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 A MULTIVARIATE GAUSSIAN PROCESS FACTOR MODEL

 FOR HAND SHAPE DURING REACH-TO-GRASP

 MOVEMENTS

 Lucia Castellanos1, Vincent Q. Vu2, Sagi Perel1, Andrew B. Schwartz3
 and Robert E. Kass1

 1 Carnegie Mellon University, 2 Ohio State University and 3 University of Pittsburgh

 Abstract: We propose a Multivariate Gaussian Process Factor Model to estimate low
 dimensional spatio-temporal patterns of finger motion in repeated reach-to-grasp
 movements. Our model decomposes and reduces the dimensionality of variation
 of the multivariate functional data. We first account for time variability through
 multivariate functional registration, then decompose finger motion into a term that
 is shared among replications and a term that encodes the variation per replica
 tion. We discuss variants of our model, estimation algorithms, and we evaluate
 its performance in simulations and in data collected from a non-human primate
 executing a reach-to-grasp task. We show that by taking advantage of the repeated
 trial structure of the experiments, our model yields an intuitive way to interpret
 the time and replication variation in our kinematic dataset.

 Key words and phrases: Dynamical factor analysis, experiment structure, multi
 variate Gaussian process, reach-to-grasp, registration, variance decomposition.

 1. Introduction

 Accurate description of the variability in finger movement is central to un
 derstanding nervous system production of manual dexterity. In addition, char
 acterization of finger motion variability is critical to the successful engineering of
 brain-computer interaction devices, where the goal is to provide individuals who
 have lost a limb with the ability to control a prosthetic hand. The human hand
 is enormously flexible but also hard to model because it contains over 20 degrees
 of freedom, mechanical constraints and, plausibly, complex and non-linear inter
 actions among its components. There is much variability among subjects and
 even when the same subject performs the same grasp, two replications present
 different multidimensional trajectories. Part of the variability may be under
 stood as a result of the constraints among the fingers, and this has led to the use
 of lower-dimensional representations known as synergies Santello, Flanders, and
 Soechting (1998); Todorov and Ghahramani (2004); Mason, Gomez, and Ebner
 (2001); Mason et al. (2004); Soechting and Flanders (1997); Pesyna, Pundi, and
 Flanders (2011); Thakur, Bastian, and Hsiao (2008). Standard matrix factor
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 ization approaches, like principal components analysis (PCA), can go far in this
 direction but do not conform to the repeated-trial structure of most experiments
 and, furthermore, confound temporal variability with experimental condition and
 kinematic variability. In this paper we adapt a Multivariate Gaussian Process
 (MGP) model, also known as the Gaussian Process Factor Analysis model Yu
 et al. (2009), to decompose finger motion into two terms: a term that is shared
 among all replications of the same reach-and-grasp task and a term that is par
 ticular to each replication and that is modelled with a MGP. This provides a
 dynamic lower-dimensional representation of finger motion.

 A Macaca mulatta monkey (considered a model for human hands) was trained
 to reach and grasp eight different objects presented in different orientations and
 spatial locations (Figure 1 of the Supplementary Material). The monkey was
 comfortably seated in a primate chair, with one hand restrained and the other free

 to move to perform the task. A state-of-the-art motion tracking system (Vicon
 Inc) was used to record the three-dimensional (3-D) positions of passive markers
 placed on a thin custom made glove worn by the monkey, at a rate of 200Hz.
 The markers were positioned at the center of each of the fingers' phalanges, on
 the wrist, and on the back of the hand. Each replication of the reach-to-grasp
 task corresponded to a specific condition (i.e. an object presented in a specific
 orientation) and constituted a multivariate time series of markers' position. The
 replicated reaches evolved across time somewhat differently on each trial, which
 poses a challenge: because important features of the data occur at different times
 on different trials, they could get lost when examining trial-averaged effects. In
 this paper we align (register) trials before applying our model, and we study the
 benefit of doing so.

 The two main methodological contributions of our work include the align
 ment (or registering) of the collected multivariate grasping data and the decom
 position and reduction of the dimensionality of the variation of the multivariate
 functional data according to the experimental structure: time, replication, and
 condition through the fitting of our Multivariate Gaussian Process Factor Model
 (MGPFM).

