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TRANSMISSION AND CONTROL OF ARBOVIRUS DISEASES

infective and removed vectors, fespeccively. (The vectors for arboviruses

) do not develop immunity. Their infective period is terminated by their death.)
K. Dietz* (/9?57 .
Bailey gives the following system of differential equations:
Introduction dx dx'
= | ac = B, o TR
The present paper is a survey of mathematical models and problems in ’

- ' ] dy _ : dy' _ :
relation to arbovirus diseases. This class of diseases is caused by arthro- E% = Bxy'-vy, E% = B'x'y-v'y' 1)
pod-borne viruses whose primary hosts are vertebrates, but whose development dz dz! .

- ac 7 ac Y'Y

cycle involves multiplication within the vectors by which they are transmitted.

) ) where 8,8' are contact rates and v,y' are removal rates. Let n and n' denote
Many of these viruses are maintained as endemic in wildlife. But sometimes

the size of the human and vector population, respectively. Bailey shows that
severe epidemics in human or domestic animal populations may occur. Examples o .

L the product nn' has to be greater than the product pp' of the relative removal
are yellow fever, dengue, St. Louis encephalitis, Japanese encephalitis,

. . . rates p = y/B and p' = y'/B' in order that a small introduction of infectives
tick-borne encephalitis, to name just a few. A concise review is given by .

‘ : (either humans or vectors) into a susceptible population causes an epidemic.
Simpson (1972). ,

- : A stochastic analogue of this threshold theorem for vector epidemics has been
Most of the mathematical theory of communicable diseases has been more \ .

. given by Bartlett (1964) and Griffiths (1972).
or less explicitly concerned with those virus infections which produce life-

. _ " We shall now discuss the applicability of this model to thé spread of
long immunity. The relevant model is usually referred to as the "general

. ) . i arboviruses by mosquitos in one vertebrate host population P. For this we
epidemic" (Bailey, 1957). Many results of this theory are immediately appli-

. ] i have to examine in some more detail the assumptions with respect to the contact
cable to arbovirus.diseases. In the following we shall deal with some prob-

. rates between individuals of the two populations involved. Let us take the
lems that are either peculiar to arbovirus diseases or have not yet been ade-

infection rates of susceptible vertebrates, i.e. 8xy'. This can be rewritten °
quately dealt with for any virus disease. .

1,
_as follows: Bn'(y'/n)x, with the following interpretation: the rate.of

The epidemic threshold . infection per susceptible is equal to the number of effective contacts with

Section 4.4 of Bailey (1957) discusses a model of Kermack and McKendrick

infective vectors per unit of time, which is equal to the number of contacts

for the spread of an epidemic by a vector. Using the same notatijon, ;et X, with vectors per unit of time (8n') times the proportion of those contacts

¥,z denote the number of susceptibles, infectives and immunes in the human which ‘are infective (y'/n'). A similar argument applies to the infection rate

population, respectively. Let x',y', and z' be the number of susceptibles, for susceptible vectors: B8'x'y = 8'n(y/n)x'. This way of writing the infec—

* Health Statistical Methodology, World Health Organization, 1211 Geneva 27,

tion rates.reveals the implicit assumption that the number of contacts per
Switzerland.

unit time per individual with individuals from the other population is propor—
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tional to the size of. the other population.

The female mosquito requires a blood meal for the maturation of the eggs.
The frequency ¢ of feeding depends on a number of factors, in particular cli-
matic ones, but can be assumed to be constant as a first approximaéion. (Moon,
1973, takes into account climatic factors in calculating the infection rates

of mosquitos.) Typical values are once every two or three days. Most mos—

quitos are rather catholic in their host choice. Let m denote the number of

alternative hosts available as blood sources, weighed with the preferences of
the mosquitos for the different types of blood sources, such that the proba-
bility for choosing an individual from P as a host is given by n/(n + m). We
assume that the host choices of a mosquito at subsequent feedings are inde-
pendent of each other. Then an individual from P receives (@' /n}{n/(n + m)}
bites per unit of time, and the mosquito takes yn/(n + m) blood meals from

P per unit of time. Hence B = B' = W/(n + m). Thus the threshold condition

nn' > pp' can be written as

R =D2n' _ BB'mn' _

pp' vy'

nn'ply &
(ntm) 2yy!

