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1. Introduction 

There are three basic types of deterministic models for infectious diseases which 
are spread by direct person-to-person contact in a population. Here these simplest 
models are formulated as initial value problems for systems of ordinary differential 
equations and are analysed mathematically. Theorems are stated regarding the 
asymptotic stability regions for the equilibrium points and phase plane portraits 
of solution paths are presented. Parameters are estimated for various diseases and 
are used to compare the vaccination levels necessary for herd immunity for these 
diseases. Although the three models presented are simple and their mathematical 
analyses are elementary, these models provide notation, concepts, intuition and 
foundation for considering more refined models. Some possible refinements are 
disease-related factors such as the infectious agent, mode of transmission, latent 
period, infectious period, susceptibility and resistance, but also social, cultural, 
Ecology by providing a sound intuitive understanding and complete proofs for 
the three most basic epidemiological models for microparasitic infections. 

The study of disease occurrence is called epidemiology. An epidemic is an 
unusually large, short term outbreak of a disease. A disease is called endemic if it 
persists in a population. The spread of an infectious disease involves not only 
disease-related factors such as the infectious agent, mode of transmission, latent 
period, infectious period, susceptibility and resistance, but also social, cultural, 
demographic, economic and geographic factors. The three models considered here 
are the simplest prototypes of three different types of epidemiological models. It 
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Ta hie I. Classification or inFcctious diseases by agent and mode or transmission 

Mode or transmission 

Person-environment Reservoir- vector 
Agent Person - person environment-+ person vector-+ person Reservoir- person 

Virus Measles Arboviruscs; Rabies 
Chickenpox yellow fever 
Mumps dengue rcver 
Rubella encephalitis 
Smallpox tick fever 
lnnucnza sandny fever 
Poliomyelitis 
Herpes 
HIV (AIDS 

virus) 

Bacteria Gonorrhea Typhoid revcr Plague Brucellosis 
Tuberculosis Cholera Tuleramia 
Pneumonia Anthrax 
Meningitis 
Strep throat 

Protozoa Syphillis Amebiasis Malaria 
Trypanosomiasis 

Helminths Schistosomiasis Trichinosis 
Filariasis 
Onchoccrciasis 

is important to understand their behaviour before considering general models 
incorporating more of the factors above. 

Table l classifies diseases by agent and method of transmission. This useful 
classification scheme is similar to one presented by K. Dietz in t 974. The models 
considered here are suitable for diseases which are transmitted directly from person 
to person. More complicated models must be used when there is transmission by 
insects called vectors or a reservoir of nonhuman infectives. Epidemiological models· 
are now widely used as more epidemiologists realize the role that modeling can 
play in basic understanding and policy development. 

Justifications of mathematical modeling of the transmissiqn of infectious 
diseases are given in the next section. The essential assumptions and terminology 
are given in Section 3. The SIS model analysed in Section 4 is for diseases for 
which infection does not confer immunity. SIR models for diseases where infection 
does confer immunity are considered for epidemics in Section 5 and for endemic 
situations in Section 6. Section 7 is devoted to herd immunity and its implication 
for vaccination for specific diseases. The discussion in Section 8 summarizes and 
refers to more complicated models. 
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2. Why Do Epidemiologic Modeling? 

Even though vaccines are available for many infectious diseases, these diseases still 
cause suffering and mortality in the world, especially in developing countries. In 
developed countries chronic diseases such as cancer and heart disease have received 
more attention than infectious diseases, but infectious diseases are still a more 
common cause of death in the world. Recently, the human immunodeficiency virus 
(HIV) which can lead to acquired immunodeficiency syndrome (AIDS) has become 
an important infectious disease in both developing and developed countries. 

The transmission mechanism from an infective to susceptibles is understood 
ror nearly all infectious diseases and the spread of diseases through a chain of 
infections is known. However, the transmission interactions in a population are 
very complex so that it is difficult to comprehend the large scale dynamics of 
disease spread without the formal structure of a mathematical model. An 
epidemiological model uses a microscopic description (the role of an infectious 
individual) to predict the macroscopic behavior of disease spread through a 
population. 

In many sciences it is possible to conduct experiments to obtain information 
and test hypotheses. Experiments with infectious disease spread in human 
populations are often impossible, unethical or expensive. Data is sometimes 
available from naturally occurring epidemics or from the natural incidence of 
endemic diseases; however, the data is often incomplete due to underreporting. 
This lack of reliable data makes accurate parameter estimation difficult so that 
it may only be possible to estimate a range of values for some parameters. Since 
repeatable experiments and accurate data are usually not available in epidemiology, 
mathematical models and computer simulations can be used to perform needed 
theoretical experiments. Calculations can easily be done for variety of parameter 
values and data sets. 

Mathematical models have both limitations and capabilities that must 
recognized. Sometimes questions cannot be answered by using epidemiological 
models, but sometimes the modeler is able to find the right combination of available 
data, an interesting question and a mathematical model which can lead to the 
answer. 

Comparisons can lead to a better understanding of the processes of disease 
spread. Modeling can often be used to compare different diseases in the same 
population, the same disease in different populations, or the same disease at different 
times. Comparisons of diseases such as measles, rubella, mumps, chickenpox, 
whooping cough, poliomyelitis and others are made in London and Yorke (1973), 
Yorke and London ( 1973), Yorke et al. ( 1979), Hethcote ( 1983), Anderson and May 
(1982) and in the article on rubella in this volume by Hethcote ( 1989). 

