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1. INTRODUCTION 

Breiman and Friedman’s development of the ACE algorithm 
and associated methodology will surely be seen as a milestone 
in the theory of nonparametric regression. The authors have 
not only provided theoretical analysis of ACE applied to random 
variables, they have also incorporated fast smoothing tech- 
niques to make the method work efficiently on finitely many 
observations, and they have tested their implementation on both 
simulated and real data. The statistical community has been 
presented with a tool that is conceptually simple, mathemati- 
cally elegant, and computationally economical, as well as being 
useful in its demonstrated ability to uncover nonlinear rela- 
tionships that might otherwise be missed. 

As a data-analytic technique, ACE could be viewed as a 
generalization of alternating least squares (ALS) developed by 
Young (1981), DeLeeuw (1983), and their co-workers. Appli- 
cations to several important classes of problems have appeared, 
primarily in the psychometric literature. This methodology is 
itself an outgrowth of “optimal scoring” of categorical data, 
which goes back at least to Fisher (1941), who posed and solved 
the problem: “Given a two-way table of non-numerical obser- 
vations we may ask what values, or scores, shall be assigned 
to them in order that the observations shall be as additive as 
possible” (p. 283). 

It is important that, in addition to the polynomial fitting 
methods used for quantitative data by the psychometricians, a 
variety of expensive smoothers, such as splines, could be used 
together with methods of numerical linear algebra. The Brei- 
man-Friedman implementation, however, offers an advance by 
incorporating the fast smoother technology of Friedman and 
Stuetzle (1982), thereby lowering cost and increasing appli- 
cability. 

The goal of ACE is similar to that of Fisher’s optimal scoring 
method; it finds the transformations that make the relationship 
of O(Y) to the pj(Xj)’s as linear as possible, where departure 
from linearity is measured by expected squared error relative 
to total variance. If ACE is applied to the transformed response 
I‘ = B(Y) and the normalized carriers XJ = pJ(XJ)/llpj(XJ)ll, 
then the optimal transformations will be &Y) = I‘ and @j = 
pjX,, where pi = llpj(X,)ll. That is, linear regression will be 
optimal and E(f 1 XI, . . . , Xp) = psij. Characterization 
problems concerning “linearity of regression” have been around 
a long time, a reference being Kagan et al. (1973, pp. 10-12). 
An important feature of ACE is that optimal transformations 
are not the only ones that produce linear regressions. In general, 
there exist many sets of stationary values of the criterion, which 
correspond to eigenfunctions associated with different eigen- 
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values of ACE’S iterated conditional expectation operator in 
Hilbert space, and each of these shares the property of linearity 
of regression. Indeed, as we discuss in Section 2, the suboptimal 
eigenfunctions can sometimes be of greater interest than the 
optimal ones. 

Another way to view ACE is as a nonparametric alternative 
to power transformations based on the assumption of Normality, 
having been developed in the spirit of exploration, rather than 
inference. A basic element of ACE is its reversal of the standard 
practice of treating stochastic predictors as if they were fixed 
and had independent additive errors attached: ACE eliminates 
the additive error structure and replaces it with a joint distri- 
bution of response and predictor variables. We will comment 
further on the distinction between stochastic and investigator- 
determined predictors in Section 3. For now, and in Section 2, 
we will take as unobjectionable the assumption, which is es- 
sential to the theory of ACE, that (XI, . . . , X,, Y) has a 
multivariate distribution (and the marginal distributions are non- 
degenerate). In this context it is worth emphasizing the result 
cited near the end of Breiman and Friedman’s Section 1: If 
marginal transformations to joint Normality exist, then ACE 
will find them. We notice in addition that if monotonic trans- 
formations to joint Normality exist, transformation of each mar- 
ginal distribution to Normality will also produce the joint Nor- 
mal distribution. This strong assumption is the basis for the 
common practice of examining and then transforming each 
variable separately; when it holds, ACE, too, will succeed 
(albeit somewhat less efficiently), and the transformations will 
be roughly the same. The results from ACE deviate from those 
of available parametric methodology when the distribution after 
transformation is non-Normal or the optimal transformations 
are nonmonotonic. Here ACE gains its great nonparametric 
advantage but, as we next discuss, it is important to keep in 
mind that what is “optimal” need not be desirable. 