 There have been other approaches in the literature to obtain temporal grasp
 ing synergies. For instance, Vinjamuri et al. (2007, 2010a,b) inspired by (d'Avella
 and Bizzi, 2005), proposed two convolved-mixture models that use SVD and an
 optimization step in their core, to learn a dictionary of time-varying synergies.
 While the approach is able to describe time varying phenomena, it does not pro
 vide a generative model of grasping. State-space models are generative models
 that have been used to model dynamics of general body motion Wang, Fleet,
 and Hertzmann (2008) albeit not finger dynamics. In these models, a Marko
 vian assumption is posited and thus longer range time correlations are unable
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 to be directly captured. The model we present in this paper is not a state
 space model—instead, we assume that the observed trajectories are generated
 via low-dimensional latent factor trajectories that are drawn directly from a GP,
 allowing for longer range correlations to be captured. Fyshe et al. (2012) also
 used this idea of modeling latent factor trajectories with GPs to analyze brain
 imaging data (MEG). As in Fox and Dunson (2011), Fyshe et al. (2012) as
 sumed a loading matrix that changes over time as well as latent factors, which
 are correlated through a hierarchical Bayesian prior, while our model follows the
 more traditional setting of latent factor analysis by assuming that the factors are

 independent, and a stationary loading matrix.
 In the following sections we introduce notation and formally explain our

 Multivariate Gaussian Process Factor Model. In addition, with views to clarity
 and as a fast reference, we included three summarizing tables in the Supplemen
 tary Material: Table 1 lists and defines the symbols used throughout the paper
 including observed variables, latent variables, and parameters being inferred;
 Table 2 enumerates the assumptions made on the parameters, and Algorithm 1
 summarizes and describes our whole approach.

 2. Model

 Consider the p-dimensional observed dataset {Yf(t) \ i = 1 t =
 1,... ,T; r — 1,..., R}, where Y[(t) is the ith coordinate at time t of the p
 dimensional trajectory that is the rth replication of an event. For simplicity,
 we consider only finitely many time points, but our model is based on Gaussian
 Processes and thus it applies to the continuous setting. Here R is the number
 of repeated trials, Τ the number of time slices, and ρ the number of observed
 variables. In our application the observed variables describe the hand kinematics
 - they could be position, velocity, acceleration, joint angles or any function or
 representation of hand kinematics.

 The Multivariate Gaussian Process Factor Model (MGPFM) assumes

 Y{(ty  "μι (*)"

 +

 hjxj(ty
 +

 'eî(i)

 Pp(t) _  .EU bpjx;(t).
 (2.1)

 where pt(t) i = 1,... ,p are deterministic mean functions, and Β = (btj) 6 Rpxd
 is a deterministic factor loadings matrix whose columns correspond to the d latent

 factors and rows correspond to the ρ observed variables. Each latent factor
 trajectory X1· is drawn iid from an MGP with mean function 0 and covariance
 function X)(ii,t2) defined by Σ{·; ·) : [0,1] x [0,1] —> R, ej(i) i = 1,... ,p are
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 iid stationary MGP draws with covariance function Φ(ίχ,ί2)) which we assume
 to be diagonal in this work.

 Letting Yr(t) = [Y{(t) ■ ■ ■ Y;{t)]\ μ(ί) = [μχ(β) ■ ■ ■ μν{ί)]\ Xr(t) = [X[(t) ■ ■ ■

 Xj(t)]T, and er{t) = [e[(t)... 6p(t)]T, (2.1) becomes:

 Yr(t) = μ(ί) + BXr(i) + er(t). (2.2)

 To ensure identifiability of the model we assume that BTB is diagonal.
 Our model (2.2) decomposes each kinematic trial into a term μ(ί) that is

 common among replications and a term Xr(i) that is specific to the replication.
 The spatial structure of the markers is encoded in the Β matrix by summarizing
 and mapping down the spatial configuration of the hand to a lower dimension.

 Parameter μ(ί) does not depend on the specific trial and can be modelled
 in two ways: invariant in time as a p-dimensional constant vector, and as a p
 dimensional varying function in time. In the latter case μ can be represented
 as a ρ χ Τ matrix, or more efficiently, through a B-spline basis. The number
 of parameters to estimate for μ is ρ when μ is assumed to be constant, ρ ■ Τ
 when μ is allowed to vary freely (with no constraints) as a function of time as
 μ — μ(ί) Ε RpxT, and 0(p ■ c) when μ is described through a B-spline basis
 with c the number of basis functions where c « T. While the choice of basis

 is not scientifically important, our formulation drastically reduces the number of
 parameters to be estimated and it allows us to model the part of the variability
 that is common between trials in a smooth fashion.