Epidemiological models are useful in comparing the effects of prevention or 
control procedures. Hethcote and Yorke (1984) use models to compare gonorrhea 
control procedures such as screening, rescreening, tracing infectors, tracing 
infectees, post-treatment vaccination and general vaccination. Communicable 
disease models are often the only practical approach to answering questions about 
which prevention or control procedure is most effective. Quantitative predictions 
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of epidemiological models are always subject to some uncertainty since the models 
are idealized and the parameter values can only be estimated. However, predictions 
of the relative merits of several control methods arc often robust in the sense that 
the same conclusions hold over a broad range of prameter values and a variety 
of models. Strategies for rubella vaccination are compared using a cost benefit 
analyses in the article on rubella by Hethcote (1989) in this volume. 

Optimal strategies for vaccination can be found theoretically by using modeling. 
Longini, Ackerman and Elveback (1978) use a epidemic model to decide which 
age groups should be vaccinated first to minimize cost or deaths in an influenza 
epidemic. Hethcote (1988) uses a modeling approach to estimate the optimal age 
of vaccination for measles. A primary conclusion of this paper is that better data 
is needed on vaccine efficacy as a function of age in order to better estimate the 
optimal age of vaccination. Thus epidemiological modeling can be used to identify 
crucial data that needs to be collected. 

An underrecognized value of epidemiological modeling is that it leads to 
a clear statement of the assumptions about the biological and sociological 
mechanisms which influence disease spread. The parameters used in an epidemio­
logical model must have a clear interpretation such as a contact rate or a duration 
of infection. Models can be used to assess many quantitative conjectures. For 
example, one could check a conjecture that AIDS incidence would decrease if90% 
of the sexually active heterosexual population started using condoms consistently. 
Epidemiological models can sometimes be used to predict the spread or incidence 
of a disease. For example, Hethcote ( 1983) predicted that rubella and Congenital 
Rubella Syndrome will eventually disappear in the United States because the 
current vaccination levels using the combined measles-mumps-rubella vaccine are 
significantly above the threshold required for herd immunity for rubella. An 
epidemiological model can also be used to determine the sensitivity of predictions 
to changes in parameter values. After the parameters are identified which have the 
greatest influence on the predictions, it may be possible to design studies to obtain 
better estimates of these parameters. 

3. Assumptions and Notation 

The population under consideration is divided into disjoint classes which change 
with time t. The susceptible class consists of those individuals who can incur 
the disease but are not yet infective. The infective class consists of those who 
are transmitting the disease to others. The removed class consists of those who are 
removed from the susceptible-infective interaction by recovery with immunity, 
isolation, or death. The fractions of the total population in these classes are denoted 
by S(l), /(t) and R(t), respectively. 

In the epidemiological models here, the following assumptions are made: 

I , The population considered has constant size N which is sufficiently large 
so that the sizes of each class can be considered as continuous variables. If the 
model is to include vital dynamics, then it is assumed that births and natural deaths 
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occur at equal rates and that all newborns are susceptible. Individuals are removed 
by death from each class at a rate proportional to the class size with proportionality 
constant µ which is called the daily death removal rate. This corresponds to a 
negative exponential age structure with an average lifetime of I/µ. 

2. The population is homogenously mixing. The daily contact rate ,\ is the 
average number of adequate contacts per infective per day. An adequate contact 
of an infective is an interaction which results in infection of the other individual 
if he is susceptible. Thus the average number of susceptibles infected by an infective 
per day is ).S, and the average number of susceptibles infected by the infective class 
with size NI per day in A.SN I. The daily contact rate A is fixed and does not vary 
seasonally. The type of direct or indirect contact adequate for transmission depends 
on the specific disease. The number of cases per day ).SN I, which is called the 
incidence, is a mass action law since it involves the product of Sand /. 

3. Individuals recover and are removed from the infective class at a rate 
proportional to the number of infectives with proportionality constant y, called 
the daily recovery removal rate. The latent period is zero (it is defined as the period 
between the time of exposure and the time when infectiousness begins). Thus the 
proportion of individuals exposed (and immediately infective) at time t0 who are 
still infective at time t0 +tis exp( - yt), and the average period of infectivity is l /y 
(Hethcote, Stech and van den Driessche, 1981c). 

The removal rate from the infective class by both recovery and death is y + µ 
so that the death-adjusted average period of infectivity is l/(y +µ).Thus the average 
number of adequate contacts (with both susceptibles and others) of an infective 
during the infectious period is a= J../(y + µ), which is called the contact number. 
This quantity is also called the basic reproductive rate {Anderson and May, 1981, 
1982; May, 1986) even though it is a number and not a rate. Since the average 
number of susceptibles infected by an infective during the infectious period is aS, 
the quantity aS is called the replacement number. 

If recovery does not give immunity, then the model is called an SIS model, 
since individuals move from the susceptible class to the infective class and then 
back to the susceptible class upon recovery. If individuals recover with permanent 
immunity, then the model is an SIR model. If individuals recover with temporary 
immunity so that they eventually become susceptible again, then the model is an 
SIRS model as considered in Hethcote (1976) and Hethcote, Stech and van den 
Driessche (1981a). If individuals do not recover, then the model is an SI model. 
In general, SIR models are appropriate for viral agent diseases such as measles, 
mumps, and smallpox, while SIS models are appropriate for some bacterial agent 
diseases such as meningitis, plague, and venereal diseases, and for protozoan agent 
diseases such as malaria and sleeping sickness (see Table I). 

A basic concept in epidemiology is the existence of thresholds; these are critical 
values for quantities such as the contact number, population size or vector density 
that must be exceeded in order for an epidemic to occur or for a disease to remain 
endemic. The fonnulations used here are somewhat different from the more classical 
formulations of Hamer ( 1906), Ross ( 1911 ), Kermack and Mc Kendrick ( 1927) and 
others, as given in Bailey (1975). Here they involve the fractions of the populations 
in the classes instead of the numbers in the classes because these formulations have 
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much more intutive threshold conditions involving the contact number instead of 
the population sizes. See Hethcote (1976, p.339) or Hethcote and Van Ark (1987) 
for further comparisons of formulations in terms of proportions and numbers in 
the classes. 