> 1. (2)

The quantity R is called the reproduction rate, since it represents the num-

ber of secondary cases that one case can produce if introduced to a susceptible

population.  This can be seen as follows: An infective introduced into P is

bitten by ¥n'/(n + m) mosquitos per unit of time each of which disEributes
yn'/{(n + m)y'} bites into P during the rest of its life. This number has to
be multiplied by the expected duration of the infective period of a case which
is 1/vy.

For m >> n, (2) gives a lower bound for the product n'n, but for m << n,
we get a lower bound for the ratic n'/n, i.e. a criticalldensity of mosquitos

with respect to man. In both cases large vector populations facilitate an

TRANSMISSION AND CONTROL OF ARBOVIRUS DISEASES

epidemic, whereas large vertebrate populations may or may not be required to
cause an epidemic. It all depends on the ratio n/m which determines how many
contacts are "wasted" on other populations.

It would be interesting to test experimeptally whether the host choices
at subsequent feedings of the mosquitos are independent of each other, and to
explore theoretically the consequences of some forms of dependence, such as

Markov dependence.

Critical population size for maintenance of the virus

In the vertebrate population life-long immunity is usually produced after
one infection. Therefore the virus canronly be maintained if it -is transmit-
ted to new susceptible hosts. This raises the problem of determining the cri-
tical size of a vertebrate population which is necessary to maintain a virus
population in an endemic state, without the need for immigration of new infec-
tives. In the case of measles, Bartlett (1960 a) arrived at an estimate of
250,000 to 300,000 for U.S. cities using epidemiological records,.wheregs
Black (1966) considered this to be an underestimate on the basis of data from
some Pacific islands. For chikungunya virus, de Moor and Steffens (1970)
found a critical size of 4,000 individuals (primates) using simulations. An
estimate of the critical population size could help in the jdentification of
reservoir populations. For a discussion of this problem in relation to yel-
low fever in Trinidad see, for example, Spence et al.(1961).

Since we are now interested in stable endemic states, we have to intro-
duce birth and death parameters into (1). We assume that both the vertebrate
and the vector populations are stable by setting the birth rates equal to the
‘death rates. The death rate in the vertebrate population is denoted by u and

for symmetry we replace y' by u' in the equations for the vector population.
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Thus (1) is now replaced by the following set of equations:

ax ax !
ac = w8y’ +hx, E%’ =u'n'~(By + u')x',
ﬂX: Ty + dy! .,
it By'x-(y + v)y, E%' = Byx' ~ u'y', - 3)
dz
ISV - ouz,
vhere n = x +y+zand o' = x' +y'. One equilibrium is given by

(*,¥,2,3%',5"):(n,0,0; n',0) and another one by:
x' ="/ +b'y), y' = n'b'y/(1 + b'y), (4.1)

a(l+b'n/M) , : :
REb 'n/M 4.2)

n

- a(R - 1)
RM + b'n °’ (4.3)‘

oM - R - 1)
RM + b'n ’ (4.4)

where b' = 8/u’, M = (u+ y)/p and R = on'B2/{(y + y)u'}.

In order for the second equilibrium to be stable the reproduction rate

R has to be greater tham one. The infective period has now length 1/(u + v)

instead of y. Taking this inte account

bol for:i as in (2). The quantity M is the ratio of the average life expec-

tancy of a vertebrate host (1/u) to the average duration of the infective

period. In order to obtain a rough estimate of the population size required

for the maintenance of the virus, we apply the following heuristic argument.
The endemic ‘average number of infectives y should be greater than some value
y* which would ensure that the time to extinection is "véry" long. (In the

stochastic analogue of (3) y = 0 is an absorbing state, which is reached with

probability one. 1In order to determine y* in a stochastic model, one would

have to impose some arbitrary lower bound on the mean time to extinction.)

