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SUMMARY 

In many applications of functional data analysis, summarising functional variation 
based on fits, without taking account of the estimation process, runs the risk of attributing 
the estimation variation to the functional variation, thereby overstating the latter. For 
example, the first eigenvalue of a sample covariance matrix computed from estimated 
functions may be biased upwards. We display a set of estimated neuronal Poisson-process 
intensity functions where this bias is substantial, and we discuss two methods for account 
ing for estimation variation. One method uses a random-coefficient model, which requires 
all functions to be fitted with the same basis functions. An alternative method removes 
the same-basis restriction by means of a hierarchical Gaussian process model. In a small 
simulation study the hierarchical Gaussian process model outperformed the random 
coefficient model and greatly reduced the bias in the estimated first eigenvalue that would 
result from ignoring estimation variability. For the neuronal data the hierarchical Gaussian 
process estimate of the first eigenvalue was much smaller than the naive estimate that 
ignored variability due to function estimation. The neuronal setting also illustrates the 
benefit of incorporating alignment parameters into the hierarchical scheme. 

Some key words: Bayesian adaptive regression spline; Bayesian functional data analysis; Curve fitting; Free 
knot spline; Functional data analysis; Hierarchical Gaussian process; Neuron spike train; Nonparametric 
regression; Reversible-jump Markov chain Monte Carlo; Smoothing. 

1. INTRODUCTION 
Consider the problem of describing the variability among m real-valued functions of a 

single variable, f'(t), ... ., fm(t), that have been estimated from enough data to capture 
sharp functional variations but not enough so that uncertainty due to estimation may be 
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safely ignored. The argument t is assumed to lie in a finite interval [a, b]. Figure 1 illustrates 
the situation with a sample of neuronal point-process histograms from which intensity 
functions have been estimated. A standard approach in both neurophysiology (Optican 
& Richmond, 1987) and statistics (Ramsay & Silverman, 1997) is to begin with the 
estimated functions f[ evaluated on a grid t1, . . . , tp , define p-dimensional random vectors 
yj= (f(t1),... , fi(ttp)), and apply techniques from multivariate analysis, such as principal 
components. This strategy attempts to describe the variability of the unobserved random 
vectors Zi= (f'(t1), . . . , f'(tp)) by instead describing the variability of the estimates Y'. 
We will label this approach naive functional data analysis. This approach will be successful 
when there is little error in estimation relative to the variability among the functions. 
However, in many datasets, like that depicted in Fig. 1, the variability in the estimates 
ft is substantial and the naive method will mistakenly attribute that variability to the 
variability among the functions. For example, the first eigenvalue of the sample covariance 
matrix of Yi can be strongly biased upwards as an estimator of the first eigenvalue of the 
covariance matrix V= cov(Z'). In this paper we present methods for estimating V that 
account for the variability in estimating the curves fi. 

Our approach is similar in spirit to that of Ke & Wang (2001), and we also adopt 
roughly the same high-level strategy as James (2002), James et al. (2000), Rice & Wu 
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Fig. 1. Normalised histograms displaying observed firing rates for 30 neurons from an experiment described 
in ? 5, together with fitted firing-rate curves obtained from Bayesian adaptive regression splines. Horizontal 
axes run from 200 milliseconds before the target hit to 100 milliseconds after; vertical axes from 0 to 100 

events, i.e. neuronal spikes, per second. 
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(2001) and Shi et al. (1996). The methods developed here, however, are distinguished by 
two key features: they are able to fit functions that require domain-adaptive smoothing, 
so long as there are sufficient data to supply individual estimates of each function, and 
they are applicable to non-Gaussian data. 
A natural way to describe variability among curves that are fitted with a set of basis 

functions is to assume that the basis coefficient vectors follow a distribution. Previous 
work, cited above, has emphasised such random-coefficient models, and we write down 
the normally-distributed random coefficient model in ? 2 1. A restriction is that the basis 
functions must be the same across curves. While this is a reasonable simplification when 
there are limited data from which to estimate each curve, in cases such as that illustrated 
in Fig. 1 it may be preferable to fit each curve with its own empirically selected basis. We 
are especially interested in fitting curves that have irregular variation, being smooth over 
much of their domain but subject to sudden jumps: neuronal firing-rate functions often 
change slowly for most of the duration of observation, but rapidly in some short time 
interval; see DiMatteo et al. (2001) and Kass et al. (2003) for good examples. We therefore 
investigated an alternative approach. As discussed in ? 2 2, this begins with the individually 
obtained fits YL defined above and, with the assumption that the Y' and Zi vectors are 
multivariate normal, applies a familiar normal hierarchical model, the random-effects 
model. Thus, in the second approach, the function values rather than the coefficients are 
taken as the random effects. Since in principle this can be applied at any time resolution 
we will regard the functions fi(t) as realisations of a Gaussian process and will refer to 
the resulting model as a hierarchical Gaussian process model. 