2. OPTIMAL AND SUBOPTIMAL EIGENFUNCTIONS 

If we consider the simplest class of non-Normal joint distri- 
butions, those that are elliptically symmetric, an interesting 
anomaly appears. When the association among the variables is 
sufficiently weak, optimal transformations may break the sym- 
metry and thus might be judged misleading. Taking, for sim- 
plicity, the bivariate distribution of a pair of random variables 
(X, Y), in the extreme case of spherical symmetry X and Y are 
independent if and only if they are jointly Normal. From prop- 
erty 2 of Breiman and Friedman’s Section 1 it follows that the 
optimal correlation is zero if and only if X and Y are Normal. 
Thus the optimal transformations of X and Y are different from 
the identity whenever the spherical bivariate distribution is non- 
Normal. As an example, consider the uniform distribution on 

0 1985 American Statistical Association 
Journal of the American Statistical Association 

September 1985, Voi. 80, No. 391, Theory and Methods 

602 



Buja and Kass: Comment 603 

I 
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 

Figure 7 .  ACE Transformations of X (left) and Y (right) for Correlation .O. 

the unit disk x2 + y2 < 1. It turns out that the optimal trans- 
formations p and 0 are parabolas symmetric about the vertical 
axis, and simulations show that ACE finds these in finite data 
(see our Figure 1). The optimal correlation is Q for the popu- 
lations. 

Proceeding a step further, one can apply linear transforma- 
tions to (X, Y) to produce a class of distributions that are uniform 
on elliptical disks and have correlations ranging from 0 to 1. 
The optimal transformations for the distributions with corre- 
lation close to 1 are the identity, whereas those with correlation 
close to 0 are again parabolas; the transition from one case to 
the other is abrupt and occurs for correlation i. (A derivation 
of this theoretical fact will appear somewhere else.) 

These remarks apply to the underlying populations rather 
than finite samples. As a demonstration for the finite sample 
case, we included some plots of ACE transforms that were 
generated with Breiman and Friedman’s program (see Figures 
1-5). The data sets were obtained by linear transformation of 
391 pseudorandom points from a uniform distribution on the 
unit disk in RZ. The linear transformations were chosen so as 
to yield pseudorandom samples from uniform distributions on 
elliptic disks with correlation .O (no transformation), .22, .28, 
.34, and .5 .  One notices that the transforms change shape fairly 

quickly in the range from .22 to .34. The particular pseudo- 
random sample at hand resulted in empirical correlations some- 
what below the theoretical ones (.19, .25, .32 instead of .22, 
.28, .34), which may partly account for the qualitative jump 
from Figure 3 to Figure 4 rather than from Figure 2 to Figure 
3 as expected from theory. Nevertheless, it seems that the finite- 
sample ACE algorithm reflects the behavior of ACE at the 
underlying population. We would like to mention that in our 
experience for correlation close to 4, the finite-sample ACE 
algorithm occasionally produces transforms of cubic shape. 

How should we understand this behavior? From a mathe- 
matical point of view, ACE finds eigenfunctions of largest 
eigenvalues by applying the power method to the iterated 
conditional expectation operators E ( E ( .  I Y) I X) for p(X) and 
E ( E ( .  I X) I Y) for S(Y), the largest eigenvalue being the 
squared optimal correlation (compare Theorem 5.3). The uni- 
form distributions on elliptical disks all have the same systems 
of eigenfunctions, which are polynomials, but the eigenvalues 
vary with the degree of ellipticity. It turns out that the poly- 
nomial of order 1-that is, the identity-has the largest eigen- 
value for strong ellipticity (corresponding to correlation greater 
than a), but it is overtaken by the second-order polynomial for 
weak ellipticity (correlation less than 4). As the ellipticity weak- 
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Figure 3. ACE Transtormations of X (left) and Y (right) for Correlation .28. 

ens, axial symmetry is approached and this drives the eigen- 
values of odd-order polynomials to zero. In Figure 6, the square 
root of the eigenvalues as a function of correlation (ellipticity) 
is plotted for the eigenpolynomials of degrees 1-3. Notice that 
not only does the second-degree polynomial have the largest 
eigenvalue for correlation below a, but the eigenvalue of the 
third-degree polynomial is suspiciously close to the eigenvalue 
of both the first- and second-degree polynomial in a neighbor- 
hood of 4. This is probably why we occasionally observed cubic 
behavior in the ACE transforms of finite samples. 

A background for this type of phenomenon is provided by 
perturbation theory (see Kato 1984, pp. 63-74), which deals 
with the dependence of linear operators and their spectral de- 
compositions on a real or complex parameter. Here and in 
numerical analysis of eigenproblems (Parlett 1980, pp. 14-15), 
one knows that eigenvalues depend continuously on the oper- 
ator, but eigenfunctions do not. In our context this means that 
the optimal correlation of two close distributions will be close, 
but the ACE transforms may look qualitatively different. A 
case in point is the preceding example, where a continuous 
change in ellipticity leads to a jump at the critical correlation 
4, but more serious discontinuities are possible (Kato 1984, pp. 
64, 72). It is always multiplicity (also called degeneracy) of 

eigenvalues that gives rise to this phenomenon. In quantum 
physics, degeneracy is often the generic case, and perturbations 
(e.g., of an atom by an external magnetic field) are known to 
split up spectra (the Zeeman effect). 

