Nonconjugate Bayesian Estimation of Covariance
Matrices and Its Use in Hierarchical Models
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The problem of estimating a covariance matrix in small samples has been considered by several authors following early work by
Stein. This problem can be especially important in hierarchical models where the standard errors of fixed and random effects depend
on estimation of the covariance matrix of the distribution of the random effects. We propose a set of hierarchical priors (HPs) for the
covariance matrix that produce posterior shrinkage toward a specified structure—here we examine shrinkage toward diagonality. We
then address the computational difficulties raised by incorporating these priors, and nonconjugate priors in general, into hierarchical
models. We apply a combination of approximation, Gibbs sampling (possibly with a Metropolis step), and importance reweighting
to fit the models, and compare this hybrid approach to alternative Markov Chain Monte Carlo methods. Our investigation involves
three alternative HPs. The first works with the spectral decomposition of the covariance matrix and produces both shrinkage of
the eigenvalues toward each other and shrinkage of the rotation matrix toward the identity. The second produces shrinkage of
the correlations toward 0, and the third uses a conjugate Wishart distribution to shrink toward diagonality. A simulation study
shows that the first two HPs can be very effective in reducing small-sample risk, whereas the conjugate Wishart version sometimes
performs very poorly. We evaluate the computational algorithm in the context of a normal nonlinear random-effects model and
illustrate the methodology with a logistic random-effects model.
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1. INTRODUCTION

Bayesian hierarchical models typically involve observa-
tional units, indexed here by 7 = 1,... k, that have dis-
tributions characterized by multidimensional parameters 6;
that in turn are themselves assumed to be random vec-
tors. Most frequently, the 6,’s are assumed to follow a
normal distribution with covariance matrix D = V(4;).
Estimation of D may or may not be of direct interest,
but is always important because of its impact on assess-
ments of uncertainty. The standard Bayesian approaches
to estimating D, using either a diffuse Wishart conjugate
prior, an invariant prior, or a flat prior, are all very effec-
tive for large samples, producing results that agree closely
with maximum likelihood (or restricted maximum likeli-
hood). But when the number of units & is small enough
so that maximum likelihood is suspect, alternative meth-
ods should be considered. This article provides an ini-
tial investigation of several Bayesian procedures based
on hierarchical priors (HPs) for D that are supposed
to provide greater stability than those based on diffuse
priors.

As motivation for our work, we reconsider data originally
analyzed by Daniels and Gatsonis (1999) concerning mod-
eling the rates of coronary artery bypass graft (CABG) as
functions of hospital-level covariates. Daniels and Gatsonis
fit a slightly generalized version of the following hierarchi-
cal Poisson regression model to the data:

Stage one: Y;;|0; = Poisson(e;; exp(Xi;08:)),¢ = 1,...,n
withi=1,...,51 and j = 1,...,n;, where
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N= Zni =4,992.

i=1

Stage two: 3;|v,D ~ N(v,D).

Stage three: v ~ dvy,D ~ #(D).

In this model Y;; denotes the count of CABG procedures
for the jth hospital in the ith state. We chose one of the
four regions of the data, the South, in which there are 17
states (k = 17), and used three hospital-level covariates:
size of the hospital, teaching status of the hospital (0 ver-
sus 1), and a comorbidity index, each of which was centered
by subtracting its mean. In this situation we have a covari-
ance matrix with 10 parameters (p = 4) and only 17 4 x 1
vectors with which to estimate this matrix. We regard it as
plausible that the effects of the three covariates would be
independent across states. The HPs that we discuss here let
us use this belief to stabilize estimation without elevating
that conjecture to an assumption; the method would allow
the data to show this independence to be incorrect.

Our study has two parts. First, we ignore the hierarchical
modeling context and consider separately the fundamen-
tal problem of estimating a covariance matrix based on a
multivariate normal sample. The basic idea that we start
with is very simple: In estimating D, we will “shrink” it
toward a structured form; here we confine our attention to
diagonal structure. Historically, in trying to improve estima-
tion of a covariance matrix, the focus has been confined to
the eigenvalues (Dey and Srinivisan 1985; Haff 1991; Stein
1975; Yang and Berger 1994), because for small samples,
the largest sample eigenvalues will be biased upward and
the smallest sample eigenvalue will be biased downward.
Covariance estimates using various methods of shrinking
the eigenvalues (toward a common value) have been shown
to have lower risk than the sample variance (Dey and Srini-
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vasan 1985; Haff 1991; Lin and Perlman 1985; Yang and
Berger 1992). Our approach not only shrinks the eigenval-
ues, but also shrinks the elements of the orthogonal matrix
in the spectral decomposition of D, or the off-diagonal el-
ements in the correlation matrix R based on D.

To accomplish this, we place on D a HP comprising
mp{Dl) and 7y (1) such that the first-stage prior mp(D|y)
is centered at a diagonal matrix and has a single dispersion
parameter. The components of ¢ are the diagonal elements
and the dispersion parameter. Thus we compute the poste-
rior on D via the posterior on ; if D is a p X p matrix, then
we estimate the p(p + 1)/2 covariance parameters hierar-
chically via estimation of the p + 1 hyperparameters. When
we focus on the rotation matrix, we place a flat prior on the
eigenvalues and thereby end up shrinking the eigenvalues as
well. In the context of hierarchical regression models, after
we center the regression variables, it will often be plausible
that the covariance matrix is not too far from diagonal. Our
method might be viewed as a descendent of the approach
of Leonard and Hsu (1991), but in fact we were unable to
see within their framework any way to define an appealing
HP of the type we needed. In Section 2 we describe the
priors we examine, and in Section 3 we report results from
a simulation study of Bayes risk for the various resulting
estimators.

The second aspect of our work involves implementation
in hierarchical models; that is, computational issues. Once
we introduce HPs on D, we lose the conjugate structure
that typically makes Gibbs sampling so attractive. We thus
consider the more general problem of devising a posterior
sampling scheme for an arbitrary nonconjugate prior on D
when it itself occurs as a hyperparameter in a two-stage hi-
erarchical model. Specifically, the models that we consider
assume

Yii1B: ~ fui518:)

with s = 1,...,kj = 1,...,n;, and N = Y& n;, and
where f(-|3;) is some family of densities, and then

¥~ dy, 2)
and
D~ WD(D), (3)

with D a p x p matrix. In Section 4 we show that a combi-
nation of asymptotic approximations, importance sampling,
and possibly Markov chain Monte Carlo (MCMC) is effec-
tive for many of these situations. (Our approach is similar to
that of Sun, Hsu, Guttman, and Leonard 1996, who treated
the special case in which the first stage is normal and the
covariance matrix is diagonal.)

