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Supplementary Material

Figure 1 illustrates the experimental setting, some grasped objects and the glove
with reflective markers used to record finger position while reach-to-grasp replications.

Glove with markers Small cone Small handle Experiment setting

Figure 1: (Left) Custom made glove with 23 reflective markers, whose positions are tracked by an

optical marker tracking system while the monkey performs the task. (Center) Two of the objects the

monkey grasped, whose data we analyzed. (Right) Experiment setting showing the monkey sitting on

the immobilizing chair, with the robot presenting the object to grasp.

S1 MGPFM: Symbol summary table, parametric as-
sumptions and alogorithmic approach overview

Algorithm 1 summarizes our modelling and data analysis approach; Table 1 contains a
description of the symbols used throughout the paper; and Table 2 lists the parametric
assumptions.
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input : Observed variables Ytrain

Low dimension d [Can be selected with BIC as in Section 4]
Parametric assumptions P for ~µ, Σ and Ψ (Table 2)
Learning options: Initialization criteria (I = MLE based or down-projection),

Stop criteria (S = num. iterations or convergence threshold )
[Optional: Observed test variables Ytest ]

output: Inferred latent variables: X̂train

Estimated parameters: Θ̂ = {~̂µ, B̂, Σ̂, Ψ̂}
[Optional: Inferred latent variables X̂test]

1. Preprocessing: align observed data

input: Ytrain, [Optional: Ytest]; output: Yaligned
train , [Optional: Yaligned

test ]
method: Continuous registration

1) Summarize each trial with energy function (Equation 3)
2) Optimize MINEIG criterion (Section S4.1)

2. Estimation and inference:
2.1 Initialize parameter estimates (Section S2.4)

input: Yaligned
train , d, I; output: Θ̂0 (set Θ̂ = Θ̂0)

method:: Matrix normal MLE based estimation or down-projection strategy

2.2 Iterate until convergence criterion C is reached:

2.2.1 Hard E-step: input: Yaligned
train , Θ̂; output: X̂train

X|{Yaligned
train , Θ̂} ∼ N (η,Λ); set X̂train = η as in Equation S2.12

2.2.2 M-step: input: Yaligned
train , X̂, parametric assumptions P; output: Θ̂

Maximization of the model loglikelihood (Equation S2.3)
~µ unconstrained (Equations S2.8, S2.9); ~µ splines (Equations S2.10, S2.11)

Σ̂ unconstrained (Equation S2.6); Σ̂ parametrized (see end of Section S2.2)

Ψ̂ (Equation S2.7), B̂ (Equations S2.8-S2.11)

3. Predict new data:

input: Yaligned
test , Θ̂; output: X̂aligned

test
method: Apply Hard-E step (Step 2.2.1)

Algorithm 1: MGPFM approach. Refer to Table 1 for symbol definitions and
Table 2 for parametric assumptions.



MULTIVARIATE GAUSSIAN PROCESS FACTOR MODEL FOR HAND SHAPE S3

Model: Yr(t) = µ(t) + BXr(t) + εr(t)
Symbol Description

p Number of kinematic variables representing a grasp.
d Dimensionality of latent trajectory (d < p).

t ∈ {1, . . . , T} Time.
r ∈ {1, . . . , R} Replication or trial.

Observed variables: Y =
{
{Yr(t)}Rr=1

}T
t=1

Yr(t) ∈ Rp×1 Kinematic p-dimensional grasping configuration at time t of replication r.

Yr(t) =
[
Y r1 (t) . . . Y rp (t)

]T
. The observed variables can be positional vari-

ables, but also velocity (denoted by a Ẏ 2p(t)) or other higher derivatives*.

Latent variables: X =
{
{Xr(t)}Rr=1

}T
t=1

Xr(t) ∈ Rd×1 Latent factor d-dimensional trajectories Xr(t) = [Xr1 (t) . . . Xrd(t)]T such that

each Xrj is drawn from an MGP with mean 0 ∈ Rd×1 and covariance function

Σ ∈ RT×T . These latent factors represent the low dimensional grasping
structure that is specific to replication r.