The method is easily implemented and very general in so far as it applies to any context 
in which the variation among curves may be safely modelled by a Gaussian process, and 
any curve-estimation method, and set of within-curve sample sizes, that produces roughly 
normally distributed estimators. Furthermore, as we mention in ? 2 3, this asymptotic 
normal approximation does not need to be highly accurate. We also note there that it is 
possible to correct both methods for moderate nonnormality of estimators. 

A point stressed by Ramsay & Silverman (1997, Ch. 5), Wang & Gasser (1997) and 
others is that in describing variability among functions it is often important first to align 
the functions, partly to avoid attributing alignment variability to between-curve variability, 
and partly to make the overall mean function similar to the individual functions; an 
extreme case occurs when curves are identical in shape but shifted by varying amounts, 
in which case one would first shift the curves to align them, and then discover that their 
shapes exhibited no variability. Thus, any analysis scheme that purports to treat functional 
data should accommodate alignment in some way. In ? 2 4 we note the relative ease with 
which alignment may be incorporated into the hierarchical modelling framework, thereby 
providing a complete accounting for the dominant sources of variability among a set 
curves. This becomes an additional use of hierarchical modelling in functional data 
analysis. 
Many methods could be used to obtain estimates ft of the curves fi. We apply here an 

especially powerful approach called 'Bayesian adaptive regression splines' (DiMatteo et al., 
2001; Kass & Wallstrom, 2002), which can be applied to a wide class of nonlinear models, 
including Poisson and other generalised nonparametric regression models. Although we 
use Bayesian methods throughout this paper, the general hierarchical model in ? 2 2 could 
be used with alternative estimation methods, such as restricted maximum likelihood in 
conjunction with bootstrap estimates of the variability of the fitted curves ft based on 
kernel smoothers. 
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2. HIERARCHICAL MODELS 

2 1. Random-coefficient models 
For individual units, or neurons, i = 1, . . . , m observed at times uij, for j = 1, ... ni, 

suppose we have data Wij that follow distributions 

W Wi j I i(iIf' ( 1 ) 

where the functions fi have the form fi(t) = Zhbh(t)fh for some basis functions bM(t). 
Below we will use a spline basis defined by a set of knots 4 and these will be determined 
empirically: we will obtain a posterior distribution on the knot set. We will therefore use 
4 to index the coefficients, and so on. For the moment the formulation may be more 
general, with 4 standing for an abstract index that in some way defines the basis. Now 
suppose that each function is evaluated at points u1, .. . , u, and that we collect the function 
evaluations into a vector XJ,B, where X, is the design matrix and ,B, is the coefficient 
vector for the ith function. In principle X< could vary with the function, and thus could 
be subscripted with i, but for notational convenience we assume that all functions are 
evaluated at the same values of t. We then define the random-coefficient model 

(fP(Ui) 
. * * , 

f'(Un)) 
= 

Xj3Be, f'14 a, 
D4 

- 
N(a4, D4), 

(2) 

for i = 1, ... , m independently. Since all curves have the same basis functions, variation 
among curves may be described in terms of variation among the coefficients; conditionally 
on 4, this is summarised by the matrix D4. As a consequence of their dependence on 4, 
the D4 matrices produced are not comparable, in the case of splines being produced with 
different knot sets 4 and perhaps having different dimensionalities, and therefore they 
should not be interpreted directly. Instead, we view the functions fi as draws from a 
Gaussian process defined conditionally on 4. For any collection of t values (1, ... , 
the corresponding matrix X4DZ4 is the covariance matrix of (fi(1), ... , f(tp)) under 
(q, a4, D4). This, or some functional of it, would be the object of inference. 

For a given 4, model (2) is a generalised linear mixed model. However, fitting of (2) 
will be computationally demanding because it involves the estimation of the parameters 

5, ... ., f3, oc, and D, nested within estimation of 4. One simplification we have adopted 
here is to replace (1) with fl< I N(f3', RK), where fl' is the maximum likelihood esti 
mator and RK is the inverse of the observed information matrix; that is, for each 4, we 
estimate fl,, . . . , f3m by maximum likelihood and then apply the conditional hierarchical 
model 

p N(#'5 R'), ,B|,oc4, D< N(x4<, D<:). (3) 

We elaborate this in ? 3 1, in the context of spline fitting. 