 The parameter Σ corresponds to the covariance matrix of the MGP. The form
 of Σ determines the properties of the low dimensional kinematic representation.
 Estimating Σ Ε RTxT implies learning T2 parameters. While it is possible to es
 timate with no constraints (which we do in some of our analyses), this procedure
 is prone to overfitting when there is not much data available or when the observed
 data was not drawn from the model. One way to overcome this problem is to im
 pose structure to Σ by assuming that it takes a parametric form. In this work, we
 use an stationary exponential covariance function: Σ(ζ, j) = exp(—(i — ί)2/θγ)
 where θγ controls the width of the diagonal that decays exponentially. But other
 functions such as the Matern covariance function are also possible Rasmussen
 and Williams (2006). In our case, the exponential covariance function effectively
 imposes a prior belief that the latent trajectories are smooth, where θγ controls
 how fast the function varies within a certain window of time.

 2.1. Estimation and inference problems

 Our estimation algorithms are EM-based. We iterate between parameter
 estimation and inference on the latent variables. We refer to the Supplementary
 Material for derivation.
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 Since the learning algorithm is an EM procedure, it is susceptible to local
 optima. To avoid getting stuck in local optima we propose two initialization
 methods. The first (MLE) involves estimating the MLE for a matrix normal dis
 tribution Dawid (1981); Dutilleul (1999); and the second (down-projection) esti
 mates the MGPFM parameters assuming a higher latent dimension and projects
 down to the desired dimension. For details see the Supplementary Material.

 2.2. Identifiability

 We assume orthogonality of the columns of B, an identity covariance for
 Xr(f), and a covariance proportional to the identity matrix for er(t). This is
 enough to ensure identifiability of the parameters, because the MGPFM is com
 pletely specified by E[Yr(f)] = μ(ί) and Cou[Yr(t), Yr(u)] = Β · Σ(ί,η) · Βτ +
 Φ(t,u). We assume (Table 2 in the Supplementary Material) Σ(ί, t) = 1 and
 Φ(t,t) — ρ ■ Ιρχρ where Ipxp, is the identity matrix of dimension ρ x p. Then the
 equation of the variance is fully determined: Var[Yr(f)] = Cov[Yr(t), Yr(t)] =

 pxp Β · BT + ρ ■ L

 2.3. Variability of predictions and estimates

 The main focus of this work is to provide a method for separating variation
 that is common across trials from variation that is specific to individual trials. We
 use the model as a tool to facilitate this decomposition; we use cross-validation to
 assess its adequacy in explaining the variation and predictive uncertainty, which
 has the benefit of not requiring the assumption that our model is correct. Alter
 natively, to assess uncertainty about the estimated parameters or its predictions
 without cross-validation, one can assume that the model parameters are known.
 In this case, the posterior distribution of the latent variables is Gaussian, and
 the uncertainty of the predictions can be assessed by inspecting the covariance
 matrix for the posterior distribution (Equation S2.13 of the Supplementary Ma
 terial). However, the validity of this inference hinges critically on the correctness
 of the model and in this work we do not assume that our model is correct; instead
 we are using it as a tool to decompose the variability of the data.

 3. Alignment Procedure

 In functional data there are two types of variability: amplitude variation
 and phase variation Ramsay, Hooker, and Graves (2009); Ramsay and Silverman
 (2005). Amplitude variation describes the variability of the sizes of the features
 of the kinematic curves; features such as the height of peak velocities of differ
 ent markers recording finger movement during a grasping task; phase variation
 describes the variability of the timings of such features of the kinematic curves

This content downloaded from 128.2.27.86 on Thu, 12 Nov 2020 14:27:13 UTC
All use subject to https://about.jstor.org/terms



 10 L. CASTELLANOS, V. Q. VU, S. PEREL, A. B. SCHWARTZ AND R. E. KASS

 as the variation between the timing of the opening and closing, or between the
 peak velocities of the fingers.

 We are interested in studying amplitude variations in order to understand
 how the movement of the fingers relate to one another. To isolate the amplitude
 variation from the phase variation we can transform the time-axis for each trial
 so that phase variation between kinematic curves is minimized.

 Alignment of the R kinematic curves Yr(t) is accomplished by estimating
 monotonically increasing time warping functions hr{t) such that the phase varia
 tion of t —» Yr(hr(t)) is minimized across trials r. Note that it is important that
 the same function be used across kinematic variables for a fixed condition and

 trial, because we want to preserve the relationships between kinematic variables
 at fixed times. At the same time, different warping functions need to be learned
 for different replications.

 Total energy signal. Alignment of multivariate curves is greatly simplified by
 summarizing each multivariate curve by a univariate curve. We summarize the
 trials based on the total energy signal based on the velocity of the markers. The
 basic idea is that the velocity of the markers typically has clear peaks, valleys,
 and zero crossings - features that are easily identified.