4. The SIS Model 

The first model is for diseases for which infection does not confer immunity. It is 
called an SIS model since individuals return to the susceptible class when they 
recover from the infection. Using the notation in Section 3, the compartmental 
diagram for an SIS model is given in Fig. I. Naturally occurring births and deaths 
(vital dynamics) are included, but the behavior of solutions is similar when vital 
dynamics are not included. 

The initial value problem (IVP) for this SIS model formulated in terms of class 
sizes is 

(NS(r))' = -).SN/+ yN/ + µN - µNS 

(N/(t))' =).SN/ - yNI - µNI (4.1) 

NS(O) = NS0 > 0, N/(O) = N/0 > 0, NS(t) + N/(t) = N 

where ). is a positive constant and primes denote derivatives with respect to time 
t. If each equation above is divided by the constant population size N, then the 
IVP in terms of the fractions in the classes is 

S'(t)= -US+ y/ + µ - µS 

/'(r) =US - y/ - µ/ (4.2) 

S(O) = S0 > 0, /(0) = 10 > 0, S(t) + /(r) = I. 

Note that the IVP (4.2) involves the daily contact and removal rates, but not the 
population size N. This model is appropriate for some bacterial agent diseases 
such as gonorrhea, meningitis and streptococcal sore throat. Here all parameters 
in (4.2) are nonnegative and only nonnegative solutions are considered since 
negative solutions have no epidemiological significance. 

BIRTHS 

NS 
SUSCEPTIBLES 

NS 
DEATHS 

>.SNI 
"Yffl 

Fig. I. The compartmental diagram for the SIS model. 
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Since S(1) can be found from /(1) by using S(1) = I - /(1), it is sufficient to consider 

l'(t) = [). - (y +µ)]I - )./2 

/(0)= / 0 > 0. (4.3) 

Since this is a Bernoulli differential equation, the substitution y = r 1 converts 
(4.3) into a linear differential equation from which the unique solution of (4.3) is 
found to be 

a[e<7+,.><cr - 1Jr - l]/ (a - I)+ 1/1
0 

for a:;: I 
/(1) = 

( 

e<1+,.ucr - 1)1 

I 
).1+1/ lo for a = I 

(4.4) 

where a is the contact number )./ (y +µ)defined in Section 3. The theorem below 
follows from the explicit solution (4.4). 

Theorem 4.1. The solution /(t) of (4.3) approaches 1 - I/a as t ~co if a> I and 
approaches 0 as t ~ co if u ~ I. 

This theorem means that for a disease without immunity with any positive 
initial infective fraction, the infoctive fraction approaches a constant endemic value 
if the contact number exceeds I; otherwise, the disease dies out. Although the 
model (4.2) reduces to a one dimensional IVP (4.3), we show SI phase diagrams 
for this model in Fig. 2 so that they can be compared with the phase diagrams 
for the other models. 

Here the threshold quantity is the contact number u and the critical threshold 
value is 1. Note that the replacement number uS is I at the endemic equilibrium 
point. A threshold result for an SI model is obtained from Theorem 4.1 by taking 
the removal rate y to be zero in the model. If both the removal rate y and the 
birth and death rate µ are zero, then u = co so that there is no threshold and 
eventually everyone is infected. This model with y = µ = 0 is the "simple epidemic 

1 

0 s 0 s 

Fig. 2. Phase diagrams Cor the SIS model. Note that the paths are on the line S + t = I. 
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model" considered in Bailey (1975, p. 20). Some authors such as May (1986) use 
other terminology; he uses the basic reproductive rate R0 is place of the contact 
number u and elTective reproductive rate R0 S instead of the replacement number uS. 

The prevalence is defined as the number or cases of a disease at a given time 
so that it corresponds to NI. Since the incidence is delined to be the number of 
new cases per unit time, it corresponds to the ).SN I term in model (4.1 ). At an 
endemic equilibrium the prevalence is equal to the incidence times the average 
duration of infection 1/(y +µ)since the right side of the second equation in (4.1) 
is zero at an equilibrium. 

The incidence and the prevalence of some diseases oscillate seasonally in a 
population. This oscillation seems to be caused by seasonal oscillation in the 
contact rate )., For example, the incidence of childhood diseases such as measles 
and rubella increase each year in the winter when children aggregate in schools 
(London and Yorke, 1973; Yorke and London, 1973; Dietz, 1976; Schenzle, 1984). 

Ir the contact rate ..l changes with time t, then the ). in models (4.1 )- (4.3) are 
replaced by ).(t). If A.(t) is periodic with period p, then Hethcote (1973) has found 
the asymptotic behavior of solutions /(t) of (4.3). If the average contact number 
u = J../(y +µ)satisfies u ~ 1, then /(t) damps in an oscillatory manner to 0 for large 
t. However, if u > I, then /(t) approaches an explicit periodic solution for large t. 
These behaviors are shown in Figs. 3 and 4. 

Gonorrhea is an example of a disease for which infection docs not confer 
immunity. Fig. 5 shows the actual seasonal oscillation of reported cases of 
gonorrhea from 1946 to 1984. Numerous models for gonorrhea transmission 
dynamics and control including a seasonal oscillation model are presented in 
Hethcote and Yorke (1984). 
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Fig. 4. Solutions as in Fig. 3 CXCCJll that here i' .. I so thal a. 2 > I. From Hclhcote (1973). 

GONORRHEA QUARTERLY 

20-

Fig. 5. Reporled cases or gonorrhea in women and men in the United States. From Hethcote and 
Yorke (1984). 

