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SUMMARY. Estimation of covariance matrices in small samples has been studied by many authors. Stan- 
dard estimators, like the unstructured maximum likelihood estimator (ML) or restricted maximum likelihood 
(REML) estimator, can be very unstable with the smallest estimated eigenvalues being too small and the 
largest too big. A standard approach to more stably estimating the matrix in small samples is to compute 
the ML or REML estimator under some simple structure that involves estimation of fewer parameters, such 
as compound symmetry or independence. However, these estimators will not be consistent unless the hy- 
pothesized structure is correct. If interest focuses on estimation of regression coefficients with correlated (or 
longitudinal) data, a sandwich estimator of the covariance matrix may be used to provide standard errors 
for the estimated coefficients that are robust in the sense that they remain consistent under misspecifics 
tion of the covariance structure. With large matrices, however, the inefficiency of the sandwich estimator 
becomes worrisome. We consider here two general shrinkage approaches to estimating the covariance matrix 
and regression coefficients. The first involves shrinking the eigenvalues of the unstructured ML or REML 
estimator. The second involves shrinking an unstructured estimator toward a structured estimator. For 
both cases, the data determine the amount of shrinkage. These estimators are consistent and give consistent 
and asymptotically efficient estimates for regression coefficients. Simulations show the improved operating 
characteristics of the shrinkage estimators of the covariance matrix and the regression coefficients in finite 
samples. The final estimator chosen includes a combination of both shrinkage approaches, i.e., shrinking 
the eigenvalues and then shrinking toward structure. We illustrate our approach on a sleep EEG study that 
requires estimation of a 24 x 24 covariance matrix and for which inferences on mean parameters critically 
depend on the covariance estimator chosen. We recommend making inference using a particular shrinkage 
estimator that provides a reasonable compromise between structured and unstructured estimators. 
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1. Introduction 
Since James and Stein (1961), many authors have explored 
better estimators for a covariance matrix. These have been de- 
rived from a decision-theoretic perspective (Stein, 1975; Dey 
and Srinivasan, 1985; Lin and Perlman, 1985; Haff, 1991) or 
by specifying an appropriate prior for the covariance matrix 
and choosing an estimator based on a particular loss func- 
tion (Yang and Berger, 1994; Daniels and Kass, 1999). We 
will take the latter approach in this article and build on the 
work of Daniels and Kass (1999). The general approach will 
be to first generically stabilize an unstructured estimate of the 
covariance matrix and then to shrink this estimate toward a 
parsimonious, structured form of the matrix. In this approach, 
the data will determine how much shrinkage is required. 

We will now provide some more details on the approach in 

Daniels and Kass (1999); for a similar approach in the con- 
text of a covariance function in time series data, see Daniels 
and Cressie (2001). To develop more stable estimators for the 
covariance matrix, Daniels and Kass (1999) shrink the matrix 
toward a diagonal structure and obtain estimates (and poste- 
rior distributions) using combinations of importance sampling 
and Markov chain Monte Carlo (MCMC). Here we will extend 
this work in several ways. First, we consider shrinking toward 
any structure (not just diagonal), including nonstationary 
models, such as (structured) antedependence models (Zim- 
merman and Nunez-Anton, 1997) for longitudinal data, and 
stationary models, such as compound symmetry, auto regres- 
sive (AR), and auto regressive moving average (ARMA) mod- 
els (see early work by Chen, 1979; Lin and Perlman, 1985). 
Second, we propose estimators that can be computed by sim- 
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ple approximations, avoiding the fully MCMC approach, 
which can be computationally intensive for large matrices. 
These estimators will provide more stability than an unstruc- 
tured estimator but will still provide robustness to misspec- 
ification of the structure. These estimators might be called 
empirical (or approximate) Bayes estimators (Kass and Stef- 
fey, 1989). 

Another approach to  inducing stability in estimating a co- 
variance matrix is to shrink the eigenvalues (Stein, 1975; Dey 
and Srinivasan, 1985; Haff, 1991; Yang and Berger, 1994; 
Ledoit, 1996). It is well known that the sample eigenvalues are 
biased; the smallest is too small and the largest is too large. 
We will review some of these estimators and propose another, 
derived from a simple prior distribution on the eigenvalues. 

We will also examine the way these estimators influence co- 
variate effects. Consider a fixed effects regression model with 
correlated errors, a common model for longitudinal and clus- 
tered data (Diggle, Liang, and Zeger, 1994), 

where Yi is a p x 1 vector and ,B is a q x 1 vector, i = 1,. . . , n. 
When n is small relative to p ,  estimation of the covariance 
matrix can be unstable. The most common approach to in- 
ducing stability is to assume some true structure and then 
estimate the relevant parameters, which will be fewer than 
those in the full covafiance matrix, p ( p  + 1)/2. However, the 
resulting variance of p will be incorrect if the hypothesized CG- 

variance structure is incorrect. To avoid this probl?m, a sand- 
wich estimator (Huber, 1967) for the variance of 0 will result 
in asymptotically correct, but not efficient, variance estimates 
for p. As a robust alternative to assuming some structure and 
as a way to induce stability over the unstructured estimator 
of the covariance matrix, we will use the covariance matrix 
estimators proposed above. Our strategy will be to use the 
following procedure to estimate C: 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Step 5. 

Step 6. 

Fit the model (1) using an unstructured covariance 
matrix, 2. 
Shrink the eigenvalues of the unstructured estima- 
tor to obtain a more stable estimate, 2:st. 
Fit the model (1) assuming some covariance struc- 
ture, Cs. This might be chosen, e.g., using the 
Bayesian information criterion (BIC) (cf., Zimmer- 
man and Nunez-Anton, 1997). 
Compute estimates of the parameters that deter- 
mine the amount of shrinkage using Cst and Cs. 
Compute a shrinkage estimator of the covariance 
matrix, Csh using the estimates- in steps 2-4. 
Refit model (1) conditional on Csh.  

More details on the shrinkage parameters and shrinkage esti- 
mators will be given in Section 3. Steps 1-3 and 6 are easy 
and can be implemented in SAS proc mixed (SAS Institute, 
1999). Steps 4 and 5 will require a simple macro. In Section 
4, we recommend two estimators. Both first shrink the eigen- 
values together (step 2 above). Then this modified estimate 
is shrunk toward a chosen structure under two different pa- 
rameterizations of the matrix (steps 4 and 5 above). 

In Section 2 ,  we will explore estimators that shrink the 
eigenvalues, and in Section 3, we will explore estimators that 
shrink an unstructured estimate of the covariance matrix to- 
ward some structure. In Section 4, we will do simulations to 

examine the risk of these estimators for estimating the sample 
covariance matrix and the mean squared error for estimating 
the fixed regression coefficients. Section 5 includes a theorem 
demonstrating the asymptotic properties of these estimators. 
In Section 6, we will show the importance of covariance ma- 
trix estimation on fixed regression coefficients in data from 
a sleep EEG study. We offer conclusions and extensions in 
Section 7. 

