647 and xs = (0,0, 0,0,0, 1, 87, which repre-
sent (x — & ;)1 {which takes the value O forx < —1)and (x - fz)i {which takes the
value O for x < 1). Having defined these variables we regress y on xj, X2, X3, X4, Xs.

values (-3,2,1,0, if@
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normalized voltage

0 200 400 600 800 1000
time (ms}

Fig. 15.5 LFP and smoothed version representing slowly-varying trend. A 1s sample of data is
shown together with a smooth fit using natural splines.

power basis and B-spline basis each have p -+ 4 free parameters. Due to the addi-
tional constraints at each end of the range of x, the natural spline basis has p + 2 free
parameters.

Example 15.2 Local field potential in primary visual cortex Kelly et al. (2010)
examined the activity of multiple, simultaneoﬁ)%wrded neurons in primary visual

e
cortex in response to visual stimuli under angéstAésia. As we noted in Example 2.2{ (N} S\V\GS | OK./)
,,‘/”./

under anesthesia the EEG displays strong delta range (1-4 Hz) wave-like activity. It
is also commeon to see even lower frequency activity (less than 1 Hz), often called
“slow waves.” the effects of which are visible in Fig.2.2. This activity appears in
local field potential (LFP) recordings as well. In the data analyzed by Kelly et al.,
waves of firing activity were observed across the population of recorded neurons,
and these were correlated with the waves of activity in the LFP. A short snippet of
LEP is displayed in Fig. 15.5. In Chapter 18 we will examine the oscillatory content
of this sample of the LFP. A preliminary step, discussed on p. 517, is to remove any
slow trends in the data. Spline-based regression is useful for this purpose. A fitbased
on the natural-spline basis using knots at time points 200, 400, 600, 800 is shown in
Fig.15.5. O

15.2.3 Splines are also easy to use in generalized linear models.

Splines may also be used with logistic regression or Poisson regression, or other
generalized regression models. When splines are used in regression models, they are
often called regression splines. Standard statistical software usually includes options
for using regression splines in generalized linear models.

e

e
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Fig, 15.7 Data from the test function of Fig. 15.2, but with more noise, as in Fig. 15.6, together
with smoothing spline fit (dorted line) and BARS fit (solid line).

or intervals for quantities of interest. Figure 15.7 compares BARS and smoothing
spline fits to the data from Fig. 15.6.

15.2.7 Spline smoothing may be used with multiple
explanatory variables.

At the beginning of this chapter we recalled Eqs. (14.3) and (14.4), which we had
used to define modern regression. In Section 15.2.2 we showed how splines are used”

to define a function f (x) in ordinary linear regresqgfﬁ)'flia/n,d in Section 15.2.3 we ga (\QSPQSTD iQ ﬂ )

the extension to binomial and Poisson regression. Those sections involved a single™
explanatory variable x. With p variables xy, ..., xp it is too difficult to fit a function

f(xi, ..., xp) in full generality: there are too many possible ways that the variables

may intel act in defining f(x1, ..., xp). However, a useful way to proceed is to make
the strong assumption of an addmve form:

}4
Fai x5y = filg). (15.6)

With this restriction, spline smoothing (or alternative smoothing methods) may be
applied to each variable successively in order to fit the model

r
Y= £+ e (15.7)

J=l

-,

£

-
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under the usval assumptions for linear regression. More specifically, an iterative
algorithm may be used? to find the least-squares fit when a spline basis represents
each function f;(x;).

Example 15.3 Decoding natural images from V1 fMRI Kay et al. (2008) showed
that natural images could be identified with above-chance accuracy from V1 activity
picked up in fMRI responses. Vu et al. (2011) re-analyzed the data and showed how
decoding accuracy could be improved by 30 % when additive models of the general
form (15.7) were used. Kay et al. had applied a model of fMRI activity ina V1 voxel
based on Gabor wavelet filters. Briefly, as shown in Fig. 15.8, a Gabor wavelet is a
product of a sinusoidal factor and a factor based on a Gaussian (normal) pdfl (see
Section 15.2.8). The Gaussian factor is similar to that used in the hippocampal place
cell model in (14.21). It has the effect of producing a response, for a particular voxel,
based only on a small region in the visual image. The sinusoidal factor produces a
central peak together with neighboring troughs that represent lateral inhibition, as i3
characteristic of the response of V1 neurons. The response due to each filter also has
a particular orientation. The activity of each voxel in response 10 a particular image
was regressed on filtered representations of the image. A set of 48 Gabor filters at 8
orientations and 6 spatial scales, as shown in Fig. 15.8, was used. Each image in the
stimulus set produced a set of magnitudes x;(v), withj = 1, ..., 48, corresponding to
the 48 filters, for each voxel v. These were the explanatory variables in the regression
model, while the fMRI voxel activity was the response. Due to visible nonlinearities,
Kay et al. performed a version of least squares based on | /xi(v). Vu et al. found
substantial nonlinearity in the residuals from the model of Kay et al., see Fig. 15.9.
They then applied a model of the form (15.7) based on splines having 9 knots placed
at the 10th, 20th, ..., 90th percentiles of each explanatory variable, Because they
had relatively large numbers of regression variables for each voxel, they applied a
version of L1 penalized regression (see p. 358). The resulting additive model greatly
improved the residual plots, see* Fig. 15.10. Vu et al. also showed that the additive ——,
model is more sensitive to weak stimuli, and this has the effect of br%iening voxe@/
tuning in space, frequency, and contrast. This, presumably, was the main source of
improved performance. (!

Lo -

Equation (14.13) may be generalized to

Yi ~ fr, vilni)
p
glu) = D_fi6) (15.8)
=1

3 One method, known as backfitting, cycles through the variables x;, using smoothing {here, spline
smoothing) to fit the residuals from a regression on all other vaxiables,

4 There remain upward trends in the residual plots. This is due to the penalized fitting, which induces
correlation of residuals and fitted values.
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15.3.3 Theoretical considerations lead to bandwidth
recommendations for linear smoothers.

Recall, from Section 8.1.1, that MSE = Bias® + Variance. A minimal requirement
of an estimator, in large samples, is that its bias and variance vanish (as n — 00).
Consider estimation of f(x) at the single point x. A linear smoother is, at x, a linear
combination of the data response values y;, so that the estimator may be written in
the form

flo = Z wi (O

where w;(x) emphasizes that the weights are determined for each x. We want
E(f(x)) — f(x) (15.15)

and )
V{f{x))— 0. (15.16)

Because E(Y)) = f{x;) we also have

Ef () = D wilof ()

i=1

so that the bias vanishes, as stated in (15.15), if the weights w;(x) become concen-
trated near x and the function f (x) is smooth. For the weights to become concentrated

it is sufficient that ~¥; { }
e S e #
Z ~ 0%wi(x) = 0. - (\ }{) T

i=1

Assuming V(Y;) = o2 (or, at least, that the variances do not vary rapidly), the

variance vanishes if
7
Z w,;(x)2 — 0.

f=}

Conditions like these on the weights, to guarantee (15.15) and (15.16), need to be
assumed by any large-sample theoretical justification of a linear smoothing method.
An explicit expression for the MSE of kernel estimators was given by Gasser and
Muller (1984). This allows a theoretical bias versus variance trade-off, i.¢., a formula
for bandwidih selection as a function of n.
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a
v
Details: Taking logs in Eq.(16.6) and inserting oz according io
(16.10}, we have

1 fX=0\*> 1[0 pu\*
10gf(9|x)=w§ (xw'c ) ——(9 ,u,,r) + constant

2 Tr

(16.10)

oF =

where “constant” refers to all terms that are constant in €. We then
note that

1 1 too
— (0 =% + = (0 = ) = (=5 + =58 — ptpos)® + constant
O'i GW o= a.

X n

where g0 18 given by (16.8). Therefore, we have

1 1
logf(Bix) = (?‘—2 + ﬁ)(e - ,quOS,)Z -+ constant

x m

and, exponentiating,

1 1
F(8lx) « exp ((O‘_% + G_—%)(G - !Lposr)z)

which shows the posterior is normal with mean g, and variance
o‘ﬁm given by (16.9). 2

Equation (16.8) has a deeply useful interpretation. Let us rewrite it in the form
Hposr = WX+ (1 —w)p (16.11)

where

In the special case n = 1 we write x = x1 and get
Hpost = wx + (1 — wp. (16.12)

Equations (16.11) and (16.12) say that the posterior mean is a weighted combination
of the MLE and the prior mean, with the weights determined by the relative precision
(the inverse of the variance) of data and prior. In (16.11), as the precision in the data
increases relative to the prior (i.e., as crfT /cr% increases), w increases, more weight is
placed on X, and the posterior mean becomes nearly the same as X. Intuitively, when
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the weight w is large, the data contribute more knowledge than the prior, and so the
posterior is centered near the data value X. When the data are imprecise relative to
the prior (i.e., when o2/ O’% is small), more weight is placed on the prior mean, so that
the posterior mean is pulled away from ¥ and toward the prior mean. The posterior
mean is often said to shrink the value ¥ toward p, particularly when p2 = 0 (so that
he magifiitude of pog is smaller than that of X). In this terminology, the amount

" of shrinkage is determined by 1 — w. In Section 16.2.3 we discuss the connection

between the use of “shrinkage” in this context and in regression (see p. 357).

Example 16.1 Sensorimotor learning Kording and Wolpert (2004) designed an
experiment in which visual input could be combined with a learned prior distribution
in order to produce a finger movement. Subjects moved their index finger from a
starting location toward a target, which was represented on a computer monitor. Half-
way through the finger movement they were given visual feedback as to where their
finger was at that moment (a cursor was shown briefly on the monitor} but, relative
to a straight path between starting location and target, it was (a) cﬁfﬁ?ted by nois
and (b) displaced to the right. The noisy location was indicated by a cloud of points
drawn from a spherical bivariate normal distribution with one of 4 possible values
of standard deviation (the standard deviation here refers to the standard deviation
of each marginal distribution determined by the bivariate normal). This standard
deviation would correspond to o3 in Eqs.(16.8) and (16.9), and the center of the
displayed cloud of points would correspond to ¥. The size of the displacement varied
with each trial, and was drawn from another normal distribution. The mean and
standard deviation of this displacement distribution would correspond to jir and oy
in Egs. (16.8) and (16.9). In other words, the displacement distribution formed a prior
and the center of the cloud of points (together with the standard deviation) became
the subject’s input data for each trial.

Subjects were given 1,000 training trials during which they could learn the prior
displacement distribution. When queried afterwards they had no awareness of the
displacement. The authors used an additional 1,000 trials to collect experimental
data about the final location of each subject’s finger. The authors showed that the
displacement of the final location from the target was predicted well by Egs.(16.8)
and (16.9). In other words, in attempting to reach the target, subjects combined
the visual input information with their prior knowledge of the displacement, at least
approximately, as if their nervous system were computing a posterior mean according
to Eqs. (16.8) and (16.9). O

Formulas analogous to Eq. (16.8) also hold for other exponential families with
conjugate priors. For example, in the binomial setting let us reparameterize the
Beta(a, 3) distribution by defining

P (16.13)
a+

v=ua+p. (16.14)

o>
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so that (16.20) holds due to (16.19) (by an application of Sluts% theoren{ 5|

Because the observed information increases as n — oo, the loglikelihood func

tion becomes more highly peaked about its maximum as n — oo. Furthermore, the
likelihood function may be approximated by the normal pdf found by exponentiating
the right-hand side of (16.16), which has standard deviation SE = Iogs (@)“’i/ 2 (the
standard error associated with the MLE). From Eq. (16.20), this standard deviation
is decreasing as 1//n. Therefore the width of the peak in the likelihood function is
decreasing at the rate of 1/./n. We can write the values of ¢ for which the likelihood
is substantial in the form

(ap, by) = (B — ¢ - SE, § + ¢ - SE) (16.21)

where we take ¢ to be a positive constant, such as ¢ = 4.

Finally, we consider the contribution of the prior to the posterior as n — 0. As
in (16.19), the posterior pdf is a normalized product of the likelihood fonction and
prior pdf. While the likelihood function becomes increasingly close to the form of
a normal pdf, with standard deviation decreasing as 1/ J/n, the prior pdf w(f) is a
fixed function that does not change with ». The intervals in (16.21) will have engths
b, — a, that decrease as 1/ /n and, for § in these intervals, when # is large the value
of § — 6§ will be small so that we get

(@) ~ 1(6). . . (622)

In other words, for values “within the peak” of the loglikeliﬁﬁod/fhnction, the prior
is approximately constant. Therefore, (16.16) gives us (16.1%.) and the posterior
becomes concentrated near & with an approximately normal form, as in (16.18). We
have sketched the argument in the scalar case, but the steps are tﬁ‘e\same when € is
a vectof. T

The approximate N (é, Io Bs(é)—l) distribution of the posterior not onﬁ%"’g"ives.an_,_r_r_r

easy way to compuie posterior probabilities, for large samples, but it also provides
a very nice mathematical expression of one of the guiding principles of science:
any two investigators who start with differing beliefs (in the form of two different
priors 71 (8) and w7(8)), will, with sufficiently much data, ‘come to agreement (their
posterior distributions will be essentially the same).

16.1.6 Powerful methods exist for computing
posterior distributions.

Bayesian inference. Bayesian methods have become indispenﬁg\ ¢ 1n the analysis pf
neural data mainly because (i) inferences agree reasonably well with those base
on ML estimation (due to the result outlined in Section 16.1 .5), (ii) sometimes there

In our introduction to this chapter we reviewed briefly the concegtual appeal %\

in

e,

e
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is available structure that can be formalized as part of a prior specification (se¢
Section 16.2), and (iii) in many complicated statistical models there are general com-
putational tools for computing posteriors. In this section we sketch the essential ideas
behind the main such computational tool, posterior simulation.

We have already, in Chapter 9, described the great utility of simulation methods in
statistical inference. In posterior simulation a sequence g9, ., 8D of observations
from the posterior distribution is generated, and inference is based on the methods
outlined in our discussion of simulation-based propagation of uncertainty (p.225).
For example, to compute the probability in

b
Pla < 0 < blx) = f F(B))do (16.23)

we could use

N
P(a<|9<bix)%—l
G

where Ny is the number of 68 such that a < 6@ < b, Similarly, if ¢ — f(8) for
some function £ (x) we could compute probabilities involving ¢ (again, as on p. 225),
as

N
P(c<q‘)<dix)%62

where we let W@ = £(6®) and N; is the number of W& such that ¢ < W% < d.
This kind of computation is used in the following example.