5. The SIR Model Without Vital Dynamics 

Here and in Sect. 6 we consider diseases for which infection confers permanent 
immunity. When such an SIR disease goes through a population in a relatively 
short time (less than one year). then this disease outbreak is called an epidemic. 
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NS 
ASNI_... NI "JN! NR 

SUSCEPTIBLES INFECTIVES REMOVEDS 

Fig. 6. The compartmenlal diagram for the SIR model w11hou1 viral dynamics. 

Since an epidemic occurs relatively quickly, the model does not include births and 
deaths (vital dynamics). Epidemics are common for diseases such as influenza, 
measles, rubella and chickenpox. Using the notation in Sect. 3, the compartmental 
diagram for this model is given in Fig. 6. 

The initial value problem (IVP) for the SIR model without vital dynamics given 
in Fig. 6 is 

(NS(t))' = - ).SN I 

(N J(t))' =).SN I - yN l 

(N R(t))' = yN I 

NS(O) = NS0 >0, NJ(O) = N/0 > 0, NR(O) = NR0 ~ 0 

NS(t) + N l(t) + N R(r) ""' N 

where ). and y are positive constants. 

(5.1) 

If each equation in (5. l) in divided by the constant population size N, then the 
IVP for the fractions S(t) and /(t) is 

S'(t) = - ).SJ 

J'(t) =).SJ - yl (5.2) .. 

S(O) = S0 > 0, /(0) ='10 > 0. 

Since R(r) can always be found from S(t) and J(t) by using R(r) = I - S(t) - /(t), it 
is sufficient to consider the IVP (5.2) in the SI phase plane. The epidemiologically 
reasonable region in the SI plane is the triangle given by 

T = {(S, /)IS ~ 0, I~ 0, S + l ~ I}. (5.3) 

Theorem S.l. Let (S(t), /(t)) be the solutions of (5.2). If uS0 ~I, then l(t) decreases 
to zero as t-+ oo. If uS0 > I, then l(t)first increases up to a maximum value Im equal 
to I - R0 - l/u - [In (uS0 )]/u and then decreases to zero as t-+ oo. The s11sceptible 
fraction S(r) is a decreasing function and the limiting value S( co) is the unique root 
in (0, t/u) of the equation 

I - R0 - S(t.0) + [Jn(S(oo)/S0 )]/u = 0. (5.4) 

The threshold quantity in Theorem 5. t is the initial replacement number ctS0 

where u = )./y is the contact number. The natural logarithm is denoted by In. This 
theorem states that if the initial replacement number is greater than one, then an 
epidemic occurs since the prevalence (the infective fraction) increases to a peak 
and then decreases to zero. Otherwise, there is no epidemic since the prevalence 
decreases to zero. The infection spread stops during an epidemic because the 
replacement number uS(t) becomes less than one when S(t) becomes small; however, 
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the final susceptible population S(oo) is not zero. A phase portrait corresponding 
to system (5.2) is given in Fig. 7. The proof of Theorem 5.1 is given in the Appendix. 

Figure 8 shows an epidemic curve which is the prevalence /(t) as a function of 
time; the incidence or number of new cases per day would also increase to a peak 
and then decrease. Incidences for examples of epidemics are given in Figs. 9 to 13. 

If an epidemic occurs in a homogeneous population and there is no vaccination 
during the epidemic, then it is possible to estimate the contact number for the 
disease in that population from epidemic data (Hethcote and Van Ark, 1987). Since 
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Fig. 11. An epidemic curve ror measles cases in Dallas, Texas. USA in 1970 and 1971. Note the 
interruption due to the special immunization campaign. Figure from CDS (197tb). 
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Fig. 12. Measles cases by data of onset in Hobbs, New Mexico from January 22 to April 22. 1984. Figure 
from CDC (1984). 

an epidemic enters a population as one or very few cases, I 0 is negligibly small so 
that S0 = I - R0 • Then (5.4) can be solved for a to obtain 

ln(S0 /S(oo)) 
(! = -=-----~,..... 

S0 - S(oo) · (5.5) 
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Fig. 13. Reported measles cases by dala or rash onset in Dade County, Florida in 1986. The data arc 
somewhal irregular since the latent period ror measles is aboul 2 weeks. Figure from CDC l!987a). 

If the susceptible fractions before the epidemic (S0 ) and after the epidemic (S( cx;i )) 

are measured by serologic studies (i.e., testing immune responses in blood samples), 
then the contact number a can be estimated using (5.5). 

Evans ( 1982) reports on serosurveys conducted on freshman at Yale University. 
The fractions susceptible to rubella at the beginning and end of their fresltman 
year were 0.25 and 0.0965 so that (5.5) leads to the estimate u == 6.2. For innuenza, 
the fraction susceptible at the start and end of their freshman year were 0.911 
and 0.5138, which leads to a contact number estimate of CJ = 1.44. 

6. The SIR Model with Vital Dynamics 

An SIR epidemiological model is considered as in Sect. 5, but here we model 
the disease behavior in the population over a long time period. A disease is called 
endemic if it is present in a population for more than 10 or 20 years. Because of 
the long time period involved, a model for an endemic disease must include births 
as a source of new susceptibles and natural deaths in each class., Using the notation 
and assumptions in Sect. 3, the compartmental diagram for the SIR model with 
vital dynamics is given in Fig. 14. 

The initial value problem (IVP) for the SIR model with vital dynamics is 

(NS(t))' =-).SN/+ µN - µNS 

(Nl(t))' =).SN/ -yNI - µNI 

(NR(r))' = yNI - µNR (6.1) 
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NS }\SNI NI 
SUSCEPTIBLES:t----- INFECTIVES 

NS NI 
DEATHS DEATHS 

,.NI NR 
REMOVEDS 

NR 
DEATHS 

Fig. 14. The compartmcn\al diagram for the SIR model with vilal dynamics. 