2. Squeezing the Eigenvalues Together 
In this section, we review and discuss two estimators to shrink 
the eigenvalues together and introduce a third based on a 
hierarchical model. 
2.1 Stein Estimator 
We first examine estimators that shrink the eigenvalues. 
Several authors have focused on orthogonally invariant 
estimators of the form 5 = O h * ( i ) O T ,  where 0 is the 
matrix of normalized %igenvectors, is the vector- of sample 
eigenvalues, and h * ( A )  = diag(A;(i), . . . ,$(A)), where 
each A; is a real-valued nonnegative function. Stein (1975) 
proposed setting A g ( i )  = n&/aj,  where 

This estimator minimizes an unbiased estimate of Stein’s 
(entropy) loss under this class of estimators; this estimator has 
similar operating characteristics to the estimator derived from 
the Yang and Berger (1994) prior. However, this estimator 
does not preserve the order of the eigenvalues and the 
resulting estimators of the eigenvalues can be negative. Thus, 
an isotonizing algorithm is often needed. Haff (1991) derived 
an estimator similar t o  Stein’s but that is computed under the 
constraint of maintaining the order of the sample eigenvalues; 
the estimator is identical when Stein’s does not require the 
isotonozing algorithm. This estimator operates by adaptively 
shrinking the sample eigenvalues. 
2.2 Ledoit Estimator 
Ledoit (1996) introduced an estimator that is the optimal 
linear combination of the identity matrix and the sample 
covariance matrix under squared error loss. This is equivalent 
to finding the optimal linear shrinkage of the eigenvalues. This 
estimator has the advantage of being able to be computed 
when the dimension of the matrix is larger than the sample 
size. However, the use of squared error loss as the loss function 
for the covariance matrix can result in overshrinkage of the 
eigenvalues (see the simulation in Section 4), especially the 
small ones. When the eigenvalues are very close together, 
this estimator performs very well, but when they are very 
far apart, it performs quite poorly. This is a by-product of 
deriving estimators using squared error loss that does not 
offer a severe penalty for overestimating the small eigenvalues; 
Stein’s loss does penalize for this. 
2.3 An  Estimator Based o n  a Simple Hierarchical Model 
As an alternative to the above estimators, we suggest placing 
normal prior distributions on the logarithm of the eigenvalues, 

log(&), i = 1,. . . ,p:  log(&) I 7 N N(log(X),T2). TO 
form a simple estimator based on this prior distribution, 
we can approximate !he likelihood for the eigenvalues from 
the model, with log(Ai) N N(log(&), 2 /n) ,  the asymptotic 

2 i.i.d. 
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distribution of the logarithm of the sample eigenvalues. 
A model formed from the approximation and the prior 
suggests a simple closed-form estimator for the logarithm of 
the eigenvalues, the posterior mean, which here is also the 
posterior mode, of X i  conditional on estimates log(X) and i2. 
We exponentiate this estimator to obtain the following: 

We will call the estimator in ( 2 )  the log eigenvalue posterior 
mean estimator. We use the following approach to estimate 
the hyperparameters. For log(X), we plug in the mean of the 
logarithm of the sample eigenvalues; this corresponds to the 
posterior mode under a uniform prior distribution on log(X). 
For 7 2 ,  we plug in 

P 

a= 1 

This estimator was chosen to encourage shrinkage of the 
eigenvalues and corresponds to  the posterior mode under a 
uniform shrinkage prior on r2, r(r2)  = ( 2 / n ) / ( 2 / n  + r2)2 
(see Daniels, 1999). 

The estimation of r2 may be considered a special case of 
using the posterior mode based on a prior for r2 proportional 
to ( 2 / n  + r2)-’, which gives a posterior mode of 

where c = p + 2k. Other possible approaches to estimating 72 

include an estimator based on the posterior mode from a flat 
prior on r2 ,  k = 0, or the James-Stein estimator, k = -5/6 
(cf., Strawderman, 1971; Efron and Morris, 1973). However, 
preliminary simulations suggest that using these estimators 
for 7‘ tends to undershrink the eigenvalues. Note that our 
estimator ( 2 ) ,  unlike Stein’s, maintains the order of the sample 
eigenvalues. 

3. Shrinking Toward Structure 
We will focus on two parameterizations in which to shrink the 
covariance matrix as in Daniels and Kass (1999). The first will 
be useful for shrinking toward a correlation (or covariance) 
structure but is not guaranteed to produce a positive definite 
matrix. The second can be used for shrinking toward a 
covariance structure and is guaranteed to give a positive 
definite matrix. The latter will involve decomposing the 
matrix into the Givens angles and the eigenvalues (cf., Daniels 
and Kass, 1999). Early work by Chen (1979) and others 
suggests doing shrinkage with a Wishart prior, with scale 
matrix set to the structure and unknown degrees of freedom. 
However, this formulation only allows one parameter, the 
degrees of freedom, to characterize the shrinkage. In addition, 
there is a natural bound on the degrees of freedom to 
maintain a proper prior (i.e., the degrees of freedom must 
be greater than p ) ,  which can produce poor results when 
the hypothesized structure is incorrect (Daniels and Kass, 
1999). The two approaches we suggest allow for two variance 
parameters, i.e., one for the correlations (angles) and one for 
the variances (eigenvalues). 

The general approach will be the following. First, fit model 
(1) using maximum likelihood with an unstructured form for 
C. Then, conditional on p, compute the observed information 

matrix for C based on one of the two parameterizations. 
For the first estimator, the correlation shrinkage, we simplify 
computations by treating the information matrix for the 
variances and correlations as if it was block diagonal, similar 
to Lin and Perlman (1985), while for the second estimator, the 
rotation shrinkage, the information matrix for the eigenvalues 
and angles is block diagonal (Yang and Berger, 1994). We 
then form the estimators, detailed in the next two sections, 
by developing a two-level model. At the first level, we ap- 
proximate the distribution of the maximum likelihood es- 
timator of C by a normal distribution with variance the 
inverse of the observed information matrix. At the second 
level, we introduce a normal prior whose purpose is to 
shrink the correlations/variance or angles/eigenvalues toward 
a structured form with unknown variance components, which 
will be estimated from the data as detailed in the next section. 
The unknown parameters of the structured form are estimated 
by fitting model (1) under that structure and are thereafter 
assumed known. As a result, we estimate only the two variance 
components in addition to  the parameters appearing in the 
structured model, which involves many fewer than the p ( p  + 
l ) / 2  parameters estimated in the unstructured case. From 
this two-level normal-normal model, we can compute a simple 
shrinkage estimator, which will give consistent estimates of C, 
even under misspecification of the structure. We provide more 
details on these two estimators in the next two sections. 