2-2. Hierarchical Gaussian processes 
For our alternative approach we begin by assuming that each estimated curve fP may 

be considered as a Gaussian process with mean fi and covariance function Vp , which we 
write as 

ft -~ GP(f', rp). 4 
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Although the covariance functions Fi will be estimated during the procedure that fits f 
to fi, in (4) we treat them as known. We then assume that the underlying functions are 
themselves independent realisations of a Gaussian process, 

tiGP(Ls r) (5) 

We implement this by choosing a grid of values, t1,..., tp, as in the naive approach, 
thereby obtaining a familiar Normal hierarchical model, 

Y - 
Np(Zi, S'), Z'-i Np(It, V), (6) 

where Y' and Z' are defined above, Np is used to denote a p-dimensional multivariate 
normal distribution, the Si covariance matrices are defined from the fitting procedure, and 
assumed known, and the covariance matrix V is the object about which we will make 
inferences. We will call (4) and (5) a hierarchical Gaussian process model, though we 

modify (4) in important ways below. Model (6) is a discrete form of (4) and (5). 
Stated in this form, it is apparent that many different methods may be used to estimate 

the functions fi, and thereby create alternative hierarchical Gaussian process models. 
Strictly speaking Si = var(Y'IZ') is unknown. However, we simply plug in the estimate S 
obtained from fitting fi; that is, we take S5 = S" and treat this plug-in estimator as if it 
were fixed and known. In ? 3 3 we take S =5' to be the posterior covariance matrix 
obtained from Bayesian adaptive regression splines. Similarly, alternative methods may 
be used to estimate the 'random-effects' covariance matrix V. In ? 3 3 we estimate V in a 
Bayesian way by completing the hierarchical model in (6) with a flat prior on ,u and an 
inverse-Wishart prior on V. 

2 3. Improvement on normality 
Both (3) and (6) involve a replacement of (1) by normally distributed estimators. 

We have found these approximations to be entirely adequate for our applications. One 
explanation for this is that the use of (3) in place of the exact hierarchical model based 
on (1) is, for the estimation of second-stage parameters, equivalent to using Laplace's 
method at the first stage (Daniels & Kass, 1998), which has accuracy of order O(n-1) 
rather than O(n-). Nonetheless, it may be desirable to do better. To obtain improved 
approximations to the posteriors corresponding to hierarchical models based on (1), we 
may use importance reweighting in conjunction with samples drawn from either (3) or 
(6). This is a special case of a quite general method that applies when a normal approxi 

mation is used in the first stage of a two-stage hierarchical model. This importance 
reweighting has been discussed and shown to be effective, for moderate departures from 
normality, by Daniels & Kass (1998, 1999). As we have said, we have found it unnecessary 
in our applications, so we omit any detailed examination here. 

2-4. Alignment 
In many applications it is important to include additional parameters to align or 

'register' curves and make them comparable (Ke & Wang, 2001; Ramsay & Li, 1998; 
Wang & Gasser, 1997). In principle, alignment should be performed on the curves fi 
themselves. In the usual approach where estimation variability of Pi is ignored, the align 
ment is instead performed on the estimated curves f'. Models (4)-(6) provide a natural 
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framework in which alignment of curves ft can take place, so that variability associated 
with alignment estimation may be accounted for. Based on our experience with the flexible 
multiple-curve-fitting procedures described here, we do not expect alignment to improve 
fits greatly. Rather, its purpose is to apportion the variability appropriately, separating 
out that due to differing locations or scales of the variable t among the m different functions. 
This often provides a distinct interpretation of the data. 

The simplest type of alignment, which will be illustrated in ? 5, is to allow each curve 
to involve shift in time. In this case the functions fi(t) must be replaced by fi(t -Xi) 
where i is the shift of location parameter for the ith curve. In a more general formulation, 
fi is replaced by fio hi, where h'(t) is a transformation of time, the 'time-warping' function. 
In the case of shifts, we have hi(t) = t - q5. More generally, h' will depend on some vector 
of parameters X'. To treat alignment in hierarchical Gaussian process models we thus 
replace (4) with 

fA GP(fh', Fp) (7) 

and we could modify (1) similarly. The parameter vectors q5 would be incorporated into 
the hierarchical model (6) and, in a Bayesian application, into an appropriate Markov 
chain Monte Carlo implementation; that is, the model (6) is written conditionally on the 
parameter vector qi using (7) and then we also write 

qY p.'g(q , z) (8) 

for some suitable probability density g that depends on parameter vectors y and z, which 
would typically involve location and scale parameters for the components of qi. This 
requires an additional Metropolis-Hastings step for the posterior of b' given the rest of 
the parameters, which is easily implemented. 