Example 16.2 Methylphenidate-Induced Emergence from General Anesthesia
‘When general anesthesia is administered for surgery, or for an invasive diagnostic pro-
cedure, patients recover by resting until the anesthesia’s effects wear off. As an alter- . \O \ \\3
pative, Soltet al. (2011) considered the possiblity that methylphenidate might mducé lQ 65510\
emergence from general ancsthesia. Methylphenidate (Ritalin) is widely used to treat \»\_._m__ﬂ..._ o
Attention Deficit Hyperactivity Disorder (ADHD), and acts primarily by inhibiting ;
dopamine and norepinephrine reuptake. But dopamine and norepinephrine can also
promote arousal. The authors applied isoflurane anesthesia to rats at a dose sufficient
to maintain them in a supine position (lying down) for 40min. Five minutes after
establishing their anesthetized state (from an equilibration procgdure) the ammalé

)

________ \

\ \
Q\j\ .w; Ven oy Slj/

were given one of three doses of methylphenidate mtravenfﬁﬁg_l'y ranging from
maximum of 5 mg/kg to a minimum of .05 mg/kg. At the maximum dose, 12 out o
12 rats regained their upright position and made purposeful movements within 3('s of
drug administration. At the minimum dose, 0 out of 6 regained their upright position
within 30min. Apparently, 5 mg/kg of methylphenidate is sufficient to remove the
immobilizing effects of isoflurane-induced anesthesia in rats. (At the intermediate
dose of .5mg/kg 11 out of 12 regained their upright position.)

To evaluate the strength of this evidence, 12/12 versus 0/6, the authors considered
the binomial model X7 ~ B(12,p;) and Xo ~ B(6, p2). introduced independent
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uniform priors on p; and p» as in Example 1.4 on p. 174, and computed the posterior
probability P(p1 > p2|X; = 12, X2 = 0). This may be done very easily by pos-
terior simulation: the two posterior distributions on py and p; are Beta(13, 13) and
Beta(1,7), and they are independent. (It is easy to check that if Xy and X» are inde-
pendent, and the prior distributions on pq and p; are independent, then the posterior
distributions on p and p; are independent.) We therefore do the following:

1. Draw G = 10, 000 cbservations from a Beta(13, 13) distribution and put them
in a vector A.

2. Draw G = 10, 000 observations from a Bera(1, 7) distribution and put them in
a vector B.

3. Compute the number of components i for which Al[#] > B{i], and divide by G.
This is, appreximately, the desired postertor probability.

Performing the calculation gives P(py > p2|X; = 12, X = 0) = .986. The authors
concluded that methylphenidate actively induces emergence from isoflurane anes-
thesia. We re-evaluate this evidence using Bayes factors on p.478. O

e

In Section 16.1.2 we noted that posterior probabilities may be computed easil
when conjugate priors are used, and Example 16.2 made use of posterior simulation
with conjugate beta posterior distributions. As soon as we leave conjugacy, numerical
difficulties become apparent. Even in the simple case of estimating a normal mean

0 from a sample X1, ..., X, with X; ~ N(f, 0%) and o known, if we take the

prior to be a non-normal probability distribution on (—00, 00), the posterior pdf

becomes intractable, in the sense that fke-produel L(§)7(#) in Eq.(16.i)m€prﬂﬁﬁﬂf’ has o

form, and we can not evaluate analytically the integrals needed to compute posterior pon ol

probabilities such as that in (16.23). The usual approach to solving this problem is
to apply posterior simulation based on Markov chain Monte Carlo (MCMC).

The nemenclature is descriptive of the idea behind MCMC:; “Monte Carlo” refers
to’ simulation methods, and “Markov chain Monte Carlo” indicates that the approach
is based on Markov chains. To explain, we begin by returning to an exarple.

Example 3.5 (Continued, see p. 58) In our discussion of Colquhoun and Sakman’s
results on ion channel openings we noted from Fig. 3.8, panel B, the good fit of an
exponential distribution to the histogram of open durations, when there was only one
opening in an activation burst. The major purpose of the paper was to demonstrate
the existence of activation bursts. Let us, however, ignore bursts and imagine an
ideal ion channel that opens and closes with open and closed durations governed by
exponential distributions. The defining property of exponential distributions is that
they are memoryless (see the theorem on p. 120). Now consider an ion channel that
is observed to be either open or closed for a sequence of discrete time values, e.g.,
every ms for 10min, and let X, = 1 if it is open at time 7 and X, = 0 if it is closed
at time . We refer to the channel’s state at time £ as the value of X, with 1 or 0

7 When computer-based simulation methods were first being used, Monte Carlo was the site of a
famous gambling establishment, which was frequented by the uncle of one of the developers of
these methods. See Metropolis (1987},
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signifying either open or closed. If we assume® the ion channel is memoryless, then

its state at time 7 + 1 will depend on its state at time 7, but not on any of the preceding =~
states prior to time 7. There are then four possiblities: the channel can be closed at
time ¢ and stay closed at ¢ + I, it can be closed at 7 and be open at 7 -+ 1, it can be
open at ¢ and close at 1 + 1, or it can be open at ¢ and stay open at ¢ + 1. The four ‘i
possibilities have conditional probabilities given by P(X, .1 = jiX; = i) where i and

J can take values O or 1, ]

Abstractmg from this example, suppose we have a sequence of random variables
X1,Xa, ..., X,, ..., which take values 0 and 1, and suppose further that ?( ?\#:H }{

m%w..w-‘

P(Xre1|X1, X2, 00 Xp) = P{X, jXr (16.24)
and that these conditional probabilities are time-invariant in the sense that
PXp1 =jlX = 1) = P(Xsp1 = jIXy = 1)

for all s,¢t = 0,1,2,.... Then the sequence X, X2, ..., X;, ... 1s said to form a
two-state Markov chain having transition probabilities P(X,+1 = jlX; = i), which
we write as

Pj=PXe1 =jIXe = ). (16:25)

Let us note that (16.25) implies

P(Xyp1 =0) = P(X; = 0)Ppo + P(X; = DPyy (16.26)
PXip1 =D = P& =0)Por + PG = DP11. (16.27)

The definition extends immediately to the case of m states, for m an integer with
m = 2.

The key property of a Markov chain is its lack of memory: the probability of
being in state j at time ¢ + | depends only on the state of the chain at time 7. Under
some mild conditions® it is possible to say something about the long-run behavior
of the chain. In the case of the ideal ion channel considered above, we may ask
for the probability that the channel is open at time ¢ = 600,000, corresponding to
10 min after the commencement of observation. In principle this probability depends
on the initial condition, whether the channel was open at time ¢ == 1. However,
because the state at time ¢ == 600,000 is the result of 599,999 random draws from the .~ l‘_ .

distributions given by the transition probabilities (16.25) the influence of the ix}pt\i { A

{
§ Because we are assuming discrete time the memoryless distribution of durations becomes geo-

metric rather than exponential, as we noted on p, 120.

9 The chain must be irreducible (if the chain is in state i at time ¢ itis possible for it to get Lo state j in

the future), aperiodic (the chain does not cycle deterministically through the states), and recurrent

(if the chain is in state i at time 1 it will eventually return to state i in the future}, see for example,
Ross (1996, Theorem 4.3.3).
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(because the Qy; that appear on the right-hand side of (16.31) are
simply those that appear on the left-hand side when the inequality is
reversed). We then solve for the values of a; that produce equality in
{16.31). That is, we write

Poo (@i = Poc (N 0ji

and solve for ey;:
P oo(]) Q]z
Gy =
" Pl 0y

Note that o7 < 1 if and only if (16.31) holds.

We have now produced a specification of the transition probabilities
required for a chain having the target distribution P as stationary
distribution: if (16.31) holds, set Py; = (j;ay;, where v are defined by
(16.32), otherwise set Py = ;. Tocreate a chain with these transition
probabilities is easy. Suppose the chain is in state i. If we accept
the candidate (which is generated from the chain having transition
probabilities {Q;}) with probability c;;, then the probability of moving
to state j will be Qv Thus, we use the following scheme:

(16.32)

define a;by(16.32) {}/ o~
if aj <1 thenaccept the candididate with probability Q’:J

otherwise accept the candidate.

This is the Metropolis-Hastings algorithm. O

16.2 Latent Variables

When we introduced the concept of random variable (on p.46) we were careful to
distinguish the mathematical object from the data: we said that random variables and
their probability distributions live in the theoretical world of mathematics while data
live in the real world of observations, Random variables that are theoretical coun-
terparts of observed data are sometimes called observable. But it is also possible
to insert into a statistical model random variables that affect the distribution of the
observable random variables without themselves representing data, instead they rep-
resent unobserved, hypothetical quantities, Such unobservable random variables are
called!? latent variables. Models that incorporate latent variables can be powerful

3 The noise random variable ¢ in the regression model {12.1) is unobservable, but would not
typically be called latent. To exclude such cases 4 random variable could be called latent only if
it can not be written it terms of observable random variables. Thus, under this definition, because
(12.1) implies &; = ¥; — f(x;), & would not be a latent variable. Sec Bollen (2002).
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Fig. 16.1 First 3s of spikes recorded over about 30s in vitro, from a goldfish retinal ganglioan These Oa¥o
nenron, Data from Levine (1991), fumished by Satish lyengar; see Tyengar and Liao (1997), ?%m‘g A e diseussed W

Example 19.1.

and intuitive ways to describe variation in the data, We discussed the mixture-of-
two-Gaussians model on p.216, and we will return to mixtures of Gaussians in
Section 17.4.3. Here is another example.

Example 16.3 Burst Detection from spike trains In many contexts neurons exhibit
burstiness, meaning that action potentials (also called “spikes,” see p.3), appear
across time in small clusters, or bursts. For instance, burstiness of dopamine neurons
in the midbrain is believed to be a functionally relevant signal indicating reward and
goal-directed behavior (see Grace et al. (2007)). In the analysis of bursting neural
spike trains, the epochs during which the neuron is bursting must somehow be inferred
from the data. In Fig. 16.1, for example, due to the inherently erratic nature of the
spiking, it is not always obvious whether the neuron is in a burst or not, or where a
burst begins and ends.

To provide an algorithim together with statistical inferences, Tokdar et al. (2010)
described bursty neurons by introducing a latent binary variable, which was 1 when
the neuron was bursting and 0 when it was not bursting. Let us assume the rccording
time to occur in discrete steps ¢ = 1, 2, ..., T, and define the random variable ¥, be 1
if a spike occurs at time ¢ and O otherwise. Tokdar et al. discussed several alternative
models. The simplest uses latent variables X; that take the value 1 if the neuron is
bursting at time ¢ and O if non-bursting, and assumes that ¥, has a Bernoulli pdf
with mean #; if X; = 1 and with mean 8y if X; = 0. Here, 8 and &y represent the
firing rates of the neuron when bursting and when not bursting, and if 85 is much
larger than 8 the neuron will tend to fire in rapid succession when X; = 1, compared
with its slower rate when X, = 0. This describes the tendency to produce bursts. By
introducing probability distributions for the latent variables X;, and then estimating
the value of each X;, it is possible to infer where in time the bursts occurred. 4O

In most statistical models the distribution of the random variables representing
the data depends on some unknown parameters. In the model cited in Example 16.3
the distributions of the random variables representing the data depended on unknown
parameters, but they also depended on the latent variables. The point is that the latent

-variables themselves followed probability distributions. In other words, one set of

probability distributions—those describing the variation in the data-—depended on
random variables following another set of probability distributions, which described

14 To speed computation Tokdar et al. chose to work with the inter-spike intervals instead of the
variables ¥, we have defined here.

ok are discussed m EX cm\gia. kﬁmj
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variation among certain theoretically interesting but unobserved quantities, namely
the bursting or non-bursting status of the neuron within each ISL.

The parameters in statistical models are usually fixed coefficients (though they
are typically unknown, and therefore estimated from the data). In Section 16.2.1 we
describe models in which the parameters become random vatiables, and thus latent
variables. We then briefly re-interpret penalized regression in Section 16.2.3 and
return to the general structure underlying Example 16.3 in Section 16.2.4.

16.2.1 Hierarchical models produce estimates of related quantities
that are pulled toward each other.

Nearly all the statistical models we have considered'® begin with a parameterized
family of probability densities f(x|¢), and the first statistical problem is to determine
from the data x the likely values of the parameter . Sometimes there is an obvious
source of variability among values of the parameter 8, as when & counld vary from
subject-to-subject, or neuron-to-neuron, etc. In such cases we may introduce a sec-
ond layer into the statistical model by considering a family of densities f(#|\). For
generality, we will refer to individual subjects or individual neurons, etc., as units. In
other words, we will say that we are interested in the variation of some parameter
across units. In neuroimaging, for example, we might have task-related effects at par-
ticular voxels whose magnitude varies across subjects, and these could be assumed
to follow some probability distribution. In analyzing neural responses, the way a
particular measure of neural activity varies across neurons may be of interest, and
might be assumed to follow a given probability distribution. In these situations we
introduce both a probability density f{x|#) for the data given a parameter vector ¢
and a probability density £(#|A) for ¢ that itself depends on a parameter A. Such a
specification is called a two-stage!® hierarchical model.

Example 12.3 (continued from p.331) as described previously, Behseta et
considered spike counts from 54 neurons during peﬁomangwf%%%erial@rder ye-
movement task, and the authors computed a rank order selectivity index

\Oef‘got’vmom ce )

\-\—- g o

(s —f1)
(s + 1)

rank =

where f; and f3 were the mean firing rates measured at the times of the first and third
saccades respectively, the mean being taken across trials. As part of the analysis,
the rank selectivity indices across neurons were considered to follow a normal dis-
tribution. Let X; represent Irang for neuron i. Behseta et al. assumed a model of the

15 Nonparametric methods (Section 13.3) are based on statistical models of a more general form
that do not depend on a finite-dimensional parameter vector.

' In principle this process can continue, with A distributed according to a family of densities, and
so o, but they do not arise very often in practice.
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added that Behseta et al. developed a method to correct for the attenuation and when
they applied it to these data the new estimate of correlation was .82, which was more
reasonable. We now provide some details about the method.

On p. 459 we let X; be the random variable representing Irank for the ith neuron and
we said that Behseta et al. used the normal hierarchical model (16.33) and (16.34).
Let us reformulate (16.33) by writing

Xi=0+¢
e ~ N(0, %)

and then let ¥; represent the value of fewarg for the ith neuron and write

Yi=&+ 0
d; ~ N(0,03).