Parameters being inferred: Θ = {~µ,B,Σ,Ψ}
µ(t) ∈ Rp×1 Deterministic mean p-dimensional function representing the kinematics that

are common across replications, and that do not depend on a specific trial.
Let µ(t) = [µ1(t) . . . µp(t)]T and ~µ = {µ(t)}Tt=1.

B ∈ Rp×d Deterministic factor loadings matrix whose columns correspond to the d latent
factors and whose rows correspond to the p observed variables.

Σ ∈ RT×T Covariance matrix of the MGP; its form determines the temporal coherence
properties of the low-dimensional representation.

Ψ ∈ Rp×p Covariance of the normally distributed noise variables εr(t) ∈ Rp×1, such

that εr(t) =
[
εr1(t) . . . εrp(t)

]T
, where εrj (t) ∼ N (0,Ψ).

Table 1: Summary of symbols and variables. *We use Ẋ to denote the latent variables corresponding

to fitting our model with the observed velocities Ẏ . The dimensions of the velocity variables correspond

to the associated positional variables, that is, the dimensions of Y and X correspond to the dimensions

of Ẏ and Ẋ respectively.

Parametric assumptions: Θ = {~µ,B,Σ,Ψ}
Parameter Assumptions

p-dimensional varying function in time. Can be learned:
~µ = {µ(t)|µ(t) ∈

Rp×1; t = 1, . . . , T}
• Completely unrestricted / non-parametric approach, represented as a p ×
T matrix (with p × T parameters to learn). The completely unrestricted
approach can lead to over fitting, specially with small datasets.
• Represented with a B-spline basis with c (c < p) basis functions (c × p
parameters to learn). Imposes smoothing constraints in addition to reducing
the number of parameters to learn.

B ∈ Rp×d Deterministic factor loadings matrix, where d is the number of latent factors
and p the number of observed variables. To ensure identifiability of the model
we assume that BTB is diagonal.
Covariance matrix of the MGP; its form determines the temporal coherence
properties of the low-dimensional representation. Can be learned:

Σ ∈ RT×T • Completely unrestricted / non-parametric approach, represented as a T ×
T matrix. The completely unrestricted approach can lead to over fitting,
specially when there is not much data available
• Imposing structure on Σ by assuming a parametric form, for instance a

stationary exponential covariance function: Σ(i, j) = exp

(
−(i−j)2
θΣ

)
where

θΣ controls the width of the diagonal that decays exponentially.

Ψ ∈ Rp×p Covariance of the normally distributed noise variables εr(t) ∈ Rp×1. For
simplicity we assume Ψ = ρ · Ip×p with ρ > 0.

Table 2: Parametric assumptions.
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S2 MGPFM: Estimation and inference derivation

Consider the p−dimensional observed dataset:

{ Y ri (t) | i = 1, . . . , p; t = 1, . . . , T ; r = 1, . . . , R }
Y ri (t) is the ith coordinate at time t of the p-dimensional trajectory that is the rth

replication of an event, R is the number of repeated trials, T the number of time slices
and p the number of observed variables.

Let Yr(t) =
[
Y r1 (t) . . . Y rp (t)

]T
, µ(t) = [µ1(t) . . . µp(t)]

T
, Xr(t) = [Xr

1 (t) . . . Xr
d(t)]

T

and εr(t) =
[
εr1(t) . . . εrp(t)

]T
. Then we can write the MGPFM as:

Yr(t) = µ(t) + BXr(t) + εr(t). (S2.1)

Alternatively, we model the mean trajectory µ(t) with c (<< T ) B-spline basis
functions for each of the p variables. In this case µ is described through B-splines:

Yr(t) = µS(t) + BXr(t) + εr(t), µS(t) = α · (S(t))T ∈ Rp×1, (S2.2)

where S ∈ RT×c is a matrix that holds the c spline basis functions, S(t) corresponds to
one row of S and α ∈ Rp×c contains the coefficients for each of the spline basis functions.
This formulation drastically reduces the number of parameters to be estimated, while
imposing a smoothing constraint on the learned functions.

S2.1 Loglikelihood

Denote ~µ = {µ(t)}Tt=1, Y =
{
{Yr(t)}Rr=1

}T
t=1

and X =
{
{Xr(t)}Rr=1

}T
t=1

. Then the

joint distribution can be written as:

P(Y,X|~µ,B,Ψ,Σ) = P(Y|X; ~µ,B,Ψ) · P(X|Σ).