The parameters y and - need to be estimated. For this, it should be recognised at the 
outset that some regularisation is needed to overcome nonidentifiability; the freedom in 
picking the time-realignment function hi is traded against the freedom in picking the 
functional form fi. In our Bayesian framework we introduce informative priors on 
the alignment hyperparameters y and -, and these priors will penalise alternative con 
figurations differentially; see the discussion of identifiability in Wang & Gasser (1997) and 
Ramsay & Li (1998). For example, it would often be sensible to put a strong prior on 
the time-alignment hyperparameters that would force h to be close to the identity trans 
formation; this is similar to using a strong penalty in the approach of Ramsay & Li (1998). 
In ? 5 we illustrate with an analysis of neuronal data in which we introduce location 
parameters to allow each intensity function its own origin in time. 

2-5. Choice of grid 
An essential part of the implementation of (6) is the choice of the grid t1, . . , tp. Here 

p must be large enough that function variability is captured, but increasing p may create 
a covariance matrix of such dimensionality that estimation of it becomes difficult. In this 
context there may well be some advantage in crafting a specialised covariance estimation 
method; see Daniels & Kass (2001) and an as yet unpublished report by M. J. Daniels. 
Furthermore, the grid points do not need to be equally spaced. On the other hand, our 
experience to date suggests that, as in the usual applications of functional data analysis 
(Ramsay & Silverman, 1997), results are not very sensitive to choice of grid. 
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3. MULTIPLE CURVE-FITTING WITH BAYESIAN ADAPTIVE REGRESSION SPLINES 

341. Overview of Bayesian adaptive regression splines 
We begin with the single-curve spline-based generalised nonparametric regression model 

for data Wj depending on a variable t: 

Wi -p(wiloi,0(, Oij=f(ti) (9) 

with f being a spline having knots at unknown locations 1, k.. Model (9) includes 
a vector of nuisance parameters ' to indicate generality, though in the Poisson case 
there is no nuisance parameter. If we write f(t) in terms of basis functions b4,h(t) 
as f(t) = Eh b4,h(t)4,h, the function evaluations f(t1),... , f(tn) may be collected into a 
vector (f(t1), . . ., f(tn))T = X, where X, is the design matrix and fl is the coefficient 
vector. For a given knot set 1 = ( 1,..., 4) model (9) poses a relatively easy estimation 
problem; for exponential-family responses, such as Poisson, it becomes a generalised linear 
model. The hard part of the problem is determining the knot set X, and using the data to 
do so provides the ability to fit a wide range of functions, as reviewed by Hansen & 
Kooperberg (2002). Bayesian adaptive regression splines is a Markov chain Monte Carlo 
based algorithm that samples from a suitable approximate posterior distribution on the 
knot set 4. This, in turn, produces samples from the posterior on the space of splines. In 
practice, cubic splines and the natural spline basis have been used in most applications. 
Bayesian adaptive regression splines can be viewed as a powerful engine for searching for 
an 'optimal' knot set, but, because it generates a posterior on the space of splines, it 
produces an improved spline estimator based on model averaging (Kass & Raftery, 1995) 
and it also provides uncertainty assessments. 

Key features of the Markov chain Monte Carlo implementation of Bayesian adaptive 
regression splines include the following: 

(i) a reversible-jump chain (Green, 1995) on 4 after integration of the marginal density 

p(wI0) = { p(wl&, , ')(f, CIl)dfldC, (10) 

the integration being performed exactly for normal data and approximately, by 
Laplace's method, otherwise; 

(ii) continuous proposals for 4; 
(iii) a locality heuristic for the proposals that attempts to place potential new knots 

near existing knots. 
For notational convenience here and throughout the paper we are, following Hansen & 
Kooperberg (2002), suppressing the dependence of the knot set 4 on the number of knots 
k, but Bayesian adaptive regression splines explores the space of generalised regression 
models defined by 4 and k and the prior on k can, in some cases, control the algorithm 
in important ways (DiMatteo et al., 2001; Hansen & Kooperberg, 2002; Kass & 

Wallstrom, 2002). 
The first implementation feature, item (i) above, introduces an analytical step within 

the Markov chain Monte Carlo partly to simplify the problem of satisfying detailed 
balance and partly for the sake of Markov chain Monte Carlo efficiency, which is generally 
increased when parameters are integrated; see Liu et al. (1994). In addition, the method 
takes advantage of the high accuracy of Laplace's method in this context. In so doing the 
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'unit-information' prior discussed by Kass & Wasserman (1995) and Pauler (1998) has 
been used, and this gives the interpretation that the algorithm is essentially using BIC to 
define a Markov chain on the knot sets. The importance of performing the integral (10), 
at least approximately, has been stressed by Kass & Wallstrom (2002). Continuous pro 
posals and the locality heuristic, items (ii) and (iii), together allow knots to be placed 
close to one another, which is advantageous when there is a sudden jump in the function. 