Here §; and &; represent the theoretical values of Ziun and Jrewasa Tor neuron i that
would be obtained from noiseless measurements (or from infinitely many trials).
The quantities o, and o, are the standard errors associated with x; and y; (they were
obtained by propagation of uncertainty from the spike count means). Taking ¢; and
§; to be independent we may combine the assumptions on X; and ¥; by saying these
random variables are bivariate normal according to

(?) ~ N(m;, Vi), (16.43)

. ' 20
m; == (g:) anigf,; = (06" ) ) .
0

Bquation (16.43} is the first stage of a bivariate normal hierarchical model. Behseta
et al. wrote the second stage in the form

where

(g") ~ N, ), (16.44)

i

2
,u:(’ug) andE:( %9 '05‘56290&3)
e ey

with g, pe, 0“5, and ag being the means and the variances of 4; and §; respectively. The
quantity of interest is pgg, which represents the correlation between the theoretical
values &; and &;. Let us refer back to the theorem on attenuation of the correlation on
p. 330. In the notation used here, that theorem says that if pg: > O then

where

PXY < poc-
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where P(H,) = | — P(Hg). When this formula is applied to statistical models under
Hy and Ha, as in Section 11,1.6, P{data|Hy) becomes a discrete or continuous pdf
for a random vector X, so we substitute

Jo(x} = P(data|Hy) an}é‘i (x) = P(data|Hy),
where we are using the subscript 1 to signify the alternative, and we write

fo(x)P(Ho)
Ffo(OP(HY) +A)P(Ha)

P(Holx) = (16.62)

As we pointed out in Section11.1.6, p.297, the pricr probability F(Hp) may be
removed by considering instead the Bayes factor, which is the ratio of posterior odds

to prior odds, ‘
P(Hplx)  P(Hop)

BFg = - 16.63
0= bR PUL) (16.69
and from
P(Holx) _ fox)P(Hy)
P(Halxy  fitx)P(Ha}
we have e
BFyy =0 16.64
01 e ( )

The subscript on BFp; indicates that we are considering the Bayes factor in favor of
Hj. Its reciprocal, BF1p, would be the Bayes factor in favor of fy. Tn Section 16.3.1
we describe the way the Bayes factor quantifies evidence in favor of a hypothesis,
in Section 16.3.2 we review briefly the contribution of Bayes factors and posterior
probabilities to epistemology, in Section 16.3.3 we issue a note of caution concerning
the strong dependence of Bayes factors on prior distributions, and in Section 16.3.4
we discuss their use in calibrating p-values.

Bayes factors were first discussed by Harold Jeffreys, who saw them as a way of
evaluating the strength of evidence in favor of a new scientific theory (represented
by H,) that might replace an old one (Hp). A modemn view was provided by Kass
and Raftery (1995). Jeffreys (1961, Appendix B) suggested interpreting BFy (the
evidence in favor of the new theory) in half units on the log;q scale. Although
probability itself provides a meaningful scale, as do the odds, Jeffreys felt it was
useful to provide a rough statement about standards of evidence in scientific practice.
Table 16.2 is a mildly modified version of his interpretive categories (taken from
Kass and Raftery (1995)). Interpretation may depend on context, but these categories
remain useful. They are stated in terms of BFj because weighing evidence against a
null hypothesis is more familiar, but Bayes factors can equally well provide evidence
in favor of a null hypothesis. Indeed, this is one of the strengths of the Bayesian
approach. We illustrate by returning to Example 16.4 in Section 16.3.1.
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Ho: 6; = 0. The results in Table 16.1 suggested that strain 12 might satisfy this
hypothesis, i.e.,
Hy: 612 =0, (16.68)

We now consider the evidence in favor of Hy defined by (16.68), presenting results
reported in Kass and Raftery (1995).

Under Hy the data random variable X3, follows a normal distribution with mean O
and known variance cr%z, and so the numerator of BFy; has the form of the numerator
in (16.67). Under H4 we may assume X3 ~ N{fiz, 0122) and we now must choose
m1(012), which appears in the denominator of (16.67). Because, under Hy4, strain 12
would be judged similar to all the other strains, we may use the second-stage normal
distribution that appeared in the hierarchical model considered previously (p. 462),
i.e., the pdf takes the form

m(612) = n(012; @, 72 (16.69)

where yand 7 are found from the data involving strains j 3 12 (using ML estimation,
as discussed in Section 16.2.1). Kass and Rafiery reported that when this was done,
the Bayes factor was

Bop =15

indicating that these data produced®® strong evidence in favor of Hy. O

Example 16.2 (continued) On p.451 we described the way Solt et al. (2011) used
the posterior probability P(py > p2|X7 = 12,X; = 0) to judge their result that
12 out of 12 rats regained their upright position following a substantial dose of
methylphenidate whereas O out of 6 did following a negligible dose. We may instead
use Bayes factors.

We begin by considering the hypotheses to be tested. The data 0 out of 6 confirmed
that the very small dose of methylphenidate left the rats unable to regain their upright
position, If p is the probability of regaining upright position we might want to take
Hg: p=0and Hi : p # 0. Under Hy the outcome 0 out of 6 has probability 1.
Under Hy we may introduce a uniform prior on [0, 1] for the unknown value of p.
Using () = 1, the Bayes factor in (16.65) becomes

1

BFy = T wa
fo pHl —p)dp

and, from Eq. (5.1%), the denominator integral is equal to 6!/7! = 1/7 and we get

% A possible issue is the extent to which sirain 12 was selected post Aoc, after the data had been
examined, It is possible to correct the Bayes factor for such post hoe selection, analogously to
(though differently than) they way p-values may be adjusted (see Section 11.3). The investigators
repeated the experiment on strain 12 and found similar results, which provided strong confirmation
of Hy.
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BFy = 00026

which conforms with the intuition that the evidence is overwhelmingly in favor of
an effect of methylphenidate in enabling rats to regain an upright position. ]

16.3.2 Bayes factors provide an interprelation
of scientific progress.

At the end of Section 16.1.5 we said that the approximate N (9, Iops ((3)_1) distribu-
tion of the posterior provides an expression of one of the guiding principles of science,
namely that investigators with different knowledge or opinions will eventually come
to agreement after taking into account sufficiently much data. This concerns the value
of a parameter ¢. An analogous statement can be made concerning the scientific law
that describes a particular phenomenon. Following Eq. (11.12) we noted that BIC isa
consistent model selection procedure in the sense that, for sufficiently large samples
the probability of BIC choosing the correct model will get arbitrarily close to one. By
virtue of (11.12) the same is true of Bayes factors.?® To re-phrase this fundamental
result in terms of posterior probability, suppose we have a set of i candidate models
M, with m being as large as we like, and suppose further that we place positive prior
probabilities P(M) on them. For sufficiently much data, the posterior probability
on the correct model will get arbitrarily close to one. This means that investigators
having different opinions about the merits of competing scientific laws (represented
as statistical models) will eventually come to agreement after taking into account
sufficiently much data.

The result was recognized by Jeffreys and Wrinch (1921), and was a primary
motivation for Jeffreys’ monumental treatise Theory of Probability. In the preface to
the first edition of his book (in 1939) he wrote:

In opposition to the statistical school, [physicists] and some other scientists are liable to say
that a hypothesis is definitely proved by observation, which is certainly a logical fallacy;
most statisticians appear to regard observations as a basis for possibly rejecting hypotheses,
but in no case for supporting them. The latter attitude, if adopted consistently, would reduce
all inductjve inference to guesswork; the former, if adopted consistently, would make it
impossﬁﬁbléc ever to alter the hypotheses, however badly they agreed with new evidence...,
In the present book I ... maintain that the ordinary common-sense notion of probability is
capable of precise and consistent treatment when once an adequate language is provided
for it. Tt leads to the results that a precisely stated hypothesis may attain either a high or a
negligible probability as a result of observational data.

30 Mathematically the sitnation is reversed: an elegant theorem due to Doob establishes the con-
sistency of the posterior distribution, and thus of Bayes factors, under weak conditions. Equation
(11.12) then provides consistency of BIC. For precise statements sce Schervish (1995, Section 7.2.1)
and the references in Kass and Raftery (1995, Section4.1.3).
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16.3.4 Bayes factors can be used to calibrate p-values.

On p.282 and 476 we distinguished between the p-value and the quantity
P(Hp|data), which is computed from Bayes’ theorem, In order to compute
P(Hgldata) based on the data X = x, according to (16.62), we need fo(x) and
f1{x). The pdf fi(x) is used in calc11lating3] the p-value. If fi(x) is either known or
assumed known, as in (16.69), the Bayes factor may be computed and if we further
take P(Ho) = P(Hys) = 3 then Eq.(16.62) gives

BFyn

P(Hylx) = T+ BFo

(16.70)

By making assumptions about fi(x) it therefore becomes possible to compare the
p-value with P(Hglx). This was done by Jeffreys (Jeffreys (1961, pp.373-374)),
and subscquently by Edwards et al. (1963) and others. See Sejke et al. (2001} for
a thorough discussion. The approach taken by Edwards et al. (1963) and by Se}l\ke
et al. (2001) was to assume that the pdf f lies in some family of distributions,
and for data x such that a given p-value occurred (such as p = .05) they then
minimized BFg; over all possible members of that family. This minimum represents
the strongest possible evidence against Hy that the p-value could provide, under the
given assumptions. Under assumptions considered reasonable®” by Sellke, Bayarri,
and Berger, the value p = .05 corresponds to a minimum of BFg; = .41. In other
words, under those assumptions, using (16.70), the value p = .05 corresponds to
P(Hyldata) > 41/1.41 = .29. Calculations of this sortlead to the general conclusion
that p = .05 is relatively weak evidence against Hp.

16.4 Derivations of Results on Latent Variables

Derivation of the results for the normal hierarchical model:
Let us use the notations x = (x1, ..., x;) and § = (0, ..., f¢). We begin with

My Eq. (10.24) the statistic Q could follow a standard distribution, such as a z,-distribution, in
which case the calculation would be based on the distribution of Q. However, Eq. (10.24) may be
rewritten as

p= /fo(X)dx
R

where R = {x : @ = dops)-

32 For the normal testing problem of Section 10.3.1, one may consider the class of alf pdfs that
are symmetric around g = g, and also have their mode at ¢ = . Selke et al. (2001} reported
results based on this assumption. They also considered the distribution of the p-value. Under Hg
this distribution is uniform (see Section10.4.1} and under H4 they assumed it to take the form
Fip) = £p*~! for some £, which provided another way to formalize the family of alternatives and
compute the minimum value of the Bayes factor.

Gellie )

i




fé’wéﬁf’ Cayd
i .
._._auw“"""’/.;,

504 17  Multivariate Analysis

to data will produce latent factors, and the factor loadings become interpretable,
this conception is very appealing. It suffers, however, from a serious difficulty: the
unknown parameters are the components of the variance matrix V(X) = ¥ and for
any orthogonal matrix P, if we define B == AP, using (12.59) and PPT = I, we have

V(BS + ¢) = BV(S)BT +1,, = APL,P'AT 41,
=AAT + 1,
=%.

In other words, we obtain the same variance matrix using both B and A, so an
interpretation of factor loadings based on B would be neither more or less valid than
an interpretation based on A, There are thus infinitely many equivalent interpretations.
Various methods have been used to specify a unique factor loading matrix, but there
often remains a degree of arbitrariness that leaves many practitioners wary of resulting
interpretations.6

A related, but different approach is to begin by allowing the latent vector S to be
non-normal, but with independent components, in the linear latent variable model

X =AS,

where § and X are both m-dimensional and A is taken to be orthogonal. The idea is
that the independent components in § would drive the vector X through the linear
combinations in A. If S is assumed to be normally distributed, then so is X, and the
solution is given by PCA, i.e., S consists of the principal components. However, if §
is allowed to be non-normal it can be quite different.

Let us assume the data vector X = x has been standardized (or pre-whitened, see
p. 557) so that its sample variance matrix is the m-dimensional identity. We wish to
find A and s such that x = As. By orthogonality ATA = I, so that A7x = 5. The
matrix A may be defined to minimize the mutual information among the components
of s == AT x, where mutual information is the Kullback-Leibler divergence between
the joint pdf and the independence pdf (estimated from the data), as in (4.28). That is,
the components of s are taken to be as close to independent as possible, in the sense
of mutual information. The resulting procedure is called independent components
analysis (ICA). Tt turns out that minimizing mutual information in AT s has the effect
of making the distribution of s as far from normal as possible (measured in terms of
entropy}.

Example 17.4 Efficient ﬁoding of ]filaturai $0unds Lewicki (2002) used [CA to
find components of auditory signals. Some of the components he found from human
speech are shown in Fig. 17.4. For comparison, response properties of cochlear
neurons are also displayed. There is a qualitative resemblance between the ICA
components and the neural response functions. Lewicki argued that ICA may capture
an efficient representation of aunditory input. ]

6 The most famous example is Spearman’s general intelligence index g, which is obtained from
factor analysis. See, e.g., Gould (1996); Devlin et al. (1997).
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Fig. 17.4 Left panel components determined by ICA from human speech. Right panel response
functions from cochlear neurons. The latter used linear regression of the binary spike train (see
Chapter 19) on the input signal at multiple time lags (see p. 530). Adapted from Lewicki (2002).

17.4 Classification and Clustering

17.4.1 Bayes classifiers for multivariate normal distributions take a
simple form.

Suppose each of many m-dimensional observation vectors X = x comes from one of
K classes Cy, Ca, ..., Ck, and when it comes from class k the random vector X has
pdf fi(x), for k = 1,..., K. The problem of classification (se¢ Section4.3.4) is to
determine, for each observation X = x, the class to which x belongs. As we showed
in Section 4.3.4, the expected number of classification errors is minimized by using
a Bayes classifier. For each x the Bayes classifier finds the class Cy that maximizes
the posterior probability given by Eq.4.38, which we repeat here:

A
_fwme
PC=C|X=x) =
DR YT

In the special case where, for each class &, we have X ~ Ny, (g, ) for some gy
and X, the solution takes a simple form. If we write the ratio of posterior probabilities
for two classes j and k by plugging the pdfs given by Eq. (5.17) into (17.22), and take
logs, after some algebra we obtain

(17.22)

log P(C = GIX =x) — Jog & log ™.
SP(C= Cr|X = x} fk() Tk

= 0;(x) — dx(x) {17.23)
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be related to one another, and thus no fonger independent. In this case, specialized
methods can produce powerful results. The term time series, refers both to data
collected across time and to the large body of theory and methods for analyzing such
data.

Let us switch over to the general notation for random variables and write a the-
oretical sequence of measurements as X1, X3, .. ., and a generic random variable in
the sequence as X;. Another way to say the X, variables are dependent is that know-
ing X1, X2, ..., X;—1 should allow us to predict, at least up to some uncertainty, X;.
Predictability plays an important role in time series analysis.

Example 2.2 (continued from p. 27) On p. 27 we displayed Severa}EG spec-
trograms taken under different stages of anesthesia. We noted earlier that both the
roughly 10 Hz alpha thythm and the 1-4 Hz delta rhythm are visible in the time series
plot. In this scenario we can say a lot about the variation among the EEG values based
on their sequence along time: in the time bin at time ¢ the EEG voltage is likely to
be close to that at time ¢ — 1 and from the voltage in multiple time bins preceding
time ¢ we could produce a good prediction of the value at time ¢. |

The spectrograms in Example 2.2 display the w wave-like features of the EEG

- k‘kl"l‘\“\\
signals contrasting them across phases of angesthesia. They do so by decomposing G SJ\‘L\ eSO,

the signal into components of various frequencies, using one of the chief techniques
of time series analysis. The decompositions are possible in this context because the
EEGs may be described with relatively simple and standard time series models,
but this is not true of all time series. The BEEG series are, in a sense, very special
because their variation occurs on a time scale that is substantially smaller than the
observation interval. By contrast, if we go back to Fig. 1.5 of Example 1.6 we see
another time series where the variation is on a longer time scale. The EPSC signal
drops suddenly, and only once, shortly after the beginning of the series, then recovers
slowly throughout the remainder of the series. In other words, the variation in the
EPSC takes place on a time scale roughly equal to the length of the observation
interval. Another way to put this is that the EEG at time x; may be predicted reasonably
well using only the preceding EEG values x;_1, %;—2, ..., X;_p, going back & time
bins, where / is some fairly small integer, but a prediction of the EPSC at x; based
on earlier observations would require nearly the entire previous series and still might
not be very good. The most common time series methods, those we describe here,
assurne predictability on relatively short time scales.