NS(O) = NS0 > 0, N/(0) = N10 ~ 0, NR(O) a NR0 ~ O 

NS(r) + N l(t) + N R(t) = N 
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where the contact rate )., the removal rate constant y and the death rate constant 
µ are positive constants. 

If each equation in (6. I) is divided by N, then the IVP in terms of S(r) and /(r) is 

S'(t) = - ).SJ + µ - µS 

/'(r) =).SJ - yl - µI (6.2) 

S(O) = S0 > 0, /(0) = 10 ~ 0. 

As in Section 5, it is sufficient to consider the IVP (6.2) since R(t) is given by 
R(t) = t - S(r) - /(r). The asymptotic behaviors of solution paths in the SI phase 
plane are described in the following theorem. 

Theorem 6.1. If q ~ t, tlte11 tlie triangle T defined by (5.3) is an asymptotic stability 
region for the equilibrium point ( t, 0). If <T > l, then T - ( (S, 0)10 ~ S ~ t} is an 
asymptotic stability region for the equilibrium point 

(l/<1,µ(<1- 1)/).). (6.3) 

Figures 15 and 16 are phase plane portraits for the two possibilities described 
in the theorem. The theorem above can be explained intuitively in terms of the 
contact number <1 = )./(y +µ),which is the threshold quantity. If the contact number 
is less than one so that an infective replaces itself with less than one new infective, 
then the disease dies out. Moreover, the susceptible fraction eventually approaches 
one since everyone is susceptible when the disease has disappeared and all of the 
removed people who are immune have died. 

If the contact number is greater than one, the initial infective fraction I 0 is 
small, and the initial susceptible fraction S0 is large so that uS0 > t, then S decreases 
and I first increases to a peak and then decreases just as it would for an epidemic 
(compare Figs. 16 and 8). However, after the infective fraction has decreased lo a 
low level, the susceptible fraction slowly starts to increase due to the births of new 
susceptibles. When the susceptible fraction gets large enough, there is a second 
smaller epidemic and so on as the path spirals into the equilibrium point (6.3). Al 
this endemic equilibrium point, the replacement number qS is 1 since if the 
replacement number were greater or less than I, then the infective fraction would 
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Fig. 15. Phase plane porrrait for SIR 
model with viral dynamics when the 
conracl number is a • 0.5 < I. From 
Hethcote (1976). 

Fig. 16. Phase plane portrait for SIR 
model with vital dynamics when the 
con1ac1 number is u "' 2 > I. From 
Hethcote (1976). 

be increasing or decreasing, respectively. One advantage of precise threshold results 
such as Theorem 6.1 is that the effects of changes in the parameter values on the 
asymptotic behavior can be determined directly. The proof of Theorem 6.1 is 
given in the Appendix. 

A method was presented at the end of Section 5 for estimating the contact 
number from epidemic data. There are two ways to estimate contact numbers from 
data for SIR diseases which are endemic. The first method involves estimating the 
susceptible fraction S, from a serological survey (i.e., testing immune responses 
in blood samples). It is assumed that the sample is randomly chosen from a 
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homogeneously mixing population and that the disease has reached an endemic 
equilibrium jn the population. Since S~ :::::. I /u in (6.3), the contact number u can 
be estimatedlusing 

a= 1/S~. (6.4) 

This estimation is also valid for the SIS model considered in Section 4 and for 
endemic SIR disease when part of the population has been vaccinated (Hethcote 
and Van Ark, 1987). 

The second method is useful for childhood diseases in which the susceptible 
fraction is a decreasing function of age. Dietz (1975) has used an age-structured 
model in an unvaccinated homogeneously mixing population to derive the formula 

<1= I+ L/A (6.5) 

where Lis the average lifetime and A is the average age of attack for an endemic 
disease. Thus if L and A are estimated for an endemic disease in a population, 
then (6.9) can be used to estimate the contact number a. 

The formula (6.5) can be derived heuristically from the model (6.2). The incidence 
rate at the endemic equilibrium is ),/ ~S~ so that )./ ~ is the incidence proportionality 
constant. The waiting time to get the infection is distributed as a negative 
exponential so that the average age at first infection is 

A= 1/).fe ""' l /[µ(u - 1)]. (6.6) 

Solving this equation for u yields (6.5) since the average lifetime L is I/µ. 

7. Herd Immunity and Vaccination 

A population is said to have herd immunity for a disease if enough people are 
immune so that the disease would not spread if it were suddenly introduced 
somewhere in the population. If the population is homogeneously mixing and the 
immune people are distributed uniformly in the population, then herd immunity 
will be obtained if a large enough uniformly distributed fraction is immune. The 
contact number a gives the average number of adequate contacts (i .e., those which 
are sufficient for transmission if all contacted people were susceptible) of an infective 
during the infectious period. In order to prevent the spread of infection from an 
infective, enough people must be immune so that the replacement number satisfies 
aS < I. That is, the susceptible fraction must be small enough so that the average 
infective infects less than one person during the infectious period. 