For each draw 4(a) from the posterior distribution of X, a draw f3: is obtained from the 
conditional posterior of f3,, conditionally on 4(a). The conditional posterior of fl< may 
often may be assumed normal, but it also may be obtained more accurately with additional 
sampling, as described by DiMatteo et al. (2001) via importance reweighting, along the 
lines of the reweighting discussed in ? 2 3 above. We have generally found that for moderate 
sample sizes it is unnecessary to correct the normal approximation. From (3a) we may 
obtain fitted values f(a)(0) = Z b< h(i)f a) for selected t and these, in turn, may be used to 
produce a draw 4(a) from the posterior distribution of any characteristic + = +(f), such as 
the value at which the maximum of f(t) occurs. Software for Bayesian adaptive regression 
splines is available at www.stat.cmu.edu/-kass. 
We next discuss the assessment of variability among the curves f', ... , f' via fitting 

with alternative versions of Bayesian adaptive regression splines. 

3 2. Random-coefficient hierarchical models 
It is natural to consider using the random-coefficient model (2) to describe the variation 

across multiple curves that are fitted with splines. One way of proceeding would be to 
devise a method for selecting a single knot set 4* that is reasonably effective for all the 
curves. Fitting model (2), or its approximate version (3), is then straightforward. A simple 
modification of Bayesian adaptive regression splines allows it to be used to select such a 
4*: the m curves may be fitted simultaneously, constraining them to use the same knot 
set. This is carried out by replacing the single-curve marginal density (10) with the joint 
density 

p(Wl wmI1) = If p(wAIf3,, c)r(f3|I)df3. (11) 

A sample may then be generated from the resulting posterior on 4 and the sampled knot 
set having the highest posterior density, the posterior modal knot set, may be selected as c*. 

Selecting a single 4 = (* and then fitting (2), however, would miss possible benefits from 
model averaging, here averaging across alternative knot sets. We have, instead, used ( 11) 
and generated a sample of draws 4(a) from the posterior. The nontrivial problem of fitting 
(3) for each of many simulated vectors 4(a) is greatly reduced because, in practice, it turns 
out that it often suffices to use a very small posterior sample of values l:(a). To explain 
this, suppose we wish to make inferences about a functional 0 = +(f) representing an 
interesting characteristic of a curve. In the total variance formula 

var(fly) = E,1Y {var(0qk, y)} + var4ly {E(01d, y)}, (12) 

the second term, representing the uncertainty across alternative knot sets, will often be 
comparatively small, not so small that it can be ignored but small enough that small 
posterior samples suffice for estimating q0 or its variance. This is related to the observation 
that, while free-knot spline fitting poses a difficult optimisation problem, fits that represent 



Hierarchical models 427 

suboptimal local posterior maxima, which may be noticeably inferior from visual 
inspection, can be close, in mean-squared difference, to the correct posterior model fit. 
Here we have subsampled a small set of values 4(a) with a = 1, ... , na and, for each ((a), 
used Gibbs sampling, via BUGS (Spiegelhalter et al., 1996), applied to (3) to compute 
the posterior mean of the desired vector of function values Xg(a)D,(a)X,(a). This pro 
duced na conditional posterior means. These na values were averaged to obtain the 
marginal posterior mean; see the 2003 Carnegie Mellon Ph.D. thesis of S. Behseta for 
implementation details. 

In principle it would be possible to build a chain on (d, , ... ., f<, oc, D9) but this 
would be delicate and rather different from the approximate integration strategy of 
Bayesian adaptive regression splines. We have not attempted it. It would also be possible, 
in principle, to use (2) to define the joint density for the data conditionally on the knots 
according to 

P(wl wmX) = nf P(W'|4, 
4)R:4|cx , D?),A D(, D4)doc4 dD4 dfl' 

where nrR(fli I, a4, D4) is the normal random-effects distribution. However, evaluation of 
this density still poses a difficult integration problem nested within the knot selection 
problem. Instead, our use of the unit-information prior in ( 11) produces very mild shrink 
age of the coefficients towards the origin, while the random-effects prior would produce 
data-controlled shrinkage of the coefficients towards their mean. We would not expect the 
resulting relative weights attached to alternative knot sets to be dramatically different. In 
any case, as we have said, (11) provides an easily-implemented method of finding knot 
sets that do a reasonably good job of fitting all curves simultaneously. 