And the loglikelihood consists of two terms:

log P(Y,X|~µ,B,Ψ,Σ) = log P(Y|X; ~µ,B,Ψ) + log P(X|Σ). (S2.3)

If we simplify the model by defining Ψ = ρ · Ip×p with ρ > 0 then the first term
corresponds to:

log P(Y|X; ~µ,B, ρ)

= − 1
2

∑R
r=1

∑p
k=1

∑T
i=1

1
ρ

(
Yr
k(ti)−

[
µk(ti) +

∑d
w=1 bk,wX

r
w(ti)

])2

−R·p2 T · log ρ − 1
2 p ·R · T log 2π.

(S2.4)

The second term of the loglikelihood corresponds to the distribution of the d iid
MGPs indexed by s (denoted Xs ∈ RT×1) given the covariance function Σ(ti, tj):

log P(X|Σ) = −1

2

R∑
r=1

d∑
s=1

Xr T
s Σ−1Xr

s −
1

2
d ·R log|Σ| − 1

2
d ·R · T log 2π. (S2.5)
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In sum, if we consider the covariance simplifications then the loglikelihood of the
model is given by the sum of expressions in Equation (S2.4) and (S2.5).

We can take Equation (S2.3) and use it as a loss function to learn the components
of the model. Our approach is EM-based, in which we iterate between:

1. Estimation problem: Assuming that X are known, learn parameters ~µ ∈ Rp×T ,B ∈
Rp×d, ρ ∈ R,Σ ∈ RT×T which jointly constitute the parameter space.

2. Inference problem: Assuming that Y and all the parameters known, estimate the
latent variables X.

Iterations are stopped either by convergence of the loglikelihood or by number of iter-
ations. In the experiments we noted that 50 iterations sufficed to reach convergence.
Our approach can be thought of as Hard EM – in conventional EM, one computes a soft
posterior distribution in the E-step; in hard EM, we simply maximize the posterior. For
example, K-means can be seen as the Hard EM based algorithm for fitting Gaussian
Mixture Models.

S2.2 Estimation problem

In the first problem we assume that the latent space trajectories X are known and we
estimate the parameters ~µ,B, ρ,Σ. Here we will be maximizing the loglikelihood with
respect to the parameters.

Note that to learn ~µ ∈ Rp×T ,B ∈ Rp×d, and ρ ∈ R we only need the first term of
Equation (S2.3), that is, Equation (S2.4). And to estimate Σ we only need the second
term of Equation (S2.3), namely Equation (S2.5).

To estimate Σ we consider Equation (S2.5), let Ω = Σ−1 and perform standard
optimization to learn the covariance function of the multivariate normal, obtaining:

Σ̂ =

∑R
r=1

∑d
s=1X

r
s ·Xr T

s

dR
. (S2.6)

Estimating ρ from Equation (S2.4) is independent from estimating ~µ and B. Dif-
ferentiating Equation (S2.4) with respect to ρ and equating to zero we obtain:

ρ̂ =

∑R
r=1

∑p
k=1

∑T
i=1

(
Yr
k(ti)−

[
µ̂k(ti) +

∑d
w=1 b̂k,wX

r
w(ti)

])2

RpT
. (S2.7)

Maximizing Equation (S2.4) with respect to ~µ and B is equivalent to separately
maximizing each term for a fixed k = 1, . . . , p and, in fact, corresponds to performing p
multiple linear regressions.



S6 CASTELLANOS, VU, PEREL, SCHWARTZ, AND KASS

Consider the data vector Yk, the design matrixW, and the variables to learn βk de-

fined as follows: YkT =
[[
Y 1
k (t1), . . . , Y 1

k (tT )
]T
, . . . ,

[
Y Rk (t1), . . . , Y Rk (tT )

]T] ∈ R1×(R·T ),

W =



 X1
1 (t1) . . . X1

d(t1)
...

. . .
...

X1
1 (tT ) . . . X1

d(tT )

 IT×T

...
... XR

1 (t1) . . . XR
d (t1)

...
. . .

