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 SUMMARY. We consider approximations to two-stage hierarchical models in which the

 second stage uses a Normal distribution to model the variation of the first-stage parameters.

 If we replace the first stage of the model with a Normal distribution based on first-stage
 maximum likelihood estimation, we obtain an alternative two-stage model that approximates

 the original model while allowing posterior simulation to become easy and efficient. We note
 that the MLE-based Normal approximation is not quite a special case of Laplace's method, but

 it does produce the same accuracy as Laplace's method in approximating the posterior of the

 second-stage parameters. In a previous paper we showed how draws from such approximate

 posteriors may be reweighted to produce importance samples from the original posterior. Here

 we show how the method extends to mixed models, and hierarchical nonlinear models. We

 demonstrate the possible utility of this kind of scheme by easily obtaining posterior inferences

 (without special-purpose MCMC code) for a model that could not, at the time of our writing,

 be fit by BUGS (Spiegelhalter, Best, Gilks, Inskip, 1996).

 1. Introduction

 In hierarchical models, it is very common to use a Normal distribution at the
 second stage to model variation of first-stage parameters. Thus, for example, we
 may have a model of the form :

 TWO-STAGE MODEL

 Stage one: Y?|0? ~ /(y|0.), z = 1 >&> independently, with Y? an n,- x 1
 dimensional vector and 0,- an m-dimensional vector;

 Stage two: 0,|/i, D ~ Nm(fi, D),i.i.d.y

 AMS (1991) subject classification. 62C10.
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 20  MICHAEL J. DANIELS AND ROBERT E. KASS

 for some given density /. If the density / is itself Normal with mean that depends
 linearly on 0,- then, using conjugate priors on p, and D, Gibbs sampling and other
 simulation methods are fast and easily implemented (Gilks, Wang, Yvonnet,
 and Coursaget 1993; Spiegelhalter, Best, Gilks, and Inskip, 1996; Everson and
 Morris, 1997). In this paper we are concerned with the situation in which either
 / is non-Normal, or the mean of Y? is nonlinear in 0?, or both. Such models arise
 frequently in practice. We investigate the use of approximation at the first stage,
 possibly in conjunction with an importance reweighting scheme that produces
 draws from the posterior for the original hierarchical model itself.

 Our motivation is twofold. First, we have come across situations in which
 it might be too time-consuming to implement MCMC in a full-fledged two
 stage model. For example, in applied work currently in progress, we have a

 multiparameter non-homogeneous Poisson process that is observed (as the first
 stage of the model) in a 4 x 2 design among each of roughly 300 individuals and
 a primary interest is to estimate the second-stage, or "population" parameters.
 In such problems, although we may not wish to spend the time implementing
 MCMC for the relevant two-stage model, it is not too hard to begin by using
 maximum likelihood estimation and then replace the original observations with
 their first-stage maximum likelihood estimates together with the information

 matrices; we may then assume Normality of the MLE's and obtain a familiar
 Normal conjugate model as an approximation:

 MLE-BASED NORMAL APPROXIMATION

 Stage one: 0i\0{ ~ Nm(0i, I(0{)~1), i = l...,k, independently, where 1(0)
 is the observed information matrix (the negative Hessian of the loglikelihood
 function at the MLE);

 Stage two: 0i\fi,D ~ Nm(p,,D), i.i.d.
 We consider the MLE-based Normal approximation to be of practical interest

 because posterior distributions based on it are so easy to generate (using conju
 gate priors on ?i and D). Furthermore, it is plausible that the MLE-based Normal
 approximation would often be quite adequate for inferences about second-stage
 parameters because it essentially involves a version of Laplace's method applied
 to each of the k integrals in the likelihood function

 k

 L(?,D) = J] / f(yi\0i)n(0i]fi,D)d0i

 where n(x,p,,D) is the multivariate Normal density with mean p. and variance
 D evaluated at x. In Section 2 we examine this remark more closely. We show
 that the MLE-based Normal approximation is not quite an instance of Laplace's

 method, but it does have the same asymptotic accuracy. We also suggest that
 the adequacy of the Normal approximation to the first-stage likelihood can be
 checked using a diagnostic derived and discussed by Kass and Slate (1994). We
 assume throughout that the first-stage likelihood has a single, dominant peak
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 NOTE ON FIRST-STAGE APPROXIMATION  21

 for all i ? 1,..., k. (That is, if any likelihood is multimodal, only the dominant
 mode contributes substantially to its integral.)