 In order to describe the alignment procedure in a clear and compact way
 we slightly overload notation in this Section and in the Supplementary Material
 (S4.1) by denoting the original kinematic marker positions at time f as a matrix
 (instead of a vector). In particular, we rearrange the elements in Yr(t) and
 consider the matrix Yr(t) G M x3 where ρ = 3 * Κ and Κ = 16 is the number
 of markers placed on the fingers (Κ is multiplied by three because of the 3
 dimensional positions of the markers). Likewise, Y (t) G R 3 refers to the
 corresponding velocities. Thus Gr(t) = [Υ (i)][Y (t)]T is the matrix of inner
 products of marker velocities for each replication r in a specific condition, and
 we define the total energy signal of a trial as the sum of the squared magnitudes
 of the velocities across markers, which can be written as:

 Er{t) = tr(G'(t)) = tr([Y (t)][Y (£)]T). (3.1)

 The total energy signal Er(t) is an important property of the trial because
 it summarizes the magnitude of motion during a trial and condition. Our goal
 is to estimate time warping functions hr(t) such that the phase variation of
 t —> Yr(Kr{t)) is minimized across trials. One of the benefits of this signal is that
 it is invariant under rotations of the 3-dimensional variables.

 The MINEIG criterion. We estimate the time warping functions for each trial
 or replication by minimizing the MINEIG criterion iteratively as formally explained

 in Ramsay and Silverman (2005) and in the Supplementary Material Section
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 Unregistered energy functions Registered energy functions

 Figure 1. Example of energy profiles raw and aligned (small cone, 45° ad
 duction). On the i-axis we show time and on the y-axis the value of the
 energy functions.

 (S4.1). The main idea is to take one replication at a time, and to iteratively
 construct its warping function such that the shape of the warped energy is close
 to the shape of the mean energy across replications of the same condition. This
 procedure is done by iteratively optimizing the regularized objective function
 written as (S4.2) and results in a warping function per replication that minimizes
 the overall discrepancy of the energy curves for all replications from the mean
 energy function. The warping functions are strictly monotone smooth functions
 represented through a monotone smoother (β-spline basis) as in Equation (S4.3).

 In Figure 1 we show raw energy profiles and their aligned versions.
 Recovering the aligned kinematic curves. Having estimated hr(t), the
 aligned velocity curves are Y (hr(t)), while the positional curves can be obtained
 by integration:

 Y0 + [ Yr(hr(u))du, (3.2)
 where Yq corresponds to the initial hand configuration in the positional space.

 4. Simulation Studies

 We generated ρ = 50-dimensional data from a latent process of dimension
 dtrue = 4. The dimensionality ρ of the observed simulated data roughly corre
 sponds to the grasping data analyzed in further sections. We considered Τ = 51
 time points and set μ 6 WxT deterministically as a sinusoidal function of time
 with different amplitudes per coordinate: pk(t) = sin ([2 · k/p] ■ (t — k)), k =
 1p·, the entries of Β G Wxd were drawn iid from U(0,1); we set ρ = 0.25,
 and assumed Σ(ί, j) = exp (—(i — j)2/θγ) with θ-% = 0.01.

 Measures of goodness of fit. We summarize the mean square error (MSE)
 of observation r at a particular time slice t as er(t) = (1 /ρ)Σλ=ι(Υ{it) —
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 Y[(t))2, and the mean integrated square error (MISE) of observation r along
 time as er = (1/T) Y^[=l er(t). These statistics summarize the reconstruction er
 ror. Also, in a specific simulation S we obtain the mean error in the simulation
 as S s = (1/Rs) er where Rs is the number of observations in simulation
 S. We report the average of £s across independent simulations S, and we also
 report its corresponding standard error.

 Number of required training samples. We explore the question of how many
 training examples are required to achieve a certain performance and we compare
 the differences between modelling μ free (unconstrained) and with splines with
 initialization through down-projection, keeping Σ free (unconstrained). We kept
 the latent dimension d fixed at dtrue = 4, we generated a single test set of size
 500, and ten different training sets for each specific number of training examples.
 Figure 2 shows that, in every case, performance improved in terms of reconstruc
 tion error as the amount of training data increased. We also notice that after
 40 samples the performance levels off. There is no significant difference between
 modelling μ unconstrained (as a matrix in MpxT) and μ with splines but, consid
 ering the number of parameters to be estimated, the best performance is achieved
 with the modelling of μ as splines.