The occurrence of nonmonotonic optimal transformations in 
the preceding example should not be interpreted as revealing 
remarkable relationships in the data. Given the situation in the 
spherical case, an obvious question is whether Normal distri- 
butions are the only elliptically symmetric bivariate distribu- 
tions for which the optimal transformations are the identity for 
all degrees of ellipticity as measured by the correlation of the 
untransformed data. If the preceding uniform distributions are 
examples for short-tailed cases, one might consider at the other 
end some simple heavy-tailed examples, such as spherical and 
elliptical t distributions. We are in the process of examining 
such examples. 

The possibility of finding many relevant eigenfunctions is 
not limited to the lower range of optimal correlations, as is 
seen if we choose as a distribution for (X, Y) the degenerate 
uniform on the diagonal of the unit square in the plane. Here 
we have P(X = Y) = 1, an exact relationship. This example 
is, strictly speaking, outside of the Breiman-Friedman setup, 
due to degeneracy as a measure (see Assumption 5.2), yet it 
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Figure 4. ACE Transformations of X (left) and Y (right) for Correlation .34. 
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Figure 5. ACE Transformations of 

indicates a seemingly strange behavior of ACE: There do exist 
uncountably many transformations to optimal correlation 1. 
Any pair (0, rp) of transforms will do if 8 = rp and if 8, rp are 
nonconstant with probability 1 on the unit interval. This ex- 
ample is extreme and has little relevance for data analysis. The 
following, however, is a real possibility: The joint distribution 
of (Y, XI, . . . , X p )  might approximately satisfy more than one 
additive equation of the form 0(Y)  = 2 rpj(Xj) and thus cluster 
around a manifold of codimension more than 1 in R P +  I .  Such 
a situation leads to either multiple optimal transformations or 
a spectrum that features several eigenvalues bunching together 
at the upper end, and they may even be arbitrarily close to 1. 
The point here is that we might not only encounter multiple 
sets of predictor transforms p j ( X j ) ,  but response transforms e( Y) 
as well. In this respect, ACE differs from the untransformed 
linear models, where multiple fits are always due to depen- 
dencies among the predictors alone. 

In these situations a possible safeguard would be to obtain 
several of the largest eigenvalues and their eigenfunctions. Ex- 
amination of the upper end of the spectrum would indicate the 
stability of the optimal transformations. A single largest eigen- 
value fairly close to 1 would give some reassurance that the 
additive model produced by ACE is appropriate. However, if 
there did exist more than one eigenvalue close to 1, further 
scrutiny would be required, and the possibility of describing 
the data by more than one additive equation would have to be 
considered. 

A related concern arises in the following situation: Let the 
distribution of (X, Y) fall apart into two natural clusters in 
diagonally opposite quadrants; that is, there should exist thresh- 
olds a and b such that P(X 5 a, Y 5 b) and P(X > a, Y > 
b) are both nonzero and sum to 1. For such a distribution, the 
optimal correlation happens to be 1 ! Optimal transformations 
that achieve it can be obtained by letting 0(Y)  map the sets 
{Y 5 b} and {Y > b} onto different constants, and similarly for 
rp(X) with the sets {X 5 u}  and {X > a}. (We owe this obser- 
vation to Charles Stone.) Hence ACE discovers that the data 
can be lumped together by cuts along the X and Y axes, and it 
uses this in the search for optimal marginal transformations. 
The finite-sample version of ACE based on the Friedman- 
Stuetzle smoothers will produce a variant of this result due to 
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X (left) and Y (right) for Correlation .5. 

averaging over windows that extend a fraction (e.g., 15%) to 
the left as well as to the right of a given point. Thus the jumps 
at a and b in rp and 8, respectively, will be smeared out to steep 
but continuous stretches around the threshold values. Owen 
(1983, pp. 19-23) informed us that this phenomenon actually 
occurred in real data when he applied ACE in a time-series 
context, and the ACE transformations he found behaved as we 
described here. It seems to us that such simultaneous lumping 
in X and Y calls for a special treatment, but we do not yet have 
any suggestions. A perplexing fact is that this lumping effect 
occurs regardless of the distribution of (X, Y) in the two quad- 
rants. For example, it may be nicely clustering around two 
fragments of manifolds so that ACE would have to pick up the 
manifold structure in its suboptimal solutions, which leads us 
once more to the recommendation of looking at suboptimal 
eigenfunctions. 
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Third-Order Eigenpolynomials as Functions of the Correlation of X 
and Y. 
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3. ACE AND PREDICTOR MODELS or trigonometric functions, and they will then build linear models 