 Our second motivation here is that, having obtained posterior distributions
 based on an approximate model, we can easily reweight the sample to obtain a
 posterior sample from the original model. This reweighting was used by Daniels
 and Kass (1997) in posterior simulation with nonconjugate priors on covariance
 matrices. In Section 3 we describe this importance weighting scheme and extend
 it to generalized linear mixed models and nonlinear hierarchical models.

 In Section 4 we refit a nonlinear hierarchical model to previously-analyzed
 data by (i) computing first-stage MLE's, (ii) using BUGS (Spiegelhalter, Best,
 Gilks, Inskip, 1996) to obtain draws from the approximating hierarchical model,
 and (iii) using S-PLUS to reweight those draws, thereby obtaining draws from
 the desired posterior. As of the writing of this paper, BUGS could not be used
 on its own to accomplish this fully Bayesian analysis. We add a few further
 comments in Section 5.

 Although Daniels and Kass (1997) used the importance sampling method
 we discuss here in Section 3 for posterior simulation with non-conjugate pri
 ors, for simplicity, throughout this paper we assume we have a prior on (p,D)
 that is conjugate to the Normal second stage of the model. Our interest here
 is in applying (via approximation and, possibly, importance reweighting) the
 easy and efficient Gibbs sampling engine that drives Normal conjugate posterior
 simulation.

 2. First-Stage Normal Approximation

 We now consider formally the MLE-based Normal approximation displayed
 in the Introduction: we would like to know how well the posterior distribution
 on (/i, D) obtained using the MLE-based Normal approximation approximates
 the posterior distribution obtained using the original two-stage model. This
 amounts to asking how well the likelihood function L(fi,D) in the Introduction
 is approximated by the corresponding likelihood from the MLE-based approxi

 mation, which we will write as L(p,,D).
 Intuitively, for fixed (?i,D), we are substituting a Normal distribution that

 approximates the posterior of 9, conditionally on (fi,D), for the exact condi
 tional posterior. This is very similar to Laplace's method (see Kass, 1997, for
 references; also see Breslow and Clayton, 1993), but is not quite a special case.

 We now elucidate this distinction. The argument here is heuristic. Conditions
 for validity of such expansions may be found in Kass, Tierney, and Kadane (1990;
 see also Kass and Vos, 1997, Section 3.6).

 Let us begin by writing the likelihood function as

 L(n,D) = l[li
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 22  MICHAEL J. DANIELS AND ROBERT E. KASS

 where

 Ii = j Li(0i)n(0i,fi,D)d0i,
 and Li(0) = f(yi\0). As shown in Theorem 1 below, making use of the Normality
 of the second-stage of the MLE-based Normal approximation, we obtain the
 approximation

 li = *W/n \ /o-?-rexp(-.5(0? -/i)'(I> + /(0?)"1)"1(0? - ji))

 where 0, is the maximum likelihood estimate of 0,- and A'(0t) = Li(0{)/
 n(0i,0i,I(0i)~l) does not depend on p and D and thus will not affect the likeli
 hood function L(p, D). On the other hand, Laplace's method for approximating
 the integral /, gives

 Ii^?i?L + Oinr1))
 with

 ?i = (2*)m'2\t\1'>Li(?i)n(?r,ft,D)

 where E""1 is the negative second-derivative matrix of log(Z,,(0,)n(0?; p, D)) eval
 uated at 0i, the maximizer of Li(0|)n(0,-;/x, D) conditionally on p and D. Com
 pared to U the approximation /,- does two things: (i) it replaces 0? in /,- with the
 posterior mode obtained from the first-stage Normal approximation, and then
 (ii) it replaces the first-stage posterior evaluated at 0{ with the modal value of
 the posterior obtained from the first-stage Normal approximation. These two
 replacements, together, incur an error of order 0(njl). Thus, as one might
 expect and as we next prove, the resulting approximation has the same asymp
 totic accuracy as Laplace's method itself; the virtue of the MLE-based Normal
 approximation is its simplicity, allowing immediate implementation of posterior
 simulation via Gibbs sampling.