3.1 Correlation Shnnkage Estimator 
One way to parameterize a covariance matrix is through 
the correlations and variances (Lin and Perlman, 1985; 
Barnard, McCulloch, and Meng, 2000). Daniels and Kass 
(1999) suggested placing normal priors on the z-transform of 
the correlations and shrinking these toward zero (equivalent 
to shrinking toward a diagonal matrix). We suggest replacing 
their prior with the following more general prior distribution 
on the z-transform of the correlations: 

(3) 

where ps represents the correlations specified under the 
assumed covariance structure. Here we assume a pnori that 
the correlations are independent. Given the interplay of the 
correlations in the covariance matrix being positive definite, 
this may not be a realistic assumption. However, the si- 
mulations in Section 4 and in Daniels and Kass (1999) 
show that this is a reasonable specification in practice. To 
form an approximate estimator based on this prior, we need 
the asymptotic distribution of the correlations, given in Lin 
and Perlman (1985, pp. 417-418), who introduced a James- 
Stein estimator based on shrinking the z-transform of the 
correlations toward a common value. Given the asymptotic 
distribution of the correlations, we can approximate the 
specified model for p with a normal-normal model. Based 
on this model, we replace the sample correlations j j  with the 
following estimator: 

where I ( z ( j j ) )  is the observed information matrix for the z- 
transform of the correlations and Fisher’s z-transform of a 
vector is defined as the vector of z-transforms. 
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The estimated correlation under the assumed structure, @,, 
is computed by fitting the structured model (by maximum 
likelihood or restricted maximum likelihood) and extracting 
the relevant estimated correlations. To estimate ~ p " ,  we 
generalize the moment estimator in DerSimonian and Laird 
(1986) to  the multivariate case and use 

.ip" = (MB) - 4 P d T  
x I(z(P))(z(P> - 4 P s ) )  - P(P - W ) / W ( Z ( @ ) ) ) .  

( 5 )  

For p = 2, this simplifies to their estimator. 
To shrink toward a covariance rather than a correlation 

structure, we can also shrink the variances using log(a2) N 

N(log(o:), 7:) and form an approximate estimator using the 
asymptotic distribution of the log of the variances, 

5 2 =log-1[(I(log(b2))-1 + i 2 I ) - ' P l o g ( 2 )  

+ (I(log("))-l +PI)-' 
x ( I (  1% (e2))-' log (5s"))], 

where I(log(b2)) is the observed information matrix for the 
logarithm of the variance and logarithm of a vector is defined 
as the vector of logarithms. Note that, although the variances 
and correlations are not asymptotically independent, for 
simplicity, we assume this when forming the shrinkage estim- 
ator of the covariance matrix. We will refer to (4) and (6) as 
the correlation shrinkage estimator. 

We mention here that this estimator of the covariance 
matrix is not guaranteed to be positive definite. This is a 
deficiency of this estimator. However, this is a separate issue 
from the accuracy of the asymptotics. The asymptotics failing 
is not the reason the estimate is not positive definite. The 
problem is that we are using individual linear combinations of 
a transformation of the correlations in our estimator, so even 
though the unstructured and structured estimates are both 
positive definite, the resulting estimator may not be. However, 
the estimator proposed in the next section is guaranteed to 
be positive definite. 
3.2 Rotation Shrinkage Estimator 
Another way to parameterize the covariance matrix is through 
the eigenvalues and a decomposition of the rotation matrix 
through the p ( p  - 1)/2 Givens angles (Hoffman, Raffenetti, 
and Ruedenberg, 1972). Similar t o  the prior underlying 
the correlation shrinkage estimator, we replace the prior in 
Daniels and Kass (1999) with the following more general prior 
distribution on the Givens angles: 

where O, represents the Givens angles specified under the 
assumed covariance structure. To form an approximate estim- 
ator based on this prior, we will need to derive the asymptotic 
distribution of the Givens angles. The diagonal element of the 
information matrix corresponding to Oij takes the form 

I(Oij,Oij) = tr  (C-'d (OtAO) /dOijC-'d (OtAO) / d O i j )  

= -2 + 2 tr  (dO/dOijOtA-'OdO/dOijA) 

+ tr  (Od (Ot)  /dOijd (Ot)  /dO,j) , 

and the off-diagonal elements corresponding to ( O i j ,  O T s )  take 
the form 

I (Oi j ,  O r s )  = 2 tr  (dO/dOr,OtA-'OdO/deijA) 

+ t r  (OdOt/dOrsdOt/dOij) . 

For additional details, see the Appendix. 
Given the asymptotic distribution of the Givens angles, we 

can approximate the specified model for B with a normal- 
normal model. Based on this model, we replace the sample 
Givens angles with the following estimator: 

-1 -2  8 = logit-' [(I(logit (6)) -' + .i21) 7 logit (6)  
+ (I(logit(8))-' +i21)-' 

x (I(1ogit (~))- l logi t  (B~))], (7) 

where I(logit(6)) is the observed information matrix for the 
logit of the Givens angles, the logit of a vector is the vector 
of the logits, and logit-' is the inverse of the logit function. 
8, is computed using the same procedure as Bs;  estimation of 
T~ uses (5) with O in place of p. 

To shrink toward a structure, we also need to  shrink the 
eigenvalues. We will use a modification of the log eigftnvalue 
posterior mean estimator given in (2), replacing log(X) with 
lads ) , 

We will subsequently refer to the estimator, specified by (7) 
and (8),  that shrinks the Givens angles and the log eigenvalues 
as the rotation shrinkage estimator and to the estimator that 
only shrinks the log of the eigenvalues, specified by (8),  as the 
structured log eigenvalue estimator. 

4. Simulation Studies 
We will perform two simulations to assess the operating 
characteristics of these estimators. The first will evaluate 
the risk in estimating a covariance matrix. The second 
will evaluate mean squared error of the estimators of the 
regression coefficients. 

4.1 Estimation of the Covariance Matrix 
Design. For the first simulation, we will examine the risk for 
each of these estimators using Stein's loss, L1 = tr(kE-') - 
log $C-lI - p .  Specifically, we consider the following model 

f i  N N(0, c). 
Because the reason for using the shrinkage estimators is to 
improve on the sample covariance estimator, for each estima- 
tor we have tabulated the percentage reduction in average loss 
(PRIAL), which is defined as the difference between the risk 
of the sample covariance matrix and the risk of the estimator 
divided by the risk of the sample covariance. We consider 
shrinking toward two structures, diagonal and AR( l), labeled 
as simulations A1 and A2, respectively. For Al ,  we considered 
six true matrices, i.e., two diagonal covariance matrices, (I) 
equal eigenvalues, and (11) a somewhat ill-conditioned matrix, 
to examine how the estimators that shrink the eigenvalues 
perform. We also considered three nondiagonal matrices, i.e., 



Shrinkage Est imators  for Covariance Matrices 1177 

Table 1 
Percentage reduction in average loss (PRIAL) for 

estimating C ( p  = 5) for  samples of size 10, 20, and 
40. Negative values indicate increases in risk. The 
dashes correspond to a PRIAL <-120. Details on 

the true C can be found in Section 4.1. Ledoit, Ledoit 
estimator; Stein, Stein estimator; log eigen, log eigenvalue 

posterior mean estimator; rotation, rotation shrinkage 
estimator; cow, correlation shrinkage estimator. 