...
XR

1 (tT ) . . . XR
d (tT )

 IT×T


∈ RR·T×(d+T ),

and
βk

T = [bk,1, . . . bk,d , µk(t1), . . . , µk(tT )]
T ∈ R1×(d+T ). (S2.8)

Then, we can consider the p independent linear regression models:

Yk =W · βk, k = 1, . . . , p. (S2.9)

By solving these p linear regressions we can estimate the vectors βk, from which we
can read off the desired model parameters ~µ ∈ Rp×T and (after applying Gram Schmidt
orthogonalization) B ∈ Rp×d. In the case in which µ is assumed constant along time,
the estimate corresponds to the mean across time of provided estimate.

Modelling µ with splines

We have that the mean trajectory µ can be written in a B-spline basis as follows:

µS(t) = α · (S(t))T ∈ Rp×1, (S2.10)

where S ∈ RT×c is a matrix that holds the c spline basis functions (one in each column).
Vector S(t) corresponds to one row of S. We are interested in learning α ∈ Rp×c which
contains the coefficients for each of the spline basis functions and describes the data.

Our goal is to formulate similar models to Equation S2.9 for each variable k =
1, . . . , p but solving for the coefficients of the B-spline basis.

Instead of defining the auxiliary variable βk as in Equation S2.8, we define: φk =
[bk,1, . . . , bk,d, αk(1), . . . , αk(c)]

T ∈ R(d+c)×1, where k denotes the index of an observed
variable k = 1, . . . , p and αk(i) denotes the coefficient of the ith spline basis.

Equation S2.10 can be written as [µk(t1), . . . , µk(tT )]
T

= [αk(1), . . . , αk(c)]
T · ST ∈

R1×T and we want to determine the values for {αk(i)}ci=1 for each k ∈ {1, . . . , p}. Note
that βk = bk,1:d ⊕ µk and φk = bk,1:d ⊕ αk where ⊕ denotes the stacking operation for

vectors. Also bk,1:d = [bk,1, . . . , bk,d]
T ∈ Rd×1 corresponds to the kth transposed row of the

loading matrixB ∈ Rp×d. Then: βk = (Id×d∗bk,1:d)⊕(S·αk) = (Id×d⊕S)·(bk,1:d⊕αk) =
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(Id×d ⊕ S) · φk, and: Yk =W · βk =W · (Id×d ⊕ S) · φk. Consequently, we have written
an analogous problem as in Equations S2.9 to solve for the coefficients of the B-spline
basis, namely:

Yk =WS · φk, WS =W · (Id×d ⊕ S) (S2.11)

for k = 1, . . . , p. And the problem reduces to solve for φk in a similar way as before.

Constraining Σ

In the estimation procedure we can either learn Σ free as in Equation S2.6, or learn θΣ,
the univariate parameter that determines the covariance function of the MGP: Σ(i, j) =

exp
(
−(i−j)2

θΣ

)
. The latter can be done by gradient descent (numerically maximizing the

loglikelihood) or through a one dimensional search over a space of reasonable values for
θΣ. In our implementation we follow the last strategy.

S2.3 Inference problem

For the second problem (inference) we assume that the parameters Θ = {~µ,B,Ψ,Σ} are
now known and we learn the hidden variables X by maximizing the posterior probability
of X given Y and Θ. We observe that the vectorized elements of the latent factors for
replication r (denoted by vecXr ∈ R(d·T )×1) are distributed as N (0,Σ⊗ Id×d) where ⊗
denotes the Kronecker product of two matrices. Also, the vectorized difference of ob-
served trajectory Y r and mean µ given the latent factors of that replication are normally
distributed:

(vecYr − vecµ)|vecXr ∼ N ((IT×T ⊗B) · vecXr,Ψ⊗ Ip×p) .