 In our simulation we considered dtrUe = 4. If we underestimate the true
 latent dimension d, then no matter how large the training sample, we would not
 be able to achieve the minimum Mean Integrated Squared Error (or the maximum
 loglikelihood). On the other hand, if we overestimate the latent dimension we can
 potentially achieve the optima due to the models being 'nested' as d increases,
 but we will need more samples. In the presented simulations we do not provide
 a quantihcation of how many more samples.

 Latent dimension and reconstruction error. In the second simulation we

 study the behavior of different models when varying the value of the latent di
 mension. We considered modelling μ as a constant across dimensions but varying
 along time, as unconstrained or free (as a matrix in RpxT), and with B—splines.
 We also considered two types of initialization: the matrix-normal MLE and the
 down-projection of a solution from a higher dimension. We investigated the per
 formance in terms of reconstruction error, and we studied whether the model
 and learning procedure were able to recover the true dimensionality of the data.
 We set apart a single test set of 500 samples and 10 training sets of size 20 for
 each value of d. We considered a training set of size 20 because this number
 corresponds to the number of samples of a specific condition in a session.

 In Figure 3 we display the average MISE on the test set, and the Bayesian
 Information Criterion (BIC) on the test set for each of the considered models,
 learning settings, and for various values of the latent dimension.
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 Mean Integrated Square Error
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 Figure 2. MGPFM: Average MISE in the test set as a function of number
 of training samples. The figure shows the results on a single test set of 500
 samples using ten independent training sets of size 80. We report the average
 mean error in the test set for the ten simulations ((1/10) SsJ and its
 standard error. The dimensionality of the observed data was ρ = 50 and the
 latent dimension dtrUe = 4. We modelled Σ as unconstrained, the μ with
 splines and unconstrained, and initialized the learning algorithm with the
 down-projection.

 In terms of MISE, modelling μ as a constant resulted in the worst per
 formance. Modelling μ free yielded much better results in both initialization
 regimes. While modelling μ unrestricted works well in terms of the mean inte
 grated square error, using splines drastically reduces the number of parameters
 being estimated and, everything else constant, should be preferred. In addition,
 using splines ensures that the μ is smooth. In terms of MISE, the initialization
 regime played a bigger role when using splines than in the unconstrained setting
 suggesting that in the more constrained case the algorithm is more susceptible
 to local optima and requires smarter initialization.
 The true latent dimension was recovered through use of BIC whenever the

 learning method was initialized through the projecting procedure, and sometimes
 with the MLE initialization. In all cases, the BIC was characterized by a very
 fast drop until reaching the true value of the latent dimension d, and the steep
 decrease was followed by either a slower decrease or slight increase in the BIC. The
 clearest case occured when modelling μ with splines and performing initialization
 through the projection procedure. In the supplementary material we show how
 the model works in one run of the simulation.

 5. Data Analysis

 We analyzed the 48-dimensional finger motion captured data from 23 sessions
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 Mean Integrated Squared Error. i?train = 20 xjq6 Bayesian Information Criterion. i?train = 20
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 H free. Init. MLE
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 H spline. Init. MLE
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 V\i
 \>— *
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 Training d Training d

 Figure 3. MGPFM: Average MISE in the test set, and BIC for different
 values of the latent dimensionality when varying the initialization regimes
 and the ways of modelling μ. The true latent dimension d = 4 is most
 obviously recovered when μ is modelled with splines and the initialization
 is through the projection procedure. When μ is modelled with splines the
 initialization regime has a large impact on performance.

 of a rhesus monkey performing the reach-and-grasp task explained in Section 1.
 For the analysis we considered five conditions: small cone and small handle
 presented in positions 45° of flexion and 45° of adduction and for the small cone
 at 45° of abduction. In each condition we considered all trials across sessions,
 totalling in average 155 trials per condition.

 We performed the analysis on the 3D velocity profiles, because velocity and
 speed of hand movements are thought to be encoded in the activity of single
 motor cortical neurons Moran and Schwartz (1999). Note that performing similar
 analysis with joint angle velocity is also possible Vinjamuri et al. (2007, 2010a,b).

 We denote the observed velocity profiles as Y (t) and fit the following model
 where μ is modelled through splines,

 ΫΓ(ί)=μ3(ί) + ΒΧΓ(ί) + 6Γ(ί). (5.1)
 Each reach-and-grasp replication lasted an average of 1.13 seconds, but each trial
 was of different length. In order to make it comparable, we smoothed data with
 a B-spline basis, resampling all trials onto 150 time slices.