Herd immunity in a population is achieved by vaccination of susceptibles in 
the population. If R is the fraction of the population which is immune due to 
vaccination, then since S = 1 - R when I = 0, herd immunity 1s achieved if 
a(J - R) <I or 

R >I - l/u. (7.1) 

For example, if the contact number is 5, at least 80% must be immune to have 
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Table 2. Estimates of contacl numbers and herd immunily fractions from da la (Anderson, 1982) on 
average ages of allack and average lifetimes 

Minimum 

Disease Location A L 
R for herd 

u =I+ A/L immunity 

Measles England and W11lcs, 1956- 1959 4.8 70 15.6 0.94 
USA. 1912- 1928 5.3 60 12.3 0.92 
Nigcrfa 1960- 1968 2.5 40 17.0 0.94 

Whooping cough Maryland, USA, 1943 4.3 70 17.3 0.94 
Engl;ind and Wales, 1944- 1978 4.5 70 16.5 0.94 

Chickenpox Maryland, USA, 1943 6.8 70 I l.3 0.91 
Diphtheria Virginia and New York, USA 

1934- 1947 l 1.0 70 7.4 0.86 
Scarlet fever Maryland, USA, 1908- 1917 8.0 60 85 0.88 
Mumps Maryland, USA, 1943 9.9 70 8.1 088 
Rubella England and Wales, 1979 11.6 70 7.0 0.86 

West Germany, 1972 105 70 7.7 0.87 
Poliomyeli1is USA, 1955 17.9 70 4.9 0.80 

Netherlands, 1960 11.2 70 4.3· 0.86 
Smallpox India 12 so 5.2 0,81 

herd immunity. If <J is IO, then 90% must be immune for herd immunity. If <1 is 
20, then 95% immunity corresponds to herd immunity. These results are intuitively 
reasonable since a higher contact number corresponds to a more easily spread 
disease so that a larger percentage must be immune to achieve herd immunity. 

Table 2 contains data (Anderson, 1982) on the average age A of clttack and the 
average lifetime L for various diseases. The estimates of contact numbers a in 
Table 2 are calculated using (6.5) and the minimum immune fraction R is estimated 
using (7.1 ). Although the estimates of contact numbers <1 in Ta61e 2 are based on 
many simplifying assumptions, they do lead to crude comparisions of the 
approximate immunity levels necessary for herd immunity for these diseases. 

Attainment of herd immunity for a disease can be quite difficult. Although 
smallpox was eliminated by vaccination from most developed countries by 1958, 
it remained endemic in some developing countries. The World Health Organization 
started a program in 1958 to eradicate smallpox throughout the world (WHO, 
1980). Even though high vaccination percentages were achieved in some countries, 
the disease persisted, primarily because the vaccinations w9re not uniformly 
dis1ributed in the population. Eventually the disease was elimina~ed from more 
and more countries until the last case occurred in Somalia in 1977. The eradication 
of smallpox was partly due to herd immunity and partly due to containment efforts 
such as surveillance, patient isolation and vaccination of all possible contacts when 
a case occurred (Fenner, 1983). The contact number for smallpox is estimated (see 
Table 2) to be 5 from data in India. Since eradication in the world of smallpox, 
which has a low contact number, was difficult, it seems that eradication in the 
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world of diseases with higher contact numbers would be even more difficult. 
For various reasons a small fraction of those who are vaccinated do not become 

immune. This fraction of primary vaccine failures is usually about 0.05 or 0.10, 
but it can be 0.2 or 0.4 for some innuenza vaccines. Vaccine efficacy (VE) is defined 
as the fraction of those vaccinated who become immune. For example, for measles 
or rubella vaccination at age 15 months, the vaccine efficacy is approximately 
0.95 (Hethcote, 1983). Since the immune fraction R satisfies R ""' ( V) (VE) where V 
is the vaccinated .fraction in the population, inequality (7.1) implies that herd 
immunity is achieved if the vaccinated fraction V satisfies 

V >(I T l/a)/VE. (7.2) 

Measles and rubella have some similarities so it is interesting to compare them. 
The contact number for rubella is approximately 7 so that herd immunity is 
obtained if t.he immune fraction R satisfies R > 0.86. If a vaccine efficacy of 0.95 
is used, then herd immunity occurs in a homogeneously mixing population if the 
vaccinated fraction V satisfies V > 0.91. The contact number for measles is 
approximately 15 in a modern developed country so that herd immunity occurs 
if the immune fraction R satisfies R > 0.94. If the vaccine efficiency is 0.95, then 
herd immunity is achieved if the vaccinated fraction V satisfies V > 0.99. 

It initially appears that measles may be about twice as difficult to eradicate by 
herd immunity as rubella since for herd immunity, the unimmune percentage must 
theoretically be less than 14% for rubella and less than 6% for measles. However, 
it is actually much harder to achieve herd immunity for measles since the 
unvacci11ated percentage must be less than 9% for rubella and less than 1% for 
measles. Indeed, in the USA measles has persisted despite major elimination efforts, 
while rubella incidence seems to be decreasing (CDC, 1981; CDC, I 986b). Although 
measles is very difficult or impossible to eradicate with a one dose program, it is 
easier to achieve herd immunity with a two dose program (Hethcote, 1983). 

Hence, although the endemic SIR model is very simple, it has been possible to 
estimate parameters from it and to use these estimates to get a rough comparision 
between the immune fractions necessary for herd immunity for various diseases. 
For further discussion of models with vaccination and applications, see Hethcote 
(1978), Anderson (1982), Anderson and May (1982, 1983, 1985), Hethcote (1983), 
May (1986) and Hethcote and Van Ark (1987). 

8. Discussion 

The SIS model in Sect. 4 and the SIR model with vital dynamics in Sect. 6 
have two intuitively appealing features. The first is that the disease dies out if the 
contact number a satisfies a ~ I and the disease remains endemic if a > I. The 
second is that at an endemic equilibrium, the replacement number is I; i.e., the 
average infective replaces itself with one new infective during the infectious period. 
Although the contact number threshold criterion is the same for diseases without 
and with immunity, the infective fraction approached asymptotically for large time 
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is higher for diseases without immunity than for diseases with immunity (compare 
Figs. 2 and 16). In Hethcote, Stech and van den Driessche ( 1981 c) the Soper ( 1929) 
model for an SIR disease with vital dynamics is shown to be ill·posed since some 
solution paths leave the triangle T and R becomes negative. 