C n Ledoit Stein Log eigen Rotation Corr 

I 10 91 63 
20 90 67 
40 90 67 

I1 10 - 19 
20 - 17 
40 - 13 

IIRl 10 - 

20 - 
40 - 

IIRz 10 - 
20 - 

40 - 

I11 10 87 
20 82 
40 74 

10 
16 
13 
19 
17 
13 
61 
61 
58 

51 
64 
70 
11 
7 
3 

11 
6 
4 

11 
7 
4 

50 
59 
57 

51 39 
64 51 
70 56 

39 
51 
57 

-118 
-63 
-31 

0 - 19 
-4 -3 
- 13 0 

49 37 
56 43 
47 41 

- 
- 
- 

- 

- 
- 

two rotations of matrix 11, R1 and Rz (in terms of Givens 
angles), and a matrix with all small correlations. The latter 
will be a situation that is close to diagonal. The matrices are 
as follows: 

I diag(1, 1, 1, 1, l), 
I1 diag(1, .75,(.75)’,(.75)1°, (.75)”) = diag(1,.75, .56, 

.06, .003), 
IIRl matrix I1 with Givens angles all set t o  ~ / 4 ,  
IIRz matrix I1 with Givens angles evenly spaced between 

111 variances all set t o  one, correlations all set t o  .1. 

For A2, we also considered six true matrices: an AR(1) 
structure (I-A2), a structure close to  AR(1) (II-A2), and four 
matrices far from the AR(1) structure (111-A2-VI-AZ), three 
with a Toeplitz correlation structure in which the elements are 
equal along subdiagonals (correlation bands). The matrices 
are 

I-A2 AR-1 structure, variances set to (1,1,1,1,1) and cor- 
relation bands set to (.7, .49, .34, .24), 

11-A2 close to AR-1 structure, variances set to ( 3 ,  .9, 1.0, 
1.1, 1.2) and correlation bands set to (.4, .15, .lo, 

111-A2 far from AR-1 structure, variances set to (1,2,3,4,5) 
and correlation bands set to (.7, .7, .7, .7), 

IV-A2 far from AR-1 structure, variances set to (1, .01, .01, 
.01, .01) and correlation bands set to (0, 0, O,O),  

V-A2 far from AR-1 structure, variances set to (1, .01, .01, 
.01, .01) and correlation bands set t o  (3, .7, .8, .9), 

VI-A2 far from AR-1 structure, eigenvalues set to (1, .75’, 
.753, .754) with Givens angles evenly spaced between 

(-Ti4, T/4), 

(--71/4,7r/4). 

Table 2 
Percentage reduction in average loss (PRIAL) for  
estimating C ( p  = 20) for  samples of size 40 and 

100. Negative values indicate increases in risk. The 
dashes correspond to  a PRIAL <-120. Details on 

the true C can be found in Section 4.1. Ledoit, Ledoit 
estimator; Stein, Stein estimator; log eigen, log eigenvalue 

posterior mean estimator; rotation, rotation shrinkage 
estimator; corr, correlation shrinkage estimator. 

C n Ledoit Stein Log eigen Rotation Corr 

I 40 99 84 
100 99 76 

I1 40 - 24 
100 - 9 

IIRl 40 - 26 
100 - 9 

IIRz 40 - 25 
100 - 9 

I11 40 90 81 
100 75 78 

13 13 
18 18 
4 
2 
4 
2 
4 -63 
2 

12 2 
14 -17 

- 

- 

- 

- 

- 

36 
68 
35 
70 

20 
16 
31 
45 

We ran simulation A1 for sample sizes of n = 10,20,40 
and p = 5 and used the Stein, Ledoit, and log eigenvalue 
posterior mean estimators to shrink the eigenvalues and the 
rotation and correlation (without the variances, (4)) shrinkage 
estimators to shrink toward a structure (diagonal). We also 
reran simulation A1 for sample sizes of n = 40,100 and p = 
20. We ran simulation A2 for sample sizes of n = 10,20,50. 
Additional details on the estimators used in simulation A2 
are given in the next section. 

Results. The results of simulation A1 appear in Table 1. 
The eigenvalue estimators all shrink the sample eigenvalues. 
The largest gains are evident when the eigenvalues are close 
together (with PRIAL as large as 67%). Specifically, the Stein 
performs well across all situations, especially when the true 
eigenvalues form one or several groups, while the log eigen- 
value estimator does best when the true eigenvalues are close 
together. The Ledoit estimator also does very well for eigen- 
values that are close together (with PRIAL as high as 90%) 
but considerably overshrinks when they are spread out, severe- 
ly overestimating the smallest eigenvalues. 

For the shrinkage-testructure estimators, the correlation 
and rotation shrinkage estimators, when the structure is cor- 
rect or close (matrix 111), the estimators do very well (PRIAL 
30-60%); the rotation estimator has some problems regarding 
the accuracy of the asymptotics (which we will comment upon 
more in Section 4.3). When the structure is not close, they can 
do poorly in small samples (see cases II-Rl and R2); in addi- 
tion, we see the log eigenvalue posterior mean estimator is the 
same as the structured log eigenvalue estimator for matrix I 
(and it does well). However, as the sample size gets large, the 
data will dominate the incorrectly specified structure. 

The results of simulation A1 for p = 20 appear in Table 2. 
In terms of introducing stability by shrinking the eigenvalues, 
the Stein and log eigenvalue posterior mean estimator gave 
smaller risks for all cases; the Ledoit estimator still overshrunk 
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Table 3 
Percentage reduction in average loss ( P R I A L )  for estimating 

C ( p  = 5) for samples of size 10, 20, and 50. Negative 
values indicate increases in risk. The dashes correspond to 

a PRIAL <-120. Details on the true C can be found in 
Section 4.1. Stein, Stein estimator; struc log, structured 

log eigenvalue shrinkage estimator; rotation, rotation 
shrinkage estimator; cow, correlation shrinkage estimator. 

c n Stein Struc log Rotation Corr 

I-A2 

11-A2 

111-A2 

IV-A2 

V-A2 

VI-A2 

10 33 
20 19 
50 7 
10 46 
20 34 
50 15 
10 33 
20 22 
50 9 
10 47 
20 46 
50 44 
10 26 
20 13 
50 3 
10 52 
20 43 
50 24 

34 
20 
15 
52 
33 
15 
26 
13 
5 

48 
46 
44 
26 
13 
3 

64 
50 
24 

57 
48 
38 
79 
73 
62 

- 54 
- 78 
-81 

__ 
- 

- 

- 

- 

- 

65 
44 
3 

the small eigenvalues. The correlation shrinkage estimator did 
best when shrinking toward the correct structure (or close to 
it), matrices I, 11, and 111, with PRIAL 16-70%. 