So far we have said that the EEG at time x; may be predicted using the preceding
EEG values x;—1, X—2, . . -, Xr_p, but we did not specify which value of 1 we were
referring to. Part of the point is that it doesn’t much matter. In other words, it is
possible to predict almost any x; using the preceding 4 observations. (We say “almost”
any x; because we have to exclude the first few x, observations, with ¢ < h, where
there do not exist & preceding observations from which to predict.) Furthermore, the
formula we concoct to combine x_1, X;_2, ..., X,p in order to predict x; may be
chosen independently of ¢. This is a very strong kind of predictability, one that is
stable across time, or time-invariant. The notion of time invariance is at the heart of
time series analysis.

i
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We now begin to formalize these ideas. Let X; be the measorement of a series at
time ¢, with t == 1,...,n Let gy = E(X;) and 5 = Cov(X;, X;). As soon as we
contemplate estimation of this mean vector and covariance matrix we are faced witha
serious difficulty. For simplicity consider time ¢ and the problem of estimating j; and
o? = L. If we have many replications of the measurements at time ¢ (as is usually
the case, for example, with evoked potentials) we can collect all the observations
across replications at time ¢ and compute their sample mean and sample variance.
However, if we have only one time series, and therefore one observation at 7, we
do not have a sample from which to compute the sample mean and variance. The
only way to apply any kind of averaging is by using observations at other values of
time. Thus, we can only get meaningful estimates of mean and covariance by making

assumptions about the way X, varies across time. Let us introduce a theoretical time%“’”’

series, or discrete-time stochastic process {X;; t € Z}, Z being the set of all integers.
We are now in a position to define the kinds of time invariance we will need. We
say that the series X; is stricily stationary if it is time-invariant in the sense that the
joint distribution of each set of variables {X;, X;t(, ..., X;4n} is the same as that
of the variables {X;, X511, . .., X;n) forall ¢, s, 1. Because the time index takes all
possible integer values it is an abstraction (no experiment runs indefinitely far into
the past and future) but it is an extremely useful one. A standard notation in the
time series context is (s, f} = X. The function (s, ¢) is called the autocovariance
function and the autocorrelation function (ACF) is defmed by

v (8, 1)

D= oD

The prefix “auto,” which signifies here that we are considering dependence of the
time series on itself, is a hint that one might instead consider dependence across
multiple time series, where we would instead have “cross-covariance” and “cross-
correlation” functions (which we discuss in Section 18.5). A time series is said to be
weakly stationary or covariance stationary if (i) yi; is constant for all # and (i1) (s, 7)
depends on s and 1 only through the magnitude of their difference |s —7|. This weaker
sense of stationarity is all that is needed for many theoretical arguments. Under ¢ither
form of stationarity we follow the convention of writing the autocovariance function
in terms of a single argument, & = ¢ — s, in the form v(h) = v{t — &, ). Note that
+(0) = V(X). Itis not hard to show that v(0) > |y(h)| for all A, and ~y(h) = v(—h).
In the stationary case the autocorrelation function becomes

plh) = ——. (18.2)
Y
Hlustration: The 3-point moving average process

1
X = g(Uz 4+ Uiy +Us2)
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which is an estimator of the autocorrelation function (18.2).

In this chapter we provide an overview of key concepts in time series analysis.
Section 18.2 describes the two major approaches to time series analysis, Section 18.3
gives some details on methods used to decompose time series into frequencies,
as in Example 2.2. There are several important subtleties, and we discuss these
as well. Section 18.4 discusses assessing uncertainty about frequency components,
and Section 18.5 reviews the way these methods are adapted to assess dependence
between pairs of simultaneous time series.

18.2 Time Domain and Frequency Domain

In discussing Example 2.2, on p. 514, we alluded to the decomposition of the signal
into frequency-based components, In general, time series analysis relies on two
complementary classes of methods. As the name indicates, time domain methods
view the signal as a function of time and use statistical models that describe temporal
dependence. Frequency domain methods decompose the signal into frequency-based
components, and describe the relative contribution of these in making up the signal.
In this section we provide a brief introduction to these two approaches, starting with

frequency-based analysis. Here are two examm .16‘5 oace ™
Example 18.1 Gamma oscillations %WE/G éu:ngl-lear ing Cortical oscillatory
activity in the gamma band (roughly 30-120Hz) has been associated with many
cognitive functions. Chaumon et al, (2009) used MEG imaging to investigate the
role of gamma oscillations during unconscious learning. They used a paradigm in
which subjects were to find the letter “I” within a set of distractors and determine
its orientation. On some trials, which they called “predictive,” the distractors were
repeated and the location of the “T™ remained the same. On other trials, which they
called “nonpredictive,” the distractors changed configurations and the location of the
“T” changed. The subjects were shown many blocks containing 12 trials of each type.
Although they remained unaware of the information provided by the configuration
type, their reaction time decreased faster across blocks for the predictive trials than
for the nonpredictive trials. The authors were interested in whether this unconscious
learning was associated with changes in gamma band activity recorded with MEG.
1

//Examplgg.z RI1 BOLD signal and neural activity To inv stiW" B
basis of the TMREBOLD signal, Logothetis et al. (2001) 1'ecordedﬁ ocal field potential D

5‘?& <

(LFP) and mulfi-unit activity (MUA) together with fMRI from a region in primary
visual cortex across 29 experimental sessions using 10 macaque monkeys. The stim-
ulus involved rotating checkerboard patterns. In examining the relationship between
LFP and BOLD, the authors focused on gamma band activity from 40 to 130 Hz. [

We now introduce another example, which we will use repeatedly in several parts of
this chapter to demonstrate analytical techniques.
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Based on (18.5) the statistical model for observations yi, ...,y at time points
fl, ..., ta 15 then
Yi= Havg + Ramp cos(2m(wit; — @) + &

e S

W where, for the core temperature data, wy = 1/72 cycles per 20 min is the frequency
A corresponding 1 cycle per day (a 24h period). To simplify fitting, this model may

be converted {0 a linear form, i.e., a form that is linear in the unknown parameters.
Using
cos{u —v) =cosucosv 4+ sinusiny (18.6)

with 1 = 2wty and v = 27¢ we have

Romp cosm(wit; — ¢)) = Acos(Qmwif;) + Bsin (27wit;) (18.7)
S where A = Rgpp cos(2m¢) and B = Rypyp sin(27w¢). We may therefore rewrite the . -~ - &;g:\\)
T }\‘} statistical model as e LE“ -7 3y
5 $in {zﬁw"“i‘:‘; . < s in (1% - //
™ { ) Y; = pavg + Acos@mwity) + B sin(ZmuR + &, (18.8 e
i %

which has the form of a linear regression model, and may be fitted using ordinary
linear regression. Specifically, we do the following:

1. Assume the data (¢1, ..., ;) and (y1, ..., ¥,) are in respective variables time
and temp.
2. Define

cosine = cos(2mtime/72)

gine = sin(2rtime/72).

3. Regress temp on cosine and sine.

For future reference we note that the squared amplitude of the cosine function in
(18.7) 1s
R, =A*+ B (18.9)

amp

and the phase is
1 B
¢ = o arctan(z). (18.10)

In the core temperature data of Example 18.3 there is a clear, dominant periodicity,
which is easily described by a cosine function using linear regression. We may do
a bit better if we allow the fitted curve to flatten out a little, compared to the cosine
function. This is accomplished by introducing a second frequency, wy == 2wi to
produce the model
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Fig. 18.3 Plot of core temperature, as in Fig. 18.2, together with fit of (18.8), shown in dotted line,
using the fundamental frequency wy = 1/72 (one oscillation every 72 data points, L.e., every 24h},
and fit of (18.11), shown in dashed line. The latter improves the fit somewhat in the peaks and
troughs.

Yi = plavg + A1 cos2mwit) + By sin{2mw)
- Ag cos(2munty)y + B2 Sin(27rw‘gg\1 + £;. (18.11)

Example 18.3 (continued from p. 519) Least-squares regression using model
(18.11) yields a highly significant effect for the second cosine-sine pair {(p < 1079
and Fig. 18.3 displays a modest improvement in fit. O

Model (18.8) was modified in (18.11) by introducing the additional cosine-sine pair
corresponding to the frequency wy. In principle this process could be continued by
introducing frequencies of the form wy = kw; for k = 3,4, ... Here, w; is called
the fundamental frequency, the additional frequencies wy are harmonic frequencies,
and the resulting regression model is often called harmonic regression. For the core
temperature data it turns out that k = 2 is a satisfactory choice (see Greenhouse
et al. (1987)) but, in general, one might use linear regression to fit many harmonics
and ask how much variation in the data is explained by each cosine-sine pair. For
this purpose one might use contributions to R?, which is the germ of the idea behind
one of the main topics in time series, spectral analysis. Spectral analysis can be a
very effective way to describe wave-like behavior, as seen in the EEG signals of
Example 2.2.
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p. 351.) Harmonic trigonometric tunctions are orthogonal, so the interpretation
is internally consistent.

These steps all involved major conceptual breakthroughs for mathematics.” Taken
together they suggest that a signal represented by a smoothly varying function f(r)
may be decomposed into cosine and sine harmonic components. This is what Fourier
analysis accomplishes,

To be a little more specific, suppose that f(¢) is a function on the interval [0, 1]
and let us consider time points #; = % for j == 1,2, ..., n where, for simplicity, we
assume 7 is odd so that (1 — 1)/2 is an integer. If we evaluate f(¢) at the time points
t; we get an n-dimensional vector

y= (@)@, ... flea)T. (18.12)

Now define the harmonic trigonometric functions fi(f) = cos(2wks) and g (1) =
sin(2wke), fork = 1, 2, ..., (n—1)/2. By evaluating these functions at #1, f2, . ..,

we form vectors fi = (f(t1), fu(t2), - - . fi(te))" and gr = (gr(t1), ge(r2), -« &k
(tn))T and, it turns out, the collection of vectors

Lyecs flo oo o fin-1)/25 81, -+« Bln—1)/2

are orthogonal, where 1,.. = (I, 1,..., DT, (This follows from straightforward
algebraic manipulation, together with properties of sines and cosines, see Bloomfield
(2000)). They therefore form an orthogonal basis for R (see Section M which
means that any vector y, such as in (18.12), may be written in the form

y= ,U'avg]-vec +A i+t A(H*l)/zf(ﬂ‘“l)/z
+Bigi + - + B 28 (-2 (18.13)

If we define

Pn(t) = pigve + Atfi (1) + - + A1y /2f(0—1)/2 ()
4+ B1gi () + -+ Bp—1280-121) (18.14)

4 The first requires the notion of function, which emerged roughly in the 1700s, especially in the work
of Euler {the notation f{x) apparently being introduced in 1735). The second may be considered
intuitively obvious, but a detailed rigorous understanding of the situation did not come until the
1800s, particularly in the work of Cauchy (represented by a publication in 1821) and Weierstrass (in
1872). The notion of harmonics was one of the greatest discoveries of antiquily, and is associated
with Pythagoras. The third and fourth steps emerged in work by D’ Alembert in the mid-1700s, and
by Fourier in 1807. Along the way, representations using complex numbers were used by Euler (his
farmous formula, given below, appeared in 1748}, but they were considered quite mysterious until
their geometric interpretation was given by Wessel, Argand, and Gauss, the latter in an influential
1832 exposition. A complete understanding of basic Fourier analysis was achieved by the early
1900s with the development of the Lebesgue integral. Recommended general discussions may be
found in Courant and Robbins (1996), Lanczos (1966), and Hawkins (2001},
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the lag-h correlation after adjusting for the etfects of lags 1 through 2 — 1, adjusting
as in multiple linear regression. It may be computed as the normalized lag-f regres-
sion coefficient found from an AR(k) model, normalized by dividing the series by
the sample variance 5(0).

A detail: Suppose X; is a mean-zero stationary Gaussian series. Then
the theoretical PACF is given by ¢1; = Cor(X;, X;.r1) and for 2 = 2,

Opp = Cor(Xe, Xean|Xes1, Xegas - Xppn1)

More generally, for any mean-zero stationary series let X:Pl =
j-’:_l[ 0jX;—; where the coefficients 51, ..., Jp—1 minimize £((X; —
Z_?;ll anf_j)2) over the os. Then, for i = 2,

nin = Cor(Xy — XI1 Xewn — X110, O
Once again, using large-sample theory, horizontal lines may be drawn on the
sample PACF to indicate where the coefficients stop being significant. The sample
PACF is often used to choose the order of the autoregressive model.

Example 18.3 (continued from p. 525) Let us consider an AR(p) model for the core
temperature residyals following the cosine regression reported on p. 519, and then
detrending (usingBARS, see Section 15.2.6). We take p = 22. The fitted coefficients
are plotted in Fig. 18.7. Here is an abbreviated table of coefficients:

Variable Coefficient Std. Err. t-ratio p-value
81 906 057 159 < 10713
XB2 —.205 077 —2.7 008

xg3 —. 147 078 —-1.9 06

xg4 .005 078 . .95

x5 —0.154 078 —1.9 035

X 15 .078 9 35

xpn —.031 076 —.4 09

xXgr on 057 2 .84

Only the first two lagged variables have large ¢ statistics, so it appears that only
the first two lagged variables are likely to be helpful in predicting the response
variable. Also shown in Fig. 18.7 is the sample ACF, together with horizontal lines
drawn at =2/./n. The PACF in Fig. 18.7 has nonzero lag-1 and lag-2 coefficients, but
the remaining coefficients are not distinctly different from zero relative to statistical
uncertainty. Using an AR(2) fit to the residuals added to the fitted 24 h cycle produces
the overall fit to the temperature data shown in Fig. 18.8. 0

In general, autoregressive models may be fit by maximum likelihood. We now connect
ML estimation with lagged least-squares regression (p. 531), by writing down the
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Fig. 18.7 Autoregressive model of order p = 22 for core temperature residuals. Tor
Coefiicients ¢; as a function of lag i. MIDDLE The sample autocorrelation function. BOTTOM
The sample partial autocorrelation function.
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Fig. 18.8 Core temperature data together with fit. 7OP plot of temperature data. BOTTOM Plot of
temperature data together with fit based on the sum of an AR(2) fit to residuals and the fitted 24h
cycle.
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Fig. 18.10 TOP Core lemperature data after removing dominant 24h effect. i.c., the residuals atter
simple harmonic regression. MIDDLE The power transfer function of the five-point lincar filter
with coefficients {1, 2, 3,2, 1)/9, showing a strong diminution of the higher frequency ¢compo-
nents, BOTTOM Core temperaiure data after applying the five-point linear filter with coefficients
(1,2,3,2, 1)/9.

|
vy = wg(xfg + 2%t + 3% F 2xpg) - Xeg2) (18.45)

"{EW repIace S mﬁ fort = 3,...,n — 2. A Gaussian filter would be similar but would instead use a
- """ normal (Gaussian) pdf to define the coefficients.
Tt may be shown that the DFT of {y;} is related to the DFT of {x;} according to
e () = fela(w)ds () (18.46)
™
where d,(w) is the\% rier transform of {a, @ry1, ..., a5, 0,0, ..., 0}, with the
zeroes being added to fi the rest of the n data values. (This is called “padding”
the sequence.} The quantity %’a(w) is called the transfer function and its squared
magnitude is the power transfer function. Expression (18.46) makes it possible to
analyze easily the effects of linear filters. This, coupled with their simplicity and the
high speed with which they may be computed makes them a very common method
of choice for smoothing a time series and the resulting periodogram.