 Theorem 1. The MLE-based Normal approximation produces a product
 L(p,D) = n? U satisfying

 L(p,D) = L(p,D)(l + 0(J2^)).
 Proof. For simplicity we consider the one-dimensional case and omit the

 subscript on 0,-. Let nh(0) denote the log likelihood under the true model, nh^(0)
 denote the log likelihood under the Normal approximation, and p(0) denote the
 logarithm of the Normal prior of 0 with mean p and covariance matrix D. We
 are interested in an integral of the form

 /= [ exp(nh(0)+p(0))d0.
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 NOTE ON FIRST-STAGE APPROXIMATION  23

 Let \?>{9) ? nhtf(9)+p(9) and consider an expansion about 9 of the exponential
 of nh(9) + p{9) - i?>(0) - (nh(9) + p(9) - ^(9)). The function exp(V>(0)), when
 rewritten, forms the product of two Normal densities, n(0; 9, E) with mean 9 =
 (D~l +/(ff))*1(D~1? + /(?)|i) and covariance matrix, ? = (D~l +I{9))~1 and
 n{9,ii,D+ 1(e)-1). Thus, combining this with the fact that (nh(9) + p(9) -
 ^(9)) = \og(K(9)),

 I = J ? n(0; 9, ?)[1 + 1(0 - 0) W3)(0) + . -]d0
 where indicate higher-order terms. In the standard Laplace approximation,
 the odd powers would cancel out. However, here we are centering 9 at the M LE
 0, which is different than the mode 9 of the Normal distribution. We now rewrite

 the term (9 - 0)3,

 (0-0)3 = (0-0 + 0-0)3
 = {9 - 0)3 + (9 - ?)3 + 3(0 - 0)2(0 - 0) + 3(0 - 0)(0 - 0)2.

 The integral of the first and last terms will drop out and the integral becomes,

 / = /,/.n(0;0,E){l + i/i(3)(0)[(0~0)3 + 3(0-0)2(0-0)]+..-}c/0

 = / - {1 + lnhW(9)[(9 - 0)3 + 3(0 - 9)t] + } o

 where / is the approximation to the integral and indicate higher-order terms.
 Since 9 ? 9 = 0(l/n) (by Laplace's method, they each furnish order 0(l/n)
 approximations to posterior mean of 0, see, e.g., Kass, Tierney, and Kadane,
 1990), the first term in square brackets will be 0(l/n3) and the second term
 will be 0(1/n2). Combining this with the term outside the brackets being 0(n),
 the overall error here will be 0(l/n). Finally, combining the approximations for
 each 0?, the overall error will be 0(^2 l/n?)

 Remark 1. Integrating out the Normal approximations for the 0i's may pro
 vide an accurate approximation L(fi,D) to the likelihood function L(?,D). In
 particular, the error in the approximation in Theorem 1 is uniformly 0(]T] 1/n?)
 on compact subsets of the maximizer of ?(/i, D). Thus, to the extent that the
 individual n^s are large enough for the approximations /,- to be accurate, we
 may expect the MLE-based Normal approximation to provide an accurate ap
 proximation to the posterior distribution of (/i, D) even in its tails.

 Remark 2. We noted above that the MLE-based Normal approximation
 may be obtained via two replacements in the Laplace approximation, which we
 labeled (i) and (ii). Theorem 1 shows that MLE-based Normal approximation,
 like the Laplace approximation, furnishes an approximation having accuracy
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 24  MICHAEL J. DANIELS AND ROBERT E. KASS

 O?jT, 1/n,). That step (i) involves an error of order 0(J2 1/n,-) is an immediate
 corollary of the following theorem. Taken together, Theorems 1 and 2 also show
 that step (ii) has accuracy 0(J2 l/n?) which, while not used in any way here, is
 of some interest on its own.

 Theorem 2. // in the Laplace approximation /,- to I? we substitute for 0,
 an alternative value 0* for which 0, ? 0* = 0(1/nf), where 0 < a < 1, then the
 resulting approximation I* satisfies I i = I* (I + 0(l/nl~2^l~a^)).

 The proof involves expansions of the kind used in proving Theorem 1. Be
 cause the MLE and the mode 0,- differ by order 0(1/n,), it follows that the
 replacement in step (i) incurs an error of order 0(l/n?).