3 3. Hierarchical Gaussian process models 
The virtue of the model given in (4)-(7) is that each function may be fitted separately 

with different knot sets. Our approach is to apply Bayesian adaptive regression splines to 
each of the m curves. We pick a grid t1, . . . , tp , and compute the posterior covariance 
matrix S' = var(f'(t1),... ., fi(tp)Jw'), where wi is the vector of all data available for the 
ith function, not necessarily data observed at t1,. .., tp,. This matrix S' is obtained as the 
sample covariance matrix of the Markov chain Monte Carlo draws (fi(a)(tj) ... .., fi(a)(tP)) 
where, as in the introduction to ? 3 above, these fitted-value draws are, in turn, obtained 
from the draws #i(a) using fi(a)(b - b',h(itii(a). We then apply (6) and estimate V using 
Gibbs sampling, based on a flat prior on ,u and an inverse-Wishart prior on V. While we 
are mainly interested in the covariance function Ef, or its finite-dimensional representation 
V, it should be observed that the posterior distributions on the functions fi will produce 
some shrinkage away from fi and toward their mean, the amount depending of course 
on the relative magnitudes of the between-curve covariance matrix V and the within-curve 
estimation covariance matrices S'. 

4. SIMULATION STUDY 

We conducted a small simulation study using as ground truth the fitted curves displayed 
in Fig. 1. We compared the hierarchical Gaussian process and random-coefficient methods 
with naive functional data analysis in estimating the first eigenvalue and first proportion 
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of variance. To be specific, to obtain a single data replication we simulated Poisson data 
as in (2), with uij values as in Fig. 1, after simulating 30 vectors (f'(ui1), ... , f (uip)) from 
a multivariate normal distribution with mean ,u and variance matrix V, we set ,u and V 
equal to the sample mean and sample covariance matrix of the curves in Fig. 1. We 
replicated this procedure 30 times, thereby obtaining 30 datasets and their resulting 
estimates from those approaches. The mean squared error results are given in Table 1. 
They indicate that the hierarchical Gaussian process method yields a large reduction in 
mean squared error compared to the random-coefficient model and a huge reduction 
compared to naive functional data analysis. An explanation for the improvement of the 
hierarchical Gaussian process model over the random-coefficient model is that the latter 
uses extra knots to fit a diversity of curves and therefore undersmooths in some cases. An 
illustration appears in Fig. 2, which is discussed below. 

Table 1: Simulation study. Mean squared error in estimating 
first eigenvalue and first proportion of variance across the 
30 data replications, with simulation standard errors in 

parentheses. 
Naive-FDA Random-coefficient BARS HGP 

Eigenvalue 2 98 (0-201) 1 335 (0 132) 0 284 (0 045) 
Proportion 0060 (0 001) 0 018 (0-003) 0 0075 (0 001) 

FDA, functional data analysis; BARS, Bayesian adaptive regression splines; 
HGP, hierarchical Gaussian process. 

5. NEURONAL DATA ANALYSIS 

5 1. The data 
The data in Fig. 1 came from a study of primary motor cortex neurons in monkeys 

during two conditions of a sequential pointing task (Matsuzaka et al., 2001). Relevant 
experimental details are summarised in the Ph.D. thesis of S. Behseta; some analysis has 
been reported in Behseta et al. (2002). In brief, firing times of a single neuron were recorded 
while a monkey completed the task, with increased firing rate of the neuron indicating 
increased functional activity. The task required the monkey to touch a particular sequence 
of three illuminated buttons, among five buttons in all. In the first experimental condition 
the button touches were in a predetermined and highly practised order, while in the second 
condition they were in random order. The experiment was repeated thousands of times, 
over the course of more than a year, while recordings were made on single neurons. On 
a given day several new neurons were typically examined; it was not possible to re-examine 
neurons across days. A standard practice is to aggregate firing times for a given neuron 
across experimental replications into 10-millisecond time bins, thereby reducing the data 
to a count for each bin, the information lost being negligible, and this is the form in which 
we have analysed the data here. Figure 1 displays the resulting histograms for 30 of the 
neurons, out of a total of 347, over a 300-millisecond period in the random-order con 
dition. The histograms have been normalised by dividing by the number of experimental 
replications for each neuron, thereby making the units events per second per replication, 
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which are the units associated with the Poisson process intensity functions. For a general 
discussion of statistical methods in a related neurophysiological context, see Ventura et al. 
(2002). Among other things, that work verified that it is safe to treat such aggregated and 
binned data as generating Poisson-distributed counts. 

5 2. Initial variability assessment 
As we indicated in ? 1 the variability among curves is often described using principal 

components. The degree to which first principal component summarises variability is 
quantified by the first proportion of variance, A/l/(Al + . .. + AP), where %j is the jth 
eigenvalue. We examined the first eigenvalue and first proportion of variance for the 
neuronal data using both naive functional data analysis and the hierarchical Gaussian 
process model. 