R A

Example 18.3 (continued) We applied the 5-point linear filter described above to
the residuals from the core temperature data following simple harmonic regression,
yielding a series of the form (18.45). The top panel of Fig. 18.10 shows the residual
series and the middle panel shows the power transfer function. The power transfer
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Fig. 18.13 TOP Periodogram of x; = 20 cos(2mwit) + cos(2ment), where n = 100, w) = E:)S x @@
and wn = .15. BOTTOM Log periodogram of x;. In the log scale the second peak becomes visible.

periodogram indicates misleadingly that those other frequencies are present in the
data.

The problem of leakage is very dramatic when the dynamic range of the data is
large. Dynamic range refers to the ratio of the largest to smallest positive periodogram
values (usually measured on the log g, or decibel, scale).

HMustration: As an illustration, consider
xr = 20 ¢cos(2mwit) + cos(2mwat) (18.50)

where n = 100, w; = .05 and wy = .15. Its pericdogram is shown in the top panel
of Fig. 18.13. To see the second frequency it is necessary to use a log scale to plot the
periodogram, as shown in the bottom panel of Fig. 18.13. Log periodogram plots are
used as defaults in many contexts. Now consider the leakage-prone variant where
we take wi = 1/22 rather than 1,20, Its periodogram is shown in Fig. 18.14. In this
case leakage obscures the second peak almost entirely, and if the periodogram were
noisy (as it is with real data) it would be extremely difficult to see the second peak
at all. U

Leakage is also a problem when there are trends, which cause large low-frequency
coefficients in the periodogram.

Example 15.2 (continued from p. 528) We previously showed the log periodogram
for the LEP data in Fig. 18.5. The very low frequency trends cause leakage, which
obscures the higher frequencies of interest. ]
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Example 2.2 (continued from p. 514) The spectrograms in Fig. 2.2 on p. 27 dis-

played nicely some changes in the frequency content of EEGs across the course of 1 1§ "=y
the experiment. Specifically, the alpha Rythm appeared during an epoch in which the @i\'{’\ W\)
subject’s eyes closed, and during induction of anesthesia. OJ L\——M

Spectrograms, such as that in Example 2.2, may be created by segmenting the
observation time interval {0, T]into a set of subintervals [0, T 1,171, Tal.. ... [T}, T'].
and then computing spectral density estimates within each interval. The cstimated
spectrum is then plotted on the y-axis for every time interval, with time labeled
along the x-axis. The intervals must be chosen to be long enough so that there are
substantial series from which to estimate the spectrum, yet short enough that the series
may be considered stationary within each interval. Some spectrogram software takes
as a default 512 observations per interval (with corrections to this to allow for T
not being divisible by 512). Some smoothing (and tapering) of the spectral density
estimates across time is often incorporated. One way to smooth across time, which
is available as an option in most spectrogram software, is to choose the analysis
intervals to be overlapping. In some experiments there are repeated trials, in which
case the spectrograms may be averaged across trials.

Example 18.2 (continued from p. 518) To display the LFP respense to the stimulus
Logothetis et al. (2001) used a spectrogram that incorporated tapering and was aver-
aged across trials and across subjects. It showed strong power in the gamma range
after onset of the stimulus. O

Time-frequency analysis is often performed using wavelets (Section15.2.8).
Because of the scaling property (the narrowing range) in the definition (15.9), wavelet
regression provides a representation that is localized in both time and frequency, with
frequency here defined by the scale of the wavelets. See Percival and Walden (2000).

Example 18.1 (continued from p. 518) In their study of MEG oscillatory activ-
ity during learning Chaumon et al. (2009) used Morlet wavelets (sec p. 429} to
decompose MEG sensor signals across time and frequency. They analyzed the log-
transformed power within a 3048 Hz, band at time 100400ms after target onset,
from one group of sensors over the occipital lobe and another group of sensors over
the frontal lobe. They found that during the learning phase (the first few blocks) of
the experiment this gamma band power in the sensors over the occipital lobe was
higher for the predictive trials than for the nonpredictive trials (p < .005 based on an
across-subject paired #-test, using 16 subjects) with the power for the predictive trials
being elevated above baseline. On the other hand, during the same learning period,
the gamma band power in the sensors over the frontal lobe was depressed for the
nonpredictive trials (p < .0001), but not for the predictive trials (with the predictive
and nonpredictive gamma band power being different, p < .01). O
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Fig. 18.15 Smoothed periodogram and approximate, pointwise 95 % confidence bands, from the
beginning-period LFP detrended series.
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Fig. 18.16 Smoothed periodograms from beginning and end periods, overlaid.

computed. This is usually called a bootstrap, analogously to the bootstrap procedures
in Chapter9.

Example 15.2 (continued from p. 528) Returning to the pair of 1s average LFP
recordings, we noted previously, in Figs.18.1 and 18.5, the need to detrend the
time series before looking for periodicities under the assumption of stationarity. :
Figure 18.6 displayed the smoothed periodograms of the detrended series. Pointwise
95 % confidence bands together with the smoothed peri%ram the for the first period,(” f?({m
obtained by propagation of uncertainty, are shown in Fig. 18.15. — e
We next consider whether the first and last periods have the same spectral density do
(an indication of stationarity). Figure 18.16 shows the two smoothed periodograms
overlaid. A significance test may be based on the integrated squared difference

between the two smooth curves. Specifically, if fi {w) andf;; (w) are the two spectral
density estimates, then we use




352 18 Time Scries

tos = _(filer) = Alwi))
k

as the test statistic. To compute a p-value under Hy = fi{w) = fa(w) for all w, we
take as a “pooled” estimate

. 1 - .
flwg) = 3 (fi (wi) + fo(wi )

for k = 1,...,m. We then generate a pseudo-sample of pairs of perlodogrdms
using f {w) as the spectral density, and for each generated pair of peri Agrams apliks v(o ey odo % EAY Wb

smoothing and compute . We then see what fraction of the generated ¢ values

greater than 7,ps. This is our approximate p-value. In this case, we obfained p = -~~M~
(.53, indicating no evidence that the spectra from the two recording intervals are

different. g

18.4.2 Uncertainty about functions of time series may be obtained
from time series pseudo-data.

The method above propagates the uncertainty from the asymptotic distribution of the
periodogram to anything computed from it. If, however, an analytical technique by-
passes the periodogram a different method must be used to propagate uncertainty. A
more general idea is to use the approximate normal distributions on the coefficients,
in order to propagate the uncertainty from the DFT itself. In other words, one may
begin with the uncertainty in the DFT obtained from the data, and then apply an
inverse DET to generate time series that behave the same as the original series in
the sense of having (approximately) the same spectrum. The resulting time series
pseudo-data are sometimes called surrogate data.

An efficient method of carrying out such simulations (based on “circulant embed-
ding™) is described in Percival and Constantine (2006). Code by these authors 1s avail-
able in the CRAN library of R packages, within the package fractal. See below.
As described in the Percival and Constantine paper, the method is closely related
to surrogate time series, e.g., Schreiber and Schmitz (2000). Additional “bootstrap”
resampling methods for spectral analysis, with an emphasis on theoretical results, are
discussed in Chapter9 of Lahiri (2003b). We omit detailed discussion of this topic
and note only that the pseudo data generated by this approach are normal (Gausstan),
and so do not reflect any sources of uncertainty arising from substantial non-normal
variation in the data.
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above, are consistent. For example, if we consider intervals (i1, #2) and
(t2, t3) we must be sure that the Poisson distdbutions for the counts
in each of these are consistent with the Poisson distributien for the
count in the interval (f1, f3). Specifically, in this case, we must know
that the sum of two independent Poisson random variables with means
p == Mo — £1) and g = A(f3 — t2) is a Poisson random variable with
mean y = A(t3 — ;). But this follows from the fact that if Wy ~ P(us)
and W ~ P(uz) independently, and we let W = W; + Wa, then
W ~ P(j11 + p2). We omit the details. O
We now come to an important characterization of homogeneons Poisson processes.

Theorem: A point process is a homogeneous Poisson process with intensity Aifand
only if its inter-event waiting times are i.i.d. Exp(A).

Proof: We derive the waiting-time distribution for a homogeneous
Poisson process. Recalling that X; is the length of the inter-event
interval between the (i — 1)* and ith event times, we have X; > 1
precisely when AN, , 5,4+ = (. From the definition of a homo-
geneous Poisson process, P (AN(SE_L Sy = 0) = e~ N, Therefore,
the CDF of X; is Fx, () = P(X; < 1) = 1 — ¢~ ¥, which is the CDF
of an Exp(X) random variable.

The converse of this theorem involves additional calculations and is
omitted. O

Recall from Section 5.4.2 that the exponential distribution is memoryless. Accord-
ing to this theorem, for a homogeneous Poisson process, at any given moment the
time at which the next event will occur does not depend on past events. Thus, the
homogeneous Poisson process “has no memory” of past events.

Another way to think about homogeneous Poisson processes is that the event times
are scattered “as irregularly as possible.” One characterization of the “irregularity”
notion is that, as noted on p. 120, the exponential distribution Exp(\) maximizes the
entropy among all distributions on (0, 00) having mean p = 1/ A. Here is another.

Result: Suppose we observe N(T') = n events from a homogeneous Poisson process
on an interval (0, T]. Then the distribution of the event times is the same as that of
a sample of size » from a vniform distribution on (0, T].

Proof: This appears as a corollary to the theorem on p. 577, where it is also stated
more precisely. O

Fxample 19.4 Miniature excitatory post-synaptic currents Figure 19.2 displays
event times of miniature excitatory postsynaptic currents (MEPSCs) recorded from
neurons in neonatal mice at multiple days of development. To record these events, the
neurons are patch?fé}amped at the cell body and treated so that they cannot propagate
action potentials. These MEPSCs are thought to represent random activations of the
dendritic arbors of the neuron at distinct spatial locations, so that the two assumptions
of a Poisson process are plausible. The sequence of events in Fig. 19.2 looks highly
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n—h

i _ .
ooy () = ~ ;w — D) rsh — )

with Axy (—h) = Yyx{h), and X
“xy ()

pth) = ——.
Oxdy

The univariate Eqs.(18.29)-(18.31) have immediate extensions to the bivariate
case: if

> ()] < oo

h=—00

then there 1s a cross-spectral density function fyy (w) tor which

1

ey () = / F Amiohgy (o) (1851)

i
2
and

Fer@) = D" yr(he 2t

h=—00

The cross-spectral density is, in general, complex valued. Because vyx(h) =
vxy{—Hh) we have
Trx(w) = fy (W) {18.52)

te., fyx(w) is the complex conjugate of fyxy(w). In Section18.3.1 we said that a
smoothed periodogram could be considered an estimator of the theoretical spectral
density, and we based that interpretation on a finite-sample expression (18.33), which
gave the periodogram as a scaled DFT of the sample covariance function, Similarly,
an estimate fxy (w} of fyy(w) may be obtained by smoothing a scaled DFT of the
sample cross-covariance function Yyy (£). In Section 18.5.1 we discuss the important
concept of coherence, which is defined in terms of the cross-spectral density.

18.5.1 The coherence pyy(w) between two series X and Y
may be considered the correlation of their w-frequency
components.

There is a very nice way to decompose into frequencies the linear dependence
between a pair of stationary time series. This frequency-based measure of lin-
ear dependence forms an analogy with ordinary correlatioj?vhich, as we noted in
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Section4.2.1, may be interpreted as a measure of linear association. To substantiate
this interpretation for the ordinary correlation p between two random variables ¥
and X we provided on p. 81 a theorem concerning the linear prediction of ¥ from
o + X, giving the formula for o and (3 that minimized the mean squared error of
prediction, ?%X — a — X)?) and showing that when these optimal values of cvand
3 are pluggged in, the minimum mean squared error became

E ((Y P ﬁX)Z) = a3(1 — g, (18.53)

which was Eq. (4.11).

In Eq.(18.53) we considered the linear prediction of ¥ based on X, meaning
the prediction of ¥ based on a linear function of X. The analogous problem for
{(X;, ¥y), t € Z}1is to assume

o0
Yo= D BXen+ W (18.54)
h=—00

where W, is a stationary process independent of {X;}, with E(W;) = 0 and V(W,;} =
J?ﬁ/, and to minimize the mean squared error

2
oQ
MSE=E Y — Z BXn ] . (18.55)
h=—00
Some manipulations show that the solution satisfies
3
min MSE = 1 Fr(e) (1 — pxy(W)Hdw (18.56)
—3
where N
fxy (W)
wr(w)? = (18.57)
P fx(W)fy W)

is the squared coherence. Thus, in analogy with (18.53), fy (w)(1 — pxy (w)?) is the
w-component of the minimum-MSE fit of (18.54). In (18.56) we have MSE = 0 and

Ffr{w) > 0, which together imply that 0 < pr(w)2 < 1 for all w, and when

o0
Y; = Z BnXi—h

h=—00

we have pyy(w)? = 1for allw. These facts, together with (18.50), give the interpreta-
tion that the squared coherence is a frequency-based analogue to squared correlation
between two theoretical time series.
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can lie in a higher-dimensional physical or abstract space. In PET imaging, for exam-
ple, a radioisotope that has been incorporated into a metabolically active molecule is
introduced into the subject’s bloodstream and after these molecules become concen-
trated in specific tissues the radioisotopes decay, emitting positrons which may be
detected. These emissions represent a four-dimensional spariotemporal point process
because they are localized occurrences both spatially, throughout the tissue, and in
time. Here, however, we focus on point processes in time and their application to
modeling spike trains.

The simplest point processes are Poisson processes, which are memoryless in the T
sense that the probability of an event occurjng at a particular time does not depend o@
the occurrence or timing of past events. In Section 19.2.1 we discuss homogeneous
Poisson processes, which can describe highly irregular sequences of event times that &

l d\\ scenn 1\3 \ t have nodiscerngble terpporal str}lcttlre. When‘ an experimental stimulus or I?ehavior is
introduced, ho&ever, time-varying characteristics of the process become important,

- In Section 19.2.2 we discuss Poisson processes that are infiomogeneoiss across time.