After some preliminary work for simulation A2, we decided 
to stabilize the correlation and rotation estimators by shrink- 
ing the Stein estimator, as opposed to the unstructured max- 
imum likelihood (ML) estimator toward the AR(1) structure, 
because the unstructured ML estimator is very unstable in 
small- to medium-size samples. In addition, in simulation Al ,  
the Stein did best overall among the estimators introduced in 
Section 2, so in this simulation, we use the Stein to shrink the 
eigenvalues and the correlation, structured log eigenvalue, and 
rotation estimators to shrink toward a structure (AR( 1)). We 
consider the structured log eigenvalue estimator separately 
from the rotation estimator because there is concern about 
the asymptotic approximations used in computing the rota- 
tion estimator. 

The results of simulation A2 appear in Table 3. The Stein 
estimator performed well for all six cases (PRIAL 3-50%). 
The structured log eigenvalue estimator also resulted in reduc- 
tions in loss for all the cases, with the largest reductions when 
the true structure was close to AR(1) (PRIAL 15-50%). The 
correlation shrinkage estimator had large reductions when the 
structure was close to correct (cases I, 11, and VI) and the ro- 
tation shrinkage estimator had similar problems with asymp- 
totics to simulation Al.  

4.2 Estamataon of the Regression Coeficaents 
The first simulation showed reductions in risk of as much 
as 70% in estimating C. We now focus on estimation of the 
regression coefficients (or fixed effects) in model (1). 

Design. To evaluate our estimators for @, 

where 9 is our estimate of the covariance matrix, we will 
compute mean squared error. We leave examination of actual 
coverage probabilities of confidence regions for future work 
in which we will adjust the standard error of the regression 
coefficients for the uncertainty in estimating C. 

We conduct two simulations, B1 and B2, varying the di- 
mension of the covariance matrix, C, and the regression 
vector, p. In simulation B l ,  we assume Xit = (polyt(l),gi), 
where t = 1,. . . ,p ,  polyt(l) is a first-order polynomial in t ,  
and gi  is a binary indicator equal to 1 with probability 112 
and -1 with probability 112. This design matrix was chosen 
to allow for both time-varying and baseline covariates. We 
set p = (5,3,2). We consider p = 5 and sample sizes of 10, 
20, 40, 100. In simulation B2, we assume Xi t  = (polyt(3), g i ,  
a i ,  bi, ci), where ai is a binary indicator equal to one with 
probability 415, bi is a standard normal, and ci is a scaled 
chi-squared random variable with 3 d.f. Similar to the first 
simulation, this design matrix was chosen to allow for time- 
varying and baseline covariates with different distributions. 
We set p = (4,2, -2,2, I, 2, .5, .7) and consider p = 10 with 
n = 20,40,100. 

For simulation B1, we consider six matrices. The matrices, 
labeled with the suffix -B1, are the same as the -A2 matrices 
except matrix 11-B1 is slightly different and is 

11-B1 close to AR-1 structure, variances set to (.3, .7, 1.1, 
1.5, 1.9), and correlation bands set to (.4, .25, .22, 
.24). 

For simulation B2, we extend the simulation B1 true 
matrices to p = 10 as follows: 

I-B2 AR-1 structure, variances set to (1,1,1,1, l ) ,  and 
correlation bands set to (.7, .72, . . . , .7’), 

11-B2 close to AR-1 structure, variances evenly spaced 
from .8 to 1.2, and correlation bands set to (.9, .8, 
.75, .68, .57, .52, .48, .42, .37), 

111-B2 far from AR-1 structure, variances evenly spaced 
from 1 to 10, and correlation bands set to (.7, .7, . . . , 

IV-B2 far from AR-1 structure, variances set to (1, .01, .01, 

V-B2 far from AR-1 structure, variances same as IV-A2, 

.7), 

. . . , .Ol), and correlation bands set t o  (O,O,  . . . , O ) ,  

and correlation bands set to (.8,.7,.7 ,... ,.7, .9), 

from AR-1 structure, eigenvalues set to (1, .75, .752, 
. . . , .75’), with Givens angles evenly spaced between 

VI-B2 far 

(-../4, ;.r/4). 

We compute the unstructured restricted maximum 
likelihood estimator, the restricted maximum likelihood 
estimator under AR(l), the Stein eigenvalue estimator, 
and the correlation, structured log eigenvalue, and rotation 
estimators. Similar to simulation A2 in Section 4.1, we 
decided to stabilize the correlation and rotation estimators 
by shrinking the Stein estimator. 

Results. The results of simulations B1 and B2 appear in 
Tables 4 and 5. First, we point out that, when the structure 
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Table 4 
Mean squared error (MSE) for estimating the regression coefficients for samples 
of size 10, 20, 40, and 100. Details on the true C can be found in Section 4.2. 

Struc, AR( 1) structured estimator; unstruc, unstructured estimator; Stein, 
Stein estimator; struc log, structured log eigenvalue shrinkage estimator; 

rotation, rotation shrinkage estimator; corr, correlation shrinkage estimator. 

c n Struc Unstruc Stein Struc log Rotation Corr 

I-B1 

11-Bl 

111-B1 

IV-B1 

V-B 1 

VI-B 1 

10 
20 
40 

100 
10 
20 
40 

100 
10 
20 
40 

100 
10 
20 
40 

100 
10 
20 
40 

100 
10 
20 
40 

100 

.042 .085 

.021 .027 

.010 .011 

.0042 .0044 

.042 ,060 
,021 .019 
.0104 .0087 
,0040 .0031 
.151 .193 
,073 .064 
.038 ,028 
,015 .011 
.0038 .0005 
,0020 .0002 
.0011 .0001 
,0004 .oooo 
.0100 .00027 
.0053 .00009 
.0027 .00004 
.00091 .00001 
.010 .019 
,0052 ,0063 
.0025 .0026 
.0011 .0010 

.068 

.024 

.011 

.0043 

.049 

.018 

.0085 
,0031 
.161 
.061 
,028 
.011 
.0004 
.0001 
.0001 
.oooo 
.00024 
.00009 
.00004 
.00001 
.015 
,0056 
.0025 
.0010 

.063 

.024 

.011 

.0043 

.046 

.018 

.0084 

.0031 

.152 

.059 

.027 
,011 

.0004 
,0001 
,0001 
.oooo 
,00024 
.00009 
.00004 
.00001 
,013 
.0054 
.0025 
,0010 

,057 
,025 
.011 
.0045 
,045 
.019 
.0091 
.0032 
.154 
.068 
.032 
.012 
.0004 
.0001 
,0001 
.oooo 
.0023 
.0022 
.00038 
.00008 
.013 
.0054 
,0025 
.0010 