To obtain the fitted curves fi plotted in Fig. 1 we applied Bayesian adaptive regression 
splines with a Poisson model in (9). We also computed posterior variance matrices St, 
using the centres of the 30 time bins as our grid. We applied the hierarchical Gaussian 
process model in the form (6), using on V an inverse-Wishart prior with 31 degrees of 
freedom and a scale matrix equal to the harmonic mean of the matrices Si, the inverse 
of the mean of the (Si)-' matrices. This prior, using minimal integer degrees of freedom 
31 = p + 1, seems a sensible default to us because, in the absence of other knowledge, we 
would want the prior to be very diffuse and we have no other starting point for the 
between-curve variability than the within-curve variability. Using Gibbs sampling we 
obtained the posterior distributions of the first eigenvalue of V and the corresponding 
first proportion of variance. These are displayed in Figs 2(b) and (c). In addition, we 
computed the sample covariance matrix from the fitted function values, i.e. the vectors Y' 
in (6), and obtained its first eigenvalue and corresponding proportion of variance due to 
the first principal component. These two values, which represent a standard assessment 
of variability and which we have here called naive functional data analysis, are displayed 
as vertical lines in Figs 2(b) and (c). The posterior distributions are shifted substantially 
downwards from the naive method values that are obtained when the fitting variability 
is ignored. Multiplying and dividing the Wishart prior scale matrix by two produced small 
but nontrivial variations in the posterior on the first eigenvalue; however, these alternative 
priors produced negligible alterations of the posterior on the first proportion of variance. 
Based on the simulation study in ? 4 the hierarchical Gaussian process estimators 
portrayed in Figs 2(b) and (c) are highly likely to be much more accurate than their naive 
functional data analysis counterparts. 

An additional result from the simulation study in ? 4 was the superiority of the 
hierarchical Gaussian process model over the random-coefficient model. In Fig. 2(a) we 
have displayed some of the results of fitting the random-coefficient model to these data. 
These fits use the same basis functions for all neurons. While most fitted curves are nearly 
the same as those obtained from fitting the curves individually, with different basis 
functions, several same-basis fits are a little too wiggly, especially that in the third column 
of the first row. This illustrates a general experience we have had in examining similar 
data: the assumption of the same basis functions can lead to excessive numbers of knots 
and therefore to overfitting. This is apparently the cause of the much poorer simulation 
results for the random-coefficient model. 
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Fig. 2: Neuronal data. (a) Nine sets of fitted curves using the hierarchical Gaussian process 
model, shown by solid lines, and the random-coefficient model, dashed lines; the former appear 
in Fig. 1, rows 4-6 and columns 2-4. Horizontal axes run from 200 milliseconds before the 
target hit to 100 milliseconds after; vertical axes from 0 to 100 events, i.e. neuronal spikes, 
per second. (b) The posterior distribution of the first eigenvalue of V together with the naive 
functional data analysis estimate, shown by vertical bar. (c) The posterior distribution of the 
proportion of variance associated with the first principal component of V, together with the 

naive method estimate of the same quantity, vertical bar. 

5*3. Alignment 
We now illustrate the use of alignment within the hierarchical Gaussian process model 

using a subset of 16 neurons. These 16 neurons were classified as having similar firing 
rate curves by a functional cluster analysis performed on the 347 neurons, described in 
more detail in the Ph.D thesis of S. Behseta. While the similarity of the firing-rate curves 
for these 16 neurons indicates probable similarity of physiological function, their net 
worked connections to muscles controlling arm movement are complex and it would be 
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reasonable to expect the 16 neurons to have variable lags in firing activity with respect 
to the experimental clock time, with lags varying by perhaps tens of milliseconds. We 
therefore incorporated an alignment function of the form hi(t) = t - Qi in (7) and took O, 
which is then a scalar, to be normally distributed with mean and standard deviation y 
and z as in (8). We set y = 0 and took the distribution on - to be the square-root of an 
inverse-chi-squared centred at 20 milliseconds with standard deviation of 20 milliseconds, 
reflecting knowledge of the likely magnitude of shifts. Modest changes in the prior on z 
did not appreciably alter the results. Figure 3(a) shows the 16 original fitted intensity 
functions, while Fig. 3(c) displays the resulting aligned versions. 
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Fig. 3: Alignment. (a) Fits to firing-rate histograms from 16 neurons before alignment. (b) 
Electromyogram signals for the finger and wrist muscles. (c) Fits to the neuronal histograms after 
alignment using (8) in (7), as described in the text. (d) Fits to the neuronal histograms after 

alignment based on correlation with the electromyogram signals. 