From (4.3) we see that the size of the vertebrate population occurs explicitly

, it dis justified'to use the same sym-

QO
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twice. Term in the denominator cam be written as follows:

b'n=80-__¥n &)

u u'(n + m)

This quantity is the number of bites which one mosquito takes from individuals
in P during its lifetime. We assume this quantity to be a constant, which we

denote by a in the following. Hence, the stipulation y > y* implies

1+ a/R (6)

n > y*M
T TR

We shall now apply this formula to the simulation study of de Moor and Stef-

fens '(1970). TUnfortunately, they do not specify in their paper all the parame-

ter .values chosen. But one can estimate some of them approximately from the
graphs. In their Fig. 7, the proportion of susceptible vertebrates (vervet

monkeys, Cercopithecﬁs aethiops, or baboons, Papio ursinus) reaches an en-

demic level.of aﬂout 10% (for u' = 0.1 in our notation). The life expec—
tancy of the vertebrates is assumed to be three years and the infectious
period is three days, hénce M = 365. The quantity a is approximately 1.5.
For x/n = 0.1, it follows from (4.2) that R = 10. Inserting £hese values
into (6) one can conclude that y* must be approximately equal to 10 if the
critical populatioq size is 4,000, as.the authors state.

Formula (6) yields immediately the result that the size of a human popu-—
lation, with a life expectanéy of 60 years, would have to be 20 times larger,
other things -being equal. It also suggests that the critical population size
is fairly independent of R for R >> 1, but is inversely proportional to R - 1
for R close to one.

It would be interesting to determine the relationship between y* and the

expected time to extinction in a stochastic model.

Spatial spread of epidemics
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Because of immunity or death resulting from a virus infection, the virus
has to be transmitted to new susceptibles thus creating a travelling wave.
This phenomenon of geographical spread has been treated mathematically by a
number of authors: Bartlett (1960b), Kendall (1965), Mollison (1972), Rad-
cliffe (1973) and Noble (1974). The paper by Radcliffe deals with vector-

borne infections whereas the others are concerned with epidemic spread by

. man-to-man contact. A map in Smith (1971) shows the progress of a yellow

110

fever epizootic in Central America which travelled im a linear manner between
1948 and 1954 from the Isthmus of Panama to Guatemala where it burnt out at
the northern limit of the habitat of the maintenance host., It would be in-
teresting to apply some of the available models for spatial epidemic spread

to actual epidemics in order to relatg the observed velocities to the epidemi-
ological parameters of these models as Noble did in the case of plague. Some
Qf these models for the spread of an epidemic along a line may be suitable

for the description of the progress of yellow fever in monkey populations

which inhabit gallery forests along river beds.

Médels for age—specific prevalence of infection and disease

The models discussed so far describe the number of individuals in the
various epidemiological states in a cross-sectional way, i.e. they describe
averages over all age groups in a population. Since the pathégenicity of an / 0
infection is frequently age-dependent, it is important to describe the age-
specific distribution of individuals in the various epidemiological states.
Another reason for this age-specific approach is the possibility of estimating
epidemiological parameters from age-specific data. For simplicity we shall

consider the case of man~to-man tramsmission. Then (3) reduces to

== = nu - (By + ux,

TRANSMISSION AND CONTROL OF ARBOVIRUS DISEASES

dy

ac = Byx -~ (v + Wy, 7)
dz _ -

rraiai (AR

We introduce the variables x(a,t), y(a,t), z(a,t), denoting the number of

"sysceptibles, infectives and immunes of age a at time t. The system of ordi-

nary differential equations (7) has now to be replaced by a system of integro-—

differential equations in an obvious manner:

9% , B8x _ _ ® _

%2 T - B Io,y(s,t)ds x(a,t) - ux(a,t),

%E + %% = 8 I y(s,t)ds x(a,t) ~ (v + wy(a,t), (8)
[s]

3z , 3z _ )

22 T 5t " vy(a,t) - uz(a,t),

with the initial and boundary conditions

x(2,0) = x,(2),y(a,0) = y,(a), z(a,0) = z_(a),

)]