 The adequacy of the MLE-based Normal approximation can be assessed by
 computing a statistic suggested by Kass and Slate (1994). This diagnostic may
 be considered a multivar?ate generalization of Pearson skewness, which is the
 normalized difference between the posterior mode and posterior mean of a one
 dimensional parameter: it is defined by ?* = (0 ? 0*)T(5(0 ? 0*) where G is the
 observed information matrix for 0, 0 is the posterior mode, and 0* is the posterior
 mean, or any second-order approximation to it. A rough, conservative guideline
 for the interpretation of this quantity is that the posterior may be considered
 close to Normal when ?* < p/6, where p is the dimension of 0. (See Kass and
 Slate (1994) for further details and references.) Here, it is most convenient to
 assess approximate Normality of the likelihood functions ?t(0,) by evaluating
 the corresponding ?* under the assumption of a flat prior on the 0?. We obtain
 the values of R* for each i = l,...,k. If a substantial percentage of these
 dramatically exceeded the cutoff p/6 then we would consider the MLE-based
 Normal approximation likely to be worrisomely inaccurate.

 3. Correcting via Importance Weights

 In the previous section we discussed the theoretical accuracy of using the
 MLE-based Normal approximation, which simplifies sampling from the posterior
 distribution; we also mentioned a way to assess the approximation using an
 easily-computed diagnostic. We now consider correcting the approximation by
 re weighting the draws from its posterior.

 In proposing a computational method for non-conjugate Bayesian inference
 about covariance matrices, Daniels and Kass (1997) noted that Gibbs sampling
 draws (p^a\ D^) from the posterior on (p, D) based on any first-stage approx
 imations f(y%\0i) may be corrected by the importance weights

 M/M?"1)
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 note on first-stage approximation  25

 That is, given a conjugate prior on (/i,?>), if we take Gibbs sample draws
 (0(fl), />), ?><")) for a = 1,...,_4 from the joint posterior of (9,p,,D) based
 on the approximation and then attach to each (p,(a\ D^) the corresponding
 weight wa, we obtain a valid importance sampling scheme in the sense that

 E(g(p,D)\y) ? E{w\y)> where the expectation, E?, is taken over the ap
 proximate joint posterior distribution of (9,p,D). Thus, if the approximation

 is well-behaved, weighted means of the form J2a=i wad(?^a\D^)/ ^2a wa will
 converge (as A ?> oo) to posterior means E(g(p, D)\y) (and variances may sim
 ilarly be estimated; see, e.g., Tanner, 1993, section 3.3.3). Alternatively, draws
 from the posterior may be obtained via importance resampling (Tanner, 1993,
 section 5.7). Here and elsewhere, we are assuming that the E(g(p,,D)\y) exists
 and is finite.

 In the context of the MLE-based Normal approximation, we may obtain
 draws from the posterior based on the approximation, for example, from conve
 nient software such as BUGS and may then quite easily use a high-level general
 language such as S-PLUS to reweight and obtain corrected posterior inferences.

 In the remainder of this section we generalize the result of Daniels and Kass
 (1997) to two important classes of models.

 3.1 Importance reweighting for mixed effects models. We now consider the
 class of generalized linear mixed models (GLMMs) having the following form.

 Stage one: Yi\a, /?, ~ f(y\ct, ?i,Xi,Zi), i = 1..., k, where / denotes the den
 sity of a one-parameter exponential family, Y? is an n? x 1 dimensional vector, a
 a p-dimensional vector, and /?,- an m-dimensional vector; the data are connected
 to the covariates (Xi,Zi) through a link function rji = XiOt + Zi?i, which is itself
 a transformation of the expected value of Y?;

 Stage two: ?i\p, D ~ Nm(p, D).

 Here, a is often called a "fixed effect" while the /?, 's are the "random effects

 (coefficients)." For details on such models and the standard GLMM form, see
 for example Breslow and Clayton (1993).

 Here are steps that lead to importance weights for mixed models starting
 with draws from the posterior based on the MLE-based Normal approximation:

 1. Ignoring the distinctions among the individual units i = 1,..., n, pool
 the data and fit a single-stage generalized linear model with 77,- = X.a + _7,/i to
 obtain MLEs ?^\?^\

 2. Conditioning on o^1), for each i compute the MLE of /?,- using the indi
 vidual likelihoods p(yi\a^l\ /?,-).

 3. For each i, replace the likelihood p(yi\a^l\?i) with its Normal approxi
 mation based on the MLE of /?,- found in step 2.

 4a. For the conjugate Normal two-stage approximate model based on Step
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 26 MICHAEL J. DANIELS AND ROBERT E. KASS

 3, involving the parameters ?\,.. .,?m,p,D, use Gibbs sampling to obtain a
 sample, (?\a\ p^a\ D^), a = 1,...,A from the approximate joint posterior,
 ?(?i,li,D\y,&M).