In Section 5 we provide two examples, the heavily-
reanalyzed guinea pig data analyzed with a simple hierar-
chical nonlinear regression model, and the hospital CABG
utilization example introduced earlier. We draw conclusions
in Section 6.
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2. PRIORS FOR D

Here we list the three classes of priors that we investigate
in the context of estimating D from data Y ~ N(0,D),
then briefly discuss some issues involved in choosing among
them. (For a discussion of other reference priors, see Kass
and Wasserman 1996.)

2.1 Conjugate Prior

The conjugate prior is the inverse Wishart (Schervish
1995); that is, the conjugate prior for D~! is Wishart. But
this prior lacks flexibility, allowing only one precision pa-
rameter for all p(p + 1)/2 elements, and requires specifica-
tion of a mean matrix. The Wishart prior with few degrees
of freedom and some fixed scale matrix is commonly used
as a reference (noninformative) proper prior. The Wishart
prior must have more than p — 1 degrees of freedom for
the prior to be proper; thus setting the degrees of freedom
equal to p is a common choice. The scale matrix is some-
times chosen as the maximum likelihood estimator (MLE)
of D, though this results in understated precision. Further-
more, in small samples the specification of the scale matrix
can be quite influential.

2.2 Nonconjugate Reference Priors

The two commonly used reference priors are Jeffrey’s
prior (|D|~(P+1)/2] right Haar measure) and a flat prior
on D, 7p(dy1,di2, .. .,dpp) = 1 for all positive definite D,
where d;; is the (4, j) component of D. However, care must
be taken is using these priors, as they can lead to improper
posterior distributions. For example, Jeffrey’s prior in the
hierarchical logistic model leads to an improper posterior
distribution (Hobert and Casella 1996; Natarajan and Mc-
Culloch 1995), and the flat prior can be quite informa-
tive for small datasets. Two other “noninformative” priors
include the Berger-Bernardo prior (Berger and Bernardo
1979; Yang and Berger 1994) and the uniform shrinkage
prior (Christiansen and Morris 1997; Daniels 1999; Ever-
son and Morris 1997). The Berger-Bernardo prior shrinks
the eigenvalues toward a common value, largely because of
a Jacobian factor that appears in our approach as well (see
Sec. 2.3.3).

2.3 Hierarchical Priors

We consider a class of hierarchical priors for the covari-
ance matrix based on various parameterizations of the co-
variance matrix. Each prior has the effect of shrinking some
function of the off-diagonal elements to a common value
(e.g., 0). This will reduce the estimation of the p(p — 1)/2
off-diagonal elements to the estimation of a single parame-
ter (which controls the amount of shrinkage). The log ma-
trix prior (Leonard and Hsu 1992), which can be useful for
regressing elements of the covariance matrix on covariates,
is difficult to interpret in this context. For example, the first
diagonal element corresponds to a product of the eigen-
vectors and the logarithm of the eigenvalues. We do not
consider the log matrix prior here, but instead turn to three
priors with easily interpretable diagonal and off-diagonal
elements.
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2.3.1 Wishart Hierarchical Prior.  First, we consider
a Wishart prior for D~! with an unknown diagonal scale
matrix and unknown degrees of freedom. By considering
the degrees of freedom v to be unknown, we can think of
it as a precision parameter with large degrees of freedom
supporting diagonality. Specifically, we can place flat priors
on the logarithm of the diagonal elements of the Wishart
scale matrix, and a flat prior on the logarithm of the de-
grees of freedom, truncated at a large value and set al-
ways greater than p — 1 so that the Wishart distribution is
proper.

2.3.2 Hierarchical Prior on the Correlations. An-
other prior that we consider is based on the vari-
ance/correlation breakdown of the matrix suggested by
Barnard, McCulloch, and Meng (1996). Here we put a dis-
tribution on the correlations so that they will end up shrink-
ing toward 0. Specifically, we put a normal distribution on
Fisher’s z transform of the correlations: .5log[(1 — p)/(1 +
p)] ~ N(0,72). This is similar in spirit to the approach of
Lin and Perlman (1985), who used a Stein-type estimator
to shrink the correlations toward a common value. Their
estimator was shown to have attractive risk properties. In
this situation one must be careful to maintain positive def-
initeness of the matrix, but as Barnard et al. noted, deriv-
ing the constraints on the correlations to maintain positive
definiteness of the matrix is quite simple. Due to this posi-
tive definiteness restriction, the foregoing normal prior dis-
tributions on the z-transformed correlations will actually
be truncated normal distributions over the relevant ranges
of the correlations. To complete the prior specification, we
place a prior on the unknown variance, 72, and use flat pri-
ors on the diagonal elements of D (or, in nonhierarchical
applications in which the data are assumed normal with co-
variance matrix D, put flat priors on the logarithms of the
diagonal elements of D). We use 7(72) « (c + 72)~2. This
prior has the form of a “uniform shrinkage” prior and has
been discussed recently by various authors, including Chris-
tiansen and Morris (1997) and Daniels (1999). By analogy
with other models, in which the constant ¢ would represent
a variance (see Daniels 1999), a sensible choice of ¢ here
would be the asymptotic variance of the z transform of the
correlations, 1/(k — 3).