By comparing Theorems 5.1 and 6.1 it is clear that the asymptotic behaviors 
for SIR models without and with vital dynamics are very different. The SIR model 
without vital dynamics might be appropriate for describing an epidemic outbreak 
during a short time period, whereas the SIR model with vital dynamics would be 
appropriate over a longer time period. Viral agent diseases such as measles, 
chickenpox, mumps, and innuenza may have occasional large outbreaks in certain 
communities and yet be endemic at a low level in larger population groups. The 
threshold quantity for the SIR model without vital dynamics is the initial 
replacement number uS0 . In this model, no epidemic occurs if uS0 < I and an 
epidemic occurs if uS0 > 1. 

The latent period is the time in which an individual is infected but is not yet 
infectious. The latent period is approximately 15 days for chickenpox, 10 days for 
measles, and 2 days for inOuenza. The latent period has been ignored in the three 
basic models considered here because the thresholds and asymptotic behaviors are 
essentially the same for the models which include latent periods. The fraction of 
the population that is in the latent period is often called E(t) or the exposed fraction. 
Various SEJS models are analysed in Hethcote, Stech and van den Driessche 
{1981 b). Some SEI R models with vital dynamics are considered in Hethcote and 
Tudor (1980). Longini (1986) shows that the formula (5.5) also holds for an SEIR 
model without vital dynamics. 

I'nstead of assumption 2 in Section 3, it is sometimes assumed that susceptibles 
become infectious at a rate proportional to the product of the number;,of susceptibles 
NS and the number of infectives NI with proportionality constant fl. By comparing 
the resulting initial value problem with (4.1 ), (5.1) or (6.1 ), we see that p""' )./ N and 
thus the assumption that P is constant implies that the daily ~ontact rate ). is 
proportional to the population size N. The daily contact rate would probably 
increase ifthe population within a fixed region increased (i.e., the population density 
increased). However, it seems more likely that the daily contact rate). is independent 
of population size since ). might be the same for a large population in a large 
region and a small population in a small region. Hethcote and Van Ark (1987) 
consider model formulation for heterogeneous populations and discuss a "city and 
villages" model where confusion between {J and ). has led to misleading results. 
Consequently, it seems best to carefully separate the daily contact rate ..l. and the 
population size N as we have done in assumption 2. Moreover, threshold statements 
involving contact numbers are more appealing intuitively than the population size 
threshold statements as given in Bailey (1975). 

Although the models discussed here do provide some insights and useful 
comparisons, most models now being applied to specific diseases are more 
complicated. Hethcote, Stech and van den Driessche (198lc) have surveyed the 
mathematical epidemiology literature using the classifications introduced in this 
article. More recent references are given below for some more refined models. 
Many more complicated models are considered in other articles in this volume. 

I 
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Fig. 17. Seasonai oscillation in the incidence or chickenpox (varicella) in the United States Between 
1980 and 1984. figure rrom CDC (1986a). 

The prevalence for many diseases varies periodically because of seasonal 
changes in the daily contact rates. For example, the seasonal oscillation in the 
incidence of chickenpox is shown in Fig. 17. An SIS model with a periodic contact 
rate has been considered brieOy in Sect. 4. Other epidemiological models with 
periodic contact rates are described in an article in this volume by Hethcote and 
Levin (1989). Other models without periodic contact rates can also have periodic 
solutions and are also described in the article mentioned above. These other models 
leading to periodic solutions have features such as a delay corresponding to 
temporary immunity, nonlinear incidence, variable population size or cross 
immunity with age structure. 

The three basic epidemiological models in this article have assumed that the 
population being considered is uniform and homogeneously mixing; however, most 
infectious diseases actually spread in a diverse or dispersed population. Hence it 
is desirable to consider a population divided into different subpopulations. 
Mathematical aspects of models for heterogeneous populations are described in 
the survey of Hethcote, Stech and van den Driessche (198 lc) and, more recently, 
in Hethcote and Thieme (1985) and in Hethcote and Van Ark (1987). Since 
gonorrhea transmission occurs in a very heterogeneous population, the models in 
Hethcote and Yorke (1984) for gonorrhea involve from 2 to 8 subpopulations. A 
spatially heterogeneous "city and villages" example is considered in May and 
Anderson (1984a, 1984b) and again in Hethcote and Van Ark (1987). Parameter 
estimation methods similar to those presented in Sections 5 and 6 are developed 
for heterogeneous population models in Hethcote and Van Ark (1987). 

Models for populations where the disease causes enough deaths to influence 
the population size are considered by Anderson and May (1979) and May and 
Anderson (1979). Since contact rates between age groups vary greatly, it is often 
important to consider models with age structure. These models are considered in 
papers such as Kermack and McKendrick (1927), Dietz (1975), Hoppensteadt 
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(1975), Longini ct al. (1978), Hethcote (1983), and Anderson and May (1983, 1985). 
Age-structured models have been used to compare the UK and USA strategies 
for rubella vaccination as described in the article by Hethcote ( 1989) in this volume. 
Models for measles are considered in Fine and Clarkson (1982), Hethcote (1983) 
and Anderson and May (1983). Epidemiological models for influenza with age 
structure and cross immunity arc presented in the article by Castillo-Chavez et al. 
(1989) in this volume. 

Epidemiological models with spatial spread are surveyed by Mollison (1977) 
and more recently by Mollison and Kuulasmaa (1985). The spatial spread of fox 
rabies has been considered by Anderson et al. ( 1981 ). See Radcliffe and Rass ( 1986) 
and the references cited therein for thresholds, final sizes, pandemic theorems and 
asymptotic speeds of propagation of travelling epidemic waves. The spread of 
influenza throughout the world has recently been modeled and is described in 
Rvachev and Longini (1985). 