.050 

.023 
,010 
.0043 
,041 
.018 
.0083 
,0031 
,138 
,066 
,028 
.011 
.0010 
.0005 
.0003 
.0001 
.0020 
.00062 
.00020 
.00004 
.012 
.0052 
.0025 
,0010 

is correct (case I-B1(2)), the structured estimator dominates 
in terms of mean squared error (MSE) (reductions of over 
50% over the unstructured estimator). However, the shrink- 
age estimators are competitive even for the very small sample 
size, n = 10 (reduction as large as 30%), and the shrink- 
age estimators dominate when the structure is incorrect; the 
structured estimator does very poorly in this case (in particu- 
lar, see cases IV and V-Bl(2)). When the structure is correct 
or close (cases I-, II-B1(2)), the correlation and structured log 
eigenvalue outperform the unstructured (reductions as large 
as 50%), and for the small sample size, the structured log 
eigenvalues estimator does well against the unstructured even 
for matrices III-B1(2)-V-B1(2) (far from AR(l)), with reduc- 
tion as large as 33% (and no increases). The Stein estimator 
is never worse than the unstructured and is better than the 
estimators that shrink toward AR(1) when the structure is 
far from correct (III-B1(2)-VI-B1(2)) for sample sizes of 20 
and 40 (40 and 100). For case 11-B2 of simulation B2, the 
correlation shrinkage estimator appears to do worse than the 
Stein and structured log eigenvalues estimator for n = 100. 
However, for this case, a high proportion (about 40%) of the 
correlation shrinkage estimates were not positive definite. If 
we restrict the comparison of losses to datasets that resulted 
in positive definite correlation shrinkage estimates, the corre- 
lation shrinkage estimator did about as well as the Stein and 
structured log eigenvalue estimators. The rotation shrinkage 

estimator has trouble when the eigenvalues are close together 
and its sampling distribution is not well approximated by a 
normal distribution in nonlarge samples, as discussed in Sec- 
tion 4.1. Overall, across all the sample sizes, if the true ma- 
trix is close to the hypothesized structure, the correlation and 
structured log eigenvalue estimator do best, with reductions 
in MSE as high as 30-40% for small sample sizes. 

4.3 Conclusions from the Simulations 
Overall, the shrinkage estimators have much smaller risk 
than the unstructured maximum likelihood estimator (the 
sample covariance matrix in the simplest case). As the sample 
size grows, the shrinkage estimators and unstructured REML 
estimator become indistinguishable, and in small samples 
where the hypothesized structure is correct or nearly correct, 
the shrinkage estimators can offer substantial improvements, 
with reductions in risk for estimating C and /3 as large as 70%. 

The simulations raise concern about the instability of the 
rotation estimator. Additional exploratory work showed that 
the logits of the sample Givens angles are slow to  approach 
normality, so the estimator does not work well. As a result, 
we believe it is most prudent to shrink the eigenvalues but 
not the angles. 

Ultimately, we recommend first shrinking the eigenvalues 
of the unstructured estimator, and thus increase its stability, 
by replacing it with the Stein estimator and then shrinking 
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Table 5 
Mean squared error (MSE) for estimating the regression coeficients for  
samples of size 20, 40, and 100. Details on the true C can be found in 

Section 4.2. For matrices I V - m  and V-B2, the MSEs are multiplied by 100. 
Stmc, AR( 1) structured estimator; unstruc, unstructured estimator; Stein, 

Stein estimator; struc log, structured log eigenvalue shrinkage estimator; 
rotation, rotation shrinkage estimator; cow, correlation shrinkage estimator. 

C n Struc Unstruc Stein Struc log Rotation Corr 
~~ 

I-B2 20 
40 

100 
11-B2 20 

40 
100 

111-B2 20 
40 

100 
IV-B2 20 

40 
100 

V-B2 20 
40 

100 
VI-B2 20 

40 
100 

.035 
,016 
,0053 
,063 
,027 
.0092 
.279 
.141 
,062 
.12 
.051 
.017 
.69 
,265 
.089 
.0044 
.0020 
,00065 

.082 

.022 

.0055 
,14 
.033 
.0097 
.162 
.042 
.014 
.024 
.0065 
,0018 
.026 
,0071 
,0017 
.0053 
.0014 
,00036 

,064 
.020 
.0054 
. l l  
,030 
,0094 
.135 
,040 
.015 
.016 
.0054 
,0017 
,022 
,0071 
.0017 
.0043 
.0013 
.00035 

.059 

.020 

.0054 

.10 

.030 
,0094 
,130 
.039 
.015 
.016 
.0054 
.0017 
,022 
.0071 
.0017 
.0041 
.0013 
.00035 

.047 
,021 
.0069 
,075 
,032 
.0107 
.189 
.096 
.038 
.052 
.037 
.015 
.24 
.127 
.029 
.0038 
.0015 
.00037 

.042 

.017 

.0053 

.063 

.029 

.0127 

.132 

.048 
,018 
.036 
,027 
,0026 
.12 
.024 
.0086 
.0033 
.0013 
.00035 

the Stein estimator toward a structure using the structured 
log eigenvalue or correlation shrinkage estimator. In general, 
the structured log eigenvalue estimator tends to be more con- 
servative than the correlation shrinkage estimator; i.e., when 
the structure is correct or close, the correlation shrinkage does 
a little better, but when the structure is far from correct, the 
correlation shrinkage does a little worse. The example in Sec- 
tion 6 illustrates the magnitude of differences that can be seen 
in ,b and its standard error in practice when using different 
estimators for C. 

5. Asymptotic Properties of the Estimators 
All of the estimators for the covariance matrix discussed in 
Sections 2 and 3 and applied in the simulations are consistent, 
and the resulting estimators for the regression coefficients are 
consistent and asymptotically efficient. A theorem appears 
below and a sketch of the proof with additional details on 
regularity conditions (assumptions) appears in the appendix. 

THEOREM: Under regularity conditions (assumptions 3- 
11) as specified in Magnus (1978) and under the additional 
assumption that all the eigenvalues of the true matrix, C ,  are 
distinct, all the shrinkage estimators proposed in Sections 2- 
4 are consistent and the resulting estimators of the regression 
coeficients, p, are consistent and asymptotically eficient. The 
asymptotics in this case correspond to the number of of sub- 
jects, n, going to infinity with p ,  the dimension of C jixed. 

6. Example 
We illustrate our approach on a study of sleep electroencepha- 
lograms (EEGs) in healthy men and women (Carrier et al., 

2000). One of the goals of this study was to determine the 
effect of age on EEG spectra in the absence of psychiatric 
disorders. For this analysis, EEG measurements were first 
transformed from the time domain to the frequency domain; 
these functions of frequency are call power spectra. The power 
spectra were then log transformed and finely discretized into 
thirty-two 1-Hz bins. For our analysis, we only included males, 
for a total of 53 subjects, and only used the first twenty-four 
1-Hz bins. Thus, we have to estimate a 24 x 24 covariance ma- 
trix with a sample size of 53. Following Carrier et al. (2000), 
we model the mean of the log power spectra using an intercept 
and nine spline basis functions. The effect of age was exam- 
ined by including an interaction of the intercept and each 
basis function with age. 