2.3.3 Hierarchical Prior on the Givens Angles. Fi-
nally, we consider a prior that again shrinks the covariance
matrix D toward the identity but is based on the spectral de-
composition of D, which we write as D = PAPT (so that
A is a diagonal matrix of ordered eigenvalues, Ay, ... A, and
P is the corresponding orthogonal matrix of eigenvectors).
One natural way to parameterize an orthogonal matrix is
via Euler angles (Goldstein 1962; Hoffman, Raffenetti, and
Ruedenberg 1993). However, after initial exploration we
found it slightly simpler instead to parameterize the (p x p)
orthogonal matrix P in terms of the p(p—1)/2 Givens angles
(see, e.g., Thisted 1988). Each Givens angle, denoted by ;;
fori=1,...,pand j =i + 1,p — 1, may be considered a
rotation in the plane spanned by ¢ and j components of the
basis defining the matrix P. The matrix P may be written as
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the product of p(p—1)/2 matrices, each one associated with
a Givens angle, P = G12G13... Gy, ... G(p_1)p, Where i
and j are distinct and Gy; is the p x p identity matrix
with the 4th and jth diagonal elements replaced by cos(8;;)
and the (¢,j) and (j,¢) elements replaced by =sin(6;;).
Within the context of the spectral decomposition, if one
maintains the order of the eigenvalues, then the Givens an-
gles will be unique with a domain of (—n/2, 7/2). We may
then assume that the 6;;’s follow some distribution cen-
tered at the origin. Here we have chosen to put a normal
distribution on a logit transformation of the angles; we use
log{[x/(2 +6)]/[r/(2 — )]} ~ N(0, 72). Proceeding analo-
gously to the way in which we worked with the HP on the
correlations, we then put a prior on 72 and use flat priors
on the eigenvalues (or again in nonhierarchical applications
we may use flat priors on the logarithms of the eigenval-
ues), and we again take 7(72) o (c + 72)~2. The choice
of constant c here for the prior on 72 is more problematic
than for the correlation parameterization, because we do
not have an expression for the asymptotic variance of the
logit of 6. This area needs to be explored further. The logit
transformation allows for the prior to encompass the entire
real line.

It is important to note that this approach also shrinks
the eigenvalues, because a factor of [[,.;1/(A — A;) is
introduced in transforming the prior from the eigenvalues
and angles back to D: w(D|r2)dD = =(),0|72)|J|d\d6,
where

1 L
] = A ?:i+1C°S(0ij)J ol

Hi< 7 ()‘i - ’\j)
Thus the uniform prior on A tends to bring the eigenvalues

in the posterior closer together than the eigenvalues of the
sample covariance matrix (the MLEs) would be.

3. A SIMULATION STUDY OF RISK

3.1 Objective

To study the performance of posteriors based on alter-
native priors, we considered estimators of the covariance
matrix D when Y; ~ N(0,D),i = 1,...,n. We calculated
the risk R(D,D) = EpL; (D, D) associated with the loss
function L, (D, D) = tr(DD ') — log DD | — p, where
D is the Bayes estimator. This loss function is particularly
convenient because the Bayes estimator is simply the in-
verse of the posterior expectation of D!, The loss function
L, also produces the sample variance as the Bayes estima-
tor for Jeffreys’s prior. Other loss functions for covariance
matrices have been discussed by Yang and Berger (1994).

3.2 Details of Simulation

In our simulation study we computed the Bayes risk (with
respect to the loss function in Sec. 3.1) in estimating a five-
dimensional covariance matrix for various sample sizes, pri-
ors, and true values of the covariance matrix. To perform
the computations, we ran the Gibbs sampler 3,000 iterations
for each loss evaluation (using single chains with burn-in of
100) and computed 100 losses to obtain each risk (i.e., used



Daniels and Kass: Nonconjugate Bayesian Estimation of Covariance Matrices

300,000 Gibbs sampler iterations to compute each risk). The
sample sizes we used were 10, 20, and 100.

3.2.1 Priors. We considered Jeffreys’s prior and the
flat prior described in Section 2.2, the three HPs described
in Section 2.3, and also the Berger-Bernardo “reference”
prior and a fixed-hyperparameter inverse Wishart prior; that
is, a Wishart prior on D! with fixed degrees of freedom
and scale matrix. The constant ¢ was chosen as 1/(k — 3)
and 1 for the correlation and Givens-angle HPs (though we
examined the results for various choices of ¢, which we dis-
cuss in Sec. 3.3). The density of the Berger—Bernardo prior
is m(D) o< 1/[|D|[[;<;(A — A;)], where A are the ordered
eigenvalues. This prior attempts to improve the estimate by
shrinking the eigenstructure of the covariance matrix. Sim-
ilar priors, as discussed earlier, have been proposed by Dey
and Srinivasan (1985), Haff (1991), Lin and Perlman (1985),
and Stein (1975), Yang and Berger (1994) compared their
estimator to the estimators of Stein and Haff and found
it to be quite competitive, so we include only the Berger—
Bernardo prior in our simulation (for more details, see Yang
and Berger 1994). For the fixed-hyperparameter Wishart
prior on D1, we used p degrees of freedom. We considered
taking the scale matrix equal to the sample variance (which
is analogous to the MLE plug-in estimator commonly used
in hierarchical models), but in this case the Bayes estima-
tor is identical to that from Jeffreys’s prior, which we have
already discussed. As an alternative, we allowed the scale
matrix to be unknown and put a flat prior on it.

3.2.2 True Covariance Matrices. We considered three
diagonal covariance matrices: I, equal eigenvalues; II,
roughly equally spaced eigenvalues; and III, a somewhat
ill-conditioned matrix. We then combined these with rota-
tions to produce seven true covariance matrices:

L diag(1,1, 1,1, 1)

IL. diag(1, .75, (.75)3, (.75)3, (75)%) = diag(1, .75, .56,
42, .32)

ML diag(1, .75, (.75)%, (.75)!°, (.75)%°) = diag(1, .75, .56,
.06, .003)

IIR;. matrix IT with Givens angles all set to /4

IIIR;. matrix III with Givens angles all set to «/4

IIR,. matrix II with Givens angles evenly spaced be-
tween (—m/4, 7/4)

IIR,. matrix III with Givens angles evenly spaced be-
tween (—7/4, n/4).

The correlation matrices associated with these covariance
matrices are given in Appendix A.

3.3 Results and Conclusions

The results of the simulation are summarized in Table 1.
Before discussing them, we mention that for sample sizes
10 and 20 the estimates themselves tended to be substan-
tially different. Thus, where different estimators lead to no-
tably different risks, these indicate distinctions that will of-
ten be substantively important.