Some special circumstances of the experiment offered a nice opportunity to examine 
effectiveness of alignment according to an external criterion. As part of the experiment 
electromyograms for various muscle groups were also recorded for the same task. After 
identifying the 16 neurons by clustering we found two muscles whose electromyogram 
recordings have a comparable time-dependent activity pattern, shown in Fig. 3(b). These 
two muscles are the abductor pollicis longus, a finger muscle, and the extensor carpi 
radialis, a wrist muscle. We then refitted each shift parameter O' by maximising the 
correlation, over time, between the shifted Bayesian adaptive regression splines fit and 
the electromyogram; that is, we maximised the function 

<n((tO0 g(O> 
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where g is the electromyogram signal and the numerator and denominator use the ordinary 
Euclidean inner product and norm, calculated from the discrete representations of the 
functions along a grid. The results of this analysis are shown in Fig. 3(d) with the electro 
myogram signals in Fig. 3(b). We observe that the functions aligned internally, in Fig. 3(c), 
are quite similar to those aligned externally, in Fig. 3(d). This lends support to the use of 
alignment in this context. Further details may be found in the Ph.D. thesis of S. Behseta. 

As mentioned above, alignment is important because it is often desirable to separate 
the variability due to alignment from that due to variation in curve shape. For these 16 
neurons we found that the proportion of variability due to the first principal component 
increased from 062 without alignment to 071 after alignment. 

6. DISCUSSION 

The distinction between the random-coefficient and hierarchical Gaussian process 
models is important. The normal random-coefficient model implies that the functions fl(t) 
are Gaussian processes conditionally on the knot set, while the hierarchical Gaussian pro 
cess model takes them to be Gaussian processes marginally. The marginal Gaussian 
process assumption may seem more natural, in that conceptually the variability is between 
the curves rather than the somewhat artificially-invoked coefficients, but either approach 

may be reasonable and effective, and part of the purpose of this paper was to compare 
them. The random-coefficient model is likely to be most useful when the data are sparse, 
as for example in James et al. (2000). The hierarchical Gaussian process framework will 
be helpful when there are sufficient data per function that irregular variation may be 
estimated, but not so much that the estimation variability becomes negligible, relative to 
the variability across functions. To substantiate this point we performed additional simu 
lations as in ? 4, either decreasing or increasing ,u so as to decrease or increase the signal 
to-noise ratio. When p was decreased by a factor of 5 we found the hierarchical Gaussian 
process model no longer to be superior to the random-coefficient model: the mean squared 
error values for the proportion of variance were 0 055 (+ 0 019) for the random-coefficient 
model and 0 066 (? 0 016) for the hierarchical Gaussian process model, with 0 098 (+ 0 010) 
for naive functional data analysis. When ,u was increased by a factor of 20 we found naive 
functional data analysis to be adequate: the mean squared error values for the proportion 
of variance were 0-0733 (? 0 0260) for the random-coefficient model, 0 0694 (? 0 0277) for 
the hierarchical Gaussian process model and 0-0815 (+ 0-0299) for naive functional data 
analysis. 

In general, effects of curve estimation on the magnitude and direction of bias in the 
proportion of variance associated with the first principal component can be subtle and 
will depend on the relationship of the within-curve variance matrices S' to the between 
curve variance matrix V: it is possible to construct theoretical examples where the first 
eigenvalue is biased upwards but the bias in the proportion of variance is negligible or 
downwards. One explanation for the very large improvement seen here in hierarchical 
Gaussian process estimators compared to those of the naive method is that, in the neuronal 
setting we used, large estimation variability tends to occur in the peaks of the curves, 
which dominate the first principal component. Therefore, the within-curve estimation 
variability contributes quite substantially to the naive functional data analysis estimate 
of the first eigenvalue, exaggerating the extent to which the first principal component 
summarises the variability among the functions. We would expect this to be a fairly 
common situation, not limited to neurophysiology. 
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The procedure we have applied is easily implemented in two steps: first, the m separate 
datasets are smoothed, and then available software, such as BUGS, may be applied to fit 
the normal hierarchical model (6). The general framework of models (4)-(7) allows several 
elaborations we have not implemented. First, as we noted, importance reweighting will in 
some cases improve the normal approximation of (4) to the more accurate hierarchical 
model that would result from (1). Secondly, more complicated alignment schemes could 
be used. Thirdly, while we have been satisfied with the use of straightforward Bayesian 
estimation of V, including our choice of prior, in (6), it should be possible to devise 
improved procedures for choosing the grid t1, . . . , tp and then take advantage of the 
special covariance structure induced by functions. 
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