 For outlier removal we summarized each trial with its energy function (Equa
 tion 3.1) and clustered trials of a specific condition using the same function via
 k—means. We applied the clustering algorithm for several values of k (2, 3, and
 4) and aggregated the resulting clusters removing the smallest group that con
 tained at most 10% of trials and whose removal yielded the most visually uniform
 set of energy profiles. The MGPFM was applied to the preprocessed raw data
 and to the aligned data (as explained in Section 3). Figure 1 in Section 3 shows
 an example of the same data in these two states.
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 Analysis of performance varying models, alignment and latent dimen
 sionality. We compared the performance of the MGPFM to two different base
 lines in terms of the MISE. We first compared our model against a simple baseline,
 namely modelling the data as a time varying mean; and secondly, we compared
 MGPFM against PCA, the prevailing approach in literature. In addition, we
 investigated whether aligning the data had an impact on the performance of the
 models in terms of MISE. Finally, we investigated the impact of varying the size
 of the latent dimension. We modelled μ with B-splines, Σ constrained, and we
 initialized the model with matrix normal MLE.

 To apply PCA, we stacked the training trajectories into a 2D matrix of
 size (R ■ Τ) χ p, R the number of training samples, Τ = 150, and ρ — 48 the
 number of kinematic variables. In applying this methodology we disregarded
 time correlations (as is usual in conventional PCA), and for this reason it does
 not make sense to align data before applying PCA.

 We considered different conditions: each condition defined by the object and
 the orientation in which it was presented. We obtained the 10-fold cross validated
 MISE for the preprocessed raw data modelled with the mean, with PCA, and
 with the MGPFM. We did the same with the aligned data modelled with the
 mean and with the MGPFM.

 Figure 4 shows a sample of the results of this experiment. Regardless of
 alignment, PCA or the MGPFM considerably outperform the mean. However
 the alignment helped in every setting including the mean, PCA, and MGPFM,
 and it gave a significant improvement in MISE, particularly when modelling the
 data only with the mean. Finally, MISE decreased in every case as the latent
 dimensionality increased. We notice that the impact that alignment has on the
 reduction of MISE is greater when the latent dimensionality is lower.

 Results of a specific condition. We now discuss in some detail the results
 of estimating the model parameters for the small cone presented with 45° of
 abduction. We used the pre-processed and aligned data from all sessions (165
 trials) and present the results of one of the ten folds (with 149 replications for
 training, and 16 for test). We modelled μ with B-splines, Σ constrained, and
 we initialized the model with the matrix normal MLE. For simplicity, we set the
 latent dimensionality to be two.

 In Figure 5 we plot the error in two ways: first, as a function of time, and
 second, integrated across time for each replication. We compare the MSE of
 MGPFM against a baseline of modelling only the mean. The top two plots show
 that there is much more variation during certain time periods in the trials and
 that the baseline is unable to capture this variation. The MGPFM significantly
 reduces the error (by approximately an order of magnitude) in those time periods
 by capturing the variation between trials.
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 Figure 4. MGPFM: we show 10-fold cross validated MISE in grasping data
 for two conditions (small cone flexion and adduction), comparing the baseline
 model considering only the mean, PCA, MGPFM on raw pre-processed data
 and MGPFM on aligned data. Experiments were run for various sizes of
 latent dimensionality d. The MGPFM was applied modelling μ with splines,
 Σ constrained, initializing with the MLE of the matrix normal distribution,
 and 50 iterations of the learning procedure. Observe that the MGPFM
 applied on aligned data achieves better results than other methods, but its
 advantage decreases as the size of the latent dimension increases.

 In Figure 3 of the Supplementary Material we show the observed data, the
 model estimates and the residuals decomposed per marker and finger for a specific

 replication. These plots, which are representative of the grasping behavior in the
 dataset, show that the thumb's amount of movement is very small as compared
 to the amount of movement by all the other fingers. In other conditions (like
 the small handle) this is also the case, but the contrast is particularly prominent
 with the middle, ring, and index fingers. The MGPFM captures most of the
 variation leaving residuals close to zero.

 Interpretation of learned parameters. One of the main features of the
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 Only mean MGPFM

 Replications Replications

 Figure 5. Error profiles in data (small cone, 45° abduction). In the up
 per panel, each line corresponds to a replication and the dashed line is the
 mean value. The lower panel displays the mean integrated square error
 per replication. The MGPFM reduces the error significantly, as compared
 to the baseline of modelling only the mean (by approximately an order of
 magnitude).

 MGPFM is that its parameters can be interpreted. Parameter μ is a trajectory
 in the velocity space and, through (3.2), we are able to obtain corresponding
 postures in the position space. In Figure 6 we show time slices of μ projected
 onto the hand space that summarize the main features of the μ trajectory. The
 mean parameter μ captures the shared behavior across all trials. In this partic
 ular condition, this behavior consists of five epochs that correspond to the hand
 starting in a neutral position, followed by a slight opening of the fingers in a syn
 chronized fashion, back to a neutral position, after which the subject spreads his
 fingers slightly before going back to neutral position. All trials in this condition
 showed this pattern.