]

x(0,t) np, y(0,t) = 0, z(0,t) = O.
Since we are interested in endemic conditions, we look for stable solutions

of (8) which are independent of time, i.e. we want to solve the system

%;5 = -8 J:y(S)ds x(a) - ux(a),
4. g ry(S)ds x(2) - (v + Wy(a), (10)
a o]
£ - yy(a - uz(a),
for the initial condition
x(0) = nu, y(0) = 0, z(0) = 0. (€% D)

We introduce the new variables u = x/K, v = y/K and w = z/K, where
K=x+7y+ 2z, From (10), by adding the equations, we get a differential

equation for K.
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& _
da —uK . . (12)

with K(0) = np., Hence K(a) = npe H2 apg

g_: = ‘51‘1 ;{: v(s) ue™® ds u(a),
§§ = fn I: v(s) pe~HS gg u(a) - yv(a), Co@3)
gg = yv(a),
with the initial conditions u(0) =1, v(0) f &(0) = 0. Let
A= Bn f: v(s) ne ™S gs. ' (14)

1 g .
£ (13) has a non-trivial non-negative solution, then A is a positive con

stan i A
t, and (13) is reduced to a system of linear equatioms with the solutions

u(a) = e~Aa

‘ (15.1)
o X(eA3e™2y 1y = 3y . fory #2,
- 15.
Aae™ 78 for y = A, (5.2
ey = LT ORI - fory ¢,
(15.3)

1- e‘Aa(l + Aa) for vy = 2,

Using (14) and (15.2) we can derive a condition for the existence of a posi~

tive solution for V. Putting (15.2) into (14) and cancelling the trivial

solution X = 0, we get

2 = Bn _
H Yo 1y, (16)

If we denote the life expectancy of an individual 1/p by L and the reproduc—

t 3 a = - - - y
lon rate of the infection Bn/(y + u) by R, then (16) can be rewritten as

A= (@®-1U/L, . . an

or, if ; i
» 1t we denote the average age 1/% at which an individual contracts the

O
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infection by A, then we have
R =1+ L/A. (18)
The condition for A or v to be positive is naturally R > 1. If u, v, w, de-

note the average proportions of susceptibles, infectives and immunes, we get

3= 1/R, i
7= (- 1R/, a»
w=(lL-1/R)( - 1/M),

where M = (n + y)/u, as above. The fact that the average proportion of sus-—
ceptibles in an endemic equilibrium state equals 1/R is intuitively obvious:
At equilibrium, each case should produce on the average one secondary case.
If u =1, then one case can produce R secondary cases. If u is less than
one, then a proportion of 1 - u contacts are~"wasted“ on non-susceptibles,
such that the réprodﬁction rate is actually Ru. At equilibrium, u has there-
fore to take the value 1/R. TFrom this follows that one can estimate the pro-
portion of susceptibles in the total population and hence the reproduction
kate if one only knows the proportion of susceptibles u(a) at a particular
age a,. From (15.1) one determines A = 1/A, and (18) yields R, assuming the

life expectancy is known. TFor example, London and Yorke (1973) quote that at

the age of 20 years 68% have acquired chickenpox and 507 have acquired mumps. -

Assuming a life expectancy of 70 years, we get the reproduction rates 5 for
chickenpox and 3.4 for mumps. It is to be noted that these calculations
assume age-independent dea;h rates, i.e. aﬁ exponential age distribution, but
they could easily be generalized for arbitrary stable age distributions.

The equations (1l5) describe not only the age distribution of individuals
in the three_epidemiolqgicai states if they are exémined in a cross-sectional
survey at a particular time but also the tramsitiomns betweeﬁ the states in a

cohort followed longitudinally. The Qariable a is then to be interpreted as

113
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time. Since y is usually much larger than A, the proportion of immunes may
be approximated by

w(a) = 1 - e-ra , (20)
This is the so-called "simple catalytic curve" which is usually fitted.to the
proportion of immunes. The book of Nﬁench (1959) contains many examples, in-
cluding yellow fever.