We first compare the risk of the Bayes estimator based on
the Givens-angle HP to the risk of that based on Jeffreys’s
prior (i.., the sample covariance matrix). The HP results in
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substantial gains for samples sizes 10 and 20, and for the
diagonal matrices even with a sample size of 100. We also
computed the percentage reduction in average loss for the
Givens-angle HP relative to the standard estimator based
on Jeffreys’s prior. For sample sizes 10 and 20, the HP had
about a 50% reduction in risk for all matrices except the
rotations of the ill-conditioned matrix III, for which there
was about a 20% reduction in risk.

The Bayes estimator from the correlation HP performs
well, but not quite as well as the Givens-angle HP for either
the identity or matrix II and its rotated versions. The choice
of values for the constant c for the Givens angle and cor-
relation HP did not change the substantive results of both
priors performing considerably better than Jeffreys’s prior.
The Bayes estimator from the Wishart HP does nearly as
well as the Givens-angle HP in most cases, but is terrible
for the two rotated versions of matrix III. The cause of the
difficulties for the Wishart prior in these cases becomes ev-
ident when one examines the posterior distributions of the
degrees of freedom, which are concentrated near the bound-
ary, p — 1 (as the data support a matrix fairly far from di-
agonal here). The restriction that the degrees of freedom be
greater than p — 1 is severe, because it forces the Wishart to
remain somewhat concentrated rather than very diffuse. The
concentration parameter 7—2 that appears in the Givens-
angle and correlation HPs is analogous to the degrees of
freedom parameter, but 72 may become arbitrarily small.
This gives these other two priors their advantage over the
Wishart.

The Bayes estimator from the Berger—Bernardo prior
does as well as those from the Givens-angle HP for the
strongly nondiagonal and ill-conditioned matrices IIIR;
and IITR; but, not surprisingly, suffers when the true ma-
trix is diagonal—particularly when it is diagonal and poorly
conditioned. In addition, the Berger-Bernardo prior pro-
duces a somewhat greater risk than the Givens HP for the
nondiagonal matrices ITR; and ITR,.

The results from our nonhierarchical Wishart prior, in
which the degrees of freedom is set equal to the smallest
possible integer value, p, are given in the last column of
Table 1. Although this approach reduces the risk in some
cases, it again (like the hierarchical Wishart) performs quite
poorly for the rotated versions of matrix IIIL.

4. COMPUTATION IN HIERARCHICAL MODELS

In this section we consider the use of nonconjugate pri-
ors for the covariance matrix when it appears in the second
stage of a hierarchical model. We focus on the model in-
troduced in Section 1.

The usual approach to posterior simulation in Bayesian
hierarchical models is to apply Gibbs sampling, possibly
using Metropolis steps to generate individual components
(Smith and Roberts 1993). This works quite well when the
full conditional distribution of D is distributed as inverse
Wishart, which occurs when an inverse Wishart prior or a
flat prior is placed on D.

For the Wishart HP of Section 2.3.1, Gibbs sampling can
be used with good results, as the full conditional of D will
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Table 1. Risk for Several Estimators
D Jeffreys Givens HP Correlation HP Wishart HP Berger—Bernardo Wishart, df = 5
1 1.89 (.06) .55 (.04) .73 (.04) .62 (.04) .79 (.05) 1.23 (.05)
.84 (.03) .24 (.02) .32 (.02) .30 (.02) .31 (.02) .65 (.02)
.15 (.00) .05 (.00) .06 (.00) .06 (.00) .05 (.00) .14 (.00)
n 1.93 (.07) 52 (.04) 72 (.04) 62 (.04) .93 (.06) 1.23 (.05)
.79 (.03) 22 (.02) .30 (.02) .28 (.02) .43 (.02) .61 (.02)
15 (.01) .05 (.00) .06 (.00) .06 (.00) .13 (.00) .14 (.01)
m 1.83 (.06) .81 (.05) 71 (.04) .61 (.03) 1.54 (.06) 1.18 (.04)
.81 (.03) .29 (.02) .30 (.02) .27 (.02) .68 (.02) .62 (.02)
.14 (.01) .06 (.00) .06 (.00) .06 (.00) 13 (.01) .14 (.01)
IRy 1.99 (.08) .78 (.05) .94 (.05) .90 (.05) 1.0 (.08) 1.30 (.06)
82 (.03) .38 (.02) .46 (.02) .45 (.02) .43 (.02) 64 (.02)
.16 (.01) .13 (.00} .15 (.00) .14 (.00) .13 (.00) .14 (.01)
R, 1.86 (.07) 1.65 (.07) 1.76 (.08) 5.58 (.38) 1.50 (.06) 4.24 (.14)
.81 (.03) .68 (.03) .80 (.03) 1.27 (.04) 67 (.03) 1.41 (.04)
.16 (.01) .14 (.01) 15 (.01) 17 (.01) .14 (.01) .18 (.01)
1IR2 1.80 (.06) .63 (.03) .84 (.04) .82 (.04) .84 (.04) 1.18 (.05)
.85 (.03) .39 (.02) 51 (.02) .52 (.02) 45 (.02) 67 (.02)
.14 (.00) .11 (.00) 13 (.01) .13 (.01) .12 (.00) .14 (.00)
Rz 1.90 (.08) 1.69 (.08) 1.65 (.07) 10.59 (.76) 1.55 (.07) 7.57 (.22)
.80 (.03) .68 (.03) .66 (.03) 1.34 (.05) .67 (.03) 1.68 (.05)
.15 (.01) .13 (.00) .11 (.00) .16 (.01) .13 (.00) .16 (.01)

NOTE: Risks for sample sizes 10, 20, and 100 are given. Simulation standard errors are in parentheses. The true values of D are described in Section 3.2.2.

still be inverse Wishart. (Full conditionals for the additional
p + 1 parameters, the diagonal elements of the scale matrix,
and the degrees of freedom can be simulated easily using
the Metropolis algorithm.) However, the results of Section
3 led us to think about implementation issues for noncon-
jugate HPs.