 In contrast to the parameter μ that encodes behavior shared among all
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 to — ^50 ^51 — ^66 ^67 — t-jj <78 — <87 ^88 — ^end
 Neutral Slight opening Neutral Finger spread Neutral

 Figure 6. The trajectory μ (projected onto the position space) represents
 what is shared by all replications of a condition. Here we show the visual
 ization of μ for the small cone at 45° of abduction. The trajectory presents
 five epochs corresponding to hand postures: all plots are in the same scale
 and the third epoch looks very similar to the first and last epochs (neutral
 position), so we omit it. The trajectory begins at a neutral position, followed
 by a slight opening of the grasp through a synchronized movement of fin
 gers and a slight rotation, then back to the neutral hand configuration after
 which the fingers spread slightly (after the subject releases the object) and
 back to a neutral position. All replications for this condition followed this
 pattern; they differentiated among themselves with the movement modelled
 through the loading matrix and the MGP term.

 (1) Loading 1 (2) Loading 2

 Figure 7. Visualization of loadings encoded in Β for the small cone presented
 at 45° abduction. The first loading corresponds to synchronized opening
 closing of the hand; the second loading to curling of the fingers wrapping
 around the cone. The estimation of Β is explained in the Supplementary
 Material Section S 1.2 and it can be reduced to solving a specific linear re
 gression problem (Equation (SI.9)).

 replications, the term that includes the latent factors X and the loading matrix
 Β corresponds to the ways in which a replication differentiates itself from the
 other replications. The factors X encode what is specific to each trial. Figure 8
 shows X for two example replications superposed on the distribution of factors
 for all replications. The factors for these two representative replications differ.

 The estimate of the loading matrix Β is defined in Equations S2.8—S2.ll
 of the Supplementary Material, and even though Β is only identifiable up to
 rotation we are able provide a limited interpretation after sorting the columns of
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 Β in decreasing order of their norm. Figure 7 shows both columns of Β as a set
 of Κ = ρ/3 = 16 vectors that correspond to the direction and relative magnitude
 of change for each of the Κ markers. Column i of B, denoted by 6V € Mp, is
 constructed by stacking Κ 3D vectors, each of which can be interpreted as the
 3D direction of change of a particular marker as the learned latent variable X (t)
 changes in the direction of the ith dimension of the low dimensional space. Each

 arrow in Figure 7 corresponds to a marker and is determined by Yo + a- bi,. where
 Yo € IRP is the mean hand postural configuration at t = 1 of the training set and
 « G 1 is a scalar that controls the size of the arrow. Yo is used simply to project
 the data (which was learned in the velocity space) into the positional space, and
 its selection can be arbitrary; multiplying by a preserves the relative contribution
 to the motion of a particular marker with respect to the other markers.

 The first loading, or first column, of Β (left panel) encodes a synchronized
 closing-opening motion of the fingers, whereas the second loading, or second
 column, of Β (right panel) encodes a movement that happens at a somewhat
 different rate and direction per finger and whose net effect captures a wrapping
 (or curling) of the fingers (as if around the cone). These two loadings represent
 the ways in which trials differ amongst themselves in the magnitude of the grasp

 opening and the emphasis of the curling motion.
 In this analysis we considered d = 2 for illustrative purposes (in the sim

 ulations we showed how we can use BIC to select the dimension). In principle
 though, there is nothing that prevents us from providing an interpretation of
 the learned loadings when d > 2 in the same manner as we did above. In fact,
 columns of the loading matrix with smaller norm correspond to smaller variabil
 ity of the kinematics of the hand. However, as d increases, the loadings will most

 likely be harder to interpret due to the fact that we start modelling noise (as in
 PCA).