As indicated in Sect. 2, infectious disease models are useful in comparing 
control procedures. See Wickwire (1977) for a survey of models for the control of 
infectious diseases. The optimal uses of vaccination for influenza are considered 
in Longini, Ackerman and Elveback (1978). Control strategies for rubella and 
comparisons using cost benefit analyses are described in the article by Hethcote 
(1989) on rubella in this volume. Gonorrhea control procedures ap<compared in 
Hethcote and Yorke (1984). 

The purpose of this article has been to introduce the most· basic ideas, 
assumptions, notation and formulations for epidemiological models in order to 
prepare the reader for the study of more refined models and their applications to 
specific diseases. There is a great need for individuals to understand and analyse 
specific diseases through modeling and to use modeling to investigate and compare 
methods for decreasing their incidence. 
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Appendix 

Proor of Theorem 5.1. The triangle T given by (5.3) is positively invariant since no 
direction vectors at the boundary of Tare outward. More precisely, S = 0 implies 
S' = 0, I = 0 implies/' "" 0, and S +I = 1 implies (S + I)'= -yl ~ 0. Moreover, every 
point on the Saxis where I= 0 is an equilibrium point (EP). The J;:P for S < I/ a are 
neutrally stable and the EP for S > I/a are neutrally unstable. 
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From (5.2) and the positive invariance of T, it follows that S(r) is nondecreasing 
and S(r) ~ 0 so that a unique limit S( cx::i ) exists. Since R'(t) = }'I ~ 0 and R(r) is 
bounded above by 1, the limit R( cx::i ) exists. Since J(r) = I - S(r)- R(r), the limit 
/( oo) exists. Moreover, /(oo) = 0 since otherwise R'(r) > )'/( oo )/2 for t sufficiently 
large so that R( cx::i) = oo which contradicts R(oo) ~ I. The solution paths 

I= I - R0 - S +[In (S(r)/S0 )]/a (A.I) 

are found from Jl/dS = - I + l/ uS. The conclusions stated follow directly from 
(A. I) and the obs~r.vation that a solution path has a maximum infective fraction 
Im when aS =I . 0 

Proof of Theorem 6.t. This proof uses standard phase plane methods found in 
differential equation books such as Coddington and Levinson ( 1955), Jordan and 
Smith (1977) and Miller and Michel (1982). This proof was first presented in 
Hethcote (1976). The equilibrium points (EP) in the SI phase plane are (1, 0) and the 
EP given by (6.3). The characteristic roots of the linearization around the EP (I, 0) 
are - µ and (y +µ)(a - I) so that this EP is a stable node if a< I and a saddle if 
a> I. The triangle defined by (5.4) is positively invariant since no path leaves 
through a boundary. More precisely, S = 0 implies S'(r) = µ > 0, I= 0 implies 
l'(t) = 0, and S + I .., I implies (S + /)' "" - ;•I ~ 0. Moreover, there is a path along 
the Saxis approaching the EP (1,0). 

The Poincare-Bendixson theorem (Coddington and Levinson, 1955; Miller and 
Michel, 1982) implies that bounded paths in the phase plane approach either an 
EP, a limit cycle or a cycle graph (Coleman, 1978). If a~ I, then (1,0) is the only 
EP in the triangle T. There is no limit cycle contained in T since limit cycles must 
contain at least one EP in their interior. There is no cycle graph in T since a 
homoclinic loop is not possible from a stable EP (Guckenheimer and Holmes, 
1983). Thus all paths in T approach the EP(l,O) if rJ ~I. 

lfu >I, then the EP(l,O) is a saddle with an attractive path along the Saxis and a 
repulsive path into T with slope - I + y/(y + µ). If u > 1, thc!l the EP (6.3) is in 
the interior of T and it is locally asymptotically stable since the characteristic roots 
of the linearization around it have negative real parts. The Bendixson- Dulac test 
(Jordan and Smith, 1977, p. 91; Hethcote, 1976) with multiplying factor I/ / leads to 

!_( - ;.s+!: _µs)+ !_(.t.s - y- µ) = - }. - t:<o 
oS I I of . I 

so that there are no limit cycles or cycle graphs in T. The only path in T approaching 
the EP(l,O) is the Saxis. Thus all paths in T except the Saxis approach the EP 
given by (6.3). 

This stability result for a > I can also be proved by using a Liapunov function. 
The Liapunov function used here also works for the SIRS model in Hethcote 
(1976}, but the Liapunov function given in Hethcote ( 1974) docs not. If S = Sr( I + U) 
and I= /Al+ V) where (Sr, /r) is the EP (6.3), then 

U'(t)= - ).frU(I + V) - )./rV - µU 

V'(t) = (y + µ)U(I + V) 
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and the positively invariant triangle T given by (5.3) becomes 

P = {(U,V):U~ - 1, VE; - 1.s.u+1.v~ 1-S.-l.}. 

The Liapunov function 

L= U2/2+al.[V - ln(I + V)] 

is positive definite for V > - I and the Liapunov derivative is 

~ = - .U~U2(1 + V) - µU 2 ~ 0. 

The set E -. { (U, V): ~ = O} is the V axis where U = 0. Since U = 0 implies 
U' = - u. V, the only positively invariant subset of E is the origin. By the 
Liapunov- Lasalle theorem (Miller and Michel, 1982, p. 226), the EP(O,O) in UV 
coordinates is locally asymptotically stable. Since the Liapunov curves L( U, V) = C 
fill the upper half plane above V = - I as C approaches infinity, this half plane is 
an asymptotic stability region for the EP (0, 0). This implies the result stated for 
q >I in Theorem 6.1. 0 