Using standard properties of normal distributions we conclude that the posterior distri-
bution of the latent factors given Y and Θ is

vecXr|(vecYr − vecµ) ∼ N (η,Λ)

with: η = 0 + [(IT×T ⊗B) · (Σ⊗ Id×d)]T · (S2.12)[
(IT×T ⊗B) · (Σ⊗ Id×d) · (IT×T ⊗B)T + (Ψ⊗ Ip×p)

]−1 ·

(vecYr − vecµ− 0) ,

and Λ = [Σ⊗ Id×d]− (S2.13)

[(IT×T ⊗B) · (Σ⊗ Id×d)] ·
[
(IT×T ⊗B) · (Σ⊗ Id×d) · (IT×T ⊗B)T + (Ψ⊗ Ip×p)

]−1

· [(IT×T ⊗B) · (Σ⊗ Id×d)]T

And the mean of a normal distribution maximizes the loglikelihood, therefore we set:
X̂ = η. Note that the matrix we need to invert in this step is sparse and contains a lot of
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structure that we can exploit to make computation efficiently. In particular, in Equation
(S2.12), η is the product of two big matrices U and V and a vector w. Both U and V are
sparse and we do not need to fully invert V , we only need to compute V −1 · w. Hence,
we can use sparse matrices to represent U and V , and we can efficiently calculate V −1 ·w
without explicitly inverting the matrix. In addition, matrices U and V are Kronecker
products with the identity matrix, which is itself sparse, and thus we can represent it
efficiently computationally.

S2.4 Initialization regimes

We considered two initialization regimes to avoid local optima of the loglikelihood: the
matrix normal MLE and a down-projection strategy.

Matrix normal MLE based initialization.

A matrix U ∈ Rp×T is said to be sampled from a matrix normal distributionNp,T (M,F,G)
with mean M ∈ Rp×T , among-row covariance matrix F ∈ Rp×p and among-column
covariance matrix G ∈ RT×T if its vectorized form vecU is distributed as the multi-
variate normal: Np·T (vecM, F ⊗ G). Conceivably the observed data generated with the
MGPFM can be close to a matrix normal distribution or, at least, we can use this dis-
tribution for initialization purposes (for more details of the matrix normal distribution
see (Dawid, 1981)). There are no analytical solutions for the MLE for the among-row
and among-column covariance matrices of the matrix normal distribution. However, Du-
tilleul (1999) presents an iterative algorithm (also called flip-flop algorithm) to obtain
the MLE of its three parameters (M,F,G). We propose to initialize the parameters of
the MGPFM as follows: µ0 = M̃ and Σ0 = G̃, where ˜ denotes the MLE. To initialize
B0 and ρ0 we obtain the spectral decomposition of F̃ . Intuitively, B0 contains the first
d normalized eigenvectors of F̃ and ρ is the residual obtained by subtracting B0 · BT

0

from F̃ . Let D ∈ Rp×p be the diagonal matrix containing the decreasing eigenvalues
of F̃ and let E ∈ Rp×p contain in its columns the corresponding eigenvectors. We set

B0 = E:,1:d ·
√
D1:d,1:d , and ρ0 =

√∑
i

∑
j ě

2
i,j

p where ěi,j is the (i, j) element of the

matrix Ě defined as E:,d+1:p ·
√
Dd+1:p,d+1:p .

Down-projection based initialization.

In this second initialization approach we want to learn the model parameters when the
latent dimension is dgoal, but begin with a higher dimensional problem.

1. We first run the MGPFM learning algorithm (as before) for a latent dimension
dhigh higher than desired i.e. dgoal < dhigh and obtain as an output the estimates:

µ̂h ∈ Rp×T , ρ̂h ∈ R, Σ̂h ∈ RT×T , and B̂h ∈ Rp×dhigh .
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2. Project the estimated parameters to the target latent dimension dgoal. We note

that only B̂h needs to be projected. We use the SVD decomposition of the matrix:
B̂h = U · S · V T and define Bproj = B̂h · V:,1:dgoal .

3. Use the projected estimates as initial values for a second run of the MGPFM
learning algorithm, that is, set: µ0 = µ̂h, ρ0 = ρ̂h, Σ0 = Σ̂h and B0 = Bproj .

We find in practice that this second initialization method is often effective but also
significantly more computationally expensive since it requires optimization in a higher
dimension first.

S3 Supplement for simulation studies

We show results of two exemplary simluations. We generated R = 80 samples for training
and 500 samples for testing. We used the following learning settings: we initialized
the parameters with the MLE of the matrix-normal distribution, we assumed µ to be
modelled with B-splines and stopped the algorithm after 50 iterations. We learned three
models: the first one modelling the observed data only with the mean (as a baseline),
the last two corresponding to the MGPFM assuming Σ free and Σ constrained.