E In Section 19.3 we describe ways that more general processes can retain some of the
elegance of Poisson processes while gaining the ability to describe a rich variety of
phenomena.

Spike trains are fundamental to information processing in the brain, and point
processes form the statistical foundation for distinguishing signal from noise in spike
trains. We have already seen in Chapters 14 and 15 examples of spike train analysis
using Poisson regression with spike counts. For this purpose, the Poisson regression
model may be conceptualized as involving counts observed over time bins of width
At based on a neural firing rate FR(¢). In Poisson regression, each Poisson distribution

has mean equal to FR(¢) - At and then FR(¢) is related to the stimulus (or the behavior)
by a formula we may write in short-hand as

log FR(t) = stimulus effects, (19.4)

meaning that log FR(z) is some function that is determined by the stimulus or behav-
ior, In Example 14.5, for instance, the right-hand side of (19.4) imvolved a quadratic
function that represented the effective distance of a rat from the preferred location of
a particular hippocampal place cell, and the result was a Poisson regression model
of the place cell’s activity. This sort of model may be considered a kind of simplified
prototype. When we pass to the limit as in (19.2) and use instantaneous firing rate,
the Poisson regression model becomes a Poisson process regression model.
Poisson processes are important, and they are especially useful for analyzing the
trial-averaged firing rate. When, in Example 15.1, we displayed the smoothed PSTH
under two experimental conditions, we were comparing two trial-averaged firing-
rate functions. We spell this out in Section 19.3.3. On the other hand, many phenom-
ena can only be studied within trials. For instance, oscillatory behavior, bursting,
and some kinds of influences of one neuron on another show substantial variation
across trials and may be difficult or impossible to detect from across-trial sum-
maries like the PSTH. Careful examination of spike trains within trials usually reveals
non-Poisson behavior: nevrons tend not to be memoryless, but instead exhibit etfects
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in a variety of settings, probability models for spike trains make dependence on
spiking history explicit.

Example 19.1 Retinal ganglion cell under constant conditions Neurons in the
retina typically respond to patterns of light displayed over small sections of the visual
field. When retinal neurons are grown in cutture and held under constant light and
environmental conditions, however, they will still spontaneously fire action poten-
tials. In a fully functioning retina, this spontaneous activity is sometimes described
as background firing activity, which is modulated as a function of visual stimuli.
A short segment of the spiking activity from one neuron appeared in Fig. 16.1. A
histogram of the ISIs appears in the left panel of Fig. 19.10. Even though this neuron
is not responding to any explicit stimuli, we can still see structure in its firing activity.
Although most of the ISIs are shorter than 20ms, some are much longer: there is a
small second mode i the histogram around 60-120ms. This suggests that the neu-
ron may experience two distinct states, one in which there are bursts of spikes (with
short 1SIs) and another, more quiescent state (with longer ISIs). From Fig. 16.1 we
may also get an impression that there may be bursts of activity, with multiple spikes
arriving in quick succession of one another. U

Example 19.2 Beta oscillations in Parkinson’s disease Parkinson’s disease, a
chronic progressive neurological disorder, causes motor deficits leading to difficulty
in movement, Clinical studies have shown that providing explicit visual cues, as
guides, can improve movement in many patients, a possible explanation being that
cortical drive associated with cues may lead to dampening of pathological beta oscil-
lations (10-30Hz) in the basal ganglia. To investigate this phenomenon, Sarma et al.
(2012) recorded from neurons in the basal ganglia (specifically, the substantia nigra)
while patients carried out a hand movement task. Because the period associated with
a 20 Hz oscillation is 50ms, if a neuron’s activity is related to a beta oscillation it will
tend to fire roughly every 50 ms. Therefore, its probability of firing at time ¢ will be
elevated if it fired previously 50ms prior to time z. This is a form of history effect,
which the authors built into their neural models in order to examine whether it was
dampened due to visual cues. O

Example 19.3 Spatiotemporal correlations in visual signalfing To better under-
stand the role of correlation among retinal ganglion cells, Pillow et al. (2008) exam-
ined 27 simultaneously-recorded neurons from an isolated monkey retina during
stimulation by binary white noise. The authors used a model having the form of
(19.5). They concluded, first, that spike times appear more precise when the spiking
behavior of coupled neighboring neurons is taken into account and, second, that in
predicting (decoding) the stimulus from the spike trains, inclusion of the coupling
term improved prediction by 20 % compared with a method that ignored coupling
and instead assumed independence among the neurons. U

51;@&‘!;0
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To accommodate event probabilities that change across time, we generalized from
homogeneous to inhomogeneous Poisson processes. This eliminated the assump-
tion of stationary increments but it preserved the independence assumption, which
entaifed history independence. Systems that produce point process data, however,
typically have physical mechanisms that lead to history-dependent variation among
the events, which cannot be explained with Poisson models. Therefore, it is necessary
to further generalize by removing the independence assumption.

The simplest kind of history-dependent behavior occurs when the probability of

the ith event depends on the occurence time of the previous event s;—1, but not on(iD CCU TréEn

any events prior to that. If the ith waiting time X; is no longer memoryless, then
P(X; > t + h|X; > t) may not be equal to P(X; > u -+ hiX; > u) when u # ¢, but
X; is independent of event times prior to S;—1, and is therefore independent of all
waiting times X; for j < i. Thus, the waiting time random variables are all mutually
independent. In the time-homogeneous case, they also all have the same distribution.
A point process with i.i.d waiting times is called a renewal process. We already saw
that homogeneous Poisson processes have i.i.d. exponential waiting times. There-
fore, renewal processes may be considered generalizations of homogeneous Poisson
processes.

A renewal model is specified by the distribution of the inter-event waiting times.
Typically, this takes the form of a probability density function, fx,(x;), where x;
can take values in [0, o0). In principle we can define a renewal process using any
probability distribution that takes on positive values, but there are some classes of
probability models that are more commonly used either because of their distributional
properties, or because of some physical or physiological features of the underlying
process.

For example, the gamma distribution, which generalizes the exponential, may be
used when one wants to describe interspike interval distributions using two para-
meters: the gamma shape parameter gives it flexibility to capture a number of char-
acteristics that are often observed in point process data. If this shape parameter is
equal to one, then the gamma distribution simplifies to an exponential, which as we
have shown, is the ISI distribution of a simple Poisson process. Therefore, renewal
models based on the gamma distribution generalize simple Poisson processes, and
can be used to address questions about whether data are actually Poisson. If the shape
parameter is less than one, then the density drops off faster than an exponential. This
can provide a rough description of ISIs when a neuron fires in rapid bursts. If the
shape parameter is greater than one, then the gamma density function takes on the
value zero at x; = 0, rises to a maximum value at some positive value of x;, and
then falls back to zero. This can describe the ISTs for a relatively regular spike train,
such as those from a neuron having oscillatory input. Thus, this very simple class
of distributions with only two parameters is capable of capturing, at least roughly,
some interesting types of history dependent structure.

While the gamma distribution is simple and flexible, it doesn’t have any direct
connection with the physiology of neurons. For neural spiking data, a renewal mocdel
with a stronger theoretical foundation is the inverse Gaussian. As described in
Section 5.4.6, the inverse Gaussian also has two parameters and is motivated by

)
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as for a Poisson process, so that homogeneity holds, approximately.
As far as independence is concerned, the key point is that the renewal
processes are independent of one another, so that the only depen-
dence in the superposition is due to events from the same process,
which are very rare among the large numbers of events in the super-
position process. That is, if we assume #n is so large that, for all &,
PANg ym=1) »> P(AN{;JM] = 1), then when we consider two
non-overlapping intervals (#1, | + #] and (f2, f» + k], relative to the
superposition process, the probability that the kth process has events
in both intervals is negligible. This is another way of saying that the
identity of events in the superposition gets washed out as the number
of processes increases. ]

By combining this superposition result and the renewal theorem we obtain a prac-
tical implication: the superposition of multiple renewal processes will be approxi-
mately a Poisson process, but we can expect the approximation to be better for large
t, after initial conditions die out. If, for example, we take multiple spike trains, and if
time ¢ == 0 has a physiological meaning related to the conditions of the experiment,
then we may expect the initial conditions to affect the spike trains in a reproducible
way from trial to trial so that even after pooling we might see non-Poisson behavior
near the beginning of the trial; as such effects dissipate across time we would expect
the pooled spike trains to exhibit Poisson-process-like variation,

19.3.2 The conditional intensity function specifies the joint
probability density of spike times for a general point process.

In Section 19.2.2 we described the structure of an inhomogeneous Poisson process

firing a spike at each instant in time, as in (19.6). In an analggous way, a general point{_¢iy)6

process may be characterized by its conditional intensity function. Poisson processes

in terms of an intensity function that characterized the instantaneous probability of -
Iz Q’O 005
o

are memoryless but, in general, if we want to find the probability of an event in a
time interval (¢, t -+ At] we must consider the timing of the events preceding time 1.
Let us denote the number of events prior to ¢ by Mt —),

N{t—) = max,<N(u).

We call the sequence of event times prior to time ¢ the Aisfory up to time f and write
it as H; = (51,82, ..., Sy¢—)). For a set of observed data we would write H; =
($1, 82, . .., §») with the understanding that N(r—) = n. The conditional intensity
function is then given by

P(ANG t+ar = 1|Hy)
At ’

A(tH;) = AlriE() (19.16)
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The distinction between conditional and marginal intensities is so important for
spike train analysis that we emphasize it, as follows.

o

If we consider spike trains to be point procesg,éf;, within trials the instantaneous F FOCESS S
firing rate is A(¢|H,) and we have

P(spike in (z, t + dt]|H,) = A(t{H)dt,
while the across-trial average firing rate is A(f) and we have

P{spike in (£, 1 + dt]) = A(D)dt.

19.3.4 Conditional intensity functions may be fitted
using Poisson regression.

On p. 576 we discussed the way Poisson regresion may be used to fit inhomoge- '{\ﬁ%réjg5 iG]
neous Poisson process models. The key theoretical result that made this possible was

Fq.(19.11) in conjunction with (19.10). As we said on p. 584, that theorem holds 3

again for conditional intensity functions using Eq. (19.21). This means that Poisson

regression can again be used for non-Poisson point processes.

We now give some examples in which conditional intensity functions have been
fitted to spike train data.

Example 19.1 (continued from p. 569) Let us take time bins to have width Ar =1
ms and write A; = A(#|H;, ), where t; is the midpoint of the kth time bin. Defining

120
log Ak == i + D 0 ANGe—j—1 =1, (19.28)
=1

we get a model with 120 history-related explanatory variables, each indicating
whether or not a spike was fired in a 1 ms interval at a different time lag. The para-
meter o provides the log background firing rate in the absence of prior spiking
activity within the past 121 ms. Using Poisson regression with ML estimation (as in
Section 14.1) we obtained &g = 3.8 so that, if there were no spikes in the previous
121 ms, the conditional intensity would become Ay == exp(&p) = 45 spikes per
second, corresponding to an average ISI of 22 ms. The MLEs &; obtained from the
data are plotted in Fig. 19.4, in the form exp{é&;}. The &; values related to 0-2ms
after a spike are large negative numbers, so that exp{d;} is close to zero, leading
to a refractory period when the neuron is much less likely to fire immediately after
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Fig. 19.9 Plots of inverse Gawssian hazard function for three different values of the coefficient
of variation, .7 (top curve), 1 (middle curve), and 1.3 (bottom curve). These values correspond to
the rough range of those commonly observed in cortical interspike interval data. The theoretical
coefficient of variation is given by Eq. (3.16).

The non-moneotonic behavior of the recovery function g (z — s4(1)} in the forego- _. —
ing analysis of Example 1.1 may seem somewhat suprising, but anecdotal evidenc FSur g 1519
suggests it may be common. Interestingly, Adrian and Lucas (1912) found a quaiitak
tively similar result by a very different method. They stimulated a frog’s sciatic nerve ¢
through a second electrode and examined the time course of “excitability,” which
they defined as the reciprocal of the voltage threshold required to induce an action
potential. Figure 19.8 plots this excitability as a function of time since the previous
stimulus. There is again a relative refractory period of approximately 10ms followed
by an overshoot and a gradual return to the baseline value. Furthermore, the the-
oretical inter-spike interval distribution for an integrate-and-fire neuron (following
a random walk generated by excitatory and inhibitory post-synaptic potentials) is
inverse Gaussian (see Section 5.4.6), and the hazard function for an inverse Gaussian
has a non-monotonic shape, shown in Fig. 19.9, that closely resembles the typical
recovery function. The qualitative shape of the recovery function shown in Fig. 19.7
is thus consistent with what we would expect from the point of view of theoretical
neurobiclogy.

In many experimental settings spike trains are collected to see how they differ
under varying experimental conditions. The conditions may be summarized by a
variable or vector, ofien called a covariate (as in regression, see p. 332). Furthermore,
there may be other variables that may be related to spiking activity, which could be
time-varying, such as a local field potential. Let us collect any such covariates into
a vector denoted by u; if we regard them as fixed by the experimenter, and V; if
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they should be considered stochastic. We then write X; == (H;, u,, ;) and let the
conditional intensity become a function not only of time and history, but also of
the covariate vector X;. Thus, for an observation X, = x; we write the conditional
intensity in the form A(zf|x,). With this in hand we may generalize the statement on
p. 586, allowing it to cover the interesting cases implied by our discussion surrounding
Eq.(19.5), as follows:

9~ T ,
If we consider spike trains to be point proces{%ns/, within trials the instantaneous {O roCes565
firing rate is A(t|x;} and we have e
P(spike in (7, r + dt]1H;) = A(t]x)dt. (19.32)

We may also generalize formula (19.20).