Like parametric regression methods based on the assumption 
of joint Normality of predictors and responses, ACE blurs the 
distinction between stochastic and nonstochastic predictor 
variables. The conventional methods are inferential and rely on 
Fisherian or Bayesian principles to justify conditioning on sto- 
chastic predictors. ACE, on the other hand, does away with 
the additive error structure of predictor models, using instead 
a nondegenerate joint distribution. Thus ACE produces trans- 
formations that satisfy not only the additive equation 

but also the dual relation 

where p is the optimal multiple correlation. This pair of equa- 
tions forms an eigenproblem characterizing stationarity under 
ACE iteration, and it displays the symmetric treatment of re- 
sponse and carriers by ACE. 

To some, this feature of ACE may seem unnatural, and the 
practical consequence, mentioned by Breiman and Friedman 
toward the end of Section 1, is that when data are generated 
from a predictor model 

ACE does not necessarily find the transformations p, ,  . . . , 
qp, 8. One situation in which ACE would clearly produce 
undesirable results was described earlier: If the design were 
such that the predictor values clustered into clearly separated 
subpopulations and the error E were small relative to the sep- 
aration, then ACE would produce lumps and the interesting 
transformations might correspond to suboptimal eigenfunc- 
tions. From its possible failure to produce desirable predictor- 
model transformations, we would not conclude that ACE is 
somehow flawed, but it does appear that there is more to be 
learned about the sensitivity of ACE to the distribution of the 
carriers. This is an issue especially for designed experiments 
and data from samples that poorly represent the population 
distribution of the carriers. On the other hand, in the difficult 
but common situation in which scientific investigation requires 
analysis of well-sampled observational data with little guidance 
from a predictive theory, the inferential approach based on 
predictive models is problematic and the powerful exploratory 
ACE technology should be especially useful. 

4. INFERENCE, DIAGNOSTICS, AND ROBUSTNESS 

One aspect of the problem of assigning scores discussed by 
Fisher was that of assessing variability. He noted that the com- 
plexity of the problem limited the applicability of the notion 
of standard error, and he proceeded to develop as an alternative 
a significance test to assess departure from a particular choice 
of scores. The generalization of a choice of scores is, of course, 
a choice of transformations. The transformations produced by 
ACE will probably be most often used as rough suggestions: 
Practitioners will interpret the plots as approximations to ele- 
mentary functions such as logarithms, exponentials, powers, 

based on these. Inference from the resulting models, including 
statements concerning possible inclusion of particular carriers 
in the model, would be difficult and treacherous. The most 
useful variabilities to assess would be those of the transfor- 
mations themselves, although in this general context, as in 
optimal scoring, inversion to significance tests may again be 
much more tractable. It would also be nice to be able to judge 
the separation of several large eigenvalues, discussed in Section 
1 here, against background variation. Perhaps, as Breiman and 
Friedman suggest (in Section 4), the bootstrap will be helpful 
in solving these problems. 

There is also the possibility of developing diagnostics for use 
in conjunction with ACE. Although there may be goals that 
are analogous to those of diagnostics for linear regression, there 
will be important differences. In the case of colinearity, for 
example, in linear regression the existence of an exact colin- 
earity of the form aj - X j  = 0 implies that with any set of 
least-squares coefficients Bj, the set of numbers /3, + aj provides 
a least-squares solution. On the other hand, nonlinear relations 
among carriers do not necessarily produce infinitely many so- 
lutions. When applying ACE, however, the existence of a re- 
lation of the form x v/i(X,) = 0 implies that with any set of 
optimal predictor transformations p,(Xj), the transformations 
p j ( X j )  + ry,(X,) are optimal as well. Thus it might be useful 
to develop methods for estimation of additive implicit equations 
of the form x tpj (X,)  = 0, in analogy to estimation of smallest 
principal components of the carriers in linear regression. One 
of us (Buja) has begun working on this together with Werner 
Stuetzle. 