In Figure 2 (top panel) we show the true latent process X together with two di-
mensions of the observed Y and estimated Ŷ for the two MGPFM models. Note that
we obtain smoother estimates when constraining Σ. In the middle and bottom panels of
Figure 2 we show error profiles for the three models. The baseline model (that disregards
the MGP term) results in significantly worse estimates as compared to either setting for
the MGPFM. In addition, by constraining Σ we are able to remove all unaccounted
structure left in the residuals when modelling Σ free.

S4 Supplement for reach-to-grasp data analysis

S4.1 Alignment of kinematic curves

The MINEIG criterion for estimating warping functions is explained in (Ramsay
and Silverman, 2005), and it is written as:

MINEIG(h) = γ2 · det
( ∫

E0(t)
2
dt

∫
E0(t)Er(h(t))dt∫

E0(t)Er(h(t))dt
∫
Er(h(t))

2
dt

)
, (S4.1)

where E0(t) is the target curve and γ2 is the size of the second smallest eigenvalue of
the enclosed matrix. The basic idea is that the matrix is like the covariance matrix of
the curves: ({E0(t) : t}, {Er(h(t)) : t}). If one of the curves is exactly proportional to
the other then the matrix is singular and so MINEIG(h) = 0. The advantage of using this
criterion is that there are well developed R and Matlab packages (fda; Ramsay et al.
2009) for minimizing the roughness penalized criterion:
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MINEIG(h) + λ

∫
{W (m)(t)}2dt, (S4.2)

when h is of the form:

h(t) = C0 + C1

∫ t

0

expW (u)du (S4.3)

with W expanded into a B-spline basis and C0, C1 ∈ R. The basic strategy for
alignment then follows the iterative procedure known as Procrustes method :

1. Initialize the target E0(t)← Er(t) to some Er(t).

2. Repeat until convergence:

(a) For each trial r = 1, ..., R fit a time warping function hr(t) using criterion in
Equation S4.2

(b) Update the target E0(t)← 1
R

∑
r E

r(hr(t))

S4.2 Results of estimating the MGPFM in the grasping dataset

In Figure 3 we show the observed velocity profiles, the MGPFM estimates and the
residuals decomposed per marker and finger for a specific replication for the small cone
presented at 45◦ abduction. These plots, which are representative of the grasping behav-
ior in the dataset, show that the thumb’s amount of movement is very small as compared
to the amount of movement by all the other fingers. The MGPFM captures most of the
variation leaving residuals close to zero.

Figure 4 shows more visualizations of the columns of B under different experimental
conditions. Unlike PCA, in which one obtains canonical directions of movement, these
visualizations only exemplify the space of possible configurations of change of movement
in the dataset. The loadings are orthogonal, but presented sorted based on their norm.
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True latent factors Observed true and estimated data
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Figure 2: Results of two exemplary simulations. (Top panel) True latent processX, and two dimensions

of the 50-dimensional Y and Ŷ . Estimates of Ŷ are smoother when Σ is constrained. (Middle and bottom

panel) Error profiles for three models: baseline when modelling only the mean (left), MGPFM with Σ

free (middle) and MGPFM with Σ constrained (left). Best results are achieved with the MGPFM when

Σ is constrained.
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Data Model Residual
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Figure 3: Observed velocity profiles, MGPFM fit and residuals for one replication of the subject grasp-

ing the small cone at 45◦ of abduction. Each row represents a finger and the trajectories corresponding

to a specific marker are plotted in the same color: red for the most distal marker, green for the most

proximal marker and blue for the maker in the middle. The thumb has a fourth marker plotted in black.

The magnitude of motion in the thumb markers is very small as compared to the other fingers. The

MGPFM estimates are very close to the observed data yielding residuals close to zero.
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(1) Small cone (2) Small handle (3) Small handle (4) Small cone

Figure 4: Visualization of the columns of the factor loading matrix B̂ in selected conditions. These

visualizations exemplify some of the ways that a replication can differentiate itself from others in the same

data set. (1) and (2) two types of grasp opening, the former through extension of fingers corresponding to

interphalangeal joint angle extension and the latter through metacarpophalangeal joint angle extension;

(3) Markers of two fingers move significantly faster than the others in a non-synchronized grasping

movement; (4) Complex movement corresponding to curling fingers around a cone.