Theorem If the conditional intensity of an orderly point process on an interval
(0, T] depends on the random process X;, so that when X; = x; it may be written
in the form A{¢|x;), then, conditionally on X; = x;, the event time sequence
81,82, ..., Sner) has joint pdf

T n
fSi,...gSN(T)\Xr (S§s ey SniXI - xt) = CRp {_/0 /\(Il)&)df} H )\(Silxif)-
i=1
{19.33)

Proof: The proof is the same as that given for (19.20) in Section 19.4 with x, replacing
H;. [

A detail: If we are interested in the variation of the conditional intensity
with the random vector X; we can emphasize this by writing it in the
form A(tX;). For example, in a multi-trial experiment, the firing rate
may vary across trials, and the conditional intensity could include a
component that changes across trials (see Ventura et al. (2005b)). In
such situations, the model includes two distinct sources of variability:
one due to variability described by the point process pdf in (19.33)
and the second due to the way the conditional intensity varies with X;.
The resulting point process is often called doubly siochastic. 4

Example 16.6 (continued from p. 472) We now give some additional details about
the model used by Frank et al (2002). They applied a multiplicative IMI model to
characterize spatial receptive fields of neurons from both the CA1 region of the
hippocampus and the deep layers of the entorhinal cortex (EC) in awake, behaving
rats. In their model, each neuronal spike train was described in terms of a conditional
intensity function of the form (19.31), where the temporal factor go(¢) became
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Fig. 19.10 Left Histogram of ISIs for the retinal ganglion cell spike train. Right Histogram of
time-rescaled ISIs. Dashed line is the Exp(1) pdf.

the null hypothesis that the transformed waiting times follow an £xp(1) distribution,
which becomes an assessment of fit of the conditional intensity function. If the P-P
plot consists of pairs (x., y,), forr = 1, ..., n, the usual approach is to use the points
(xy, yr+1.36//7) and (x,, y, — 1.36//n) to define upper and lower bands for visual
indication of fit, as illustrated in Fig. 19.11. Specifically, to make a P-P plot for a

conditional intensity function A{¢|x;) used to model spike times s1, 57, ..., 5, we do
the following:

1. From (19.36) and (19.37) find transformed spike times z1, ..., 2!

2. forj=1,...,ndefine 1y = 1 —exp(~z);

3. put the values uy, ..., u, in ascending order to get i1y, . - -, Uy

4, forr =1, ...,n(see p. 67) plot the (x, y) pair (’75, u(r));

5. produce upper and lower bands: for r = 1,...,n plot the (x,y) pair

(5 13615) o (5 15617

o
Example 19.1 (continued from p. 585)/v Using the conditional intensity of Eq. (19.28)
we may apply time rescaling. Figure 19.10 displays a histogram of the original ISIs
for this data. The smallest bin (0-2ms) is empty due to the refractory period of the
neuron. We can also observe two distinct peaks at around 10 and 100ms respec-
tively. It is clear that this pattern of ISIs is not described well by an exponential
distribution, and therefore the original process cannot be accurately modeled as
a simple Poisson process. However the histogram in the right panel of the figure
shows the result of transforming the observed ISlIs according to the conditional
intensity model. Figure 19.11 displays a P-P plot for the intervals in the right panel
of Fig. 19.10. Together, these figures show that the model in Eq. (19.28) does a good
job of describing the variability in the retinal neuron spike train. L
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Fig. 19.12 P-P plots of inhomogeneous Poisson and multiplicative IM1 models for spike train data
from 2 locust olfactory bulb. For a perfect fit the curve would fafl on the diagonal line y = x. The
data-based {empirical) probabilities deviate substantially from the Poisson model but much less
so from the TMI model. When the curve ranges outside the diagonal bands above and below the
y = x line, some lack of fit is indicated according to the Kolmogorov-Smirnov test {(discussed in
Section 10.3.7).

Poisson process with rate A, we can draw a random sample from an Exp(A} distrib-
ution and take the ith event time to be s; = >\ x;.

Generating event times from a general point process is more complicated. One
simple approach, based on the Bernoulli approximation, involves partitioning the
total time interval into small bins of size Ai: in the kth interval, centered at 7, we
generate an event with probability pp = At |xg, ) Af, where x;, depends on the history
of previously generated events. This works well for small simulation intervals. How-
ever, as the total time interval becomes large and as At becomes small, the number of
Bernoulli samples that needs to be generated becomes very large, and most of those
samples will be zero, since A(r]x,)Ar is small. In such cases the method becomes
very inefficient and thus may take excessive computing time. Alternative approaches
generate a relatively small number of i.i.d. observations, and then manipulate them
so that the resulting distributions match those of the desired point process.

Thinning To apply this algorithm, the conditional intensity function A(¢[x;) must be
bounded by some constant, Amax. The algorithm follows a two-stage process. In the
first stage, a set of candidate event times is generated as a simple Poisson process
with a rate Apmax. Because Apax = A{#|x;), these candidate event times occur more
frequently than they would for the point process we want to simulate. In the second
stage they are “thinned” by removing some of them according to a stochastic scheme.
We omit the details. Tn practice, thinning is typically only used when simulating
inhomogenﬂc\)us Poisson processes with bounded intensity functions.
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this spectrum might presume that this spiking process has no very low frequency
firing, tends to fire around 120 Hz, but also has considerable high frequency activity,
suggesting no refractoriness. However, this interpretation is incorrect. The point
process generating this spike train actually bas an average firing rate around 28 Hz and
reflects realistic spiking features including a 5 ms refractory period and an increased
probability of firing 8 ms after a previous spike. The error here does not come from
the computation of the estimated spectrum, but rather from the niive interpretation. - S
We do not pursue further the estimation of point process spectra, OQur discusson
of Fig.19.13 is intended to show that point process spectra must be interpreted
carefully.

19.4 Additional Derivations

Derivation of Equation (19.9) We start with a lemma.

Lemma The pdf of the ith waiting-time distribution is

fs; (8i1Sio1 = sim1) = Als) exp {— f A(r)czr} . (19.40)
§i-1

Proof of the lemma: Note that {S; > 5;1Si—1 == s;-1}, is equivalent to there being
no events in the interval (s;_1, s;]. Therefore, from the definition of a Poisson process
on p. 574 together with the Poisson pdf in Eq. (5.3), we have P (S; > si[Si-1 = si—1)

= P (AN 57 = 0) = exp {-— NS A(r)dr}, and the ith waiting time CDF is there-
fore P (S; < s:|Si1 = si-1) = 1 — exp {4 S )\(r)dt}. The derivative of the CDF

[ (silSim1 = si-1) = 4 (1 — exp {—f i /\(t)df})
ds; i1

gives the desired pdf. O

Proof of the theorem: We have

fS;,...,SN(T) (S]_a saey S!’I)
= f5, (51)f5, (82181 = 52) *+  foery GalSn—1 = $a—1) - P(AN(5, 1 = 0).

The factors involving waiting-time densities are given by the lemma. The last factor
is

T
P(AN, 1 = 0) = exp (— f /\(r)dr) .

a3

Combining these gives the result. J
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Derivation of Equation (19.20) We need a lemma, which is analogous to the lemmma
used in deriving (19.9).

Lemma For an orderly point process with conditional intensity A(z|H;) on [0, T, the
pdf of the ith waiting-time distribution, conditionally on §; = 51, ..., 81 = 81,
fort € (s;.1, T1is

8
FoiSn sy (silS1 =81, ..., Sic1 = si21) = A(si|Hp) exp {—/ A(IIHr)a’f} :
Si—1
{19.41)
Proof of the lemma: Let X; be the waiting time for the ith event, conditionally on

Sy = §1,...,8_1 = §;_1. Fort > s;_7 we have X; € (f,t + Ar) if and only if
AN s+ap > 0. Furthermore, if the ith event has not yet occurred at time ¢ we have
Hy = (51, ..., 5-1). We then have

O PXi et t+ADX > .81 =51, 00,821 = Si-1)
lim

Ar—0 At
— Hm P(ANg rran > 0lH;))
Ar—0 At

and, because the point process is regular, the right-hand side is A(z|H,). Just as we
argued in the case of hazard functions, in Section 3.2.4, the numerator of the left-hand
side may be written

F(t + At|Hy) — F(i|Hy)
1—F(|H)

PXie(ht+AD|X; 1. H) =

where F is the CDF of the waiting time distribution, conditionally on H;. Passing to
the limit again gives

P(X; € (1.t + AD|X; > ¢, Hy) fHY)
1m = N
AP0 At 1-— F(ﬁ;’t@)

In other words, just as in the case of a hazard function, the conditional intensity
function satisfies P
i1y
AltH) =

1—F£&@'

Proceeding as in the case of the hazard function we then get the conditional pdf

— i .
f(tlHr) - A(I;H{,)g J‘:Vj__l ’\(“m)du

as required. ]

Proof of the theorem: The argument follows from the lemma by the same steps as
the theorem for inhomogeneous Poisson processes. ]
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618 Appendix: Mathematical Background

if and only if it is of full rank). Thus, a positive semi-definite matrix is non-singular
if and only if all its eigenvalues are positive.
The spectral decomposition has a very nice geometrical interpretation. First, the
set of two-dimensional points (i, 1) satisfying ~5/E:z o

2
o e (A.21)
7 e Pnx .. .
where ﬁ]: and ,5;2 are positive numbers, forms an ellipse centéred at the origin.
Furthermore, the ellipse is oriented so that its two axes fadf-along the u; and us

coordinate axes, and the lengths of its two axes are ZC«/an and 2(,‘«/522. If we let
i = (i1, uz) then Eq. {A.21) may be written

ul Du = ¢?

where D is the diagonal matrix with diagonal e]emer@n MWNow let Ry be
the 2 x 2 orthogonal matrix that rotates each vector counter-clocKwise through an
angle §. As pointed out above, Rg‘ is the 2 x 2 orthogonal matrix that rotates each
vector clockwise through an angle &, If we define x = Rpu then u = R;’;x, and from
(A.22) we have

X RgDRY x = ¢ (A23) J
W"‘Mw
so that (A.23) must be the equation of an ellipse whose axes fal %fng the axes
defined by the vectors col; (Rg) and coly (Ry) and have lengths ZC\[% and 2¢c+/53.
Because every orthogonal matrix is a rotation followed by a possible re-orientation
of the axes, and such a re-orientation of axes defining x would not change the location
of the ellipse defined by (A.23), for any 2 x 2 orthogonal matrix P, the equation

T PDPTx = 2, (A.24)

is the equation of an ellipse whose axes fall along the axes defined by the vectors
col; (P) and colz(P) and have lengths 2¢+/1; and 2c+/P22. An analogous interpre-
tation of Eq. (A.24) holds when x is k-dimensional and P and D are k x k matrices.
Thus, for a positive definite matrix A, the equation x” Ax = 1 defines an ellipse,
and the spectral decomposition of A shows that the axes of this ellipse are oriented
along the eigenvectors of A and have lengths equal to twice the square-root of the

g, S
Corresponding eigenvalues.

A9 Vector Spaces

The n-dimensional vectors e; = (1,0,0,.... 0., e =(0,1,0,0,...,0), ...,en =
(0, ..., 0, 1) play a special role because they specify the axes or coordinate directions
corresponding to each component of an n-dimensional vector x = (x[, X2, ..., Xz)
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fMRI in a visuomotor experiment, 6 Neural firing rate selectivity index, 236, 243
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Glutamate increase in response to pain, 263
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High-field BOLD signal, 29

Hippocampal hemispheric differences among
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Integrate-and-fire model fit to cochlear neuron
inter-spike intervais, 127
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Learning impairment following NMDA
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general anesthesia, 451, 478
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Motor cortical spike counts, 46, 138, 164
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Neural conduction velocity, 11, 324, 326

Optimal integration of sensory information,
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Perception of light, 112, 213, 392, 394,
396-398

Postural hand synergies, 501
Predicting reading improvement in dyslexic
children from fMRI, 510

Q

Quantal response in synaptic transmission, 113

R

Regression of son’s height on father’s height,
g7

Retinal ganglion celi under constant conditions,
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Reward and parietal cortex neural activity, 310,
326,333,338
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Saccadic reaction time in hemispatial neglect,
24, 28, 69, 378, 393

SEF neuron directional sensitivity, 400, 461

SEF neuronal activity under two conditions, 3,
187,244, 258, 422, 576, 589, 593

SEF selectivity indices, 459, 462, 464, 468

Sensorimotor learning, 445

Set shifting in ADHD, 481

Skill acquisition power law, 32

Spatiotemporal correlations in visual signaling,
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Spike count correlation could limit fidelity, 141

Spike sorting forebrain recordings, 502, 511

Square-root transformation of spike counts in
motor cortex, 234

Stimulus-response power laws, 32

Synchronous firing of V1 neurons, 284
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Attention, 150
Attention deficit hyperactivity disorder, see

A ADHD
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ACF (Autocorrelation coefficient), 322 LADHD), 380

ACF (Autocorrelation function), 3135, 531 Attenuation of correlation, 330, 465

ACT-R, 103 Augmented data, 216

Action potentia.l, 3 ]93=.564 o Autocorrelation coefficient, see ACF
ADHD (Attention deficit hyperactivity Autocorrelation fanction, see ACF
disorder), 107, 248, 380, 451, 481, Autocovariance function, 515

o6 Autoregressive model, 322, 530
Adrian, Bdgar, 563 o Autoregressive moving average, 54
AIC (Akaike information criterion}, 293, 354, Axioms of probability, 38

357 T

Akaike information criterion, see AIC
Aliasing, 544

Alignment of theoretical and real worlds, 1753 B
Alternative hypothesis, 248, 276 B-splines, 420
Alzheimer’s disease, 254 Backward elimination, 354
Analysis of covariance, see ANCOVA Band-pass, 543
ANCOVA (Analysis of covariance), 379, 380 BARS (Bayesian Adaptive Regression
Anegtheqla’ 27 451 Splmes), 16, 413, 415, 424, 532, 340
ANOVA {Analysis of variance), 284, 361 Basal ganglia, 409

assumptions, 364 Basis, 417, 523, 619

decomposition, 342, 365 Basis functions, 414
Aperiodic, 453 Baich of nombers, 25
APOE (Apolipoprotein E), 254 Bayes classifier, 99
Apolipoprotein E, see APOE Bayes factor, 297, 476
Approximate 95 % confidence interval, 160, Bayes sufficient, 442

166 Bayes” rule, 102

Approximate coverage probability, 276 Bayes’ theorem, 43, 45,98, 173, 174
AR(p), 530 Bayesian, 14
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Correlation coefficient, 78, 327
Cortex, 236

Cosine regeession, 346

Count data, 22

Counting process, 566
Covariance, 77

Covariance matrix, 90
Covariate, 332, 380, 391
Coverage probability, 276
Cramér-Rao lower bound, 200
Credible interval, 174, 439
Critical value of test, 271
Cross-correlation function, 553
Cross-covartance function, 553
Cross-validation, 20, 335
Cubic spline, 418

Cumaulative distsibution function, see cdf
Curve fitting, 414

D

Data analysis, I, 23

Data augmentation, 216

Data category, 251

Decibels, 28

Decision rule, 99, 102

Decision theory, 102, 195
Decoding, 100, 426, 471
Deductive reasoning, 13
Degenecrate distribution, 142
Degrees of freedom, 124, 128, 177
Delta method, 229

Density estimation, 435
Derivative, 607

Descriptive probability, 13

Design matrix, 341

Determinant, 616

Detrending, 529

Development, 368

Development of motor control, 372, 374
Deviance, 396

Digamma function, 211
Dimensionality reduction, 492
Dirac delta function, 600
Direction of maximal variation, 499
Dirichlet kernel, 346

Discrete data, 21

Discrete distribution, 48

Discrele Fourier transform, 527
Discrete random variable, 48, 52
Discrete-time stochastic process, 515
Disjoint, 38

Distribution, 47
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Distribution function, 54
Distribution of a random variable, 48
Distribution of data, 24
Double-blind experiment, 387
Doubly stochastic point process, 592
Dynamnc range, 547