4.1

Problems arise when generating D when the full condi-
tional for D is not inverse Wishart. Using Gibbs sampling,
one might generate from the full conditional of D com-
ponentwise. This approach can work quite well in various
situations (see, e.g., Barnard et al. 1996). But problems can
arise from high cross-correlations between components of
D and also between the 3;’s and the components of D. In
addition, a univariate approach requires p(p + 1)/2 evalu-
ations of the full conditional distribution of D, which can
become costly as p increases. Consequently, we focus on
methods that generate the entire matrix D at once. For this,
one might consider using a normal or ¢ approximation to
the full conditional and then using an independence sam-
pler, a random walk Metropolis algorithm, or the hit-and-
run sampler (Yang and Berger 1994). The approximation
to the full conditional, however, would require an expen-
sive maximization at each iteration, whereas the hit-and-
run sampler and the random walk Metropolis algorithm
would result in low acceptance probabilities; in addition,
there would be substantial correlation between (5;,~, D).
Thus the chain would again move quite slowly through the
posterior distribution of D. (For further discussion of issues
and techniques for generating from the posterior for D, see
Daniels 1998.)

To avoid these difficulties, we propose using a combi-
nation of approximation and importance sampling (and in
some cases the Metropolis algorithm). In outline, our ap-
proach is to (a) compute the normal approximation to the

Nonconjugate Priors

MLE of the 3; (which allows us to integrate out analytically
the 8; and the «), (b) sample from an approximate marginal
posterior distribution for D (which avoids the correlation
between the 3;,, D from the Gibbs sampling), (c) sample
~ and B; from known normal distributions, and then (d)
correct the approximate posterior sample with importance
weights.
We implement our approach in the following steps:

1. Replace the likelihood with a normal approximation to
the MLE, 3; ~ N(8i, £;). We can now analytically integrate
out the ;s and ~y to obtain an approximation to marginal
posterior distribution of D.

2. Compute the mode and Hessian for this approximate
marginal posterior distribution for D, using a parameteriza-
tion in which D will be guaranteed to be positive definite.
We have used one of two alternatives: log matrix D (for pri-
ors directly on D or D) or logit of angles and log differ-
ences of eigenvalues (for priors on angles and eigenvalues)
(Pinheiro and Bates 1996). In the following, D* denotes the
appropriate transformation of D. For the hierarchical pri-
ors, we have one additional parameter, 72. However, if we
place a conjugate prior on 72, then we can integrate it out
analytically.

3. Sample from D* using either a normal or a ¢ approx-
imation, denoted by p*(D*|y).

4. Given D, sample from «|D, y, which will be normally
distributed. Specifically, n(y|D,y) ~ N(QY (D + £;)~!
Bi, (2D + £0)7H)7h), with @ = (3,(D + B)7) 7%

S. Sample from B|y,D,y, which will also be normally
distributed. Specifically, 7(G;]7,D,y) ~ N(Qo(E78i +
D~14),Qy), with Q2 = (D! + £;1)~1. An alternative is
to use a Laplace approximation to sample from an alter-
native normal approximation to the full conditional for 3
by computing the mode and Hessian for 3 conditional on

(7,D,y).
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6. We now have an observation from the joint ap-
proximate posterior distribution of (8,+,D). The impor-
tance weight for it will be the ratio of the true to the
approximate likelihood multiplied by the ratio of the
approximate marginal posterior for D* to the normal
or the ¢ approximation to this distribution (p*),w; =
L= {lp(w:18:))/ [6(w: 1)1} x { [B(D*[y)]/ [p* (D*|y)] }. How-
ever, if we use the Laplace approximation to sample from
the full conditional of §;, then we will instead derive the
following weight:

H p(yt|:6z ﬁ ﬂ1|77D)y)

. P(D"ly)
» ByilBi) p*(Bilv, D, y)

p*(D*ly)’

with p* the Laplace approximation. (See App. B for verifi-
cation that these are the correct importance weights.) Using
this importance sampling procedure will produce posterior
means and variances. If we desire a sample from the poste-
rior distribution, then we can obtain it by resampling (Tan-
ner 1993, sec. 5.7).

4.2 Computational Issues

Several issues and problems can arise with importance
sampling. Here, we consider two distinct problems: prob-
lems with the weights derived from the normal approxi-
mations to the likelihoods discussed in Section 4.2.2, and
problems with the weights derived from sampling from ap-
proximations to the marginal posterior distribution of D*.
In the first situation, if the normal approximation to the
likelihood is poor, then the weights can be quite unstable.
One potential way to diminish this problem for the weights
for (v, D) would be to sample several sets of 3;’s and use
an average weight. So we might sample mf; for each value
of (v, D) and assign the following weight to that particular
(1, D): w =37, [T {lp(il 6))/[5(:87))]}. By do-
ing this, we are reducing the variability of the weights by
using a weight based on m > 1 values.

An alternative that would alleviate to some extent the
problem of the weights for the individual 3; would be to
sample an additional 3; from a multivariate ¢ approxima-
tion to the full conditional in addition to the original sam-
ple from the normal approximation. We now correct the ap-
proximation for the individual 3; via the appropriate weight
(see App. B for details on this weight).

The second potential problem with importance sampling
is the instability of weights due to an inadequate approxima-
tion to the marginal distribution of D*. For situations where
a standard normal or ¢ approximation to the approximate
marginal posterior of D* is inadequate, a finer approxima-
tion can be fit a priori fairly easily using the BAYESPACK
software of Alan Genz (Genz and Kass 1996), which can
fit split-¢ distributions for each of the p dimensions. How-
ever, even this specialized approximation can be inadequate.
In such situations, one can sample from D* using the ran-
dom walk Metropolis algorithm (with the covariance ma-
trix some multiple of the inverse of the observed informa-
tion) or the hit-and-run sampler. This still has an advantage
over Gibbs sampling, as there will be correlation within the
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sample of D* but not the correlations within and between
the fixed effects (v), the random effects (3;), and D*. Re-
gardless, as discussed by Daniels (1998), further research
is needed to determine consistently effective ways to sam-
ple from the approximate marginal posterior of D*. The
importance sampling strategy that we have outlined here is
just one possibility, and our work leads us to think it will
be effective when p is not too large.

5. EXAMPLES

We consider two examples. The first example was chosen
primarily to evaluate our computational algorithm because
it has been used recently to compare alternative MCMC
methods. The second is drawn from an application and il-
lustrates how posterior estimates may be modified using
HPs.