 Under the conditions specified in Section 2.2, the factor loadings are iden
 tifiable. In this case, it makes sense to interpret the learned latent factors in

 the model. Whereas X is estimated in the velocity space, it is more intuitive to
 visualize the differences between trials on the position space by integrating the
 latent factors along time and adding the corresponding initial hand posture (as
 in (3.2)). In this way we are able to compare the two replications in the posi
 tional space at specific time periods, for instance, between time points 50 and
 58 (it is valid to compare the two replications at the same time period because,
 through the alignment procedure, we have accounted for the phase variation).
 We observe that, whereas the first factor corresponding to replication 1 transi

 tions from X\(t = 50) = +54.19 to X\(t = 58) = —684.8 (with a net change of

 —738.99), the first factor of replication 2 changes from X\{t = 50) = +73.21 to
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 Figure 8. Learned factors X for condition: small cone, 45° abduction. In the
 top panel we show (in green) the distribution of learned factors in the velocity
 space (left) and their integrated version on the positional space (right). This
 figure depicts differences between trials in the space of learned factors. On
 this plot we overlap two exemplary trials. In the middle and lower panel
 we show details of these replications: the shape and values they display are
 different. The starting point of the trial is denoted by an open circle, the end
 position, by a star. There are arrows along the trajectory show the direction
 of movement. Arrows marked with different symbols represent time and
 allow for comparison between trajectories: arrow with circle (33%), arrow
 with star (40%), arrow with spade (50%), arrow with double spade (54%),
 arrow with cross (60%). In Figure 9 we show how difference between the
 integrated learned factors in these two trials manifest on hand posture.
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 X\(t = 58) = —178.5 (with a net change of —251.71). While the net change is
 not meaningful by itself, the relative change is. The first/corresponding column
 in the loading matrix Β suggests that these changes should result in an exag
 gerated opening of the hand in replication 1 as compared to replication 2. And,
 indeed by visualizing Y (and the observed data Y) we verify that the hand in
 replication 1 opens further than in replication 2 (see Figure 9).

 Thus each of the elements of the MGPFM can be mapped to the actual
 configuration of the grasping curves and we can provide physical and intuitive
 interpretation, albeit somewhat limited by the issue of identifiability up to ro
 tation. Furthermore, we can differentiate the variability that corresponds to a
 specific replication from the variability shared among all trials from a specific
 condition. Finally, we are also able to accurately recover (in terms of reconstruc
 tion error) hand configurations from the estimated parameters and factors.

 6. Discussion

 In this paper we formulated a dynamic factor model based on Multivariate
 Gaussian Processes to study grasping kinematics. We developed an algorithm for
 inference and parameter estimation for the MGPFM and discussed variations of
 the model and algorithm. We showed in simulations that our model outperforms
 PCA in the reconstruction of error when alignment is applied. In contrast with
 PCA or SVD, we are able to differentiate sources of variation that can potentially
 be used to design robotic primitives for grasping devices. Ciocarlie, Goldfeder,
 and Allen (2007), for example, show how to use PCA for such purposes; in
 contrast, our MGPFM incorporates time modelling into the primitives. The
 MGPFM can also be extended by assuming prior distributions in the parameters
 (for instance, in the loading matrix), and can capture long range correlations that
 can potentially improve the prediction of coordinated dexterous hand motions.
 The MGPFM is also easy to adapt to new settings — we can add sensors, change
 the representation to joint angles, and the same algorithms apply in principle.
 Furthermore, though we have not addressed the application here, the MGPFM
 can potentially be extended to incorporate neural data as a controller for the
 kinematic motion of a robotic arm. Saleh, Takahashi, and Hatsopoulos (2012),
 for example, decode from neural data PCA-reduced kinematic configurations in
 a short period of time; a potential extension of our model would explicitly model
 and exploit temporal structure.

 The MGPFM probabilistically models the relevant grasping structure and
 separates it from noise; but our core methodological contribution is a strategy
 to decompose and reduce the dimensionality of the variation of the data ac
 cording to the experimental structure (time, condition and replications). The
 decomposition of variance in the grasping datasets relied on the application of a
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 Position Corresponding hand configurations

 (fXl9/X2) t = 50 t = 58

 Figure 9. Interpretation of latent factors showing differences between repli

 cations. On the left we plot (f Xi(t),f X2(t)) as a function of t. The start
 of the trial is at the open circle, the solid dot corresponds to t = 50, the tri
 angle to t = 58 and the star to the end of the trial. Middle and right panels:
 hand configurations corresponding to those time points. The interaction
 between the first latent factor (moving negatively) and the corresponding
 loading (Figure 9 panel 1) corresponds to an opening of the fingers in a syn
 chronized manner - this movement differs between the two replications and
 leads to an exaggerated opening of the hand in replication 1 (top panel).

 multivariate functional alignment procedure. A major product of this approach
 is the decomposition of variability between what is common in replications and
 what is specific for each trial; it also provides clear interpretation in the space of
 grasp postures. In particular, visualizations of the shared mean trajectory μ, of
 the axis of variation in replications encoded in the loading matrix B, and of the
 specific differences in particular trials summarized in the latent factors X helped
 to explain variability in grasping movements.
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