We now turn to the models for age-specific disease prevalence. Not every
infection causes disease and the probability of pathogénesis depends on many
factors, including age., Bolshev and Kruopis (1969) propose some kind of
queuing model to describe the age-specific disease prevalence of tick-borne
encephalitis and fit their model to data collected in the Southern taiga of
Western Siseria. They make certain assumptions about temporary immunity which

influences the probability that an infection produces symptoms. Fisher and

‘Halstead (1970) compare two models for the pathogenesis of -dengue hemorﬁggic

fever. The basic assumption is that infections of ome type of demngue virus

sensitize an individual so that subsequent infections with another type may
elicit a hypersensitivity reaction causing the disease, provided that the
infections occur within a certain interval. One of their models ("the double
sequential model") assumes that a person may be sensitized already by one in-
fection, whereas the triple sequential model requires two types of infections.
They fit both models to age-specific data collected in Bangkok and find that
the double sequential model gives a good fit when it was assumed that primary
and secondary infections had to accur within a period of five years.

In this context of interaction of viruses it may also be mentioned that
there is some evidence that some viruses may produce protection against yel-
low fever. (See, e.g. Theiler and Downs, 1973, Chap. 21.) This may have

implications on the advisability of vector control. Some simulation models

TR A

e [ R

e e
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have already been developed for the interaction of viruses (e.g. Elveback et
al., 1971), but the epidemiological consequences of cross—immunity~do not
seem to have been studied so far mathematically.

In concluding this section we demonstrate by an example that a reduction
of infection incidence may cause an increase of disease incidence. (See e.g.
Bang, 1974). Let the probability of contracting the disease given infection
at age a be determined by a constant w* times the cumulative distribution
function G(a) of the gamma distribution with demnsity B“a“‘le‘salr(u). Then
the proportion D of the population which contracts the disease is given by

D = wk J e~¥2)e~A3G(a)da
o (21)

~

WA

B

o

A+ulA+u+8B
w@ere A is the inféction incidence and y is the death rate. One can easily
verify that D is a unimodal function of A. Thus, for X, greater than Ag

with D'(ko) = 0 one would only decrease D if one made X even greater or by

reducing it to a value X < A, such that D(A) < D(i;).

Vaccination and vector control

Recently, a number of authors have applied control theory to the general
epidemic: Abakuks (1974), Gupta and Rink (1973), Hethcote and Waltman (1973) i
and Morton and Wickwire (1974). All these papers are concerned with an opti- ?
mal vaccination strategy to be applied after a certain number of infectives
have entered a susceptible population, i.e. they only consider actions to be
taken during one isolated outbreak. Very little has so far been done however

towards a theory of vaccination strategies im an endemic situation which

would have to take into account birth and death rates of hosts, etc. Smith
(1970) specifies a critical proportion to be vaccinated in order to control

an infection. Let R be the reproduction rate of the infection if the total
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population is susceptible. In order to reduce the effective reproduction rate
to a value less than one, the proportion of susceptibles has to be less than

1/R, hence if we denote the proportion to be vaccinated by p = 1 — u, then P

has to satisfy

p>1-1/R. (22)
(Fig. 1. in Smith, 1970, plofs the inverse relationship R = 1/(1 ~ p).) Smith
proposes go estimate R by l/u;&\where u_ is the proportion of susceptibles af-
ter the termination of an epidemic. For ekample, he quotes reports accofding
to which urban yellow fever epidemic ceased when 65~48% had become immune, i.e.
when 35-52% susceptibles remained, from which he gets an estimate of R between
about 2 and 3. The theory of the deterministic general epidemic.yields how-~
ever the following‘relationship betweenithe reproduction rate R and the pro-
portion éf susceptibles remaining:

R=-2 __gnlr", (23)

1-u, Uy

which can easily be derived froﬁ Eq. (4.18) in Bailey (1957) when we set
R = n/p = nB/y. Thus, for u_ between 35—522 we get from (23) that R has to
be between 1.36 and 1.62. If we tdke the upper limit for R, then (22) implies
that a vaccination coverage of 38.3% would have been sufficient to prevent
the epidemic, whereas the formula suggested by-émith would require a covérage
of 65%.