5.1

This example involves data recently reanalyzed by Ben-
net, Racine-Poon, and Wakefield (1995) concerning predic-
tion of uptake volume of guinea pig tissue by concentration
of B-methylglucoside. The response, ¥;;, represents the up-
take volume for the jth concentration (j = 1, ..., 10) of the
ith guinea pig (¢ = 1,...,8), and X,; represents the corre-
sponding concentration of S-methylglucoside. Bennet et al.
fit the following nonlinear hierarchical model to the data:

exp(f1:) Xi;
exp(B2i) + Xi;

Example |: Guinea Pig Data

log(yi;) = log ( + exp(ﬁSi)Xij> + €ij,

61'_7' ~ N(O,Tz), (4)

and

v ~ dy,D ~ n(D), ©)
with 7(D) an inverse Wishart prior with 3 degrees of free-
dom and known scale matrix. For simplicity, we consider
the within—guinea pig variance, 72, to be known.

The estimates produced from HPs turn out to be remark-
ably similar to those obtained by Bennet et al. using a con-
jugate prior. Our main purpose here, however, is to compare
computational methods. Specifically, our first interest is in
comparing the importance sampling approach discussed in
Section 4 to full conditional MCMC schemes when the full
conditional of D! is not Wishart. To make this compari-
son, we found it most convenient to use a Wishart prior on
D™, so that the full conditional actually was Wishart, but
to ignore our ability to generate directly from the full con-
ditional in setting up an MCMC alternative. This allowed
us to use Gibbs sampling as a baseline and to refer to Ben-
net et al. for additional comparisons. We set the Wishart
scale matrix equal to diag(.02, .02, .1) (following Bennet
et al.) and took the degrees of freedom equal to 3. For the
MCMC scheme, we computed a normal approximation to
the log matrix D for each iteration and sampled from this
using a Metropolis step.
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We ran 2,000 iterations of each method and computed the
time to run the chain and the Monte Carlo standard errors of
the posterior means for each method; the results are given
in Table 2. For the MCMC runs, we computed the Monte
Carlo standard error using the method of batch means (see,
e.g., Gilks, Richardson, and Spiegelhalter 1995, p. 50) and
for the importance sampling run, we computed the approx-
imate Monte Carlo standard error using an approximation
to the variance of the importance ratio (see, e.g., O’Hagan
1995, p. 224).

To achieve 2,000 iterations with each method, the run-
ning times on an HP-715 workstation were 297 seconds
for importance sampling versus 4,070 seconds for MCMC.
Gibbs sampling took 154 seconds. We also computed the
ratio of the simulation variances for MCMC to that of
importance sampling after 2,000 iterations (for MCMC,
2,000 iterations following burn-in). These, also given in
Table 2, show that the importance sampling scheme is
generally somewhat more efficient in terms of variability
per generated value. Taken together, the importance sam-
pling algorithm is at least a reasonable competitor to the
MCMC scheme and appears to be much more efficient
than the MCMC scheme when a nonconjugate prior is used
for D. ‘

Table 2. Computational Comparison of the
Gibbs Sampler With Importance Sampling

Gibbs/IS MCMC*/IS
B 2.90 4.15
P12 333 4.91
B3 1.92 3.03
B21 1.85 2.60
Bo2 1.75 1.89
Bos 1.15 1.42
Ba 1.44 1.93
Ban 1.40 2.38
Bas 72 77
Ba1 .88 84
Baz 69 67
Bas 64 56
Bs1 2.48 2,60
Bs2 267 3.06
Bsa 1.14 1.23
Bs:1 1.91 1.81
Bs2 2.04 2.04
Bss 1.42 1.09
Br1 59 60
B2 91 74
Bra 65 68
Ba1 64 232
Baz 78 2.30
Bes .89 1.35
" 1.86 2.47
Y2 222 2.30
3 1.11 1.34
Dy 77 1.84
D21 55 1.34
D2 .78 234
D3y 20 60
Da 26 78
Das 24 36

NOTE: The numbers in each column are the ratios of Monte Carlo variances for 2,000 iterations.
MCMC™ denotes posterior simulation without using the fact that the full conditional of D 'is
Wishart.
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5.2 Example II: Hospital Data

We now discuss our analysis of the hospital data intro-
duced in Section 1. Based on the risk calculations of Section
3, we would expect the Givens-angle HP or the correlation
HP to provide better estimates than either the Wishart HP
or the conventional flat prior.

We fit the model using four separate priors for D: the
Givens-angle HP, the Wishart HP, the Wishart with es-
timated scale matrix and 4 degrees of freedom, and the
flat prior. In fitting the Givens-angle HP, the random walk
Metropolis algorithm was used to sample from the approx-
imate marginal posterior distribution for D*. The results
of this model fitting appear in Table 3. The two states that
appear in the table were chosen to be representative of a
small sample size, Delaware (n3 = 7), and a large sample
size, Florida (ns = 249).

We examine the fixed effects (vy), the random effects (3;),
and the covariance matrix (D). The estimates and standard
errors of the fixed effects were roughly equal across all pri-
ors, but the standard errors were uniformly larger for the flat
prior. In terms of the random effects, 85 (the large state) was
quite stable across all priors, as its estimate is dominated
by the likelihood for that state. However, for 33 (the small
state), there were substantial disparities in the estimates and
standard errors (e.g., of A34). This illustrates how improved
estimation of D can have a substantive impact on inference
about the random effects that are often of direct interest.
For the covariance matrix, D, the flat prior resulted in the
largest diagonal elements (and most uncertainty). For the
two HPs, shrinkage of the off-diagonal elements toward 0
relative to the flat and standard Wishart prior is apparent,
with the greatest shrinkage here under the Wishart HP. In
addition, the standard Wishart and Wishart HP appear to
give more precision in estimating D than the Givens-angle
HP (based on observation of the standard errors and credi-
ble intervals).

Overall, then, we observe nontrivial differences among
the estimates provided by these alternative priors. Based on
the results of Section 3, we would prefer the Givens-angle
HP. In this case we would obtain modest shrinkage toward
diagonality with a modest increase in precision (more pre-
cision than when the flat prior is used, but less than when
the Wishart priors are used). We would expect the posterior
from the Givens-angle HP to have adapted reasonably well
to the departure from diagonality of D.