 4b. We now need to sample from an approximation to p(a\?i, p, y). We begin
 with the joint Normal approximation based on the MLE's in Step 1, then condi
 tion on the current value of p, p^a\ to sample a^a\ [There are several possible
 alternatives. For instance, one might instead compute a Normal approximation
 to a from the original likelihood, conditional on the current values of the /?,,

 5. We now have A draws from the approximate posterior. We attach to the

 draw (^,DW) the importance weight ?,. = ft t^C^^l^y
 Theorem 3. Letting Ep be the expectation under the marginal posterior of

 (p, D) and Ep the expectation under the approximation to the joint posterior
 created in the steps outlined above} for any function of the parameters g(p,D)
 we have Ep(g(p,D)) = Ep(wag(p,D))/Ep(wa).

 Proof. Consider computing the expectation of some function g() of (p, D),
 i.e., E[g(p,D\y)] = j|, where the numerator integral, A, is defined as

 A = JJ' - j9{^D)f[p(?i\a,p,D,y)p(a\p,D,y)p(p,D\y)dpdDdad?1. ..d?n

 and denominator integral is

 B = J J Jf[p(?i\a,p,D,y)p(a\p,D,y)p(p,D\y)dpdDdad?l...d?n.

 We begin by rewriting A:

 A = JJ'"' J' s(?,D)Yl^^^P(?t,a,?,D\y)d?dDdad?l...d?n
 f [ [, mTIMM,"Mbit*,D)}p(t*.D)p(a)/m(y)

 - J J "J ^'"'nimfoD.tiMDtVMDMpiafofay)
 x T\P(?i\f*> D, y)p{fi\D, y)p(D\y)p{a\n, /?,-, y)dlidDd?l ...d?n

 t

 where m(y) denotes the marginal distribution of the data under the true model.
 Then, with rh(y) denoting the marginal distribution of the data under the ap
 proximate model we obtain
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 a - ? f [?(? m n>W."Mfl?k ^)}P(M. ^)P(")/"?(g)
 ~ 7 J "J 9{* U)X\i{p{yi\?ua)p{?i\li,D)}p{^D)p{a\ix,?i,y)lm(y)

 x l\p(?i\^D,y)p{?\D,y)p(D\y)p{a\ti,?i,y)d^dDd?1 ...d?n i

 = f f fa(ll m ?[MM,a)p{<*)Mv)
 J J "J 9{?' ,UiP(yi\?i,a)p(a\^?i,y)/rh(y)

 x nP?AlA?, D, y)Pi?\D, y)p{D\y)p{a\n, /?,-, y)diidDd?l ...d?n. i

 Thus, writing the importance weight attached to a random draw (p,D) as
 w(p,D)

 A = j g(p, D)w(p, D)p(p, D)dpdD
 as required. By a similar development, the denominator integral, B, will be

 b = II- h UiP(yj\?i>a)p(a)/m{y)
 P(yi\?i,a)p(a\p, ?i, y)/rh(y)

 x [I P(?i I/*, D, y)p(fi\D, y)p(D\y)p(a\fi, ?i, y)dfidDd?1 ...d?n

 and

 B = / tt>(/i, ?>)p(/i, D)dpdD.

 D
 3.2 Importance reweighting for nonlinear hierarchical models. We now con

 sider a general Normal nonlinear hierachical model.

 Stage one: Yij\a,?i,T2,Xij ~ _V(/i(/?t-,a;_YtJ), r2), j = 1..., n?, i - 1..., n,
 where a is a p-dimensional vector, ?i an m-dimensional vector, and h a nonlinear
 function of the parameters that depends on some explanatory variables X?,j ;

 Stage two: ?i\p, D ~ Nm(fi, D).
 We assume there is either a conjugate or flat prior on r2.
 The steps for fitting the approximate model for the generalized linear mixed

 model in Section 3.1 only need to be slightly modified. Step 1 now includes the
 pooled MLEs a,/.,f2 and the steps 2-4 now are conditional on both ? and f2.
 In Step 5 we sample from the conditional approximate posterior on a as before
 and then also sample from r2, conditional on /?,-, /i, a, y, using an Inverse gamma
 distribution. In Step 6 the importance weight becomes

 w =_LPW.a).?(a))_p(a(a>)p(r2(?>)_
 Wa UiP(yi\?ia\a) p(a{*)\tii?),?la),y)p(TW\?la\^),a(?),y)
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 Theorem 4. Letting Ep be the expectation under the marginal posterior of
 (p,D) and Ep the expectation under the approximation to the joint posterior
 created in the steps outlined above, for any function of the parameters g(p,D)
 we have Ep(g(p,D)) = Ep(wag(p,D))/Ep(wa).