Finally, let us briefly mention the issue of robustness. Notice 
that although the theory presented by Breiman and Friedman 
is a second-order theory, based on the notions of correlation 
and conditional expectation as projections in L, space, the im- 
plied existence of second moments refers not to the variables 
themselves but to the transformations of them. Hence it makes 
sense to consider even spherical and elliptical Cauchy distri- 
butions (the only problem being that the ACE algorithm must 
not be initialized with the identity transforms, since they are 
not elements of L, space). Nevertheless, those who think most 
easily in terms of models may wonder what there is to rec- 
ommend the use of correlation with non-Normal data. In more 
practical terms, there may be problems of robustness in using 
ACE, and with worries about effects of outliers in mind, one 
might wonder about the advisability of using a criterion based 
on squared error. It might be possible to find another useful 
sense in which an average departure from linearity could be 
minimized, but it is far easier to make this glib remark than to 
formulate the problem in such a way that progress could be 
made while retaining such advantages of the current ACE al- 
gorithm as the low computational cost. A simple ad hoc ap- 
proach would be to use a cheap robust smoother, but it is quite 
possible that the overall statistical performance of ACE would 
be adversely affected. 

5. CONCLUSIONS 

There is ample evidence that ACE, in its present form, is 
already a greatly useful tool for data analysis. We have de- 
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scribed situations in which interpretation of ACE results re- 
quires caution, and we have mentioned some possibilities for 
handling these situations and extending ACE technology. 
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Comment 
The ACE Method of Optimal Transformations 

E. B. FOWLKES and J. R. KETTENRING* 

1. INTRODUCTION ample. It concerns relating, for a particular telephone switching 

The idea that one can achieve “optimal” transformations of 
the variables in a regression problem by repeated application 
of a two-variable smoothing algorithm is fascinating. In de- 
veloping this idea, Breiman and Friedman have brought to bear, 
in elegant fashion, the statistical theory of maximal correlation, 
the mathematics of Hilbert spaces, and the ACE algorithm for 
translating the theory into practice. 

ACE is powerful medicine. It has the ability to uncover very 
general transformations, and it seems to find them when they 
are needed. But it also appears to have some unwanted side 
effects in cases where there is no really interesting structure to 
be found. People who will use ACE in practice-and that 
includes us-will need a careful characterization of what the 
algorithm does under different scenarios. 

We will focus our detailed comments on the use of ACE in 
practice, based on our own limited experiences; some empirical 
properties of ACE, based on a small set of experiments; and 
possible adaptations of ACE to other problems in multivariate 
analysis. 

2. ACE AS A DATA-ANALYTIC TOOL 
FOR REGRESSION 

ACE promises to be an important new tool for the data analyst 
in carrying out regression analyses. However, it should be stud- 
ied and used in the context of the ever-growing collection of 
modem tools for regression such as robust procedures, diag- 
nostic techniques for identifying influential points, and so forth. 
As data analysts, we use modem regression tools in a flexible 
manner, moving from one to another and comparing the salient 
features of the data that may be revealed. 

We illustrate how we have made use of ACE in a real ex- 
~ 
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entity, a measure of the total call load for an interval of time 
(measured in CCS, or 100 call seconds, where 1 CCS is any 
combination of calls that accounts for 100 seconds) to five 
different types of service (residence local, residence metro, 
business metro, business local, and coin, measured by the num- 
ber of associated telephone lines). A large number of data- 
analytic techniques were used on these data, but we shall only 
consider those that have a relationship with ACE. Figure 1 
shows scatterplots of the raw data for CCS versus residence 
local, CCS versus residence metro, and residence local versus 
residence metro. The three scatterplots are typical of all possible 
scatterplots of the response, CCS, and the explanatory vari- 
ables. Striking features of the scatterplots include the large den- 
sity of points near (0, 0), the change in variability for increasing 
values of the variables, and the one high leverage point (not 
an error). Experience suggested that a reasonable first step in 
analyzing these data would be to transform the response, ex- 
planatory variables, or both; and we decided to take logarithms 
of all variables. Figure 2 shows scatterplots of the same vari- 
ables considered in Figure 1 after the log transformations had 
been made. The problems of great differences in density and 
variability have been alleviated, and the effect of the leverage 
point has been diminished. There is a hint of curvilinearity in 
the log CCS versus log residence metro plot. We applied ACE 
to the transformed data in the spirit of a check on what had 
been suggested by examining the scatterplots. If the log trans- 
formations were reasonable, the transformations indicated by 
ACE should be linear. Figure 3 shows the results. The ordinate 
scales have been equalized in order to facilitate a judgment of 
the relative contributions of the different explanatory variables. 
The figure indicates that the transformations for CCS and res- 
idence local are indeed linear, but the one for residence metro 
is systematically curved. The figure also indicates that residence 
local, with its wider range of transformed values, is a more 
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