6. DISCUSSION

In small-sample Bayesian estimation of a covariance ma-
trix D, the choice of prior distribution is important. Further-
more, when D appears in the second stage of a hierarchical
model, its estimation affects the estimation of standard er-
rors for the usual quantities of interest, namely the fixed
and random effects. The use of informative conjugate prior
distributions requires detailed information about D, which
is often very difficult to obtain. In addition, the commonly
applied device of using the MLE of D to define the scale
matrix in an inverse-Wishart prior on D is shown by our
simulation study to perform poorly in some cases. We have
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Table 3. Posterior Means, Standard Deviations, and 95% Credible Intervals for the Third State
(Delaware) and the Fifth State (Florida) in Example Il

Parameter Standard Wishart Wishart HP Givens HP Flat prior
Ba1 —2.77 .168 [-3.11, —2.47] —2.68 128 [-2.96, —2.45] —2.68 147 [-3.01, —2.43] -2.84 202 [-3.29, —2.49]
a2 18  .070 [.04, .33] .20 .058 [.09, .33] 21 .090 [.03, .40] 22 113 [-.01, .44]
B33 25 222 [-.16,.71] 14 181 [—.18, .52] A3 190 [—.20, .54] 29 276 [-.21, .88]
Bas .80 .238 [.31, 1.28] 55 195 [.12,.92) 54 252 [.01,1.03] .66  .372 [-.00, 1.39]
Bs1 —2.42 045 [-250, —2.33] —242 .047 [-251, —2.33] —2.40 .047 [-249, —231] —-240 .048 [-250, —2.31]
Bs2 13 033 [.06,.19] 13 .036 [.05,.19] A1 036 [.04,.18] A1 037 [.03,.18]
Bsa —-.16 .076 [—.31, —.01] —17 076 [-.32, —.03] —-15 .076 [-.30, —.00] —17 077 [-.32, —.02]
Bsa 71 089 [54, .88] 72 .090 [.56,.90] 72 094 [54,.91] 73 .098 [54,.93]
o2 —2.49 .057 [-2.60, —2.38] —2.48 .051 [—258, —2.38] -2.47 .050 [—2.58, —2.38] —2.49 .081 [-2.65, —2.35]
Y2 19 025 [.14, .24] 19 024 [.15, .24] .19 .033 [.13, .26] .20 .039 [.12,.28]
3 —.02 .083 [-.19,.14] —-.01 072 [-.16,.13] —.02 .068 [-.15,.12] —.02 115 [-.25, .21]
4 60 .078 [45,.75] 57 071 [41,.70] 56 .079 [.39,.71] 57 106 [.38,.79]
Dq1 .045 .020 [.019, .095] .034 018 [.013,.076] .033 .024 [.009, .098] 095 .077 [.024, .316]
Do .000 .005 [-.011,.011] —.000 .001 [-.002,.001] —.002 .010 [—.025, .015] —.012 .028 [-.078, .029]
[ .004 .002 [.001, .009] .003 .003 [.000, .012] .011  .010 [.001, .036] .017 .018 [.003, .059]
D31 —.034 .022 [-.086, —.004] —.001 .004 [—.008,.005] —.014 021 [-.071,.007] —-.072 .089 [—.286,.028]
Da> —.005 .007 [—.020, .006] 000 .001 [-.002, .002] 000 .010 [—.020, .018] —.002 .033 [-.079,.057]
Das3 .083 .043 [.034, .180] .061 .042 [.012,.167] .051 .061 [.006, .176] .180 .166 [.035, .609]
Dys —.033 .120 [—.082, —.006] —.000 .003 [—.007,.006] —.003 .013 [-.032,.018] —.035 .089 [—.272,.086]
D42 —.002 .006 [-.017,.008] -.000 .001 [-.002,.001] —.001 .007 [-.017,.011] —.006 .032 [-.069, .055]
D43 .036 .027 [-.001,.103] .000 .004 [—.006, .007] .001 .019 [—.036,.041] 025 .107 [-.137,.244]
Dys .057 .030 [.021,.133] .039 .032 [.006, .114] .062 .066 [.006, .211] 139 .169 [.017, .479)

NOTE: Here standard Wishart is a Wishart distribution with estimated scale matrix and af = 4, and Wishart HP and Givens HP are the Wishart and Givens-angle HPs.

introduced a set of HPs as a generic means to stabilize the
estimate of the covariance matrix for small samples. We
have applied the method under the assumption that D is
not too far from diagonality, though we have shown that
the Givens-angle HP produces reasonable estimates even
when this assumption is false, partly because—in the form
we have used—it results in shrinkage of the eigenvalues.
Our own feeling is that the Givens-angle HP is mathemati-
cally more natural than the other two HPs we investigated.
In any case, we found that the HP on the correlations also
produces good estimates, but with risks somewhat larger
than those based on the Givens-angle HP. The Wishart HP
sometimes leads to very inaccurate estimates, and thus we
would be very concerned about using it in practice.

We have emphasized shrinkage toward diagonality for D
because it is straightforward and often applicable. Indeed,
D is sometimes assumed to be diagonal for convenience
(e.g., in variance components models), even though this as-
sumption may be dubious. The method that we have de-
scribed and investigated could be applied to other structures
in covariance matrices, however. For instance, in time series
or spatial applications, an autoregressive (AR) model may
be plausible yet not fully supportable by available data. It is
then possible to shrink toward the hypothesized AR struc-
ture while allowing the data to support some departure from
that structure (Daniels and Cressie, 1998).

Another interesting potential domain of application for
the methods that we have described is in the estimation of
large covariance matrices, especially when the number of
individuals k is less than p so that the sample covariance
matrix is noninvertible and the conjugate posterior density
no longer exists. A frequentist shrinkage method has been
proposed and investigated by Ledoit (1996). We have begun
to explore Bayesian approaches to this problem.