Covariance structure selection in SAS proc mixed using the 
BIC suggested an AR(1) structure fit. Below, we provide es- 
timates, standard errors, and confidence regions for a subset 
of the regression coefficients for the unstructured estimator, 
for the AR(1) structured estimator, and for the structured log 
eigenvalue estimator using the algorithm discussed in the In- 
troduction. We do not present the results for the correlation 
shrinkage estimator because, for this example, the estimate 
was not positive definite. 

Table 6 shows two of the estimated coefficients, the inter- 
actions of age with the first and ninth spline basis functions, 
and their standard errors. Important differences are seen in 
the estimates and their standard errors. In particular, when 
the structured log eigenvalue estimator is used, both inter- 
actions are highly significant; for the interaction of age with 
the first spline basis function, this agrees with the AR(1) but 
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0.017 J 

oms - 
0.m : 
0.013 - 

0.016 - 

Table 6 
Estimates, standard errors, and the ratios of the estimate 

to the standard error for the regression coefficients 
corresponding to the interaction of age and the first 

(age x Bl) and ninth (age x B9) spline bases functions 
under three covariance structure models. AR(l), AR(1) 
structured estimator; unstruc, unstructured estimator; 

struc log, structured log eigenvalue shrinkage estimator. 
0.W 
0.024 - 
0.w 
0.001 - 
am - 

0.m : 

-0.001 

AR(1) Unstruc Struc log 

Age x B1 .0097 1.0029) .0045 (.0024) .0063 (.0020) 
Ratio 3.30 1.87 3.10 
Age x B9 .0164 (.0128) .0131 (.0034) .0131 (.0043) 
Ratio 1.28 3.83 3.02 

not the unstructured model, while for the interaction of age 
with the ninth basis function, it agrees with the unstructured 
model but not the AR(1). 

Figure 1 shows the confidence regions for jointly estimating 
the aforementioned regression coefficients. The area of the 
region and its orientation are clearly changing when using 
the different estimators. 

Because of the simulation results in Section 4, we would rec- 
ommend making inferences (and predictions) using the struc- 
tured log eigenvalue estimators because we believe this esti- 
mator to produce estimates of p closer to the truth. So, in 
this case, we would conclude that the interaction of age and 
the first and ninth spline bases are significantly larger than 
zero, implying that these aspects of the EEG spectra do differ 
by age. 

7. Discussion 
We have proposed classes of estimators for a covariance ma- 
trix that shrink some functional of the matrix to  obtain bet- 
ter properties. The structured log eigenvalue, rotation, and 
correlation shrinkage estimators offer a compromise between 
completely unstructured and structured estimators. The Stein 
and log eigenvalue posterior mean estimators attempt to over- 
come the distortion of the eigenvalues of the unstructured es- 
timators. Substantial gains were seen in estimating the matrix 
while gains were also seen in the mean squared error of es- 
timators of the regression coefficients. In both situations, we 
obtain asymptotically optimal estimators. Because they are 
both effective and easy to  compute using simple macros in 
standard statistical software, we would recommend the Stein, 
structured log eigenvalue (8), or correlation shrinkage ((4), 
(6)) estimators in practice. 

These results extend and generalize those in Daniels and 
Kass (1999) and show that these simpler estimators can be 
competitive with the more computationally intensive estima- 
tors discussed by Daniels and Kass (1999). The accuracy of 
the asymptotics in small samples is a limiting factor in the 
gains produced by these new estimators. The approach in 
Daniels and Kass (1999) produces estimates that do not rely 
on any asymptotic approximations. The accuracy of the ap- 
proximations in our approach might be assessed by comparing 
the inverse of the observed information matrix to  an estimate 
of variability generated by a bootstrap approach. Clearly, 
these shrinkage estimators are superior to the unstructured 
estimator in small- to medium-sized samples and superior t o  
the structured covariance estimator when the hypothesized 

AGEB 
o.m8 -I 

0.05 0.M 0.M 0.04 0.m -0.02 -0.01 0.00 

AGE89 - Wfl) - u a  - %JcLog 

Figure 1. Confidence regions for the coefficients corres- 
ponding to the interaction of age and the first and ninth 
spline bases functions for the three models. AR(l), AR(1) 
structured estimator model; Unstruc, unstructured estimator 
model; struc log, structured log eigenvalue shrinkage estima- 
tor model. 

structure is incorrect. When a particular covariance structure 
is plausible and may be close to correct but there are doubts, 
these estimators allow the data to  be informative. 

We plan on extending this work in a variety of directions. 
We are pursuing an alternative parameterization with which 
to shrink a covariance matrix toward a structure that does not 
require any asymptotic approximations and should be compu- 
tationally efficient, as suggested by Daniels and Pourahmadi 
(2001). We also want t o  extend this work to estimating a ran- 
dom effects covariance matrix in two-level models and to as- 
sessing the subsequent impact on estimates of random effects. 
The asymptotics needed to form the approximate shrinkage 
estimators need to be worked out, especially for generalized 
linear random effects models. In addition, accounting for the 
estimation of the covariance matrix when estimating standard 
errors of random effects might be implemented using the ap- 
proach discussed in Kass and Steffey (1989). 

These methods can be extended to  the case of generalized 
estimating equations (GEES) for longitudinal data with com- 
mon measurement times across subjects. In this case, because 
we often think of a working correlation structure, we could fo- 
cus on the estimator that shrinks the correlations. In future 
work, we intend to examine the operating characteristics of 
such estimators for use with binary and count data. 
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RESUME 
L’estimation de matrices de covariance dans de petits 6chan- 
tillons a 6tk Btudike par de nombreux auteurs. Les estimateurs 
standard, comme ceux du maximum de vraisemblance non 
structure (ML) ou structure (REML) peuvent 6tre trBs insta- 
bles avec des estimations des plus petites valeurs propres trop 
petites et celles des plus grandes trop grandes. Une approche 
standard pour obtenir une meilleure stabilitk dans cette sit- 
uation consiste a calculer les estimateurs ML ou REML SOUS 

certaine structure simple, comme la symCtrie composCe ou 
l’independance, qui implique l’estimation de beaucoup moins 
de param8tres. NCanmoins ces estimateurs ne sent consistants 
que si l’hypothkse de structure est correcte. Si l’int6r6t se fo- 

Daniels, M. J. and Kass, R. E. (1999). Nonconjugate Bayesian 
estimation of covariance matrices and its use in hierar- 
chical models. Journal of the American Statistical Asso- 
ciation 94, 1254-1263. ’ 

Daniels, M. J. and Pourahmadi, M. (2001). Bayesian analysis 
of covariance matrices and dynamic models for longitu- 
dinal data. Technical report, Preprint 2001-03, Depart- 
ment of Statistics, Iowa State University, Ames. 

DerSimonian, R, and Laird, N. (1986), Meta-analysis in clin- 
ical trials. Controlled Clinical Trials 7, 177-188. 