Many vaccines lose their profective action and thus the need for revac-

cination has to be taken into account if a certain level of herd immunity is

to be maintained. An optimal 'vaccination strategy could be determined as a

solution of the following problem: Let w(a) be the rate at which an indivi~
dual of age a is to be vaccinated. In a stationary situvation the equations

(13) for the age-specific proportions of susceptibles and infectives are

- e e

Rt S et T LR R
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generalize& to include vaccination and loss of protection:

%5 = -Bn Jm v(s)ue™¥S ds-u(a) - w(a)u(a) + ép(a),
a o
v _ gn r v(s) u7¥S dsrula) - yv(a),
da °
(24)
L - w@ua) - @),
L~ (),

where p(a) is the proportion protected by vaccination and & is the rate of
loss of protection. The problem is to find w(a) such that some cost function
which includes costs of vaccination and costs of disease caused by the infec—
tion is minimized:

I f(v(a)G(a), w(a))ue_ué da.
0

" With particular reference to the control of Japanese encephalitis, Wada
(1972 a,b) sfudied the effect of vaccination of pig populations, taking into
account maternal antibodies. A more genmeral problem would be to look into

the optimal allocation of resources into vaccination and vector control as

a combined strategy.

Periodicity of outbreaks

We have to distinguish between populations below and above the eritical
size for the maintenance of the infection. 1In the first case, the number of
infectives is reduces to zero after an epidemic and the introduction of new
infectives is necessary to start a new epidemic. The probability that a new
epidemic will occur depends on the number of susceptibles born since tbé ter-
mination of th; previous epidemic. Radcliffe (1974 a) has derived an explicit

formula for the distribution of the interval between yellow fever epidemics.
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i i the value 27. Setting the rela-
The second case refers to regular oscillatiomns around the endemic level day. Hence (30) yields for R approximately e

. : it 7 i of the total number of cases in two
with a period of more than one year as it is observed, e.g. for measles in rive amplitude r of B at 107% the ratios

large cities (London and: Yorke, 1973),

i i values:
where a two-year period predominates. successive years had the following

Other virus diseases in the same places show oscillations of ome year period. R 20 25 30 35 40

In Section 8.22 of Bailey (1957) the effect of seasonal variation in the con- 1.0 3.2 8.4 14.2 1.0

tact rate B is discussed, and it is concluded that this causes forced oscil~ lh‘ For 5% amplitude, these ratios were all close to ome. It is surprising to

lations of y with the same frequency as the contact rate. If one applies the g find that for the large reproduction rate 40 the two-year pattern reverts to

same approach however to the model described by (7), i.e. witﬂ the death rate a one-year pattern. For R around 27 the shape of the epidemic curve showed

p included, then one can show the persistence of a biennial cycle for a cer- only one peak in two years, whereas for R = 25 two peaks of different height

tain range of R and for large emough amplitudes. If we linearize (7) around ' occurred. A more detailed description of the results will be given elsewhere.

the equilibrium (x_,y,) = (2/R, n(1 - 1/R)/M) by setting j. 1t would be interesting to apply the asymptotic methods of nonlinear oscil-

x=x0+8),y=y,(1+n), (26) T lation theory to a generalization of (7) which includes a vector population.

we get the second order differential equation for n: For a simple malaria model, Radcliffe (1974 b) has calculated the eigenfre-

%%2'+ uR %% + o (y+W@®R - n = 0. @27 quency of the system. The interesting phenomena of subharmonic resonance of

endemics have not yet been adequately investigated.
The solution of (27) is an oscillation with frequency

3.
w=Yuly + YR - 1) - u?R%/4 (28) )
provided that
2M - M@ - D) <R < 2(M + M@ - D). (29)

If the contact rate B undergoes a seasonal variation which can be described
by B8(1 + r cos vt), then one could expect a subharmonic resonance of order 2
if v were close to 2. This allows the estimation of the reproduction rate R
for which a two-year period is likely for given u and v:

2
Rel+ —2Y - (30)
duly + u)

Numerical integration of (7) was carried out with the following parameters
values: n = 107, u = 0.00004 per day = 1/68.5 per year and vy = 1/14 per day.

If the contact rate has a period of one year, v has the value of 0.0172 per
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