We have also shown how the computational burden in
using the HPs, and nonconjugate priors in general, can be
reduced by combining approximations and importance sam-
pling. We can imagine variations that would improve on our
method. For instance, from our findings, to obtain results
based on Givens-angle or correlation HPs it should often
be beneficial to use the Wishart HP rather than the fixed
conjugate prior within the approximate model described
in Section 4.1. This is computationally efficient, and the
Wishart HP leads to similar results in many cases; impor-
tance weights are again easily obtained and provide valid
corrections according to the analysis presented in Appendix
B. We would also like to mention that the strategy we have
adopted—applying Gibbs sampling following a first-stage
normal approximation, then correcting the result by im-
portance weights—ought to be of general interest. For ex-
ample, it is sometimes rather time-consuming to construct
an effective MCMC scheme for a complicated hierarchi-
cal model, whereas implementation of the normal approx-
imation may be relatively straightforward. The importance
correction that we have derived could be useful in such sit-
uations. On the other hand, we do not wish to leave the im-
pression that importance sampling accomplishes something
that a gopod MCMC method cannot. We expect MCMC tech-
nology to provide further computational improvements in
handling problems of this kind.

APPENDIX A: CORRELATION MATRICES
FOR SIMULATION

Correlation matrix ITR;:

1.000

—.286 1.000

—.138 .101 1.000

—.087 113 .233 1.000
—.149 —.022 .087 .296 1.000
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Correlation matrix IIR;:

1.000

—.035 1.000

221 .232  1.000

252 216 .138 1.000

273 103 —.020 .128 1.000
Correlation matrix ITTIR;:

1.000

—.871 1.000

—.223  .097 1.000

—-.357 165 .651 1.000

—.339 —.054 .013 .590 1.000
Correlation matrix ITIR:

1.000

—.146 1.000

.358 .306 1.000

598  .535 .245 1.000

593 217 —.269 .608 1.000

APPENDIX B: DERIVATION OF
IMPORTANCE WEIGHTS

In general, to compute the posterior expectation of some func-
tion of a parameter g(6), we need to compute the following ratio of

integrals: E[g(8)|y] = [ 9(6)p(6]y) d6]/[f p(6]y) d6]. Importance
sampling rewrites this ratio as

J 9(6)w(9)p(6]y) db
Jw(©)p(0ly)do ’

where p(6|y) approximates p(f|y) and is easy to sample from, and
w(8) = [p(6ly)]/[p(6ly)]- Using draws, 6", from the approxima-
tion p(fly), the ratio (B.1) is approximated by a ratio of sums,
according to the law of large numbers; that is,

> 9(6")w(8")

2w
Thus, to show that our importance sampling scheme correctly
reweights the sampled observations, we must show that the corre-
spondingly defined weight functions w(8) correctly produce pos-
terior expectations of the form E{g(6)|y] according to (B.1).

Here we have § = (B:,7,D), and we consider the posterior
expectation of g(v). Other functions of the parameter vector may
be treated similarly.

Let A be the numerator integral and B the denominator integral;
that is, E[g(v|y)] = A/B, where

// /9(7)Hlpﬂz|% )

x p(v,Dly)dydDdp: ...dBx

(B.1)

Elg(0)ly] =

Elg(8)ly] =

and

B=//~~-/Hp(ﬂilv,D,y)p('y,Dly)dvdDdﬂl---dﬂn-
i=1

We begin by rewriting A:

p(Bil7,D,y)

A—// / Hﬂl% D,y)
P, Dly)

?(7, Dly)

(511'7) Dv y)

p(v,D|y)dydDdp: ...dBx
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p(ﬂ‘l)’Y;Dly) .
// /gh)Hp(ﬂ,%Dly) P87 Dy)
x p(v,Dly)dydDdp: ...dBn

2(8i,7, D, y)(y)
// / V)Hz’(ﬂn%D y)m(y)

with m(y) denoting the marginal distribution of the data under
the true model and /#(y) denoting the marginal distribution of the
data under the approximate model. Thus

// / H p(y:|B:, v, D)p(Bs, 7, D)m(y)
» P(yilBi, v, D)p(Bi, v, D)m(y)

x p(Bily, D, y)B( %Dly) dydDdp: ...dBn

p(yzl,@u% D)(y )

x p(Bilv, D, y)p( %Dly) dydDdp:...dBn

_ m(y p(yl|ﬁ137:D)

- m(y // / o )Hp(ywlﬁu%

x B(Bsly, D, 9)p(y, Dly) dyd D dpi . .. dfn.

This shows that the importance weight function of Section 4.1
correctly produces the numerator A. Similarly, we obtain

_ m(y) // /HP yilBs, v, D)
m(y) (y:lBi, v, D)
X p(Bilv, D, y)p(, Dly) dydDdp; ..
so that the posterior expectation of g(y) becomes

J L L e TTi, Beigerns #(8:i. D, y)

x p(v,Dly) dydDdp ...dB

ff e fH?:l z’%}%{% ﬁ(ﬂi|7a Day)

X p(v,Dly)dydDdp: ...dBn

and with w(8) = []o_,[p(w:lB:))/[(w:lB:)], the ratio of the true
to the approximate likelihood, we have the required form (B.1).

In Section 4.2 we also mentioned the possibility of obtaining
more stable weights for expectations of functions of the 3; by
using a distribution with heavier tails for the ;. This will alter
the weights. Let p:(8:|y, D, y) be a t distribution with the same
location and scale as the corresponding normal distribution:

Elg(B:)y]
2O [ S 9B TTr, Buleer)

x p(Bilv, D, y)p(7,Dly) dydDdp ... dB,

2D [ [ [T, 2D

It

A

I

.dBn,

Elg(v)|y] =

x p(Bilv, D,y)p(v, Dly) dydDdp: ... dB,
318:1)8(B: |7, D, -
J "fg(ﬁi)z;zilfi)ﬁ&sll, wy Pe(Bily, D, y)
?(y185,7,D)
* I 5615050y

x p(B;ly, D, y)p(v, Dly) dydDdpi ...dBx
J I ] 98 Fes iz ny pe(Bily, D v)
P16, D)
X HJ;A; ,[,(ZwJ 71)‘ (,3J|’Ya »Y)
x p(y,Dly)dydDdp ...
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Here

p(yilB:)p(Biy, D
D(yilB:)pe(Bily, D

p(ylBs, v, D
v = ] H L5416, D
This new weight for §; is the same as the old weight but with the
ith term in the product replaced by a new quantity. If importance
sampling is used to sample from the approximate marginal pos-
terior distribution for D, then both of the foregoing weights are
multiplied by the ratio of the approximate marginal posterior for
D to the approximation to this distribution (from which it is easy
to sample), as discussed in Section 4.1.

[Received July 1997. Revised April 1999.]
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