DeY, D. K. and Srinivasan, C. (1985). Estimation of a co- 
variance matrix under Stein’s loss. Annals of Statistics 

calise sur l’estimation de coefficients de regression avec er- 13, 1581-1591. 
reurs corrBlBes (ou longitudinales), un estimateur sandwich 
de la matrice de correlation peut 6tre utilise pour fournir des 
variances des coefficients estimes qui sont robustes dans le 
sens oii ils restent consistants m6me si la structure de covari- 
ance est ma1 specifiee. Avec de grosses matrices, neanmoins, 
I’inefficacite de estimateur sandwich est ennuyeuse. Nous con- 
sidkrons ici, deux approches gCnerale de “rBtr6cissement” pour 
estimer matrice de covariance et coefficients de rkgression. La 
premiere implique de rktrecir des valeurs propres de l’estima- 
teur non structurC ML ou REML. La second de retrecir un 
estimateur non structure pour obtenir un estimateur struc- 
ture. Pour ces deux cas, les donnCes dhterminent la quantitk 
de retrecissement. Ces estimateurs sont consistants et don- 
nent des estimations consistantes et asymptotiquement effi- 
cace des coefficients de rkgression. Des simulations montrent 
l’am6lioration des caracteristiques des estimateurs retrecis de 
la matrice de covariance et des coefficients de regression dans 
des kchantillons finis. L’estimateur final inclut une combinai- 
son des deux approches de retrecissement, celle des valeurs 
propres et celle relative B une structure. Nous illustrons notre 
approche sur une etude d’EEG lors du sommeil qui deinande 
l’estimation d’une matrice de covariance 24 x 24 et pour laque- 
lle des infkrences sur les paramhtres moyens sont trBs depen- 
dantes de l’estimateur de covariance choisi. Nous recomman- 
dons de faire de l’infkrence en employant un estimateur retreci 
particulier qui donne un compromis raisonnable entre estima- 
teurs structures et non structurks. 
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APPENDIX 

Part 1: Asymptotic Distribution of the Givens Angles 
Here we will derive an expression for the asymptotic vari- 
ance of the Givens angles. First, define vech(C) to be the 
vector composed of the lower triangular elements of the co- 
variance matrix and define the spectral composition of C to be 
C = OthO. We can derive the general form for the informa- 
tion matrix of the Givens angles from the information matrix 
for vech(C), I(vech(C)) = (1/2)UT(C-'@3C-1)U, where U is 
the gradient vector corresponding to the derivative of C with 
respect to the lower triangular elements of C, vech(C), and 
is of dimension p(p + 1)/2. We replace U by G, where G is 
the gradient vector corresponding to the derivative of vech( C) 
with respect to the eigenvalues and the Givens angles. Based 
on results in Yang and Berger (1994), the information ma- 
trix for vech(C), parameterized in terms of the eigenvalues 
and Givens angles, is block diagonal with the upper block a 
known form, so we only need to compute the lower block. Us- 
ing the identity tr(ABCE) = (vech(E)t)t(Ct @ A)(vech(B)), 
the diagonal elements corresponding to the Givens angles take 
the form 

and the off-diagonals take the form 

1 
-b f j  (C-' @3 C-l) b,,, 
2 

where 

So we have 

b t .  2 3  (C-I @ C-l)  6ij 

= t r  (C- ld  (OtRO) /d&jC-ld (OtAO) /d0i j )  

= -2 + 2 tr (dO/dOijOtA-'OdO/dO~jA) 

+ tr  (Od ( O t )  /d0 i jd  (Ot )  /d&j )  . 
Using a similar derivation, the off-diagonal elements sim- 

b:j (C-I @3 C-l) b,, = 2 t r  (dO/dO,,OtA-lOdO/dOijA) 
plify to 

+ tr  (OdOt/dOr,dOt/dOij) . 

For the logit of B i j ,  we can multiply the information matrix 
by a diagonal matrix with elements [(7r/2 + 0)(7r/2 - 0)]/7r. 

When 0ij = 0 for all i,j, the information matrix simpli- 
fies to a diagonal matrix with diagonal element correspond- 
ing to 0ij ,  (X i  - Xj)2/XJ j .  When considering the logit of 
the angles, the diagonal element is 7 r 2 ( X i  - Xj)'/16XiXj. As 
a consequence, this suggests a choice of the constant when 
using the uniform shrinkage prior for T~ in these models. We 
might choose the harmonic mean of the variances of the log- 
its of Bij's, evaluated at 0 = 0 (cf., Daniels, 1999, or Chris- 
tiansen and Morris, 1997, for a discussion of choosing these 
constants). This form also illustrates a problem when any of 
the X are equal: the variance is infinite since the 0ij are no 
longer unique. For example, it is known that there is not a 
unique rotation matrix for the identity matrix. 

Part 2: Sketch of Proof of Theorem in Section 5 
We give a brief outline of the proof here by proceeding through 
the six steps given in Section 1 to compute the shrinkage es- 
timator for the covariance matrix and the resulting estimator 
for the regression coefficients. The main assumptions required 
in the theorem include the design matrix being full rank and 
n > p and several assumptions regarding either the continu- 
ity or uniform convergence, or both, of functions of the design 
matrix ( X ) ,  C-', and its gradient and Hessian. We refer the 
reader to Magnus (1978) for specific details. 

Steps 1 and 3. By Theorem 5 in Magnus (1978), the max- 
imum likelihood estimates of C are consistent. 
Step 2. Using the following theorem: If X ,  (vector) con- 
verges in probability to X (vector) and g is continuous, 
then g ( X n )  converges in probability to g ( X )  (cf., Serfling, 
1980, p. 24). Given the consistency of the estimator for 
C, through application of this theorem and under the 
condition that all the eigenvalues of the true matrix are 
distinct, the Stein estimator is consistent. This is clear 
from the form of the Stein estimator given in Section 
2.1. 
Step 4. The estimators for the parameters that determine 
the amount of shrinkage, T ~ ,  all converge to a constant. 
Step 5. Under the assumptions specified in Theorem 5 
in Magnus (1978), with the additional assumption of dis- 
tinct eigenvalues for the rotation shrinkage estimator and 
by application of the convergence in probability theorem, 
e s h  converges in probability to C. The form of the esti- 
mators Csh are the standard form seen in empirical Bayes 
and, as with the Stein estimator, the consistency is clear. 
Step 6. Through application of the corollary to Theorem 
4 in Magnus (1978), will be consistent and asymptoti- 
cally efficient. 

Part 3: Matrix IIRl and IIR2 of Section 4.1 and 
Matrix VI-A2(B1) of Sections 4.1 and 4.2 
Represented in Terms of Correlations 
Correlation Matrix IIRl 
1.000 
-.871 1.000 
-.223 .097 1.000 
-.357 .I65 .651 1.000 
-.339 -.054 .013 .590 1.000 
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Correlation Mat& IIR2 
1.000 
-.146 1.000 
.358 .306 1.000 
.598 .535 .245 1.000 
.593 .217 -.269 .608 1.000 
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Correlation Matrix VI-A8 
1.000 
-.286 1.000 
-.138 .lo1 1.000 
-.087 .113 .233 1.000 
-.149 -.022 .087 .296 1.000 