 The proof is similar to Theorem 3.

 4. Example

 The general procedure we envision is summarized by the steps (i) find first
 stage MLE's, (ii) obtain posterior draws from the MLE-based approximate Nor
 mal model, (iii) possibly, assess adequacy of MLE-based Normal approximation
 via R?, and, if desired, (iv) reweight the draws to obtain accurate posterior
 inferences.

 As an example of our strategy, we consider the nonlinear hierarchical model
 most recently analyzed by Bennet, Racine-Poon, and Wakefield (1996). This
 application deals with prediction of uptake volume of guinea pig tissue by con
 centration of /?-methylglucoside. The response, ?/,? represents the uptake volume
 for the jth concentration (j = 1,..., 10) of the ?th guinea pig (i = 1,..., 8) and
 Xij the corresponding concentration of /?-methylglucoside. The following non
 linear hierarchical model was fit to the data

 eij~N(0,r2)

 fc~N(p,D)

 p~dp, D~ tt(D)

 with n(D) an inverse Wishart prior with 3 degrees of freedom and known scale
 matrix. This example is of interest not only because Bennet et al. used it to
 discuss alternative MCMC strategies but also because the within-pig sample
 size of ni = 10 for all i is sufficiently small for a three-parameter nonlinear
 model that one might be dubious about the adequacy of the MLE-based Normal
 approximation for estimation within pigs. Here, of course, we are interested in
 the use of this approximation for inference about p and D.

 Following the steps in Section 3.2, we began by fitting the MLE-based ap
 proximate Normal model with r2 fixed at its MLE (f2), using BUGS. In S-PLUS
 we then computed the appropriate weights and sampled from the full conditional
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 NOTE ON FIRST-STAGE APPROXIMATION  29

 distribution for r2. The importance weights now become [}t ?r'L^J pui\Pv\
 where p is the Normal approximation to the distribution of the MLE conditional
 on f2.

 Assessment of the Normal approximation showed that it appeared reasonably
 accurate in 7 of the 8 pigs: the conservative guideline was p/6 = .5 and the
 respective values of ?* were .09, .58, .58, .54, .57, 3.09, .56, .48. Both the MLE
 based approximate Normal results and the importance reweighted results are
 given in Table 1 (where simulation error is small enough that all digits listed
 are very likely accurate). It may be seen that the approximate method is indeed
 quite good in this case.

 Table 1: POSTERIOR MEANS OF COMPONENTS OF /i (WITH
 posterior standard deviations) and d using the
 MLE-based Normal approximation (Approx) and the
 reweighting (exact).

 Parameter Approx Exact
 ~i -1.61 (.07) -1.59 (.07)

 ?2 .87 (.10) .89 (.10)
 /-3_-5.44 (.17) -5.48 (.17)
 Du .022 .022
 D2\ .0075 .0077
 L>22 030 .031
 ?>3i -.0056 -.0070
 ?>32 -023 -.025
 D33_?57_?68_

 5. Discussion

 The purpose of this note was to indicate the potential usefulness of the MLE
 based Normal approximation specified in the Introduction. It may often be quite
 adequate on its own, and its accuracy may be assessed using the R* diagnos
 tic. Generally (based on a limited simulation study not described here), we feel
 that when the large majority of individual approximations are judged roughly
 adequate in the sense that they are close to satisfying R* < p/6, the poste
 rior approximation itself is likely to be adequate for most practical purposes in
 making inferences about (p,D). However, there is no guarantee of this, and it
 is possible to construct cases in which systematic bias occurs in the approxi

 mations, so that even a small number of poor individual approximations may
 seriously affect the posterior on (p,D). It is thus clearly desirable to reweight.

 The MLE-based Normal approximation is worth considering whenever im
 plementation of a comprehensive MCMC method for a two-stage model seems
 daunting. In addition, because the underlying Gibbs sampling routine for the
 MLE-based Normal approximation may be efficiently coded, we believe the
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 30 MICHAEL J. DANIELS AND ROBERT E. KASS

 reweighting scheme we have articulated may be attractive for implementing
 Bayesian analysis of generalized linear and nonlinear mixed models in software
 such as S-PLUS.

 Acknowledgement. The authors are grateful for comments from a referee.
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