E

Ebbinghaus, Hermann, 117

EDA {Exploratory data analysis), 17, 23, 26

EEG (Electroencephalogram), 16, 27

Efficient estimator, 201

Efron, Bradley, 180, 222

Eigenvalue, 131, 617

Eigenvector, 131, 617

Plectroencephalogram, see EEG

Electromyogram, see EMG |

Electrooculogram, see BOG i
|

Ellipse, 82 - -,
Elliptical contours, 130 Q/Q - ;
EMG (Electromyogram), 35 o
Empirical Bayes, 464

Empirical cumulative distribution function, 64
Entropy, 95

EOG (Blectrooculogram), 16

Epistemic probability, 13

EPSC (Excitatory post-synaptic current), 14
Errors in variables, 359

Estimation and learning, 492

Hstimator, 151, 179

Estimators, asymptotically normal, 180
Euler’s eguation, 622

Euler’s formula, 526, 621

Euler, Leonhard, 523

Event times, 364

Events, 38

Evidence in favor of a hypothesis, 477
Excitatory post-synaptic current (EPSC), 371
Excitatory post-synaptic current, see EPSC !
Expectation, 50 i
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Expected value, 53

Expected information, 199

Expected value, 50

Expioratory data analysis, see EDA
Exponential distribution, 32, 56, 120
Exponential family, 200, 402, 443
Exponential function, 608

F
F distribution, 129
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F-ratio, 336, 366

F-test for regression, 337

Factor analysis, 503

False discovery rate, see FDR

Family-wise error rate, 304

Fano factor, 580

Fast Fourier transform, 527

FDR (False discovery rate}, 305

Feynman, Richard, 522

Filtering, 16

Filtering equation, 472

Firing rate, 563

Fisher information, 199

Fisher’s z transformation, 329

Fisher, Ronald, 149, 179, 247

Fitted value, 12

FMRI (Functional magnetic resonance
imaging), 1, 6, 29, 135, 303, 313,
340, 336

Forward selection, 354

Fourier analysis, 27, 322

Fourier coefficients, 524, 528

Fourier frequencies, 528

Fourier, Joseph, 523

Frequency domain, 518

Frequentist, 14, 172, 175

Frontal lobe, 108

Full conditional distributions, 468

Full rank, 616

Fully Bayes, 464

Function, 607

Function of a random variable, 62
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Functional magnetic resonance imaging, see
fMRI

Index

Geometric distribution, 120, 453

Gibbs phenomenon, 545

Gibbs sampling, 218, 466, 467

GLM (Generalized linear model), 392, 402,
405, 421

Glutamate, 263

Goodness-of-fit, 247, 248

Granger caunsality, 538

Gratification, 379

Guiding principles of science, 440, 450

H

Hand synergies, 501
Hardy-Weinberg model, 108
Harmonic frequencies, 521
Harmonic regression, 521

Hartline, Keffer, 563

Hat matrix, 415

Hazard function, 61, 121, 583
Heavy-tailed distribution, 69
Hemispatial neglect, 24
Hemodynamic response function, 314, 340
Hessian, 213

Hidden Markov model, 470

Hidden states, 439

Hierarchical model, 459

High-pass, 543

Highly significant, 253
Hippocampal ptace cell, 410, 472, 592
Histograms, 25

History of spiking, 566, 582
Homogeneity assumption, 106, 107
Homogeneous Poisson process, 570
Hotelling’s T2, 496

Human memory, 117

Hypothesis, 247

- 2

Fundamental frequency, 521 Hypothesis test, 248
G I

Gabor wavelet, 426, 429

Gamma distribution, 52, 38, 123

Gamma oscillations, 518

Gauss, Karl Friedrich, 523

Gaussian distribution, 25, 116

Gaussian filter, 422, 431, 435, 436, 539, 578
Gaussian state-space model, 473

General linear model, 340, 374

Generalized cross-validation, 424
Generalized linear model, see GLM

o

Generalized maximum likelihood, 424
Generalized nonlinear model, 409

ICA (Independent components analysis}, 504
Ideal observer, 102
Identity, 615
Imaginary number, 620
Imagined movement, 100
IMI (Inhomogeneous Markov interval), 589
Improper prior, 447
Impulse response function, 544
Increment, 566
Independence, 106
_Independence assumption, 107
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Independent components analysis, see ICA
Independent events, 41

Independent random variables, 75
Indicator variable, 45

Inductive reasoning, 13, 134, 481
Inferential principle of equivalence, 441
Inferotemporal cortex, 97

Infinitesimal interval, 84

Information, 20, 94

Information in an estimator, 198
Inhomogeneous Markov interval, see TMI
Inhomogeneous Poisson process, 573
Inhomogeneous variances, 371

Initial values, 215

Instantancous firing rate, 563
Integrate-and-fire neuron, 126, 127, 141, 589
Integrated likelihood, 211

{ntelligence, 504

Inter-spike intervals, see 1STs

Tateraction effects, 352, 377

Interquartile range, 26

Interspike interval distribution, 579
Inverse Gaussian distribution, 125
Inverse-gamma distribution, 468
Inverse-Wishart distribution, 468

Ton channel activation, 58

I3, 385, 504

Trreducible, 433

ISIs (Inter-spike intervals), 127, 566

IT neural response, 167, 413

J

Jeftreys, Harold, 40, 149, 476
Joint distribution, 73

Joint pdf, 73

K

K-fold cross-validation, 355
K-means clustering, 51
Kalman filter, 473

Kalman smoother, 475

Kernel density estimate, 435
Kernel density estimator, 422, 578
Kernel function, 509

Kernel regression, 430

Kernel trick, 509

Knots, 418

Knowledge, 13
Kolmogorov-Smirnov test, 270
Kruskal-Wallis test, 384

KS statistic, 270

Kullback-Leibler (KL) divergence, 92

L

Li-penalized regression, 358, 469
L2-penalized regression, 358, 469
Lag, 531

Laplace distribution, 469
Large-sample optimality, 180
LASSO0, 358

Latent factors, 503

Latent variables, 216, 399, 457
Lateral intraparietal cortex, see LIP
Law of cosines, 610

Law of large numbers, see LLN
Law of total expectation, 85

Law of total probability, 43, 86
Law of total variance, 86

LDA (Linear discriminant analysis), 506
Leakage, 545

Learning, 108

Learning a hyperparameter, 464
Learning and estimation, 492
Learning trials, 108

Least upper bound, 242
Least-squares estimates, 311
Least-squares regression, 11, 212
Leave-one-out cross-validation, 101, 356
Lebesgue integration, 39, 417

LFP (Local field potential), 1, 421, 518
Likelihood function, 155
Likelihood ratio test, 287

Limulus, 32

Lindeberg condition, 146

Linear association, 327

Linecar discriminant analysis, see LDA
Linear discriminant function, 506
Linear filters, 539

Linear independence, 615

Linear prediction, 80

Linear regression, 89

Linear regression assumptions, 313
Linear smoother, 415

Linear trend, 323

Linearity of expectation, 74

LIP (Lateral intraparietal cortex), 86, 310
LIP neuron, 310

LLN (Law of large numbers), 137, 143
Local field potential, see L.FP

Local fitting, 414, 429

Local polynomial regression, 432
Loess, 433
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Log odds, 394

Log transformation, 28, 232
Logarithm, 28, 608

Logic, 394

Logistic distribution, 398
Logistic regression, 214, 392
Logistic regression classifier, 507
Logit transformation, 394
Loglikelihood function, 156
Long-range dependence, 516
Long-run frequency, 172
Loss function, 102
Low-pass, 543

M

Machine learning, 492

Magnetoencephalography, see MEG

Mallow’s Cp, 354

Manifold learning, 503

Mann-Whitney test, 384

MANOVA (Multivariate analysis of variance},
461,493

MAP estimate, 440

Marginal distribution, 73

Marginal intensity, 584

Marginal pdf, 73

Markov chain, 453

Markov chain Monte Carlo, see MCMC

Markov’s ineqguality, 144

Matrix, 614

Maximum entropy, 120, 147

Maximurn likelihood estimator, see MLE

Maximum likelihood, see ML

Maximum @ posteriori estimate, 440

MCMC (Markov chain Monte Carla}, 452

Mean, 25, 50

Mean integrated squared error, 188

Mean squared error, 80, 180, 181

Mean squared error, minimum, 80

Mean vector, 90

Median, 25

MEG (Magnetoencephalography), I, 3, 100,
358, 518, 549

Membrane conductance, 109

Memory, 151

Memoryless, 120

Method of moments, i53

Methylphenidate, 451

Metropolis-Hastings algorithm, 454, 455

Milner, Brenda, 1

Minimal signaling unit, 141

Missing data, 218

Index

Mixture model, 216, 510, 5i1

Mixture of Gaussians, 216, 511

ML (Maximum likelihood), 149, 154

MLE (Maximum likelihood estimator), 152,
155

Mode, 25

Model comparison, 353

Model selection, 353

Models, scientific and statistical, 17

Modern regression, 310, 391, 413

Monte Carlo, 452

Morlet wavelet, 429

Mosteller, Frederick, 356

Motor cortical neuron, 46, 348, 406

Multimodal, 24

Multinomial distribution, 119

Multinomial logistic regression, 507

Multiple regression, 310

Multiple factors, 371

Multiple hypotheses, 302

Multiple regression, 332

Multiple testing problem, 287

Multiplication rule, 40

Multi-taper estimation, 548

Multivariate analysis, 491

Multivariate analysis of variance (MANOVA),
491

Multivariate analysis of variance, see
MANOVA

Multivariate central limit theorem, 148

Multivariate data analysis, 130

Multivariate normal distribution, 129, 130

Mutual information, 20, 92

Mutual information versus correlation, 94

Mutually exclusive, 38

N

Niive Bayes classifier, 507
Nagelkerke RZ, 397

Natural log, 31

Natural parameter, 404
Natural splines, 420

Neural network model, 508
Neuvromuscular junction, 110, 113
Newton's method, 404
Neyman, Jerzy, 179, 248
Neyman-Pearson lemma, 294
NMDA antagonist, 108
NMDBA receptor, 406

Noise, 10, 13

Noise variability, 317
Nominal criterion, 304



Index

Sample space, 38

Sample standard deviation, 51

Sample variance, 183

Sample variance matrix, 90

Sampling with replacement, 242, 300

Scalar, 607

Scatterplots, 26

Scheffé test, 373

Scientific models, 17

Scientific progress, 480

SEF (Supplementary eye field), 3, 187, 331,
400, 401

Selectivity index, 236, 331, 459, 462

Sensitivity, 43, 282

Separating hyperplane, 508

Sequential Bayesian estimation, 472

Set shifting, 481

Shannon, Claude, 95

Short-range dependence, 316

Shrinkage, 357, 443, 462

Sigmotdal curve, 213

Signal, 10, 13

Signal detection theory, 279

Signal variability, 317

Signal-to-noise ratio, 317

Significance level, 271

Significance test, 248

Simple linear regression, 310

Simulated data, 224, 267

Simulation sample size, 229

Simulation-based propagation of uncertainty,

225
Skewness, 24
Slutsky’s theorem, 163
Smoothing, 188, 414
Smoothing splines, 423
Source localization, 306, 358
Specificity, 43
Spectral analysis, 521
Spectral decomposition, 131, 617
Spectral density function, 535
Spectrogram, 27, 514, 549
Spike, 3, 563
Spike count correlation, 141
Spike sorting, 21, 71, 502
Spike train, 3, 564
Splines, 418
Square-root of n law, 139
Square-root transformation, 234
Squared-error foss, 195
Standard deviation, 26, 50, 51, 55
Standard error, 158, 159
Standard error of the mean, 162

Standard normal, 117
Standardized, 117
Standardized residuals, 319
Starting values, 411
State, 452
State-space model, 470, 593
Stationarity, 6, 147
Stationary increments, 570
Statistic, 137
Statistical model, 10, 13, 17
nonparametric, 14
parametric, 14
Statistical paradigm, 2, 9
Statistical procedures, 19
Statistical reasoning, 13
Statistical thinking, 2
Statistically significant, 253
Steady-state, 5
Stepwise regression, 354
Stimulus-respense, §, 32
Stochastic, 38
Stochastic process, 564, 567
Strictly stationary, 515, 553
Student’s 7, 129
Studentization, 319
Sufficient statistic, 200, 404
Sum of squares due to regression, 316
Sum of squares for error, 316
Superposition, 581
Supervised learning, 510

.Supplementany.eye-feld-(SER)-3--%

Supplementary eye field, see SEF
Support vector machine, see SVM, 508
Suprernum, 242, 270

Surrogate data, 552

SVM (Support vector machine), 508
Symmetric, 25, 615

Synaptic transmission, 113

Synchrony, 284

T

¢ distribution, 128, 176
t-ratio, 323

t-test, 258, 263, 265
Tapering, 548

Taylor sertes, GO&

Temporal coding, 97

Test data, 353

Test of independence, 254
Test-enhanced learning, 167
Tests and confidence intervals, 274
Tetrode, 71
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Theobromine, 363 A%
Theoretical distribution, 51 Variability, 26
Theoretical world, 19 Variance matrix, 90, 129, 130, 133 |
Theta rhythm, 593 Variance of a surn of independent random
Time domain, 518 variables, 76 '
Time series, 22, 315, 514 Variance of a sum of random variables, 77

Time-frequency analysis, 348 Variance-stabilizing transformation, 34, 232

Time-rescaling theorem, 593, 603 Variation in data, 14

Time-varying firing rates, 496 Vascular dementia, 44

Total sum of squares, 316 Vector, 606

Training data, 355, 506 Vector space, 619

Transfer function, 542 Visual aftention, 150

Transformations, 33, 69
Transition probability, 453

Transpose, 6153 W
Treatment effect, 369 Wavelets, 428
Trial, 3, 4 Weak law of large numbers, 143

Trigonometric polynomial, 524 Weakly stationary, 513, 553

Tukey, John, 23, 247, 356, 527 Weber—Fechner law, 32
Two-by-two table, 255 Weighted least squares, 343, 535

Two-sample r-test, 265 Weighted mean, 190, 209

Two-way ANOVA, 361 Wc%ghted overlapping segment averagipg, L ;\_ ~
Type one error, 248, 276, 283 w?\; zizzi agg;f’;‘;am“ theorem, 416 Q#ﬁa\&‘iﬁ;‘l« 257 |

1 3, , 43 o~ o O i
Type two error, 248, 276 Welth’s method of spectral density estimadoﬁxﬂ_@_@ !

339
Welch's -test, 266 €

U White noise, 38
Unbiased estimator, 51, 183 Whittle likelihood, 540 !
Uncertain inference, 14 Wilcoxen rank-sum test, 384
Uncertainty, 13, 94 Wilks’ fambda, 494 !
Unequal variance r-test, 266 Working memory, 333
Uniform distribution, 52
Uniformity test, 268
Unimeodal, 24 VA ;
Unit information prior, 481 Zoobs, 261 1
Unsupervised learning, 510 z-score, 118, 261

Utility function, 102 z-test, 259, 261
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